
Document Identifier: DSP2060

Date: 2024-08-01

Version: 1.1.0

Redfish User Guide

Supersedes: 1.0.0

Document Class: Informational

Document Status: Published

Document Language: en-US

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party's reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified DMTF that, in their opinion, such
patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/
policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Copyright Notice
Copyright © 2022-2024 DMTF. All rights reserved.

Redfish User Guide DSP2060

2 Published Version 1.1.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

Foreword. 4
Acknowledgments . 4

1 Introduction . 5
2 Notes about examples in this guide . 6
3 Redfish resouce map . 7
4 Authentication . 9

4.1 Authentication overview. 9
4.2 HTTP Basic authentication . 9
4.3 Sessions . 9

5 Redfish service root . 11
6 Resource collections . 14
7 Chassis example . 15
8 Computer system example . 17
9 Manager example . 21
10 Actions . 23
11 Redfish responses . 25

11.1 Task management . 25
11.2 Error responses . 28

12 Query parameters . 29
12.1 Controlling collection responses . 30
12.2 Reducing response data . 30
12.3 Including data from hyperlinks. 31
12.4 Common combinations of query parameters. 33

13 Managing user accounts . 34
13.1 Adding new user accounts . 34
13.2 Removing user accounts . 36

14 ANNEX A (informative) Change log. 38
15 ANNEX B (informative) curl command options . 39
16 Bibliography . 40

DSP2060 Redfish User Guide

Version 1.1.0 Published 3

Foreword

The Redfish User Guide was prepared by DMTF's Redfish Forum.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about DMTF, see http://www.dmtf.org.

These sites provide more information about the Redfish standard:

Site Description

DMTF GitHub repositories Open-source tools and libraries for Redfish.

DMTF Redfish Forum
Organization that maintains the Redfish standard. This site provides information about member companies,
future work and schedules, charter, and information about joining the working group that maintains the Redfish
standard.

Redfish Developer Hub
Resources, including an interactive schema explorer, hosted schema, and other links, for developers who use
Redfish to build applications.

Redfish Specification
Forum

DMTF Redfish-monitored user forum that answers questions about Redfish-related topics.

Redfish standard Redfish schemas, specifications, mockups, white papers, FAQ, educational material, and more.

Acknowledgments

DMTF acknowledges the following individuals for their contributions to this document:

• Jeff Autor — Hewlett Packard Enterprise

• Michael Raineri — Dell Technologies

Redfish User Guide DSP2060

4 Published Version 1.1.0

http://www.dmtf.org/
https://www.github.com/DMTF
https://www.dmtf.org/standards/spmf
https://redfish.dmtf.org/
https://redfishforum.com/
https://redfishforum.com/
https://www.dmtf.org/standards/redfish

1 Introduction

Redfish defines an easy-to-use and implement RESTful interface that lets users manage a wide range of devices
and environments including stand-alone servers, composable infrastructures, and large-scale cloud environments.

Redfish defines a JSON-encoded data model. Because it requires JSON representation, Redfish is easy to both
interpret and integrate with programming environments. To support various schema-aware tools, the Redfish data
model is schema-based and is published in the following formats:

• OpenAPI YAML

• JSON Schema

• OData CSDL

Although the Redfish data model is schema-based, it's not necessary for new users to understand schema in order to
use Redfish. This guide will show users how to navigate the Redfish model and perform common management
operations.

DSP2060 Redfish User Guide

Version 1.1.0 Published 5

2 Notes about examples in this guide

The examples in this guide assume that a Redfish-enabled system is available. Many of these examples use curl, a
common Linux utility that is also available for Windows, with specific options to send Redfish requests from the
command line. These examples also pipe the curl output into the Python json.tool to validate and pretty-print JSON
responses. Postman is an alternative tool for performing the same operations. The Redfish Mockup Server is
available for development purposes when a Redfish-enabled system is not available.

The examples in this guide use these parameters for many operations:

• <REDFISH-HOST> : Server name or IP address of the Redfish-enabled system.

• <USERNAME> : Username for the Redfish account.

• <PASSWORD> : Password for the Redfish account.

• <SESSION-ID> : ID of your session.

• <SESSION-TOKEN> : Session token that you use on all subsequent requests including DELETE .

Redfish User Guide DSP2060

6 Published Version 1.1.0

3 Redfish resouce map

A Redfish service, or simply service, is a software or firmware product that implements the protocols, resources, and
functions of the Redfish Specification. In many cases, a baseboard management controller (BMC) implements
Redfish to provide remote management capabilities of a system.

A service implements resources in the Redfish data model at different URIs. All services support an entry point called
the service root. The service root contains references to the supported top-level resource collections and services
supported by the implementation. The service root is always located at the URI /redfish/v1/ .

Hyperlinks in responses from the service are used to guide clients to other resources in the service. These hyperlinks
are represented as @odata.id properties where the value of the property is the URI of the referenced resource.
There are many examples of these hyperlinks in this guide, such as the Redfish service root section that shows a
sample service root with hyperlinks to the top-level resource collections and services.

Figure 1 shows a simplified resource map for managing a server.

Figure 1

In the previous diagram, there are three commonly used sets of resources for managing a server:

DSP2060 Redfish User Guide

Version 1.1.0 Published 7

• Chassis : Represents the physical view of a container of equipment, which can be a card, a server blade, an
enclosure in a rack, an entire rack, or other types of containers.

• Managers : Represents BMCs, enclosure managers, or any other components that manage the infrastructure.

• Systems : Represents the logical view of any subsystem accessible from the host CPU.

The Chassis example, Computer system example, and Manager example sections show how users can perform
management operations on the previous resources.

Redfish User Guide DSP2060

8 Published Version 1.1.0

4 Authentication

4.1 Authentication overview

To authenticate access to Redfish resources, user credentials are provided to the Redfish service through either
HTTP Basic authentication or sessions. When attempting to access a resource without valid credentials or with
insufficient privileges, the service returns the HTTP 401 Unauthorized or 403 Forbidden status code.

