
Document Identifier: DSP2050

Date: 2018-12-11

Version: 1.2.0

Redfish Composability White Paper

Document Class: Informative

Document Status: Published

Document Language: en-US

Copyright Notice

Copyright © 2017-2018 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third party patent right, owners or claimants, nor for any incomplete or

inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to

any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,

disclose, or identify any such third party patent rights, or for such party's reliance on the standard or

incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any

party implementing such standard, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,

such patent may relate to or impact implementations of DMTF standards, visit http://www.dmtf.org/about/

policies/disclosures.php.

This document's normative language is English. Translation into other languages is permitted.

Redfish Composability White Paper DSP2050

2 Published Version 1.2.0

http://www.dmtf.org/about/policies/disclosures.php
http://www.dmtf.org/about/policies/disclosures.php

CONTENTS

1. Introduction... 6

2. Modeling for Composability .. 6

2.1. Composition Service ... 6

2.2. Resource Blocks ... 7

2.2.1. Recommended state diagrams for CompositionState ... 10

2.3. Resource Zones.. 11

2.4. Collection Capabilities... 13

2.4.1. Collection Capabilities annotation ... 13

2.4.2. Collection Capabilities Object .. 14

3. Types of Compositions ... 17

3.1. Specific Composition .. 17

3.2. Constrained Composition.. 18

3.3. Expandable Resources... 18

4. Appendix .. 19

4.1. Workflows for a client making a Composition Request ... 19

4.1.1. Identify whether Redfish service supports Composition 19

4.1.2. Specific Composition workflow .. 20

4.1.3. Constrained Composition Workflow... 25

4.1.4. Modify a Composed Resource .. 32

4.1.5. Delete a Composed Resource .. 34

4.2. References.. 34

4.3. Change log.. 35

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 3

Foreword

The Redfish Composability White Paper was prepared by the Redfish Forum of the DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Redfish Composability White Paper DSP2050

4 Published Version 1.2.0

http://www.dmtf.org/

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

• Rafiq Ahamed K - Hewlett Packard Enterprise

• Jeff Autor - Hewlett Packard Enterprise

• Michael Du - Lenovo

• Jeff Hilland - Hewlett Packard Enterprise

• John Leung - Intel Corporation

• Steve Lyle - Hewlett Packard Enterprise

• Michael Raineri - Dell Inc.

• Paul von Behren - Intel Corporation

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 5

1. Introduction

As the world is transitioning to a software defined paradigm, there is a need for hardware management

capabilities to evolve to address that shift in the data center. In the context of disaggregated hardware,

management software needs the ability to conjoin the independent pieces of hardware, such as trays,

modules, silicon, etc., together to create a composed logical system. These logical systems function just

like traditional industry standard rackmount systems. This allows users to dynamically configure their

hardware to meet the needs of their workloads. In addition, users are able to manage the life cycle of their

systems, such as adding more compute to their logical system, without having to physically move any

equipment.

Redfish is an evolving hardware management standard that is designed to be flexible, extensible, and

interoperable. Redfish contains a data model that is used to describe composable hardware, as well as

an interface for clients to manage their compositions. This document helps implementers and clients

understand the Redfish Composability data model as well as how composition requests are expected to

be formed.

2. Modeling for Composability

If a Redfish service supports Composability, the Service Root resource will contain the

CompositionService property. Within the Composition Service, a client will find the inventory of all

components that can be composed into new things (Resource Blocks), descriptors containing the binding

restrictions of the different components (Resource Zones), and annotations informing the client as to how

to form composition requests (Collection Capabilities). The following sections detail how these things are

reported by a Redfish service.

2.1. Composition Service

The Composition Service is the top level resource for all things related to Composability. It contains status

and control indicator properties such as Status and ServiceEnabled. These are common properties

found on various Redfish service instances.

The Composition Service contains the AllowOverprovisioning property. This is used to indicate if the

service can accept Constrained Composition requests where the client may allow for more resources than

those requested.

The Composition Service contains the AllowZoneAffinity property. This is used to indicate if the

service can accept Constrained Composition requests where the client may desire a given composition

request to be fulfilled using Resource Blocks from a particular Resource Zones.

Redfish Composability White Paper DSP2050

6 Published Version 1.2.0

The Composition Service also contains links to its collections of Resource Blocks and Resource Zones

through the properties ResourceBlocks and ResourceZones respectively. Resource Blocks are

described in the Resource Blocks section, and Resource Zones are described in the Resource Zones

section.

Example Composition Service Resource:

{

"@odata.context": "/redfish/v1/$metadata#CompositionService.CompositionService",

"@odata.type": "#CompositionService.v1_1_0.CompositionService",

"@odata.id": "/redfish/v1/CompositionService",

"Id": "CompositionService",

"Name": "Composition Service",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"ServiceEnabled": true,

"AllowOverprovisioning": true,

"AllowZoneAffinity": true,

"ResourceBlocks": {

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks"

},

"ResourceZones": {

"@odata.id": "/redfish/v1/CompositionService/ResourceZones"

}

}

2.2. Resource Blocks

Resource Blocks are the lowest level building blocks for composition requests. Resource Blocks contain

status and control information about the Resource Block instance. They also contain the list of

components found within the Resource Block instance. For example, if a Resource Block contains 1

Processor and 4 DIMMs, then all of those components will be part of the same composition request, even

if only one of them is needed. In a completely disaggregated system, a client would likely find one

component instance within each Resource Block. Resource Blocks, and their components, are not in a

state where system software is able to use them until they belong in a composition. For example, if a

Resource Block contains a Drive instance, the Drive will not belong to any given Computer System until a

composition request is made that makes use of its Resource Block.

