
 1

 2

Document Identifier: DSP0282 3

Date: 2024-10-09 4

Version: 1.0.1 5

Memory-Mapped Buffer Interface (MMBI) 6

Specification 7

Supersedes: 1.0.0 8

Document Class: Normative 9

Document Status: Published 10

Document Language: en-US 11

MMBI Specification DSP0282

2 Published Version 1.0.1

Copyright Notice 12

Copyright © 2023–2024 DMTF. All rights reserved. 13

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 14
management and interoperability. Members and non-members may reproduce DMTF specifications and 15
documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF 16
specifications may be revised from time to time, the particular version and release date should always be 17
noted. 18

Implementation of certain elements of this standard or proposed standard may be subject to third-party 19
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations 20
to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or 21
identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate 22
identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party, 23
in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or 24
identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation 25
thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party 26
implementing such standards, whether such implementation is foreseeable or not, nor to any patent 27
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 28
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 29
implementing the standard from any and all claims of infringement by a patent owner for such 30
implementations. 31

For information about patents held by third parties which have notified DMTF that, in their opinion, such 32
patents may relate to or impact implementations of DMTF standards, visit 33
https://www.dmtf.org/about/policies/disclosures. 34

All other marks and brands are the property of their respective owners. 35

This document’s normative language is English. Translation into other languages is permitted. 36

https://www.dmtf.org/about/policies/disclosures.

DSP0282 MMBI Specification

Version 1.0.1 Published 3

CONTENTS 37

Foreword ... 6 38

Introduction.. 7 39

1 Scope .. 8 40

2 Normative references .. 8 41

3 Terms and definitions .. 8 42

4 Conventions .. 10 43
4.1 Reserved and unassigned values ... 10 44
4.2 Byte ordering ... 10 45

5 Assumptions .. 10 46
5.1 Underlying Memory Mapping .. 10 47
5.2 Multiple Instances ... 10 48
5.3 Resets and Errors ... 11 49
5.4 Notifications (Interrupts) .. 11 50
5.5 Packet Sizes, Types, and Packet Flow ... 11 51
5.6 Security ... 12 52

6 Basic Architecture Concept ... 12 53

7 MMBI Data Structures ... 13 54
7.1 MMBI Capability Descriptor .. 14 55
7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer .. 16 56

7.2.1 Variable Packet Size Circular Buffer Descriptor .. 16 57
7.2.2 Host Read-Write Structure ... 18 58
7.2.3 Host Read-Only Structure .. 19 59

8 Runtime Flows ... 21 60
8.1 MMBI Interface Initialization and Reset .. 21 61

8.1.1 Initialization of Descriptor Structures after Power Up .. 21 62
8.1.2 Interface States and Graceful Reset.. 22 63
8.1.3 Ungraceful Reset Considerations .. 28 64

8.2 Calculation of Filled Space and Empty Space in Circular Buffer .. 29 65
8.3 Device Readiness and Communication Pause .. 29 66
8.4 Packet Transfer ... 31 67
8.5 Interrupts (Optional) .. 32 68

9 Multi-Protocol Packet Format .. 32 69

ANNEX A (informative) Notations ... 34 70

ANNEX B (informative) Change log .. 35 71

 72

MMBI Specification DSP0282

4 Published Version 1.0.1

Figures 73

Figure 1 – Multiple MMBI Instances .. 11 74

Figure 2 – MMBI Interface Concept Overview .. 13 75

Figure 3 – MMBI Data Structure Relationships... 14 76

Figure 4 – MMBI Capability Descriptor Layout ... 15 77

Figure 5 – MMBI Interface States ... 25 78

Figure 6 – Sample MMBI Reset by Host ... 26 79

Figure 7 – Sample MMBI Reset by (B)MC .. 28 80

Figure 8 – Filled and Empty Space in Circular Buffers ... 29 81

Figure 9 – Sample MMBI Device Pause Sequences .. 30 82

 83

DSP0282 MMBI Specification

Version 1.0.1 Published 5

Tables 84

Table 1 – MMBI Capability Descriptor Structure (MMBI_Desc) .. 15 85

Table 2 – Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor) 17 86

Table 3 – MMBI Host Read-Write Structure (Host_RWS) .. 19 87

Table 4 – MMBI Host Read-Only Structure (Host_ROS) .. 20 88

Table 5 – MMBI Interface States .. 23 89

Table 6 – Multi-Protocol Packet Format .. 33 90

 91

MMBI Specification DSP0282

6 Published Version 1.0.1

Foreword 92

The Memory-Mapped Buffer Interface (MMBI) Specification (DSP0282) was prepared by DMTF’s PMCI 93
Working Group. 94

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 95
management and interoperability. For information about DMTF, visit dmtf.org. 96

This version supersedes version 1.0.0. For a list of changes, see the change log in ANNEX B. 97

Acknowledgments 98

DMTF acknowledges the following individuals for their contributions to this document: 99

Editors: 100

• Janusz Jurski – Intel Corporation 101

• Richard Marian Thomaiyar – Intel Corporation 102

DMTF Contributors: 103

• Rama Bisa – Dell Inc. 104

• Patrick Caporale – Lenovo 105

• Samer El-Haj-Mahmoud – ARM Inc. 106

• Ted Emerson – Hewlett Packard Enterprise 107

• John Guan – Inspur 108

• Ramesha He – Dell Inc. 109

• Tiffany Kasanicky – Intel Corporation 110

• Mahesh Natu – Intel Corporation 111

• Chandra Nelogal – Dell Inc. 112

• Edward Newman – Hewlett Packard Enterprise 113

• Scott Phuong – Cisco 114

• Derek Roberts – Xilinx Inc. 115

• William Scherer III – Hewlett Packard Enterprise 116

• Hemal Shah – Broadcom Inc. 117

• Bob Stevens – Dell Inc. 118

https://www.dmtf.org/

DSP0282 MMBI Specification

Version 1.0.1 Published 7

Introduction 119

The Memory-Mapped Buffer Interface (MMBI) Specification defines the mechanisms facilitating 120
communication between platform components, typically host software and a Management Controller 121
(usually a Baseboard Management Controller). Using the shared memory concept, this document defines 122
the MMBI protocol that allows packet exchanges between communicating devices. The described 123
memory mapping makes it possible for both boot code (such as UEFI firmware), as well as OS-level 124
software (such as OS kernel or drivers) to establish efficient communication with a (Baseboard) 125
Management Controller at bandwidth and latency limited by the underlying memory mapping 126
mechanisms. MMBI can also be used to enable communication between other types of platform 127
components, not just host software and a Management Controller (MC) or a Baseboard Management 128
Controller (BMC). 129