4.2 HTTP Basic authentication

With HTTP Basic authentication, credentials are provided as a Base64-encoded string of the username and
password as <USERNAME>:<PASSWORD> . This string is provided in the Authorization request header with the Basic

scheme:

Authorization: Basic <Base64-encoded credentials>

For example, if the username is admin and the password is password , the following header would be used:

Authorization: Basic YWRtaW46cGFzc3dvcmQ=

When using HTTP Basic authentication, users will need to provide this header in each request to the service. This
means that the service will need to verify the username and password on every request. This can have a negative
impact on timing and latency, so this method is not optimal for most circumstances when multiple requests will be
issued to the service.

4.3 Sessions

Redfish sessions allow a user to exchange a username and password for a session token, and the session token is
used in susbsequent requests. This is a more optimal approach when performing a multiple operations so that the
username and password only need to be verified by the service on the initial session creation request.

To create a session, perform a POST operation on the /redfish/v1/SessionService/Sessions URI:

curl -k -D - -X POST 'https://<REDFISH-HOST>/redfish/v1/SessionService/Sessions' \

-H "Content-Type: application/json" -d '{ "UserName": "<USERNAME>", "Password": "<PASSWORD>" }'

The response from the service, if successful, will contain the session ID and session token in the Location and X-

DSP2060 Redfish User Guide

Version 1.1.0 Published 9

Auth-Token response headers respectively. These values need to be saved for future operations with the session.
The following is an example response where a session was successfully created:

HTTP/1.1 201 Created

Location: /redfish/v1/SessionService/Sessions/<SESSION-ID>

X-Auth-Token: <SESSION-TOKEN>

Content-Type: application/json

{

"@odata.type": "#Session.v1_1_1.Session",

"@odata.id": "/redfish/v1/SessionService/Sessions/<SESSION-ID>",

"Id": "1",

"Name": "User Session",

"UserName": "<USERNAME>",

"Password": null

}

In subsequent requests to the service, provide the X-Auth-Token request header with the session token received in
the response from the session creation. The following example shows a request to the URI /redfish/v1/Chassis/1U

with the X-Auth-Token header provided:

curl -k 'https://<REDFISH-HOST>/redfish/v1/Chassis/1U' -H 'X-Auth-Token: <SESSION-TOKEN>'

When the session is no longer needed, perform a DELETE operation on the session URI that represents the session:

curl -k -X DELETE 'https://<REDFISH-HOST>/redfish/v1/SessionService/Sessions/<SESSION-ID>' \

-H 'X-Auth-Token: <SESSION-TOKEN>'

If successful, the session token is invalidated. The service will reject future requests that contain the invalidated
token.

Redfish User Guide DSP2060

10 Published Version 1.1.0

5 Redfish service root

To get the Redfish service root, perform a GET operation on the Redfish service root URI. Authentication is not
needed because this resource is not protected.

curl -k 'https://<REDFISH-HOST>/redfish/v1/' | python -m json.tool

The following example shows a sample Redfish service root:

{

"@odata.id": "/redfish/v1/",

"@odata.type": "#ServiceRoot.v1_14_0.ServiceRoot",

"Id": "RootService",

"Name": "Root Service",

"RedfishVersion": "1.15.0",

"UUID": "92384634-2938-2342-8820-489239905423",

"ProtocolFeaturesSupported": {

"ExpandQuery": {

"ExpandAll": true,

"Levels": true,

"MaxLevels": 6,

"Links": true,

"NoLinks": true

},

"SelectQuery": false,

"FilterQuery": false,

"OnlyMemberQuery": true,

"ExcerptQuery": true

},

"Systems": {

"@odata.id": "/redfish/v1/Systems"

},

"Chassis": {

"@odata.id": "/redfish/v1/Chassis"

},

"Managers": {

"@odata.id": "/redfish/v1/Managers"

},

"Tasks": {

"@odata.id": "/redfish/v1/TaskService"

},

"SessionService": {

"@odata.id": "/redfish/v1/SessionService"

},

"AccountService": {

DSP2060 Redfish User Guide

Version 1.1.0 Published 11

"@odata.id": "/redfish/v1/AccountService"

},

"EventService": {

"@odata.id": "/redfish/v1/EventService"

},

"Registries": {

"@odata.id": "/redfish/v1/Registries"

},

"UpdateService": {

"@odata.id": "/redfish/v1/UpdateService"

},

"CertificateService": {

"@odata.id": "/redfish/v1/CertificateService"

},

"Links": {

"Sessions": {

"@odata.id": "/redfish/v1/SessionService/Sessions"

}

}

}

The service root includes hyperlinks to the top-level resource collections and services supported by the
implementation. For example, the AccountService property contains a hyperlink to the account service, shown by
the value /redfish/v1/AccountService for its @odata.id property.

The following table lists the top-level resource collections and services that are commonly found in Redfish services.
This table is not exhaustive for every possible property in the service root.

Property Description

AccountService Service to manage user accounts.

CertificateService Service to manage certificates installed on the service.

Chassis Collection of physical containers managed by the service.

EventService Service to manage asynchronous event notifications.

JobService Service to manage operations that are scheduled to run at particular points in time.

Managers Collection of management entities managed by the service.

SessionService Service to manage sessions.

Systems Collection of systems managed by the service.

Tasks Service to manage outstanding operations with the service.

Redfish User Guide DSP2060

12 Published Version 1.1.0

Property Description

TelemetryService Service to manage collection and reporting of metrics tracked by the service.

UpdateService Service to perform firmware or software updates.

DSP2060 Redfish User Guide

Version 1.1.0 Published 13

6 Resource collections

A common pattern found in Redfish is the usage of resource collections. These types of resources act as containers
for a set of resources of the same type. Depending on the specific resource collection and capabilities of the service,
resource collections can grow or shrink over time.

Resource collections contain a property called Members to show the hyperlinks to the members of the collection.
Resource collections can also contain a property called Members@odata.nextLink for cases where a response cannot
show hyperlinks to all of the members of the collection. In these cases, users will need to follow this hyperlink to find
additional members of the collection.