The property ResourceBlockType contains classification information about the types of components

found on the Resource Block that can be used to help clients quickly identify a Resource Block. Each

ResourceBlockType is associated with specific schema elements, which will be contained within that

Resource Block. For example, if the value Storage was found in this property, then a client would know

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 7

that this particular Resource Block contains storage related devices, such as storage controllers or drives,

without having to drill into the individual component resources. The value Compute has special meaning:

this is used to describe Resource Blocks that have bound processor and memory components that

operate together as a compute subsystem. The value Expansion is also a special indicator that shows a

particular Resource Block may have different types of devices over time, such as when a Resource Block

contains plug-in cards where a user may replace the components at any time.

The property CompositionStatus is an object that contains several properties:

• CompositionState is used to inform the client of the state of this Resource Block regarding its

use in a composition.

• Reserved is a writable flag that clients can use to help convey that this Resource Block has

been identified by a client, and that the client will be using it for a composition. If a second client

that is attempting to identify resources for a composition sees the Reserved flag set to true, the

second client should consider it allocated and not use it; the second client should move on to the

next Resource Block for further processing. The Redfish service does not provide any sort of

protection with the Reserved flag; any client can change its state and it's up to clients to behave

fairly.

• SharingCapable is a flag to indicate if the Resource Block is capable of participating in

multiple compositions simultaneously.

• SharingEnabled is a writable flag to indicate if the Resource Block is allowed to participate in

multiple compositions simultaneously.

• MaxCompositions is used to indicate the maximum number of compositions in which the

Resource Block is capable of participating simultaneously.

• NumberOfCompositions is used to indicate the number of compositions in which the

Resource Block is currently participating.

There are several arrays of links to various component types, such as the Processors, Memory, and

Storage arrays. These links ultimately go to the individual components that are within the Resource

Block. These components are made available to the new composition after a composition request is

made. The ComputerSystems array is used when a Resource Block contains one or more whole

Computer Systems. This gives the client the ability to create a single composed Computer System from a

set of smaller Computer Systems.

The Links property contains references to related resources. The Chassis array contains the Chassis

instances that contain the resources within the Resource Block. The ComputerSystems array contains

the Computer System instances that are consuming the Resource Block as part of a composition. The

Zones array contains links to the Resource Zones that contain the Resource Block.

Example Resource Block Resource:

{

Redfish Composability White Paper DSP2050

8 Published Version 1.2.0

"@odata.context": "/redfish/v1/$metadata#ResourceBlock.ResourceBlock",

"@odata.type": "#ResourceBlock.v1_3_0.ResourceBlock",

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock3",

"Id": "DriveBlock3",

"Name": "Drive Block 3",

"ResourceBlockType": ["Storage"],

"Status": {

"State": "Enabled",

"Health": "OK"

},

"CompositionStatus": {

"Reserved": false,

"CompositionState": "ComposedAndAvailable",

"SharingCapable": true,

"SharingEnabled": true,

"MaxCompositions": 8,

"NumberOfCompositions": 1

},

"Processors": [],

"Memory": [],

"Storage": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock3/

Storage/Block3NVMe"

}

],

"Links": {

"ComputerSystems": [

{

"@odata.id": "/redfish/v1/Systems/ComposedSystem"

}

],

"Chassis": [

{

"@odata.id": "/redfish/v1/Chassis/ComposableModule3"

}

],

"Zones": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/1"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/2"

}

]

}

}

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 9

In the above example, the Resource Block is of type Storage, and it contains a single storage entity.

From the CompositionStatus, it's noted that the Resource Block is currently part of at least one

composition and can be used in more compositions, and in the Links section, it's being used by the

Computer System ComposedSystem.

2.2.1. Recommended state diagrams for CompositionState

As clients make requests to create or delete composed resources, a Resource Block will transition

between different states as shown by the CompositionState property within the

CompositionStatus object. Figure 1 shows the recommended state diagram for CompositionState

involving a Resource Block that is not sharable. Figure 2 shows the recommended state diagram for

CompositionState involving a Resource Block that is sharable. While not shown in the diagrams,

client requests can fail for precondition checks, such as something not being powered, thus leaving the

state unchanged.

Figure 1

Redfish Composability White Paper DSP2050

10 Published Version 1.2.0

Figure 2

2.3. Resource Zones

Resource Zones describe to the client the different composition restrictions of the Resource Blocks

reported by the service; Resource Blocks that are reported in the same Resource Zone are allowed to be

composed together. This enables the clients to not perform try-and-fail logic to figure out the different

restrictions that are in place for a given implementation. In addition, each Resource Zone leverages the

Collection Capabilities annotation to describe what each Resource Zone is able to compose. This is

described in more detail in the Collection Capabilities section.

Example Resource Zone Resource:

{

"@odata.context": "/redfish/v1/$metadata#Zone.Zone",

"@odata.type": "#Zone.v1_1_0.Zone",

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/1",

"Id": "1",

"Name": "Resource Zone 1",

"Status": {

"State": "Enabled",

"Health": "OK"

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 11

},

"Links": {

"ResourceBlocks": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock1"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock3"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock4"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock5"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock6"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock7"

}

]

},

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_1_0.CollectionCapabilities",

"Capabilities": [

{

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/Capabilities"

},

"UseCase": "ComputerSystemComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

}

]

}

}

Redfish Composability White Paper DSP2050

12 Published Version 1.2.0

In the above example, the Resource Blocks ComputeBlock1, DriveBlock3, DriveBlock4,

DriveBlock5, DriveBlock6, and DriveBlock7 are all in the same Resource Zone. In addition, the

Collection Capabilities for the Resource Zone shows that this Resource Zone is capable of producing

Computer Systems for the collection /redfish/v1/Systems.

2.4. Collection Capabilities

Collection Capabilities will be found on Resource Zones and on the Resource Collections themselves.