MMBI Specification DSP0282

8 Published Version 1.0.1

1 Scope 130

This document provides the specifications for the Memory-Mapped Buffer Interface (MMBI). MMBI 131
assumes an underlying memory mapping capability, such as PCIe MMIO/BAR, allowing host software to 132
efficiently access data stored in (B)MC memory. MMBI defines generic packet-based communication 133
mechanism (based on circular buffers), and specific protocols, such as MCTP, should be covered in other 134
documents. 135

2 Normative references 136

The following referenced documents are indispensable for the application of this document. For dated or 137
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 138
For references without a date or version, the latest published edition of the referenced document 139
(including any corrigenda or DMTF update versions) applies. 140

DMTF, DSP0236, Management Component Transport Protocol (MCTP) Base Specification 1.3, 141
https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf 142

DMTF, DSP0239, Management Component Transport Protocol (MCTP) IDs and Codes 1.10, 143
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf 144

DMTF, DSP0276, Secured Messages using SPDM over MCTP Binding Specification 1.1.0, 145
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf 146

DMTF, DSP0284, Management Component Transport Protocol (MCTP) Memory-Mapped Buffer Interface 147
(MMBI) Transport Binding Specification 1.0, 148
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf 149

IANA, Internet Assigned Numbers Authority – Private Enterprise Numbers (PEN), 150
https://www.iana.org/assignments/enterprise-numbers 151

3 Terms and definitions 152

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 153
are defined in this clause. 154

The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), 155
“may”, “need not” (“not required”), “can” and “cannot” in this document are to be interpreted as described 156
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 157
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 158
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 159
alternatives shall be interpreted in their normal English meaning. 160

The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as 161
described in ISO/IEC Directives, Part 2, Clause 6. 162

The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC 163
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do 164
not contain normative content. Notes and examples are always informative elements. 165

Refer to Management Component Transport Protocol (MCTP) Base Specification for the terms and 166
definitions that are used across the MCTP specifications. 167

For the purposes of this document, the following terms and definitions apply. 168

https://www.dmtf.org/standards/published_documents/DSP0236_1.3.pdf
https://www.dmtf.org/standards/published_documents/DSP0239_1.10.pdf
https://www.dmtf.org/standards/published_documents/DSP0276_1.1.0.pdf
https://www.dmtf.org/standards/published_documents/DSP0284_1.0.pdf
https://www.iana.org/assignments/enterprise-numbers
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml

DSP0282 MMBI Specification

Version 1.0.1 Published 9

 169

ACK 170

Acknowledge 171

 172

B2H 173

BMC-to-Host 174

 175

BAR 176

Base Address Register 177

 178

(B)MC 179

Baseboard Management Controller – term used interchangeably with Management Controller 180

 181

CCT 182

Control Command Type 183

 184

Destination Device 185

Device receiving the MCTP packet over MMBI 186

 187

H2B 188

Host-to-BMC 189

 190

MMBI 191

Memory-Mapped Buffer Interface 192

 193

MMIO 194

Memory-Mapped Input/Output 195

 196

NACK 197

Not acknowledge 198

 199

ROS 200

Read-Only Structure 201

 202

RWS 203

Read-Write Structure 204

 205

Source Device 206

Device sending the MCTP packet over MMBI 207

MMBI Specification DSP0282

10 Published Version 1.0.1

 208

SPDM 209

Security Protocol and Data Model 210

 211

VPSCB 212

Variable Packet Size Circular Buffer 213

4 Conventions 214

The conventions described in the following clauses apply to this specification. 215

4.1 Reserved and unassigned values 216

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 217
numeric ranges are reserved for future definition by DMTF. 218

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 219
(zero) and ignored when read. 220

4.2 Byte ordering 221

Unless otherwise specified, byte ordering of multi-byte numeric fields or bit fields is “Big Endian” (that is, 222
the lower byte offset holds the most significant byte, and higher offsets hold less-significant bytes). 223

5 Assumptions 224

5.1 Underlying Memory Mapping 225

The fundamental assumption in this specification is that there exists an underlying platform mechanism 226
allowing efficient memory sharing between the communicating entities (such as a host and a 227
management controller). PCIe MMIO is an example of such a mechanism. This specification defines the 228
packet transfer protocol on top of this assumed memory mapping layer. 229

Assumptions about the underlying layer are: 230

1) Memory mapping shall guarantee an error-free lossless channel. 231
2) The size of atomic operations is at least 4 bytes. 232
3) The order of operations must be preserved: writes must be visible to the other party in the order 233

they were executed by the sender; reads cannot be prefetched/cached; if interrupts are used, 234
they must also obey the order of operations. 235

5.2 Multiple Instances 236

This specification has been designed with the assumption that a single MMBI instance will serve 237
communication between the two communicating entities only (typically host software and management 238
controller firmware components) and so the interface is not shared between multiple communicating 239
entities. 240

Multiple components in the system, e.g., multiple host tenant / software agents communicating to a 241
(B)MC, can be supported using a plurality of MMBI interfaces (each being an independent instance of the 242

DSP0282 MMBI Specification

Version 1.0.1 Published 11

interface), located in different memory locations. Such MMBI instances shall operate independently as 243
shown in Figure 1: 244