The ChassisCollection , ManagerCollection , and ComputerSystemCollection resources are example resource
collections commonly found in the service root. The following example shows a request to the ChassisCollection

resource found in the service root at the URI /redfish/v1/Chassis .

curl -k 'https://<REDFISH-HOST>/redfish/v1/Chassis' -H 'X-Auth-Token: <SESSION-TOKEN>' \

| python -m json.tool

The response to the request shows the resource collection contains one member with the URI /redfish/v1/Chassis/

1U :

{

"@odata.id": "/redfish/v1/Chassis",

"@odata.type": "#ChassisCollection.ChassisCollection",

"Members": [

{

"@odata.id": "/redfish/v1/Chassis/1U"

}

],

"Members@odata.count": 1,

"Name": "Chassis Collection"

}

If supported by the service, users can perform POST operations on a resource collection to create new members for
that collection. A DELETE operation on a member of the resource collection will remove the member from the
collection. Authentication with sessions is an example of this, where the POST operation on /redfish/v1/

SessionService/Sessions will add a new member to the SessionCollection resource, and the DELETE operation on
/redfish/v1/SessionService/Sessions/<SESSION-ID> removes the member from the SessionCollection resource.

Redfish User Guide DSP2060

14 Published Version 1.1.0

7 Chassis example

To get a Chassis resource, perform a GET operation on the URI of the desired member of the ChassisCollection

resource. The following example shows a request to retreive the Chassis resource named 1U .

curl -k 'https://<REDFISH-HOST>/redfish/v1/Chassis/1U' -H 'X-Auth-Token: <SESSION-TOKEN>' \

| python -m json.tool

The following example shows a response to the previous request:

{

"@odata.id": "/redfish/v1/Chassis/1U",

"@odata.type": "#Chassis.v1_21_0.Chassis",

"Id": "1U",

"Name": "Computer System Chassis",

"ChassisType": "RackMount",

"AssetTag": "Chicago-45Z-2381",

"Manufacturer": "Contoso",

"Model": "3500RX",

"SKU": "8675309",

"SerialNumber": "437XR1138R2",

"PartNumber": "224071-J23",

"PowerState": "On",

"LocationIndicatorActive": true,

"HeightMm": 44.45,

"WidthMm": 431.8,

"DepthMm": 711,

"WeightKg": 15.31,

"Location": {

"PostalAddress": {

"Country": "US",

"Territory": "OR",

"City": "Portland",

"Street": "1001 SW 5th Avenue",

"HouseNumber": 1100,

"Name": "DMTF",

"PostalCode": "97204"

},

"Placement": {

"Row": "North",

"Rack": "WEB43",

"RackOffsetUnits": "EIA_310",

"RackOffset": 12

}

},

DSP2060 Redfish User Guide

Version 1.1.0 Published 15

"Status": {

"State": "Enabled",

"Health": "OK"

},

"ThermalSubsystem": {

"@odata.id": "/redfish/v1/Chassis/1U/ThermalSubsystem"

},

"PowerSubsystem": {

"@odata.id": "/redfish/v1/Chassis/1U/PowerSubsystem"

},

"EnvironmentMetrics": {

"@odata.id": "/redfish/v1/Chassis/1U/EnvironmentMetrics"

},

"Sensors": {

"@odata.id": "/redfish/v1/Chassis/1U/Sensors"

},

"Links": {

"ComputerSystems": [

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2"

}

],

"ManagedBy": [

{

"@odata.id": "/redfish/v1/Managers/BMC"

}

],

"ManagersInChassis": [

{

"@odata.id": "/redfish/v1/Managers/BMC"

}

]

}

}

The response contains information about the physical container the Chassis resource represents. It's common to
find information such as status, health, and FRU information about the container. Power subsystem, thermal
subsystem, and sensor information can be found in hyperlinks from the Chassis resource. The response can also
contain hyperlinks to equipment within the container.

The Chassis section of the Redfish Resource and Schema Guide contains details for the properties that can be
found in the Chassis resource.

Redfish User Guide DSP2060

16 Published Version 1.1.0

8 Computer system example

To get a ComputerSystem resource, perform a GET operation on the URI of the desired member of the
ComputerSystemCollection resource. The following example shows a request to retreive the ComputerSystem

resource named 437XR1138R2 .

curl -k 'https://<REDFISH-HOST>/redfish/v1/Systems/437XR1138R2' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

The following example shows a response to the previous request:

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2",

"@odata.type": "#ComputerSystem.v1_18_0.ComputerSystem",

"Id": "437XR1138R2",

"Name": "WebFrontEnd483",

"SystemType": "Physical",

"AssetTag": "Chicago-45Z-2381",

"Manufacturer": "Contoso",

"Model": "3500",

"SubModel": "RX",

"SKU": "8675309",

"SerialNumber": "437XR1138R2",

"PartNumber": "224071-J23",

"Description": "Web Front End node",

"UUID": "38947555-7742-3448-3784-823347823834",

"HostName": "web483",

"Status": {

"State": "Enabled",

"Health": "OK",

"HealthRollup": "OK"

},

"HostingRoles": [

"ApplicationServer"

],

"IndicatorLED": "Off",

"PowerState": "On",

"Boot": {

"BootSourceOverrideEnabled": "Once",

"BootSourceOverrideTarget": "Pxe",

"BootSourceOverrideTarget@Redfish.AllowableValues": [

"None",

"Pxe",

"Cd",

"Usb",

DSP2060 Redfish User Guide

Version 1.1.0 Published 17

"Hdd",

"BiosSetup",

"Utilities",

"Diags",

"SDCard",

"UefiTarget"

],

"BootSourceOverrideMode": "UEFI",

"UefiTargetBootSourceOverride": "/0x31/0x33/0x01/0x01"

},

"TrustedModules": [

{

"FirmwareVersion": "1.13b",

"InterfaceType": "TPM1_2",

"Status": {

"State": "Enabled",

"Health": "OK"

}

}

],

"BootProgress": {

"LastState": "OSRunning",

"LastStateTime": "2021-03-13T04:14:13+06:00",

"LastBootTimeSeconds": 676

},

"LastResetTime": "2021-03-13T04:02:57+06:00",

"BiosVersion": "P79 v1.45 (12/06/2017)",

"ProcessorSummary": {

"Count": 2,

"Model": "Multi-Core Intel(R) Xeon(R) processor 7xxx Series",

"LogicalProcessorCount": 16,

"CoreCount": 8,

"Status": {

"State": "Enabled",

"Health": "OK",

"HealthRollup": "OK"