This is because Collection Capabilities can be applied to things outside of the context of Composability.

Collection Capabilities can be identified by the @Redfish.CollectionCapabilities annotation in

the response body. This annotation is used to inform the client how to form the request body for a create

(POST) operation to a given collection based on a specified Use Case, which will result in a new member

being added to the given collection.

2.4.1. Collection Capabilities annotation

Within the Collection Capabilities annotation, there is a single property called Capabilities. This is an

array to identify all of the capabilities for a given Resource Zone or Resource Collection. Inside each

instance of the Capabilities array is an object to describe a particular capability.

The property CapabilitiesObject contains a URI to the underlying object instance that describes the

payload format. This is described further in the next section.

The property UseCase is used to inform the client of the context of a particular create (POST) operation.

The table below shows the different values for UseCase as used by Composability. Each value

corresponds with a specific type of resource being composed in addition to a type of composition for the

request.

UseCase Value
Composed

Resource

Type of

Composition

ComputerSystemComposition ComputerSystem Specific

ComputerSystemConstrainedComposition ComputerSystem Constrained

The property TargetCollection inside the Links object contains the URI of the Resource Collection

that accepts the given capability. A client will be able to perform a create (POST) operation against this

URI as described by the contents of the CapabilitiesObject.

Example Collection Capabilities annotation:

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 13

{

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_1_0.CollectionCapabilities",

"Capabilities": [

{

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/Capabilities"

},

"UseCase": "ComputerSystemComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

},

{

"CapabilitiesObject": {

"@odata.id": "/redfish/v1/Systems/

ConstrainedCompositionCapabilities"

},

"UseCase": "ComputerSystemConstrainedComposition",

"Links": {

"TargetCollection": {

"@odata.id": "/redfish/v1/Systems"

}

}

}

]

},

...

}

The above annotation contains two capabilities. In the first capability object, the UseCase property shows

that this capability describes how to form a create (POST) request to create a new Computer System

from a set of specific Resource Blocks. In addition, the TargetCollection property indicates that a

client can make the request to the Resource Collection /redfish/v1/Systems; new instances of the

resource created by the client will be found in that collection. In the second capability object, the UseCase

property shows that this capability describes how to form a create (POST) request to create a new

Computer System from a set of constraints.

2.4.2. Collection Capabilities Object

The Collection Capabilities Object follows the schema of the new resource a client is able to create. For

example, if the object is describing how to form a request to create a new Computer System instance,

then the object's type will be ComputerSystem.vX_Y_Z.ComputerSystem, where vX_Y_Z is the

Redfish Composability White Paper DSP2050

14 Published Version 1.2.0

version of ComputerSystem supported by the service.

The object itself contains annotated properties the client can use in the body of the create (POST)

operation. It also lists out optional properties, and any restrictions properties may have after the new

resource is created. The table below describes the different annotations used on the properties within the

Collection Capabilities Object.

Property Annotation Description

@Redfish.RequiredOnCreate
The client must provide the given property in the body of

the create (POST) request

@Redfish.OptionalOnCreate
The client may provide the property in the body of the

create (POST) request

@Redfish.SetOnlyOnCreate

If the client has a specific value needed for the property,

it must be provided in the body of the create (POST)

request; this property is likely a "Read Only" property

after the resource's creation

@Redfish.UpdatableAfterCreate
The client is allowed to update the property after the

resource is created

@Redfish.AllowableValues
The client is allowed to use any of the specified values in

the body of the create (POST) request for the given

property

In the above table, some of the annotation terms can conflict with one another if used incorrectly. This

may be due to conflicting logical semantics with the term definitions. Services need to ensure their

Collection Capabilities Objects do not have the following types of conflicts:

• Do not annotate a property with both @Redfish.RequiredOnCreate and

@Redfish.OptionalOnCreate. A property cannot be both required and optional.

• Do not annotate a property with both @Redfish.SetOnlyOnCreate and

@Redfish.UpdatableAfterCreate. A property can only be one of these.

The object can also contain object level annotations to describe other types of payload rules to the client.

The table below describes the different annotations used at the object level within the Collection

Capabilities Object.

Object Annotation Description

@Redfish.RequestedCountRequired
Indicates that the client is required to annotate the

corresponding object in the request payload with

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 15

Object Annotation Description

@Redfish.RequestedCount to show how many

instances of the object the client is requesting

@Redfish.ResourceBlockLimits
Indicates any restrictions regarding quantities of

Resource Blocks of a given type in a given

composition request.

Example Collection Capabilities Object:

{

"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

"@odata.type": "#ComputerSystem.v1_4_0.ComputerSystem",

"@odata.id": "/redfish/v1/Systems/Capabilities",

"Id": "Capabilities",

"Name": "Capabilities for the Zone",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Boot@Redfish.OptionalOnCreate": true,

"Boot": {

"BootSourceOverrideEnabled@Redfish.OptionalOnCreate": true,

"BootSourceOverrideEnabled@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.OptionalOnCreate": true,

"BootSourceOverrideTarget@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.AllowableValues": [

"None",

"Pxe",

"Usb",

"Hdd"

]

},

"Links@Redfish.RequiredOnCreate": true,

"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,

"ResourceBlocks@Redfish.UpdatableAfterCreate": true

},

"@Redfish.ResourceBlockLimits": {

"MinCompute": 1,

"MaxCompute": 1,

"MaxStorage": 8

}

Redfish Composability White Paper DSP2050

16 Published Version 1.2.0

}

In the above example, three properties are marked with the Redfish.RequiredOnCreate annotation:

Name, Links, and ResourceBlocks inside of Links. All other properties are annotated with

Redfish.OptionalOnCreate. However, both Name and Description are annotated with

Redfish.SetOnlyOnCreate, meaning they cannot be modified after the new resource is created. The

response also tells us in the @Redfish.ResourceBlockLimits annotation that all requests must have

exactly 1 Resource Block of type Compute, and can up have to 8 Resource Blocks of type Storage.