(B)MC

Host

Host Software Component

Management Controller
Firmware Component

Host Software Component

MMBI
Instance #1

MMBI
Instance #2

Management Controller
Firmware Component

 245

Figure 1 – Multiple MMBI Instances 246

5.3 Resets and Errors 247

MMBI allows lossless communication as well as graceful reset/initialization on request from a 248
communicating party (in case of a reset of a software entity). However, MMBI does not provide 249
guaranteed delivery in case of ungraceful resets of the communicating parties. Applications that care 250
about data loss in such situations shall employ an ACK packet scheme to verify data reception by the 251
other party and handle the error if ACK is not received. 252

5.4 Notifications (Interrupts) 253

MMBI is designed to execute in both interrupt and polling mode. 254

The memory sharing capability may be accompanied by the ability to receive interrupts by the 255
communicating software entities. MMBI enables discovery and enables use of the optional interrupt 256
mechanism for efficient data exchange between communicating entities. If interrupts are used, it is 257
assumed that the interrupt delivery mechanism is reliable. 258

If interrupts are not available, a polling mode can be used. Platform designers can choose polling or 259
interrupt mode, based on their needs. 260

5.5 Packet Sizes, Types, and Packet Flow 261

MMBI allows variable packet sizes, with the maximum size dependent on the underlying physical layer’s 262
memory mapping capabilities. MMBI provides a discovery method allowing the communicating parties to 263
define and discover the circular buffer sizes, which limit the maximum packet sizes that can be 264
transmitted (fragmentation/reassembly is not supported by this version of MMBI protocol). The upper 265

MMBI Specification DSP0282

12 Published Version 1.0.1

layers must adhere to the discovered limits and, if necessary, handle fragmentation/reassembly 266
accordingly. 267

MMBI allows multiple packets (datagrams) to be in-flight. That is, the sender can place more than one 268
packet in the memory buffer even before they are consumed by the receiver. This enables asynchronous 269
operation of the communicating entities. Regardless of the number of packets in-flight, they are 270
guaranteed to arrive to the receiver in the FIFO order (note: upper layer can elect to process in same 271
order or in different order, which will not be guaranteed by the MMBI layer). Note that if multiple instances 272
of MMBI are in the system, they operate independently and no packet ordering guarantees exist between 273
them. 274

MMBI enables and defines discovery mechanisms to support the exchange of a variety of packet protocol 275
types, such as MCTP. Binding of these protocols to MMBI is defined in separate documents, such as 276
Management Component Transport Protocol (MCTP) Memory-Mapped Buffer Interface (MMBI) Transport 277
Binding Specification. 278

5.6 Security 279

MMBI does not provide any security guarantees. Any authentication, integrity protection, and/or 280
encryption is to be implemented by the other layers of the protocol stack. For example, for secure 281
implementation of communication between the host and (B)MC using MMBI, Secured Messages using 282
SPDM over MCTP Binding Specification can be used. Another alternative can be host-based memory 283
protection mechanisms. 284

6 Basic Architecture Concept 285

The host and the (B)MC use circular buffers to exchange data. One buffer is used to send data from the 286
host to the (B)MC and is referred to as H2B (Host-to-BMC). The other buffer is used for communication in 287
the opposite direction and is referred to as B2H (BMC-to-Host). The buffers are used to store packet data, 288
and they are accompanied by a descriptor structure. The descriptor is a data structure in the shared 289
memory used to store important capabilities and control information. These data structures are shown in 290
Figure 2 and are defined in detail in section 7. 291

DSP0282 MMBI Specification

Version 1.0.1 Published 13

BMC (MC)

B
M

C
 M

e
m

o
ry

 –

M
a

p
p

ed
 t

o
 H

o
st

Host

Host Software

MMIO

BMC Firmware

H2B
Circular
Buffer

B2H
Circular
 Buffer

GPIO, etc.

Interrupt

Interrupt

MMBI
Capability
Descriptor
Structure

 292

Figure 2 – MMBI Interface Concept Overview 293

7 MMBI Data Structures 294

Each instance of the MMBI interface is divided into sections as defined below: 295

• “BMC-to-Host” (B2H) region with substructure as follows: 296
o MMBI Capability Descriptor (MMBI_Desc Structure) — see section 7.1 for details 297
o Host_ROS (Host Read-Only Structure) — see section 7.2.3 for details 298
o BMC-to-Host Circular buffer (B2H Circular buffer) — see section 8 for details 299

• “Host-to-BMC” (H2B) region with substructure as follows: 300
o Host_RWS (Host Read-Write Structure) — see section 7.2.2 for details 301
o Host-to-BMC circular buffer (H2B Circular buffer) — see section 8 for details 302

 303

The format of the H2B and B2H circular buffers is a sequence of packets, and this format is referred to as 304
Variable Packet Size Circular Buffer (VPSCB). For VPSCB, the relationships between these data 305
structures and their main pointers are as presented in Figure 3. 306

MMBI Specification DSP0282

14 Published Version 1.0.1

MMBI_Desc (#0)

B2H H2B

B2H Base Addr

B2H Length

H2B Base Addr

H2B Length

Host_ROS

Host_ROS ptr

Interrupt Type Protocol Type

Host_RWS ptr

H2B Read Ptr

B2H Write Ptr

...

...

Host_RWS

B2H Read Ptr

H2B Write Ptr

...

Empty space

Packet
Packet

PacketPacket

Empty space Empty space

Empty space

 307

Figure 3 – MMBI Data Structure Relationships 308

Details of these data structures are presented in the following subsections. Note that the data structures 309
maintain 4-byte alignment for fields that need to be updated atomically. Packets in the circular buffers are 310
also aligned to 4-byte boundaries. 311

7.1 MMBI Capability Descriptor 312

MMBI Capability Descriptor is used to define the MMBI interface details. (B)MC updates this data 313
structure during initialization. Other than that, the (B)MC and host are not allowed to update it. The host 314
only reads this descriptor to understand the format of the MMBI data structures in memory and shall 315
never write to this data structure. The layout of the structure is presented in Figure 4 and described in 316
Table 1. See also section 8.1. 317

DSP0282 MMBI Specification

Version 1.0.1 Published 15

 318

Figure 4 – MMBI Capability Descriptor Layout 319

Table 1 – MMBI Capability Descriptor Structure (MMBI_Desc) 320

Byte(s) Description

0:5 MMBI Signature

“#MMBI$” in ASCII. When this signature is not present, the host SW should assume the absence
of MMBI.