}

},

"MemorySummary": {

"TotalSystemMemoryGiB": 96,

"TotalSystemPersistentMemoryGiB": 0,

"MemoryMirroring": "None",

"Status": {

"State": "Enabled",

"Health": "OK",

"HealthRollup": "OK"

}

},

"Bios": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Bios"

Redfish User Guide DSP2060

18 Published Version 1.1.0

},

"SecureBoot": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/SecureBoot"

},

"Processors": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Processors"

},

"Memory": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Memory"

},

"EthernetInterfaces": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/EthernetInterfaces"

},

"SimpleStorage": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/SimpleStorage"

},

"LogServices": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/LogServices"

},

"GraphicsControllers": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/GraphicsControllers"

},

"USBControllers": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/USBControllers"

},

"Certificates": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Certificates"

},

"VirtualMedia": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/VirtualMedia"

},

"Links": {

"Chassis": [

{

"@odata.id": "/redfish/v1/Chassis/1U"

}

],

"ManagedBy": [

{

"@odata.id": "/redfish/v1/Managers/BMC"

}

]

},

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/437XR1138R2/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulShutdown",

DSP2060 Redfish User Guide

Version 1.1.0 Published 19

"GracefulRestart",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

}

}

}

The response contains information about the system the ComputerSystem resource represents. It's common to find
information such as status, health, and FRU information about the system. Processor, memory, storage, and other
components that comprise the system can be found in hyperlinks from the ComputerSystem resource. The response
can also contain hyperlinks to more detailed configuration settings for the system, such as BIOS and UEFI Secure
Boot settings.

The ComputerSystem section of the Redfish Resource and Schema Guide contains details for the properties that
can be found in the ComputerSystem resource.

Redfish User Guide DSP2060

20 Published Version 1.1.0

9 Manager example

To get a Manager resource, perform a GET operation on the URI of the desired member of the ManagerCollection

resource. The following example shows a request to retreive the Manager resource named BMC .

curl -k 'https://<REDFISH-HOST>/redfish/v1/Managers/BMC' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

The following example shows a response to the previous request:

{

"@odata.id": "/redfish/v1/Managers/BMC",

"@odata.type": "#Manager.v1_16_0.Manager",

"Id": "BMC",

"Name": "Manager",

"ManagerType": "BMC",

"Description": "Contoso BMC",

"ServiceEntryPointUUID": "92384634-2938-2342-8820-489239905423",

"UUID": "58893887-8974-2487-2389-841168418919",

"Model": "Joo Janta 200",

"DateTime": "2015-03-13T04:14:33+06:00",

"DateTimeLocalOffset": "+06:00",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"PowerState": "On",

"GraphicalConsole": {

"ServiceEnabled": true,

"MaxConcurrentSessions": 2,

"ConnectTypesSupported": [

"KVMIP"

]

},

"CommandShell": {

"ServiceEnabled": true,

"MaxConcurrentSessions": 4,

"ConnectTypesSupported": [

"Telnet",

"SSH"

]

},

"FirmwareVersion": "1.45.455b66-rev4",

"AdditionalFirmwareVersions": {

"Bootloader": "v2022.01",

DSP2060 Redfish User Guide

Version 1.1.0 Published 21

"Kernel": "Linux 5.13.0-30-generic arm71"

},

"NetworkProtocol": {

"@odata.id": "/redfish/v1/Managers/BMC/NetworkProtocol"

},

"EthernetInterfaces": {

"@odata.id": "/redfish/v1/Managers/BMC/EthernetInterfaces"

},

"SerialInterfaces": {

"@odata.id": "/redfish/v1/Managers/BMC/SerialInterfaces"

},

"LogServices": {

"@odata.id": "/redfish/v1/Managers/BMC/LogServices"

},

"Links": {

"ManagerForServers": [

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2"

}

],

"ManagerForChassis": [

{

"@odata.id": "/redfish/v1/Chassis/1U"

}

],

"ManagerInChassis": {

"@odata.id": "/redfish/v1/Chassis/1U"

}

},

"Actions": {

"#Manager.Reset": {

"target": "/redfish/v1/Managers/BMC/Actions/Manager.Reset",

"ResetType@Redfish.AllowableValues": [

"ForceRestart",

"GracefulRestart"

]

}

}

}

The response contains information about the management entity the Manager resource represents. It's common to
find information such as status, health, and FRU information about the manager. Networking and other external
interface settings for the manager can be found in hyperlinks from the Manager resource.

The Manager section of the Redfish Resource and Schema Guide contains details for the properties that can be
found in the Manager resource.

Redfish User Guide DSP2060

22 Published Version 1.1.0

10 Actions

Actions are used for operations that do not map easily to CRUD (create, read, update, and delete) semantics. For
example, performing a reset of a device is not as simple as modifying a desired property since a reset operation will
likely start various sequences and state transitions internal to the device, which will cause many other properties in
the model to change.

The Actions property in a resource is an object that contains the available actions that can be performed on the
resource. Each property inside of the Actions property represents one of the actions supported on the resource. It
also contains properties that describe the supported parameters and parameter values for each action. Clients can
perform a POST operation on the action URI to invoke the action.

The following example shows the supported actions for a ComputerSystem resource found at the URI /redfish/v1/

Systems/437XR1138R2 :

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2",

"@odata.type": "#ComputerSystem.v1_18_0.ComputerSystem",

"Id": "437XR1138R2",

"Name": "WebFrontEnd483",

"Actions": {

"#ComputerSystem.Reset": {

"target": "/redfish/v1/Systems/437XR1138R2/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulShutdown",

"GracefulRestart",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

],

"@Redfish.ActionInfo": "/redfish/v1/Systems/437XR1138R2/ResetActionInfo"

}

},

... <Other ComputerSystem properties>

}

In the previous example, there is one action supported named #ComputerSystem.Reset . The target property
contains the URI on which the client performs the POST operation. It also contains
ResetType@Redfish.AllowableValues to show the supported values for the ResetType parameter. A user can perform

a graceful restart of the system with the following request:

DSP2060 Redfish User Guide

Version 1.1.0 Published 23

curl -k -X POST 'https://<REDFISH-HOST>/redfish/v1/Systems/437XR1138R2/Actions/ComputerSystem.Reset' \