3. Types of Compositions

The Redfish Composability data model provides flexibility for service implementers to report different

Composition Types based on their needs. The service informs the client of the type of composition

request based on the UseCase property found in the Collection Capabilities Annotation. The existing

Redfish Composability model has defined two types called Specific Composition and Constrained

Composition.

3.1. Specific Composition

The Specific Composition allows clients to create and manage the life cycle of composed resources

through predefined Resource Blocks and Resource Zones. Since Resource Blocks are self contained

entities within a Resource Zone, clients are able to pick and choose specific Resource Blocks for their

composition request.

An example of choosing a Resource Block according to the binding rules and providing details of specific

Resource Blocks in the a create (POST) request can be found in the Create a Composed Resource

section.

Another industry standard server design that fits into the example of Specific Composition is defined in

the Bladed Partitions Mockup. In this example, a Multi-Blade Enclosure consisting of a disaggregated

hardware chassis can be bound together to create what are called partitioned servers. These partitions

can be composed using the Specific Composition. The Redfish service implements each blade within the

enclosure as a Resource Block with ResourceBlockType set to either Compute or Storage, and

allows the clients to combine multiple Resource Blocks to create a composed Computer System, which is

a partitioned server.

Example Create (POST) Body for a Specific Composition:

{

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 17

http://www.computerworld.com/article/2593387/server-partitioning.html

"Name": "Sample Composed System",

"Links": {

"ResourceBlocks": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

BladeComputeBlock1" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

BladeComputeBlock5" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

BladeStorageBlock8" }

]

}

}

3.2. Constrained Composition

The Constrained Composition allows clients to request a composition by specifying the number and

characteristics of the components to assemble into a composition. The selection of the Resource Blocks

is delegated by client to the Composition Service. In constrained composition, the client does not need to

comprehend Resource Zones. An example of this type of composition can be found in the Constrained

Composition Workflow section.

3.3. Expandable Resources

In some cases, clients may not be able to directly compose new resources. Instead, the service may have

a baseline resource, and the client is only able to add additional components, or remove them. A client

can identify this case if the Allow HTTP header for the resource does not contain the DELETE method, as

well as using other indicators in the resource itself.

Example Expandable ComputerSystem: Client request example:

GET /redfish/v1/Systems/1 HTTP/1.1

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

OData-Version: 4.0

Allow: GET, PATCH, PUT, HEAD

{

"Id": "1"

"Name": "Sample Expandable System",

"SystemType": "Physical",

"Links": {

"ResourceBlocks": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

Redfish Composability White Paper DSP2050

18 Published Version 1.2.0

ComputerSystemBlock0" }

]

},

...

}

In the above example, the client performed a GET on /redfish/v1/Systems/1. The response shows

that it's a physical system since the SystemType is set to Physical. However, the presence of the

ResourceBlocks array in the Links property indicates that a client is able to add or remove

components. In addition, the Allow header does not contain DELETE as one of the available methods.

The client is only allowed to update the allocated resources using PATCH or PUT. An example of how to

allocate additional resources can be found in the Modify a Composed Resource section.

4. Appendix

4.1. Workflows for a client making a Composition Request

There are two workflows for a client to make a compostion request: a specific composition workflow and a

constrained composition workflow.

Here are the operations that a client is expected to use during the creation and management of

Composed Systems using the Redfish Composition models. The examples below expect the client will

have a valid Redfish Session or Basic Authentication header.

4.1.1. Identify whether Redfish service supports Composition

Application code should always start at the root: /redfish/v1/

1. Read the Service Root Resource.

1. Find the CompositionService property.

2. Perform a GET on the URI given by that property.

3. Look for the value of ServiceEnabled attribute to be true.

General flow diagram:

Client| | Redfish Service

|---- GET /redfish/v1/CompositionService ----->|

|<--- { ..., "ServiceEnabled": true, ... } <---|

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 19

4.1.2. Specific Composition workflow

The client needs to understand the composition model reported by the Composition Service by reading

the Resource Blocks and Resource Zones collections. This relationship will be used to execute the

reported UseCase supported by the Redfish service described later in the Create a Composed Resource

section.

4.1.2.1. Read the Resource Blocks

1. Perform a GET on the Composition Service URI.

2. Look for the ResourceBlocks property.

3. Perform a GET on that URI to get a list of all Resource Blocks.

4. For accessing details of a particular Resource Block, perform a GET on the associated URI

listed for a given entry in the Members array.

5. The CompositionStatus property in each Resource Block will identify the availability of the

Resource Block in composition requests.

◦ Clients should take note of this when making decisions on what Resource Blocks to use

in a composition request.

◦ Depending on what's contained in the CompositionStatus property, a given

Resource Block may not be currently available for composition.

Resource Block Collection sample:

{

"@odata.type": "#ResourceBlockCollection.ResourceBlockCollection",

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks",

"Name": "Resource Block Collection",

"Members@odata.count": 9,

"Members": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/ComputeBlock1" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/ComputeBlock2" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock3" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock4" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock5" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock6" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock7" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/NetworkBlock8" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/OffloadBlock9" }

]

}

4.1.2.2. Read the Resource Zones

1. Perform a GET on the Composition Service URI.

Redfish Composability White Paper DSP2050

20 Published Version 1.2.0

2. Look for the ResourceZones property.

3. Perform a GET on that URI to get a list of all Resource Zones.

4. For accessing details of a particular Resource Zone, perform a GET on the associated URI listed

for a given entry in the Members array.