6

[7:4] Reserved

[3:0] MMBI version

0001b – Implementations of MMBI described in this document shall indicate version 1 of MMBI.

7 [7:1] Reserved

[0] OS Use

Indicates if this MMBI interface is intended for OS use:

0b – OS should not use this MMBI interface as it is managed by other host software components

(UEFI BIOS, ACPI ASL code, etc.).

1b – This MMBI interface is intended for OS use.

8:11

[31:29] – Reserved

[28:0] B2H Buffer Base Address (B2H_BA)

B2H (BMC-to-Host) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

Byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0

4
OS

Use

8

12

16

20

24

28

32

36

40

44

48

52

56

60

B2H Buffer Base Address (B2H_BA)

H2B Buffer Base Address (H2B_BA)

B2H Buffer Length (B2H_L)

H2B Buffer Length (H2B_L)

Host Read-Only Structure Pointer (H_ROS_P)

Reserved

Reserved

Reserved

Reserved

B2H_BA

H2B_BA

B2H_L

H2B_L

BMC Interrupt Location (BMC_Int_L) Reserved

BMC Interrupt Value (BMC_Int_V)

Reserved

Reserved

Reserved Reserved

Host Interrupt Value (H_Int_V) Reserved
BMC Interrupt

Type (H_Int_T)
BMC Interrupt Location (BMC_Int_L)

Reserved
Host Interrupt

Type (H_Int_T)
Host Interrupt Location (H_Int_L)

Reserved

Host Read-Write Structure Pointer (H_RWS_P)

Reserved

Reserved

H_ROS_P

H_RWS_P

Reserved
Buffer Type

(BUFT)

$ M M B

I # Reserved MMBI version Reserved

Byte +0 Byte +1 Byte +2 Byte +3

MMBI Specification DSP0282

16 Published Version 1.0.1

Byte(s) Description

12:15 [31:29] – Reserved

[28:0] H2B Buffer Base Address (H2B_BA)

H2B (Host-to-BMC) buffer base address expressed in 8-byte units as offset relative to the
beginning of the descriptor

16:19 B2H Buffer Length (B2H_L)

The size of the B2H buffer (can represent up to 4GB)

20:23 H2B Buffer Length (H2B_L)

The size of the B2H buffer (can represent up to 4GB)

24 [7:4] Reserved

[3:0] Buffer Type (BUFT)

Indicates the type of data structures in H2B and B2H buffers. The following values are defined:

0001b – MMBI Variable Packet Size Circular Buffers (VPSCB) v1 (see section 7.2)

Other values are reserved.

25:31 Reserved

32:52 Buffer Type Dependent Descriptor

The definition of this field is dependent on the BUFT field value:

If BUFT=0001b (VPSCB), Table 2 in section 7.2 defines the format of these bytes and the packet

format in circular buffers is defined in section 9

56:63 Reserved

 321

7.2 MMBI Circular Buffers—Variable Packet Size Circular Buffer 322

This section describes data structures used when the communication between (B)MC and host SW 323
happens according to the VPSCB Buffer Type (BUFT=0001b). 324

7.2.1 Variable Packet Size Circular Buffer Descriptor 325

Variable Packet Size Circular Buffer Descriptor is part of the MMBI_Desc structure. Its access rules are 326
the same as MMBI_Desc: 327

• The (B)MC updates this data structure during MMBI interface initialization. 328

• Neither the (B)MC nor the host are allowed to update it at any other time. 329

DSP0282 MMBI Specification

Version 1.0.1 Published 17

Table 2 – Buffer Type Dependent Descriptor for BUFT=0001b (VPSCB Descriptor) 330

Byte(s) Description

0:3

[31:29] – Reserved

[28:0] Host Read-Only Structure Pointer (H_ROS_P)

Points to the Host_ROS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

4:7 [31:29] – Reserved

[28:0] Host Read-Write Structure Pointer (H_RWS_P)

Points to the Host_RWS structure. The base address is expressed in 8-byte units as the offset relative
to beginning of the descriptor

8 [7:3] – Reserved

[2:0] Host Interrupt Type (H_Int_T)

Defines how the (B)MC interrupts the host. This is an informative field from the host’s perspective with
the intention to keep the (B)MC and host in sync.

0 – no interrupt / polling

1 – PCIe interrupt (bus specific)

2 – physical pin (GPIO)

3 – eSPI Virtual Wire

Other values are reserved

9 Host Interrupt Location (H_Int_L)

If H_Int_T = 0: reserved

If H_Int_T = 1: for PCIe, indicates the PCIe interrupt message number

If H_Int_T = 2: pin number

If H_Int_T = 3: eSPI Virtual Wire Index number

Reserved otherwise

10:12 Reserved

13 Host Interrupt Value (H_Int_V)

If H_Int_T = 3: eSPI Virtual Wire data value

Reserved otherwise

MMBI Specification DSP0282

18 Published Version 1.0.1

Byte(s) Description

14 [7:3] – Reserved

[2:0] (B)MC Interrupt Type (BMC_Int_T)

Defines how the (B)MC wants to be interrupted:

0 – no interrupt triggering by the host

1 – relative memory space address (offset defined in the BMC_Int_L field)

2 – Inband interrupt (bus specific—such as PCIe MSI or virtual legacy wire)

Other values – reserved

15:18 (B)MC Interrupt Location (BMC_Int_L)

If BMC_Int_T = 1, memory address–offset relative to the beginning of the MMBI Capability Descriptor
base address

Otherwise reserved

19:22 Reserved

23 (B)MC Interrupt Value (BMC_Int_V)

If BMC_Int_T = 1, this field indicates the value to be written at the given address to trigger an interrupt.