-H "Content-Type: application/json" -H 'X-Auth-Token: <SESSION-TOKEN>' \

-d '{ "ResetType": "GracefulRestart" }'

The @Redfish.ActionInfo property in the earlier example is another method that can be used to show supported
parameters and values for actions. Clients can perform a GET operation on this URI to retreive an ActionInfo

resource, which contains an array of objects that describe each supported parameter for the action. The following
example shows an ActionInfo resource for the #ComputerSystem.Reset action:

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2/ResetActionInfo",

"@odata.type": "#ActionInfo.v1_2_0.ActionInfo",

"Id": "ResetActionInfo",

"Name": "Reset Action Info",

"Parameters": [

{

"Name": "ResetType",

"Required": true,

"DataType": "String",

"AllowableValues": [

"On",

"ForceOff",

"GracefulShutdown",

"GracefulRestart",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

}

]

}

In the previous example, there is a single object in the Parameters array, which signifies there is only one parameter
for the action. It tells us the parameter is named ResetType , it's mandatory to be specified in the action request, it's a
string, and has a set of allowable values. The ActionInfo section of the Redfish Resource and Schema Guide
contains details for the properties that can be found in the ActionInfo resource.

Redfish User Guide DSP2060

24 Published Version 1.1.0

11 Redfish responses

The HTTP status code can be used for initial determination for how to process a response from a Redfish service.
The following table provides guidance for processing responses:

HTTP status code Indication and next steps

200 The request was successful. The response body contains the requested resource or action results.

201
The request was successful. If there is a response body, it contains a newly created resource. The Location

HTTP header contains the URI of the new resource.

202 The request is still in process. See the Task management section for additional handling.

204 The request was successful and no response body is given.

3<XX> The request is redirected to another URI. Perform a GET on the URI in the Location HTTP header.

4<XX>

The request was rejected due to a client-side error and the response body contains error information. This is
typically due to unsupported properties or values or missing HTTP headers. See the Error responses section for
additional handling.

5<XX>
The request was rejected due to a service-side error and the response body contains error information. Retrying
the request might be successful. See the Error responses section for additional handling.

11.1 Task management

A service creates a task when a request will take additional time to process. This is useful for when a single
operation, such as a POST , will take longer than traditional HTTP timeouts. For these cases, services respond with
the HTTP 202 Accepted status code. The response will contain the Location HTTP header, which clients use to poll
the progress of the task with the GET operations. The response might also contain the Retry-After HTTP header to
indicate a recommended polling interval. When the task is complete, the subsequent GET operation will return the
response for the initial request.

The following pseudocode can be used as a template for monitoring tasks:

response = session.post(target_uri)

if response.status == 202:

task_monitor = response.getheader('Location')

sleep_time = response.getheader('Retry-After', 5)

while response.status == 202:

sleep(sleep_time)

response = session.get(task_monitor)

DSP2060 Redfish User Guide

Version 1.1.0 Published 25

The following flow shows the end-to-end interactions over HTTP where a task is used to manage a long operation:

POST /redfish/v1/Systems/1/Storage/1/Volumes HTTP/1.1

X-Auth-Token: <SESSION-TOKEN>

Content-Type: application/json

{

"CapacityBytes": "53687091200",

"RAIDType": "None",

"Links": {

"Drives": [

{

"@odata.id": "/redfish/v1/Chassis/1/Drives/4"

}

]

}

}

HTTP/1.1 202 Accepted

Content-Type: application/json

Location: /redfish/v1/TaskService/TaskMonitors/378

Retry-After: 10

{

"@odata.id": "/redfish/v1/TaskService/Tasks/5",

"@odata.type": "#Task.v1_5_1.Task",

"Id": "5",

"Name": "Task for volume creation",

"TaskState": "New",

"TaskStatus": "OK"

"PercentComplete": 0,

"StartTime": "2022-03-08T13:10:13-05:00",

"Messages": [],

"TaskMonitor": "/redfish/v1/TaskService/TaskMonitors/378"

}

GET /redfish/v1/TaskService/TaskMonitors/378 HTTP/1.1

X-Auth-Token: <SESSION-TOKEN>

HTTP/1.1 202 Accepted

Content-Type: application/json

Location: /redfish/v1/TaskService/TaskMonitors/378

Retry-After: 10

{

"@odata.id": "/redfish/v1/TaskService/Tasks/5",

"@odata.type": "#Task.v1_5_1.Task",

"Id": "5",

Redfish User Guide DSP2060

26 Published Version 1.1.0

"Name": "Task for volume creation",

"TaskState": "Running",

"TaskStatus": "OK"

"PercentComplete": 68,

"StartTime": "2022-03-08T13:10:13-05:00",

"Messages": [],

"TaskMonitor": "/redfish/v1/TaskService/TaskMonitors/378"

}

GET /redfish/v1/TaskService/TaskMonitors/378 HTTP/1.1

X-Auth-Token: <SESSION-TOKEN>

HTTP/1.1 201 Created

Content-Type: application/json

Location: /redfish/v1/Systems/1/Storage/1/Volumes/3

{

"@odata.id": "/redfish/v1/Systems/1/Storage/1/Volumes/3",

"@odata.type": "#Volume.v1_6_0.Volume",

"Id": "3",

"Name": "Newly created volume",

"Status": {

"State": "Enabled",

"Health": "OK"

}

"CapacityBytes": "53687091200",

"RAIDType": "None",

"Encrypted": false,

"BlockSizeBytes": 512,

"Links": {

"Drives": [

{

"@odata.id": "/redfish/v1/Chassis/1/Drives/4"

}

]

}

}

In the first HTTP request, a user is creating a new Volume resource by performing a POST operation on the
/redfish/v1/Systems/1/Storage/1/Volumes URI. The response to the request contains a 202 Accepted status code,

which indicates the operation is still being processed. The Location header contains the URI /redfish/v1/

TaskService/TaskMonitors/378 , which the client uses to check the status of the operation.

The next request shows the client checking the status of the original operation by performing a GET operation on the
/redfish/v1/TaskService/TaskMonitors/378 . The response contains a 202 Accepted status code, which indicates

the original operation is still being processed.