Resource Zone Collection Sample:

{

"@odata.type": "#ZoneCollection.ZoneCollection",

"@odata.id": "/redfish/v1/CompositionService/ResourceZones",

"Name": "Resource Zone Collection",

"Members@odata.count": 2,

"Members": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceZones/1" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceZones/2" }

]

}

4.1.2.3. Read the capabilities for each Resource Zone

1. Perform a GET on each Resource Zone using the URI found in each entry of the Members

array.

2. Look for the @Redfish.CollectionCapabilities annotation in each Resource Zone.

◦ The UseCase property will be used later when a client has determined what type of

composition to create.

◦ The TargetCollection property will be used later for making the composition

request.

Resource Zone Capabilities Sample:

{

"@odata.context": "/redfish/v1/$metadata#Zone.Zone",

"@odata.type": "#Zone.v1_1_0.Zone",

"@odata.id": "/redfish/v1/CompositionService/ResourceZones/1",

"Id": "1",

"Name": "Resource Zone 1",

"Status": {},

"Links": {},

"@Redfish.CollectionCapabilities": {

"@odata.type": "#CollectionCapabilities.v1_1_0.CollectionCapabilities",

"Capabilities": [

{

"CapabilitiesObject": { "@odata.id": "/redfish/v1/Systems/

Capabilities" },

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 21

"UseCase":"ComputerSystemComposition",

"Links": {

"TargetCollection": { "@odata.id": "/redfish/v1/Systems" },

"RelatedItem": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceZones/

1" }

]

}

}

]

}

}

4.1.2.4. Read each Capabilities Object

1. Perform a GET on the URI listed in the CapabilitiesObject property for each of the

Capabilities.

Capabilities Object Sample for a Specific Composition:

{

"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

"@odata.type": "#ComputerSystem.v1_4_0.ComputerSystem",

"@odata.id": "/redfish/v1/Systems/Capabilities",

"Id": "Capabilities",

"Name": "Capabilities for the Zone",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Boot@Redfish.OptionalOnCreate": true,

"Boot": {

"BootSourceOverrideEnabled@Redfish.OptionalOnCreate": true,

"BootSourceOverrideEnabled@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.OptionalOnCreate": true,

"BootSourceOverrideTarget@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.AllowableValues": [

"None",

"Pxe",

"Usb",

"Hdd"

]

},

Redfish Composability White Paper DSP2050

22 Published Version 1.2.0

"Links@Redfish.RequiredOnCreate": true,

"Links": {

"ResourceBlocks@Redfish.RequiredOnCreate": true,

"ResourceBlocks@Redfish.UpdatableAfterCreate": true

},

"@Redfish.ResourceBlockLimits": {

"MinCompute": 1,

"MaxCompute": 1,

"MaxStorage": 8

}

}

4.1.2.5. Create a Composed Resource

The client builds a specific composition request with the following steps.

1. List all Resource Blocks that belong to a particular Resource Zone by doing a GET on their

collection URIs as described in the above example.

◦ When reading the Resource Blocks, take note of the CompositionStatus property.

◦ Depending on what's contained in the CompositionStatus property, a given

Resource Block may not be currently available for composition.

2. (Optional) Reserve each Resource Block that has been identified for the composition request.

◦ Perform a PATCH on each Resource Block with Reserved set to true.

◦ This step should be done in scenarios where multiple clients may be making

composition requests.

3. Identify the needs of a specific composition UseCase.

◦ Perform a GET on the desired Resource Zone.

◦ Find the matching UseCase value in the @Redfish.CollectionCapabilities

annotation.

▪ For example, look for the value ComputerSystemComposition if trying to

compose a new Computer System from a specific list of Resource Blocks.

◦ Perform a GET on the URI found in the property CapabilitiesObject.

◦ Mark down all of the properties annotated with RequiredOnCreate.

▪ These are the properties that need to be passed as part of the composition

request.

◦ Mark down the TargetCollection URI.

▪ This is where the create (POST) request for the new composition is made.

4. Using all the properties that were annotated with RequiredOnCreate, build a create (POST)

request body that will be sent to the TargetCollection URI.

◦ In step 4 of the above example, only Name and ResourceBlocks found in Links are

required.

◦ The Redfish service may accept other properties as part of the request so they do not

need to be updated later.

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 23

5. The Location HTTP header in the service response contains the URI of the composed

resource.

General flow diagram:

Client | |

Redfish Service

|---> GET /redfish/v1/CompositionService/ResourceZones/1 ------------>|

|<--- { ..., "UseCase": "ComputerSystemComposition", ... } <----------|

| |

|---> GET /redfish/v1/Systems/Capabilities -------------------------->|

| { ..., <----------|

| "Name@Redfish.RequiredOnCreate": true, |

| "ResourceBlocks@Redfish.RequiredOnCreate": true, |

| ... |

|<--- } |

| |

| (<< Identify which Resource Blocks to use >>) |

| |

|-> GET /redfish/v1/CompositionService/ResourceBlocks/ComputeBlock2 ->|

|<--- { ..., "CompositionState": "Unused", "Reserved": false ... } <--|

| |

|-> PATCH /redfish/v1/CompositionService/ResourceBlocks/ComputeBlock2 |

| { "CompositionStatus": { "Reserved": true } } ------------------->|

Client request example:

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

OData-Version: 4.0

{

"Name": "Sample Composed System",

"Links": {

"ResourceBlocks": [

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock0" },

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/DriveBlock2"

}

]

}

}

Service Response example:

Redfish Composability White Paper DSP2050

24 Published Version 1.2.0

HTTP/1.1 201 Created

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

Location: /redfish/v1/Systems/NewSystem

The above Client Request Example shows a specific composition request by the client being made to the

Computer System Collection found at /redfish/v1/Systems. In the request, the client is creating a

new Computer System using the Resource Blocks ComputeBlock0 and DriveBlock2. In the above

Service Response Example, the service responded with a successful 201 response, and indicated that

the new Computer System can be found at /redfish/v1/Systems/NewSystem.