Otherwise reserved

7.2.2 Host Read-Write Structure 331

The host’s RW Structure Pointer in the above structure points to the Host_RWS structure, which is shown 332
in Table 1. This structure is accessed as follows: 333

• It is initialized by the (B)MC to the default values. 334

• The host updates this structure during normal communication—it is read-writeable for the host. 335

• The (B)MC is not allowed to write to this structure during normal communication—it should treat 336
this structure as read-only (any kind of hardware-based enforcement of the read-only behavior is 337
out of scope of this specification). 338

DSP0282 MMBI Specification

Version 1.0.1 Published 19

Table 3 – MMBI Host Read-Write Structure (Host_RWS) 339

Byte(s) Description

0:3 [31:2] H2B Write Pointer (H2B_WP)

Bits [31:2] of the offset where the host can write the next data in the H2B circular buffer, counted from
the beginning of the H2B buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The (B)MC uses this pointer to determine how many bytes of valid data are present in the Circular
Buffer (by comparing it with the H2B_RP offset).

The host shall advance the pointer once data is written to the Circular Buffer and shall update this
pointer to mark the next available offset.

Note: The host shall not overwrite the data not read by the (B)MC, as indicated by the H2B_RP.

[1] Host Interface Up (H_UP)

1 indicates that the host side of the interface is up and running, which means that the data structures
can be used by the (B)MC.

[0] Host Reset Request (H_RST)

Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known good state
(see section 8.1 for more information).

4:7 [31:2] B2H Read Pointer (B2H_RP)

Bits [31:2] of the offset where the host reads data from the B2H circular buffer, counted from the
beginning of the B2H buffer represented in 4-byte alignment.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The (B)MC uses this pointer to determine how much of data is read by the host. Comparing this with
the B2H Write Pointer (B2H_WP) will provide how much space is left to write the data.

The host shall only advance the pointer once the data available in B2H is read by the host.

[1] Reserved

[0] Host Ready (H_RDY)

0 indicates that the host is performing some tasks that keep it busy, and so it may be unresponsive.
However, the (B)MC can use the data structures and, for example, put data into the buffers as long as
H_UP = 1.

1 indicates that the host is ready to exchange data (see section 8.1 for more information).

7.2.3 Host Read-Only Structure 340

Host RO Structure Pointer points to Host_ROS structure. The host is only allowed to read this structure 341
(never write). Any kind of hardware-based enforcement of the read-only behavior is out-of-scope of this 342
specification. This structure is initialized by the (B)MC to the default values and later updated by (B)MC 343
during normal communication—it is read-writeable for the (B)MC. 344

MMBI Specification DSP0282

20 Published Version 1.0.1

Table 4 – MMBI Host Read-Only Structure (Host_ROS) 345

Byte(s) Description

0:3
[31:2] B2H Write Pointer (B2H_WP)

Bits [31:2] of the offset where the (B)MC can write the next data in the B2H circular buffer,
counted from the beginning of the B2H buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how many bytes of valid data are present in the
Circular Buffer (by comparing it with B2H_RP offset)

The (B)MC shall advance the pointer once data is written to the Buffer to mark the next
available offset.

Note: (B)MC shall not overwrite the data not read by host, as indicated by the B2H_RP.

[1] (B)MC Interface Up (B_UP)

1 indicates that the (B)MC side of the interface is up and running which means that the data
structures are initialized and can be used

[0] (B)MC Reset Request (B_RST)

Setting this flag to 1 will initiate a reset sequence to get the circular buffers into a known
good state (see section 8.1 for more information).

4:7

[31:2] H2B Read Pointer (H2B_RP)

Bits [31:2] of the offset where the host reads data from the H2B circular buffer, counted from
the beginning of the H2B buffer.

Bits [1:0] of the offset are assumed to always be zero (for 4-byte alignment).

The host uses this pointer to determine how much of data is read by the (B)MC. Comparing
this with the H2B write pointer will provide how much space is left to write.

(B)MC shall only advance the pointer once the data available in H2B is read by the (B)MC.

[1] Reserved

[0] (B)MC Ready (B_RDY)

0 indicates that the (B)MC is performing some tasks that keep it busy and so it may be
unresponsive – host however can use the data structures and, for example, put data into
the buffers as long as B_UP = 1

1 indicates that the (B)MC is ready to exchange data (see section 8.1 for more information).

MMBI uses two circular buffers: H2B and B2H. Each buffer is a memory range defined in the descriptor 346
with the following access: 347

• H2B (Host-to-BMC buffer) is RW for the host and RO for the (B)MC. 348

• B2H (BMC-to-Host buffer) is RO for the host and RW for the (B)MC. 349

DSP0282 MMBI Specification

Version 1.0.1 Published 21

The Read Pointer and Write Pointer are used to indicate the read and write location in the buffer. For 350
each read or write the pointer shall be advanced. It means pointer increment with a rollover at the buffer 351
size. 352

These pointers, along with the Buffer Length fields (B2H_L or H2B_L), are used to calculate the number 353
of filled bytes to read or the number of empty bytes available for write. 354

The circular buffers will be used to send packets of arbitrary size. A packet may require multiple memory 355
reads and/or write transfers. 356

8 Runtime Flows 357

8.1 MMBI Interface Initialization and Reset 358

This section describes the steps to allow the (B)MC to complete the initialization of the data structures 359
and indicating when both sides of communication are ready to exchange data. 360

The goal of the reset, on the other hand, is to reinitialize the data structures when at least one side wants 361
a clean start, which may be due to unexpected device events, malfunction, error, etc. It may also be used 362
to reinitialize the data structures after, for example, a (B)MC firmware update in which the data structure 363
needs some new values (e.g., when the circular buffer size changes after the firmware update). A 364
graceful reset follows the state diagram presented in Figure 5, and it guarantees that MMBI protocol layer 365
does not drop any packets (note that other protocol layers may still be unable to guarantee delivery). 366