DSP2060 Redfish User Guide

Version 1.1.0 Published 27

The final request is another GET operation on the /redfish/v1/TaskService/TaskMonitors/378 . The response
contains a 201 Created status code, which indicates the original request is now complete. The response body
contains the newly created Volume resource.

11.2 Error responses

When a service returns an HTTP 4<XX> or 5<XX> status code, the response body contains an error response. This
type of response allows a service to provide detailed information about the failure. The following example response
shows a single message that indicates the user specified the value Red for the IndicatorLED property, but the value
is not allowed by the service.

{

"error": {

"code": "Base.1.14.PropertyValueNotInList",

"message": "The value 'Red' for the property IndicatorLED is not in the ...",

"@Message.ExtendedInfo": [

{

"@odata.type": "#Message.v1_1_2.Message",

"MessageId": "Base.1.14.PropertyValueNotInList",

"RelatedProperties": ["/IndicatorLED"],

"Message": "The value 'Red' for the property IndicatorLED is not in the ...",

"MessageArgs": ["Red", "IndicatorLED"],

"Severity": "Warning",

"MessageSeverity": "Warning",

"Resolution": "Choose a value from the enumeration list that the ..."

}

]

}

}

The @Message.ExtendedInfo property inside error is an array, which allows for the service to provide multiple
messages in the response. Users and client software can make decisions for corrective measures, such as modifying
the request to the service, retrying the request, or performing service operations.

Redfish User Guide DSP2060

28 Published Version 1.1.0

12 Query parameters

Services can support query parameters in GET requests. Query parameters allow clients to control the amount and
type of data in the response from a service. The following table contains query parameters defined in the Redfish
Specification:

Query parameter Description

excerpt
Only return properties that have the excerpt schema annotation. If no excerpt schema annotation is defined for
the resource, returns the entire resource.

$expand Includes the hyperlink's contents in-line with retrieved resources.

$filter Members of the resource collection that do not match the criteria specified in $filter are removed.

only If there is only one member in the collection, the member is returned instead of the collection.

$select Only return properties specified in the $select statement.

$skip Only return members of a collection starting after the specified index.

$top Limits the number of members of a collection that can be returned.

Clients can discover the supported query parameters on the service from the service root's
ProtocolFeaturesSupported property. The following example shows a service supports $expand , only , and
excerpt , but does not support $select or $filter .

{

"ProtocolFeaturesSupported": {

"ExpandQuery": {

"ExpandAll": true,

"Levels": true,

"MaxLevels": 6,

"Links": true,

"NoLinks": true

},

"SelectQuery": false,

"FilterQuery": false,

"OnlyMemberQuery": true,

"ExcerptQuery": true

}

}

DSP2060 Redfish User Guide

Version 1.1.0 Published 29

12.1 Controlling collection responses

The $skip and $top query parameters are used to help iterate over large resource collections. $skip controls the
number of members to skip in the collection, removing collection members from the beginning of the list. $top limits
the number of collection members to return, dropping members at the end of the collection that do not fit. The two
used together can be used to iterate over a collection in portions at a time. In the following example, $skip specifies
that the first 100 log entries are to be ignored and $top specifies that at most 25 log entries are allowed to be
returned.

curl -k 'https://<REDFISH-HOST>/redfish/v1/Managers/BMC/LogServices/Log/Entries?$skip=100&$top=25' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

The $filter query parameter is used to remove unwanted members of a resource collection. Clients provide
comparison statements in the $filter parameter that contain desired property values for members to include in the
collection response. In the following example, $filter specifies that only members whose ReadingType property
contains Temperature are allowed in the collection response.

curl -k "https://<REDFISH-HOST>/redfish/v1/Chassis/1U/Sensors?$filter=ReadingType eq 'Temperature'" \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

The only query parameter is used to avoid subsequent GET operations when resource collections only contain one
member. If the collection contains one member, then the member of the collection is returned as if the client
performed a GET operation on the member of the collection. However, in other cases, the collection is returned as if
only was not specified. In the following example, only is used when reading the system collection.

curl -k 'https://<REDFISH-HOST>/redfish/v1/Systems?only=' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

12.2 Reducing response data

The excerpt query parameter is used to limit the properties returned from a resource to those marked as "excerpt"
properties. As of this publication, the only standard Redfish resources that contain excerpt properties are Sensor

and Control resources. Excerpt properties are those considered to be of high importance to most clients, such as
the Reading property in a Sensor resource. In the following example, excerpt is used when reading the
AmbientTemp sensor in the 1U chassis.

Redfish User Guide DSP2060

30 Published Version 1.1.0

curl -k 'https://<REDFISH-HOST>/redfish/v1/Chassis/1U/Sensors/AmbientTemp?excerpt=' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

The $select query parameter is used to limit the properties returned from a resource to those specified in the query
parameter itself. In the following example, $select is used to specify that Status , PartNumber , and SerialNumber

are to be returned when reading the 1U chassis.

curl -k 'https://<REDFISH-HOST>/redfish/v1/Chassis/1U?$select=Status,PartNumber,SerialNumber' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

12.3 Including data from hyperlinks

The $expand query parameter is used to include resources referenced from hyperlinks within resource payload.

The $expand query parameter allows for the following options to control the types of hyperlinks to expand:

• $expand=. : Expand all hyperlinks not inside of the Links property.

• $expand=~ : Only expand hyperlinks inside of the Links property.

• $expand=* : Expand every hyperlink in the resource.

Optionally, the $levels parameter specifies how deep to perform an expansion. The depth is in reference to how
many hyperlinks are traversed to get to the final resource. For example, from a ComputerSystemCollection resource,
it takes two levels to get to a Bios resource: the first level gets to the ComputerSystem resource and the second level
goes into the Bios property from the Computersystem resource. If not specified, $levels is assumed to have the
value 1. The query parameter $expand=.($levels=2) will perform two levels of expansion on hyperlinks not found in
the Links property.

Special care needs to be made when performing expansion with hyperlinks found in Links and with multiple levels
of expansion. Hyperlinks found in Links frequently cross reference each other, which can create expansion loops.
Performing deep expansions of this type is likely to cause exponential growth in the response payload, which can
easily hit memory limits of most BMCs.