4.1.3. Constrained Composition Workflow

Here are the operations that a client is expected to use during the creation and management of

Composed Systems using the Redfish Composition models. The examples below expect the client will

have a valid Redfish Session or Basic Authentication header.

4.1.3.1. Read the Capabilities Object

Perform a GET on the URI listed in the CapabilitiesObject property whose UseCase property has

the value ComputerSystemConstrainedComposition.

Capabilities Object Sample for a Constrained Composition:

{

"@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

"@odata.type": "#ComputerSystem.v1_4_0.ComputerSystem",

"@odata.id": "/redfish/v1/Systems/ConstrainedCompositionCapabilities",

"Id": "ConstrainedCompositionCapabilities",

"Name": "Capabilities for the Zone",

"Name@Redfish.RequiredOnCreate": true,

"Name@Redfish.SetOnlyOnCreate": true,

"Description@Redfish.OptionalOnCreate": true,

"Description@Redfish.SetOnlyOnCreate": true,

"HostName@Redfish.OptionalOnCreate": true,

"HostName@Redfish.UpdatableAfterCreate": true,

"Boot@Redfish.OptionalOnCreate": true,

"Boot": {

"BootSourceOverrideEnabled@Redfish.OptionalOnCreate": true,

"BootSourceOverrideEnabled@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.OptionalOnCreate": true,

"BootSourceOverrideTarget@Redfish.UpdatableAfterCreate": true,

"BootSourceOverrideTarget@Redfish.AllowableValues": [

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 25

"None",

"Pxe",

"Usb",

"Hdd"

]

},

"Processors@Redfish.RequiredOnCreate": true,

"Processors": {

"@odata.type": "#ProcessorCollection.ProcessorCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#Processor.v1_1_0.Processor",

"@Redfish.RequestedCountRequired": true,

"ProcessorType@Redfish.RequiredOnCreate": true,

"TotalCores@Redfish.RequiredOnCreate": true,

"Model@Redfish.OptionalOnCreate": true,

"InstructionSet@Redfish.OptionalOnCreate": true,

"AchieveableSpeedMHz@Redfish.OptionalOnCreate": true

}

]

},

"Memory@Redfish.RequiredOnCreate": true,

"Memory": {

"@odata.type": "#MemoryCollection.MemoryCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#Memory.v1_1_0.Memory",

"@Redfish.RequestedCountRequired": true,

"MemoryType@Redfish.RequiredOnCreate": true,

"MemoryDeviceType@Redfish.OptionalOnCreate": true,

"CapacityMiB@Redfish.RequiredOnCreate": true,

"SpeedMHz@Redfish.OptionalOnCreate": true,

"DataWidthBits@Redfish.OptionalOnCreate": true,

"BusWidthBits@Redfish.OptionalOnCreate": true

}

]

},

"SimpleStorage@Redfish.OptionalOnCreate": true,

"SimpleStorage": {

"@odata.type": "#SimpleStorageCollection.SimpleStorageCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#SimpleStorage.v1_2_0.SimpleStorage",

"@Redfish.RequestedCountRequired": true,

Redfish Composability White Paper DSP2050

26 Published Version 1.2.0

"Devices@Redfish.RequiredOnCreate": true,

"Devices": {

"@Redfish.RequestedCountRequired": true,

"CapacityBytes@Redfish.RequiredOnCreate": true

}

}

]

},

"Storage@Redfish.OptionalOnCreate": true,

"Storage": {

"@odata.type": "#StorageCollection.StorageCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#Storage.v1_3_0.Storage",

"@Redfish.RequestedCountRequired": true,

"StorageControllers@Redfish.OptionalOnCreate": true,

"StorageControllers": [

{

"@Redfish.RequestedCountRequired": true,

"SupportedControllerProtocols@Redfish.RequiredOnCreate": true

}

],

"Drives@Redfish.RequiredOnCreate": true,

"Drives": [

{

"@odata.type": "#Drive.v1_2_0.Drive",

"@Redfish.RequestedCountRequired": true,

"CapacityBytes@Redfish.RequiredOnCreate": true

}

]

}

]

},

"EthernetInterfaces@Redfish.OptionalOnCreate": true,

"EthernetInterfaces": {

"@odata.type": "#EthernetInterfaceCollection.EthernetInterfaceCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#EthernetInterface.v1_3_0.EthernetInterface",

"@Redfish.RequestedCountRequired": true,

"SpeedMbps@Redfish.RequiredOnCreate": true,

"FullDuplex@Redfish.OptionalOnCreate": true

}

]

},

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 27

"NetworkInterfaces@Redfish.OptionalOnCreate": true,

"NetworkInterfaces": {

"@odata.type": "#NetworkInterfaceCollection.NetworkInterfaceCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#NetworkInterface.v1_1_0.NetworkInterface",

"@Redfish.RequestedCountRequired": true,

"NetworkPorts@Redfish.RequiredOnCreate": true,

"NetworkPorts": {

"@odata.type": "#NetworkPortCollection.NetworkPortCollection",

"Members@Redfish.RequiredOnCreate": true,

"Members": [

{

"@odata.type": "#NetworkPort.v1_1_0.NetworkPort",

"@Redfish.RequestedCountRequired": true,

"ActiveLinkTechnology@Redfish.RequiredOnCreate": true,

"SupportedLinkCapabilities@Redfish.OptionalOnCreate": true,

"SupportedLinkCapabilities": {

"LinkSpeedMbps@Redfish.RequiredOnCreate": true

}

}

]

}

}

]

}

}

In the above example, it should be noted that the general structure of the capabilities object for a

constrained composition is an expanded object that represents the resource the client can compose. In

this case, the properties Processors and Memory are expanded, and showing Processor Collection and

Memory Collection representations respectively. These expanded objects do not contain extraneous

information required under normal circumstances, such as @odata.id, in order to reduce the information

to only what the client requires to form the composition request.