The reset sequence is also automatically initiated when hardware errors lead to all-ones or all-zeros 367
memory reads, as is typical with some media. This is thanks to the fact that when all the flags are zeros or 368
are all ones, it indicates an initialization or transition to initialization states. Such unexpected resets do not 369
follow the handshake protocol, and so are ungraceful and may lead to packet losses. 370

These flags are used to indicate the (B)MC’s status as related to initialization and reset: 371

• (B)MC Interface Up (B_UP) 372

• (B)MC Reset Request (B_RST) 373

Similar flags are used to indicate the host’s status: 374

• Host Interface Up (H_UP) 375

• Host Reset Request (H_RST) 376

All these flags are used in combination to achieve the proper handshake mechanism between the host 377

and the (B)MC during initialization or reset. 378

8.1.1 Initialization of Descriptor Structures after Power Up 379

The (B)MC must initialize the expected content of the MMBI data structures (see section 7) during power 380
up and make the shared memory available to the host. Initialization is expected to complete before the 381
host software accesses these structures so that the host can find the MMBI Capability Descriptor 382
(MMBI_Desc) using the MMBI signature bytes. MMBI structures and buffers must always remain 383
available in the shared memory when the host is using the MMBI interface. 384

During the initial accesses after the host’s power up or reset, the host’s software is expected to verify if 385
the content of the MMBI version and MMBI signature are as expected. If the above requirements are met, 386
the host is expected to check the interface state. 387

If the host’s software does not find the proper MMBI Capability Descriptor (MMBI_Desc) content at the 388
expected location, the host should consider the MMBI as not present or, optionally, it may implement a 389

MMBI Specification DSP0282

22 Published Version 1.0.1

wait option with a timeout. Such a timeout mechanism is system-dependent and is out of scope of this 390
specification. 391

If the MMBI signature and MMBI version fields match, but the size and location of the buffers cannot be 392
fulfilled by the host, it shall indicate the initialization mismatch error by transitioning to the Initialization 393
Mismatch state as described below. With this indication, the (B)MC may consider the interface as 394
inoperable or attempt to reinitialize the MMBI_Desc structure with, for example, a smaller buffer size. 395
Before updating the data structure content, the (B)MC shall first clear the B_UP flag and then clear the 396
H_RST flag to return back to the Initialization in Progress state. Such attempts to repair the situation are 397
system-dependent and are out of scope of this specification. 398

8.1.2 Interface States and Graceful Reset 399

When _RST and _UP are both set on one side of communication, it means the entity is requesting a reset 400

sequence. When B_RST = H_RST = B_UP = H_UP = 1, it means that both entities are ready to perform 401

the reset sequence (in fact, the host is just waiting for the (B)MC to do all the initialization). 402

All the states are summarized in Table 5. The “Host Write Access” and “(B)MC Write Access” columns 403
define write-access restrictions to the data structures by host and (B)MC, respectively. There are no read 404
restrictions for the (B)MC and host. Note that the host is expected to re-read the data structure contents 405
after initialization is completed. 406

DSP0282 MMBI Specification

Version 1.0.1 Published 23

Table 5 – MMBI Interface States 407

B_UP B_RST H_UP H_RST State Description
Host Write

Access
(B)MC Write

Access

0 0 0 0

Initialization in Progress

The (B)MC is initializing the data structures.

The host can only monitor the data structures,
waiting for B_UP = 1 and B_RST = 0 flags.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

1 0 0 0

Initialization Completed

The (B)MC has completed initialization of the
data structures and is ready to exchange data—
waiting for the host to be ready. The host
should re-read the MMBI_Desc structure and
any dependent structures.

During this state, the (B)MC is allowed to
deposit packets into the circular buffer.

Host
allowed to
write to
MMBI
structures
as per
section 7

(B)MC
allowed to
write to
MMBI
structures as
per section 7

1 0 1 0

Normal Runtime

Both the (B)MC and host use the data
structures and the circular buffers for data
exchanges.

Host
allowed to
write to
MMBI
structures
as per
section 7

(B)MC
allowed to
write to
MMBI
structures as
per section 7

1 1 1 0

Reset Request by (B)MC

The (B)MC is requesting reset—waiting for the
host to notice the request.

When the host notices the request, it should
consume the data from the B2H (if any) and
shall set H_RST flag as an ACK and wait for the
initialization to complete (B_UP = 1 and
B_RST = 0 status).

Host
allowed to
write to
MMBI
structures
as per
section 7

(B)MC
allowed to
write to
MMBI
structures as
per section 7

1 0 1 1

Reset Request by Host

The host is requesting reset—waiting for the
(B)MC to notice the request and reinitialize the
interface. When the host sets the H_RST flag, it
shall not perform any further updates in the
MMBI data structures but shall only wait for the
initialization to be completed by (B)MC (B_UP =
1 and B_RST = 0 status).

When the (B)MC notices the request, it should
consume the data from the B2H (if any) and
shall set B_RST flag as an ACK.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

MMBI Specification DSP0282

24 Published Version 1.0.1

B_UP B_RST H_UP H_RST State Description
Host Write

Access
(B)MC Write

Access

1 1 1 1

Reset ACKed

The host and (B)MC are ready to perform
graceful interface reset. This is a transient state
when the host is waiting for the (B)MC to
complete the initialization. The host is not
allowed to write to MMBI data structures. The
(B)MC is expected to clear the B_UP and
B_RST flags (in this order) and reinitialize all
the data structures.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

0 1 1 1

Transitioning to Initialization

Transient state after the “Reset ACKed” state.
The host is not allowed to write to MMBI data
structures.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

0 1 1 0
Temporary Transition States

These states may be observed during
initialization when the (B)MC updates the data
structures (reinitialization of all the data
structures is not an atomic operation).

They are unexpected during normal operation
and if they happen it means that MMBI
structures have been corrupted. The (B)MC
may initialize the interface or stop using MMBI
and report a fatal error.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

0 1 0 1

0 1 0 0

0 0 0 1

1 0 0 1

Initialization Mismatch

The host causes transition into this state from
Initialization Completed when it is unable to use
the interface due to unsupported content in the
MMBI Capability Descriptor structure.