In the following example, $expand is used to expand the system collection with two levels of depth while not
expanding hyperlinks inside the Links property. Note that hyperlinks in the system such as Processors and Memory

are expanded, but hyperlinks like Chassis and ManagedBy within Links are not expanded.

curl -k 'https://<REDFISH-HOST>/redfish/v1/Systems?$expand=.($levels=2)' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

DSP2060 Redfish User Guide

Version 1.1.0 Published 31

{

"@odata.id": "/redfish/v1/Systems",

"@odata.type": "#ComputerSystemCollection.ComputerSystemCollection",

"Name": "System collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2",

"@odata.type": "#ComputerSystem.v1_18_0.ComputerSystem",

"Id": "437XR1138R2",

"Name": "WebFrontEnd483",

"SystemType": "Physical",

"AssetTag": "Chicago-45Z-2381",

"Manufacturer": "Contoso",

"Model": "3500",

"SubModel": "RX",

"SKU": "8675309",

"SerialNumber": "437XR1138R2",

"PartNumber": "224071-J23",

"Description": "Web Front End node",

"UUID": "38947555-7742-3448-3784-823347823834",

"HostName": "web483",

"Status": {

"State": "Enabled",

"Health": "OK",

"HealthRollup": "OK"

},

"Processors": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Processors"

"@odata.type": "#ProcessorCollection.ProcessorCollection",

"Name": "Processor collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Processors/CPU1"

}

]

},

"Memory": {

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Memory"

"@odata.type": "#MemoryCollection.MemoryCollection",

"Name": "Memory collection",

"Members@odata.count": 2,

"Members": [

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Memory/DIMM1"

},

{

"@odata.id": "/redfish/v1/Systems/437XR1138R2/Memory/DIMM2"

}

Redfish User Guide DSP2060

32 Published Version 1.1.0

]

},

"Links": {

"Chassis": [

{

"@odata.id": "/redfish/v1/Chassis/1U"

}

],

"ManagedBy": [

{

"@odata.id": "/redfish/v1/Managers/BMC"

}

]

}

}

]

}

12.4 Common combinations of query parameters

Query parameters can be combined with & in a single request.

$filter , $skip , and $top can be used together to perform iterative processing of a resource collection with
members matching a specified criteria. Services apply the $filter query parameter first, followed by $skip , and
then $top , regardless of the order given in the request. For example, the query parameters $filter=Severity eq

'Critical'&$skip=100&$top=25 can be applied to a log entry collection to return 25 log entries that contain the
severity Critical .

$filter and $expand can be used together when performing a GET request to a resource collection. $filter is
used to reduce the members of the collection and $expand is used to show the contents of each of the members in
the response instead of just their hyperlinks. For example, the query parameters $filter=SystemType eq

'Physical'&$expand=. can be applied to a system collection to return all physical systems to the client.

$expand and excerpt can be used together as a way to expand resources, but only return important data to the
client. For example, the query parameters $expand=.&excerpt= can be applies to a sensor collection to return all
Sensor resources in the collection, but only properties marked as "excerpt", such as Reading .

DSP2060 Redfish User Guide

Version 1.1.0 Published 33

13 Managing user accounts

The ManagerAccountCollection resource found at /redfish/v1/AccountService/Accounts contains the user accounts.
The following example shows a request to retreive the ManagerAccountCollection resource. The response shows
one user account is present. While the last segment of the URI contains 1 , this is not necessarily the same as the
username of the account. A subsequent GET on the URI for the account is required to discover its username.

curl -k 'https://<REDFISH-HOST>/redfish/v1/AccountService/Accounts' \

-H 'X-Auth-Token: <SESSION-TOKEN>' | python -m json.tool

{

"@odata.id": "/redfish/v1/AccountService/Accounts",

"@odata.type": "#ManagerAccountCollection.ManagerAccountCollection",

"Name": "Accounts Collection",

"Members@odata.count": 1,

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Accounts/1"

}

]

}

13.1 Adding new user accounts

The preferred method to add new user accounts is to perform a POST operation on the ManagerAccountCollection

resource URI to add a new member. The following example shows a new user named Bob added to the collection
and assigned the URI /redfish/v1/AccountService/Accounts/2 .

POST /redfish/v1/AccountService/Accounts HTTP/1.1

X-Auth-Token: <SESSION-TOKEN>

Content-Type: application/json

{

"UserName": "Bob",

"Password": "Secret12345",

"RoleId": "Operator"

}

HTTP/1.1 201 Created

Redfish User Guide DSP2060

34 Published Version 1.1.0

Content-Type: application/json

Location: /redfish/v1/AccountService/Accounts/2

{

"@odata.id": "/redfish/v1/AccountService/Accounts/2",

"@odata.type": "#ManagerAccount.v1_12_1.ManagerAccount",

"Id": "2",

"Name": "Bob's user account",

"UserName": "Bob",

"Password": null,

"RoleId": "Operator",

"Enabled": true,

"AccountTypes": [

"Redfish"

],

"Links": {

"Role": {

"@odata.id": "/redfish/v1/AccountService/Roles/Operator"

}

}

}

There are some implementations that have restrictions where they are unable to support adding new user accounts
with a POST operation. Instead, these implementations model fixed account slots, and the client is required to find an
empty account slot and perform a PATCH operation to add a new user account. This can be discovered by inspecting
the Allow HTTP response header when performing a GET on the ManagerAccountCollection resource. If the
header does not contain POST , then the client will need to find an empty account slot and PATCH the new user's
information. The following example shows a response that only contains GET in the Allow header.