4.1.3.2. Create the Composition Request

In a constrained composition request, the request includes structures for the processors, memory, storage

and network interfaces. Each structure includes the annotation @Redfish.RequestedCount, which

specifies the requested amount of a resource.

Based on the capabilities example in the previous section, the following structures can contain an

enumeration annotation and may required sub-properties.

• The processors request

Redfish Composability White Paper DSP2050

28 Published Version 1.2.0

◦ The @Redfish.RequestedCount is required.

◦ The ProcessorType and TotalCores properties are required.

• The memory request

◦ The @Redfish.RequestedCount is required.

◦ The MemoryType and CapacityMiB properties are required.

• The storage request

◦ The @Redfish.RequestedCount is required.

◦ Either the SimpleStorage or Storage property may be present, or neither.

◦ If present, CapacityBytes property is required.

• The network interface request

◦ The @Redfish.RequestedCount is required.

◦ Either EthernetInterfaces or NetworkInterfaces property may be present, or

neither.

◦ If present, SpeedMbps or LinkSpeedMbps properties are required.

For example, the following processor request requests 4 CPUs and 2 FPGAs. Other properties in the

request can further characterize the processor resource.

The composition request should be kept simple in order to increase the probability of a successful

composition. Overly-constrained requests are less likely to be fulfilled.

Sample Request Payload for Describing Sets of Processors:

{

"Processors": {

"Members": [

{

"@Redfish.RequestedCount": 4,

"ProcessorType": "CPU",

"TotalCores": 16

},

{

"@Redfish.RequestedCount": 2,

"ProcessorType": "FPGA",

"TotalCores": 16

}

]

}

}

4.1.3.3. Make the composition request

POST the request to the TargetCollection URI.

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 29

Client Request Example:

POST /redfish/v1/Systems HTTP/1.1

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

OData-Version: 4.0

{

"Name": "My Computer System",

"Description": "Description of server",

"@Redfish.ZoneAffinity": "1",

"PowerState": "On",

"BiosVersion": "P79 v1.00 (09/20/2013)",

"Processors": {

"Members": [

{

"@Redfish.RequestedCount": 4,

"@Redfish.AllowOverprovisioning": true,

"ProcessorType": "CPU",

"ProcessorArchitecture": "x86",

"InstructionSet": "x86-64",

"MaxSpeedMHz": 3700,

"TotalCores": 8,

"TotalThreads": 16

},

{

"@Redfish.RequestedCount": 4,

"@Redfish.AllowOverprovisioning": false,

"ProcessorType": "FPGA",

"ProcessorArchitecture": "x86",

"InstructionSet": "x86-64",

"MaxSpeedMHz": 3700,

"TotalCores": 16

}

]

},

"Memory": {

"Members": [

{

"@Redfish.RequestedCount": 4,

"MaxTDPMilliWatts": [12000],

"CapacityMiB": 8192,

"DataWidthBits": 64,

"BusWidthBits": 72,

"ErrorCorrection": "MultiBitECC",

"MemoryType": "DRAM",

"MemoryDeviceType": "DDR4",

"BaseModuleType": "RDIMM",

Redfish Composability White Paper DSP2050

30 Published Version 1.2.0

"MemoryMedia": ["DRAM"]

}

]

},

"SimpleStorage": {

"Members" : [

{

"@Redfish.RequestedCount": 6,

"Devices": [

{

"CapacityBytes": 322122547200

}

]

}

]

},

"EthernetInterfaces": {

"Members": [

{

"@Redfish.RequestedCount": 1,

"SpeedMbps": 1000,

"FullDuplex": true,

"NameServers": [

"names.redfishspecification.org"

],

"IPv4Addresses": [

{

"SubnetMask": "255.255.252.0",

"AddressOrigin": "Dynamic",

"Gateway": "192.168.0.1"

}

]

}

]

}

}

Service Response example:

HTTP/1.1 201 Created

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

Location: /redfish/v1/Systems/NewSystem2

The above Client Request Example shows a composition request by the client being made to the

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 31

Computer System Collection found at /redfish/v1/Systems. In the request, the client is requesting a

new Computer System with 4 CPUs, 4 FPGAs, 4 GB of memory, 6 322GB local drives, and a 1GB

Ethernet interface. The setting of the annotation @Redfish.AllowOverprovisioning permits the

Redfish service to supply more resources than what was requested. The usage of the annotation

@Redfish.ZoneAffinity indicates the client wants the components for the composition to be all

selected from the Resource Zone that contains the value "1" for the Id property.

In the above Service Response Example, the service responded with a successful 201 response, and

indicates that the new Computer System can be found at /redfish/v1/Systems/NewSystem2.

4.1.4. Modify a Composed Resource

If the Redfish service supports updating an existing composition, the client can do so either by using PUT/

PATCH on the composed resource, or by using actions on the composed resource.

4.1.4.1. PUT/PATCH method for modifying

The PUT/PATCH method can be done by updating the ResourceBlocks array found in the composed

resource. When using PATCH, the same array semantics apply as described in the Redfish Specification.

Client Request Example:

PATCH /redfish/v1/Systems/NewSystem HTTP/1.1

Content-Type: application/json; charset=utf-8

Content-Length: <computed-length>

OData-Version: 4.0

{

"Links": {

"ResourceBlocks": [

{},

{},

{ "@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

NetworkBlock8" }

]

}

}

The above example will preserve the existing Resource Blocks in the composed resource for array

elements 0 and 1, and it will add the NetworkBlock8 Resource Block to array element 2.