Host not
allowed to
write to any
MMBI
structures

(B)MC
allowed to
write to any
MMBI
structures

1 1 0 1 Unexpected States

These states shall never happen:

• If the (B)MC reads this state, it
indicates that the host does not follow
MMBI protocol or some other
corruption happened—the (B)MC
should initialize the interface or it may
stop using MMBI and report a fatal
error, depending on system policy.

• If the host reads this state, it may wait
for the reinitialization to complete or
stop using MMBI and report a fatal
error, depending on system policy.

1 1 0 0

0 0 1 0

0 0 1 1

DSP0282 MMBI Specification

Version 1.0.1 Published 25

The expected state transitions are presented in Figure 5: 408

 409

Ungraceful reset
(entry from any other state)

Initialization
in Progress

Initialization
Completed

Normal
runtime, incl.

halt

Reset
Request by

BMC

Reset
Request by

Host

Power-up or
error

Reset ACKed

Transitioning
to

Initialization

Initialization
Mismatch

 410

Figure 5 – MMBI Interface States 411

The host shall check the MMBI Interface state before writing any new data to the H2B buffer (as 412
described in Table 5, the host is only allowed to transfer new data in the Normal Runtime state, i.e., 413
B_UP=1 & B_RST=0 & H_UP=1 & H_RST=0). Similarly, the (B)MC shall check the status before writing 414

MMBI Specification DSP0282

26 Published Version 1.0.1

any new data to the B2H buffer. These status flags are conveniently located in the B2H_WP or H2B_WP 415
bytes which the host or (B)MC, respectively, read anyway during any use of the circular buffers. 416

8.1.2.1 Host Initiating Graceful Reset Sequence 417

Assuming Normal Runtime state, the host shall use the following sequence to request MMBI interface 418
reset: 419

1) The host sets H_RST = 1 to initiate the reset flow. If (B)MC interrupts are enabled, the host 420
notifies the (B)MC. 421

a. In response, the (B)MC is expected to set B_RST = 1, which indicates the transition to 422
the Reset ACKed state. If host interrupts are enabled, the host is expected to be notified 423
about the update (or else it uses polling). At this point, the (B)MC reinitializes all the data 424
structures. 425

2) The host waits for B_UP = 1 and B_RST = 0 (and H_UP = H_RST = 0), which indicates the 426
transition to the Initialization Completed state. Host interrupts are not used at this stage until 427
H_UP is set by host software. 428

3) The host transitions to the Normal Runtime state by setting H_UP = 1. The host is also expected 429
to set the B_RDY flag, indicating that it can receive and handle new packets—see section 8.3. If 430
(B)MC interrupts are enabled, the host notifies the (B)MC after the flags are updated. 431

Figure 6 presents a sample flow: 432

 433

Figure 6 – Sample MMBI Reset by Host 434

DSP0282 MMBI Specification

Version 1.0.1 Published 27

8.1.2.2 (B)MC Initiating Graceful Reset Sequence 435

Assuming Normal Runtime state, the (B)MC shall use the following sequence to request MMBI interface 436
reset: 437

1) The (B)MC sets B_RST = 1 to initiate the reset flow. If host interrupts are enabled, the (B)MC 438
notifies the host. 439

2) The (B)MC waits for H_UP = 1 and H_RST = 1, which indicates the transition to the Reset ACKed 440
state. If (B)MC interrupts are enabled, the (B)MC is expected to be notified about the update (or 441
else (B)MC uses polling). 442

3) The (B)MC clears the B_UP flag (B_RST still set). Host interrupts are no longer enabled. 443

4) The (B)MC clears the H_UP and H_RST flags (this may cause transient states to be observed by 444
the host). 445

5) The (B)MC clears the B_RST flag. 446

6) The (B)MC reinitializes all the data structures. 447

7) The (B)MC sets B_UP = 1. Host interrupts are not used at this stage until H_UP is set by host 448
software. 449

8) The (B)MC waits for the host to set H_UP = 1. If (B)MC interrupts are enabled, the (B)MC is 450
expected to be notified about the update. 451

Note that the (B)MC is also expected to set the B_RDY flag, typically in step 7, indicating that it can 452
receive and handle new packets—see section 8.3. 453

Figure 7 presents a sample flow. 454

MMBI Specification DSP0282

28 Published Version 1.0.1

BMC
Host

Normal Runtime:
B_UP = 1
B_RST = 0

Normal Runtime:
H_UP = 1
H_RST=0

Reset Request by BMC:
B_UP = 1 B_RST = 1

BMC requests reset; stops sending new packets

Reset ACKed:
H_UP = 1
H_RST = 1

Host uses MMBI to send/receive packets

Transitioning to Init:
B_UP = 0
B_RST = 1

BMC-to-Host Interrupt or polling

BMC uses MMBI to receive remaining packets

Initialization:
B_UP = H_UP = 0

B_RST = H_RST = 0

Initialization Completed:
B_UP = 1
B_RST = 0

Data structure reset

Normal Runtime:
H_UP = 1
H_RST = 0

BMC-to-Host - polling by host

Host uses MMBI to send/receive packets

BMC uses MMBI to receive packets

 455

Figure 7 – Sample MMBI Reset by (B)MC 456

8.1.3 Ungraceful Reset Considerations 457

If an ungraceful reset/crash happens, MMBI does not guarantee delivery. However, provisions are 458
present in the MMBI design to handle the following scenarios: 459

1. In the case of a (B)MC FW-only reset (HW continues to work, memory content, including 460
buffers stay intact in shared memory and accesses are still handled by HW): the host will still 461
see the MMBI in the normal state and write to MMBI Circular buffers to deposit or read data 462
as long as there is any space available in the buffers. In this situation, host may timeout 463
waiting for a response but this is handled by higher layers above MMBI. 464