GET /redfish/v1/AccountService/Accounts HTTP/1.1

X-Auth-Token: <SESSION-TOKEN>

HTTP/1.1 200 OK

Content-Type: application/json

Allow: GET

{

"@odata.id": "/redfish/v1/AccountService/Accounts",

"@odata.type": "#ManagerAccountCollection.ManagerAccountCollection",

"Name": "Accounts Collection",

"Members@odata.count": 4,

"Members": [

{

"@odata.id": "/redfish/v1/AccountService/Accounts/1"

},

{

DSP2060 Redfish User Guide

Version 1.1.0 Published 35

"@odata.id": "/redfish/v1/AccountService/Accounts/2"

},

{

"@odata.id": "/redfish/v1/AccountService/Accounts/3"

},

{

"@odata.id": "/redfish/v1/AccountService/Accounts/4"

}

]

}

To find an empty user account slot, the client will need to iterate over the members of the ManagerAccountCollection

resource collection. An empty user account will contain an empty string for its UserName property and the value
false for its Enabled property. The following pseudocode shows how to discover an empty user account slot.

account_collection = session.get("/redfish/v1/AccountService/Accounts")

empty_account_slot_uri = None

for member in account_collection.dict["Members"]

account_slot = session.get(member["@odata.id"])

if account_slot.dict["UserName"] == "" and not account_slot.dict["Enabled"]:

empty_account_slot_uri = member["@odata.id"]

break

Once an empty user account slot is found, the account slot can be updated with a PATCH operation with the new
account information.

curl -k -D - -X PATCH 'https://<REDFISH-HOST>/redfish/v1/AccountService/Accounts/3' \

-H "Content-Type: application/json" \

-d '{ "UserName": "Fred", "Password": "P@ssw0RD", "RoleId": "ReadOnly", "Enabled": true }'

13.2 Removing user accounts

The preferred method to remove a user account is to perform a DELETE operation on the URI of the ManagerAccount

resource that represents the account to remove. The following example shows a request to remove the user account
found at the URI /redfish/v1/AccountService/Accounts/2 .

curl -k -D - -X DELETE 'https://<REDFISH-HOST>/redfish/v1/AccountService/Accounts/2'

As described previously in the Adding new user accounts section, there are implementations that model fixed
account slots. To remove a user account for these types of implementations, a PATCH operation is performed to set

Redfish User Guide DSP2060

36 Published Version 1.1.0

the account slot to be empty. This can be done by setting the UserName property to an empty string, the Enabled

property to false , and the RoleId property to ReadOnly .

curl -k -D - -X PATCH 'https://<REDFISH-HOST>/redfish/v1/AccountService/Accounts/2' \

-H "Content-Type: application/json" -d '{ "UserName": "", "RoleId": "ReadOnly", "Enabled": false }'

DSP2060 Redfish User Guide

Version 1.1.0 Published 37

14 ANNEX A (informative) Change log

Version Date Description

1.1.0 2024-08-01
Corrected the example RelatedProperties property in message objects throughout the guide to
remove the leading # to meet syntax specified by RFC6901.

Clarified the Actions property example in the Actions section to show how the information is
obtained.

Added the Managing user accounts section to give guidance on how to add and remove users.

1.0.0 2022-08-30 Initial release

Redfish User Guide DSP2060

38 Published Version 1.1.0

15 ANNEX B (informative) curl command options

The example requests in this guide use curl commands with the following options:

Option Description

-d , --data <DATA> Sends specified <DATA> in a request to the server.

-D , --dump-header

<FILENAME>
Dumps response headers. If <FILENAME> is - , dumps headers to the console.

-H , --header <HEADER> Sends specified request header.

-k , --insecure Proceeds even for insecure TLS connections.

-L , --location Follows redirects.

-s , --silent Runs in silent or quiet mode.

-X , --request <COMMAND> Uses the <COMMAND> method instead of the default GET method.

DSP2060 Redfish User Guide

Version 1.1.0 Published 39

16 Bibliography

• curl: command line tool and library for transferring data with URLs, https://curl.haxx.se/

• DMTF Redfish Mockup Server, https://github.com/dmtf/Redfish-Mockup-Server

• DMTF Redfish Sessions, https://www.dmtf.org/sites/default/files/Redfish_School-Sessions.pdf

• DMTF DSP0266, Redfish Specification, https://www.dmtf.org/dsp/DSP0266

• DMTF DSP2046, Redfish Resource and Schema Guide, https://www.dmtf.org/dsp/DSP2046

• Internet Engineering Task Force (IETF) RFC2616, R. Fielding et al, Hypertext Transfer Protocol -- HTTP/1.1,
https://www.ietf.org/rfc/rfc2616.txt

• IETF RFC7230, R. Fielding, Ed. et al, Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing,
https://www.ietf.org/rfc/rfc7230.txt

• IETF RFC7231, R. Fielding, Ed. et al, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,
https://www.ietf.org/rfc/rfc7231.txt

• IETF RFC7617, J. Reschke, The 'Basic' HTTP Authentication Scheme, https://www.ietf.org/rfc/rfc7617.txt

• IETF RFC8259, T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange Format,
https://tools.ietf.org/html/rfc8259

• JSON Schema: A Media Type for Describing JSON Documents draft-handrews-json-schema-01,
https://tools.ietf.org/html/draft-handrews-json-schema-01

• OData Version 4.0 Part 3: Common Schema Definition Language (CSDL), https://docs.oasis-open.org/odata/
odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

• Postman, https://www.postman.com/

• Python json.tool, https://docs.python.org/3/library/json.html#module-json.tool

• OpenAPI Specification, https://swagger.io/specification/

Redfish User Guide DSP2060

40 Published Version 1.1.0

https://curl.haxx.se/
https://github.com/dmtf/Redfish-Mockup-Server
https://www.dmtf.org/sites/default/files/Redfish_School-Sessions.pdf
https://www.dmtf.org/dsp/DSP0266
https://www.dmtf.org/dsp/DSP2046
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc7230.txt
https://www.ietf.org/rfc/rfc7231.txt
https://www.ietf.org/rfc/rfc7617.txt
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
https://www.postman.com/
https://docs.python.org/3/library/json.html#module-json.tool
https://swagger.io/specification/

	Redfish User Guide
	Foreword
	Acknowledgments
	1 Introduction
	2 Notes about examples in this guide
	3 Redfish resouce map
	4 Authentication
	4.1 Authentication overview
	4.2 HTTP Basic authentication
	4.3 Sessions
	5 Redfish service root
	6 Resource collections
	7 Chassis example
	8 Computer system example
	9 Manager example
	10 Actions
	11 Redfish responses
	11.1 Task management
	11.2 Error responses
	12 Query parameters
	12.1 Controlling collection responses
	12.2 Reducing response data
	12.3 Including data from hyperlinks
	12.4 Common combinations of query parameters
	13 Managing user accounts
	13.1 Adding new user accounts
	13.2 Removing user accounts
	14 ANNEX A (informative) Change log
	15 ANNEX B (informative) curl command options
	16 Bibliography