4.1.4.2. Actions for modifying

Composed resources that support using actions for modification will have them advertised in the GET

response for the resource.

Redfish Composability White Paper DSP2050

32 Published Version 1.2.0

Sample ComputerSystem with Modification Actions

{

"@odata.id": "/redfish/v1/Systems/ComposedSystem",

"Id": "ComposedSystem",

"Name": "Sample Composed System",

"SystemType": "Composed",

"Links": {

"ResourceBlocks": [

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

ComputeBlock1"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock3"

},

{

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/

DriveBlock4"

}

]

},

"Actions": {

"#ComputerSystem.AddResourceBlock": {

"target": "/redfish/v1/Systems/ComposedSystem/Actions/

ComputerSystem.AddResourceBlock"

},

"#ComputerSystem.RemoveResourceBlock": {

"target": "/redfish/v1/Systems/ComposedSystem/Actions/

ComputerSystem.RemoveResourceBlock"

}

},

...

}

In the above example, the Computer System ComposedSystem supports two actions:

ComputerSystem.AddResourceBlock and ComputerSystem.RemoveResourceBlock. A client is

able to modify the Computer System by issuing POST to the URI specified by the target properties.

Example AddResourceBlock Request:

POST /redfish/v1/Systems/ComposedSystem/Actions/ComputerSystem.AddResourceBlock HTTP/

1.1

Content-Type: application/json; charset=utf-8

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 33

Content-Length: <computed-length>

OData-Version: 4.0

{

"ResourceBlock": {

"@odata.id": "/redfish/v1/CompositionService/ResourceBlocks/NetworkBlock8"

},

"ResourceBlockETag": "6e83d4d5f1b8d93fed866876a220c0ab",

"ComputerSystemETag": "31171b07d6e2733c8368c54ab1857456"

}

In the above example, the client is making a request to add NetworkBlock8 to the Computer System

ComposedSystem. It also uses the optional parameters ResourceBlockETag and

ComputerSystemETag to help protect the usage of the Computer System and Resource Block in multi-

client scenarios so that the action is not carried out of if the specified ETags do not match the state of the

resources.

4.1.5. Delete a Composed Resource

The client can retire or decompose an already composed resource by using DELETE.

Client Request Example:

DELETE /redfish/v1/Systems/NewSystem HTTP/1.1

The above example will request that the composed system called NewSystem be retired. When this

happens, this will free the Resource Blocks being used by the system so that they can be used in future

compositions. However, the Reserved flag found in the CompositionStatus for each Resource Block

will remain in the same state; if a client is done using the Resource Blocks, it should set the Reserved

flag to false.

4.2. References

• "Composable System" and "Bladed Partitions" Mockups: http://redfish.dmtf.org/redfish/v1

• Composition Service Schema: http://redfish.dmtf.org/schemas/v1/CompositionService_v1.xml

• Resource Block Schema: http://redfish.dmtf.org/schemas/v1/ResourceBlock_v1.xml

• Resource Zone Schema: http://redfish.dmtf.org/schemas/v1/Zone_v1.xml

• Collection Capabilities Schema: http://redfish.dmtf.org/schemas/v1/CollectionCapabilities_v1.xml

Redfish Composability White Paper DSP2050

34 Published Version 1.2.0

http://redfish.dmtf.org/redfish/v1
http://redfish.dmtf.org/schemas/v1/CompositionService_v1.xml
http://redfish.dmtf.org/schemas/v1/ResourceBlock_v1.xml
http://redfish.dmtf.org/schemas/v1/Zone_v1.xml
http://redfish.dmtf.org/schemas/v1/CollectionCapabilities_v1.xml

4.3. Change log

Version Date Description

1.2.0 2018-12-11
Added documentation for usage of

@Redfish.ResourceBlockLimits term.

Added text in the Constrained Composition section to link to the

appendix.

Added Expandable Resources section.

Added new methods for modifying composed resources.

1.1.0 2018-08-23 Added documentation for Constrained Composition requests.

Updated modeling section to cover new properties added in DSP8010

2018.1 and 2018.2.

Added guidance for implementers on different conditions to avoid when

annotating properties in the Capabilities Object.

Added recommended flow diagrams for the CompositionState property

within a Resource Block.

1.0.0 2017-06-30 Initial release.

DSP2050 Redfish Composability White Paper

Version 1.2.0 Published 35

	Redfish Composability White Paper
	Foreword
	Acknowledgments
	1. Introduction
	2. Modeling for Composability
	2.1. Composition Service
	2.2. Resource Blocks
	2.2.1. Recommended state diagrams for CompositionState

	2.3. Resource Zones
	2.4. Collection Capabilities
	2.4.1. Collection Capabilities annotation
	2.4.2. Collection Capabilities Object

	3. Types of Compositions
	3.1. Specific Composition
	3.2. Constrained Composition
	3.3. Expandable Resources

	4. Appendix
	4.1. Workflows for a client making a Composition Request
	4.1.1. Identify whether Redfish service supports Composition
	4.1.2. Specific Composition workflow
	4.1.2.1. Read the Resource Blocks
	4.1.2.2. Read the Resource Zones
	4.1.2.3. Read the capabilities for each Resource Zone
	4.1.2.4. Read each Capabilities Object
	4.1.2.5. Create a Composed Resource

	4.1.3. Constrained Composition Workflow
	4.1.3.1. Read the Capabilities Object
	4.1.3.2. Create the Composition Request
	4.1.3.3. Make the composition request

	4.1.4. Modify a Composed Resource
	4.1.4.1. PUT/PATCH method for modifying
	4.1.4.2. Actions for modifying

	4.1.5. Delete a Composed Resource

	4.2. References
	4.3. Change log