2. (B)MC HW reset (buffers are wiped and MMIO mechanisms are broken): the host will see 465
errors on reads/writes and must handle them as per host-specific mechanisms. Additionally, 466
MMBI encoding of status in B_UP, B_RST, H_UP, & H_RST is such that all-zeros or all-ones 467
are recognized as transient states (see Table 5). So, even if there would be no other 468
mechanisms in the system, the host would still recognize this as an error and would have to 469
wait for reinitialization by the (B)MC (the host is not allowed to write to the buffers in the 470
transient state, i.e., until the data structures are reinitialized by (B)MC FW). 471

3. Unexpected host reset (SW or HW reset is the same outcome): the host’s unexpected reset 472
will leave the data structures intact in (B)MC memory, so the (B)MC can still read the data 473
from the buffers. Assuming the (B)MC understands the host’s status via other mechanisms, 474
the (B)MC can take informed decisions about how to respond to such situations. 475

DSP0282 MMBI Specification

Version 1.0.1 Published 29

In all the above cases, MMBI data structures can be reinitialized after the reset to allow a clean restart. 476

8.2 Calculation of Filled Space and Empty Space in Circular Buffer 477

The procedure for calculating the number of filled bytes in a circular buffer is analogous for both the H2B 478
and B2H buffers: the difference between the write pointer and read pointer indicates the amount of valid 479
data, accounting for the rollover at the end of the buffer. The write pointer cannot advance beyond the 480
read pointer, accounting for the rollover at the end of the buffer. 481

The following steps allow calculation of the number of filled slots in a circular buffer: 482

1. The write and read pointers must start with zero after initialization. Since read pointer = write 483
pointer, there is no valid data/packets in the buffer on initialization. 484

2. Once data is written to the buffer, the source (the host or (B)MC) will advance the write buffer 485
pointer. 486

3. Read pointer is advanced once data is read/consumed by the receiver (the host or (B)MC). 487

4. Rollover: when the pointers reach the maximum offset within the buffer during writing/reading, 488
data must be written/read starting back at zero offset, and the pointers roll over accordingly. 489

 490

Figure 8 – Filled and Empty Space in Circular Buffers 491

8.3 Device Readiness and Communication Pause 492

In addition to the reinitialization or reset states, the MMBI interface also uses the H_RDY and B_RDY 493
flags to indicate the device’s readiness to consume incoming packets and handle them. When the host or 494
(B)MC are ready to receive and handle packets, they set the B_RDY or H_RDY flags, respectively. If a 495
B_RDY or H_RDY flag is clear but the B_UP and H_UP flags are set, it means that the MMBI interface is 496
up but the target device is not ready to consume and handle new packets. When the interface is up, it 497
means that the data structures are ready to accept new packets so the sender can: 498

• wait for the receiver to become ready before writing new packets to the buffer—this is 499
important if the sender expects an action to be taken by the receiver, such as providing a 500
response 501

MMBI Specification DSP0282

30 Published Version 1.0.1

• deposit new packets to the buffer in order for the receiver to consume them later—this 502
capability may be used if the sender does not expect a response from the receiver; for 503
example, when the sender needs to deposit some logs in the shared memory 504

An example flow when (B)MC firmware / host software undergoes a reset and indicates its non-readiness 505
during a reboot is presented in Figure 9. Note that in this example it is assumed that the MMBI data 506
structures are still intact in shared memory during the reset. 507

BMC Host

B_UP = 0
B_RDY=0

B_UP = 0
B_RDY=0

AC cycle boot / First time init

B_UP = 1
B_RDY = 0

Initializes MMBI descriptor & ready

H_UP = 1
H_RDY = 0

Not ready

H_UP = 1
H_RDY = 1

Transition to ready

B_UP = 1
B_RDY = 1

Transition to ready

BMC FW pause

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 1

B_UP = 1
B_RDY = 1

BMC booted & ready

Transactions can continue from here

Transactions should be halted

B_UP = 1
B_RDY = 1

B_UP = 1
B_RDY = 0

BMC reboot

H_UP = 1
H_RDY = 1

H_UP = 1
H_RDY = 0

H_UP = 1
H_RDY = 1

B_UP = 1
B_RDY = 1

Transactions can continue from here

Transactions should be halted

B_UP = 1
B_RDY = 1

B_UP = 1
B_RDY = 1

Host SW resets

Host SW pause

Host SW init

 508

Figure 9 – Sample MMBI Device Pause Sequences 509

DSP0282 MMBI Specification

Version 1.0.1 Published 31

8.4 Packet Transfer 510

This flow describes the host-to-(B)MC flow that shall be followed to send a packet. An analogous flow 511
shall be followed to send packets in the opposite direction (swap (B)MC and host in the description and 512
use B2H buffer instead): 513

1) Host software reads the read and write pointers (H2B_RP and H2B_WP) to determine the 514
number of empty spaces available in its circular buffer. 515

a. If there is not enough empty space available in the host’s circular buffer, the host waits 516
until there is room in the host’s circular buffer. This is done either by polling or waiting for 517
an interrupt. 518

b. Host software shall also verify that B_UP = 1 & B_RST = 0 before any packet transfers. If 519
this is not the case, it shall follow the reset process as defined in section 8.1. Note that 520
the host may decide to delay packet transfer depending on B__RDY state and its policy. 521

2) Once there is enough empty space available in the circular buffer, the host writes the packet into 522
the host’s circular buffer. To accomplish this, the host sequentially writes data at the write pointer 523
location but not exceeding the length of the buffer (H2B_L). When it reaches the maximum 524
address of the buffer, it shall continue writing the packet from the buffer base address (H2B_BA). 525
This process shall never overflow the buffer by advancing beyond the H2B_RP. 526

3) Once the packet write is complete, the host updates the write pointer value in H2B_WP. 527

4) In Interrupt-enabled mode, the (B)MC firmware is interrupted: 528

a. If BMC_Int_T = 1, the host uses the (B)MC Interrupt Info (BMC_Int_L) and (B)MC 529
Interrupt Value (BMC_Int_V) to interrupt the (B)MC FW. 530

b. Even if BMC_Int_T = 0, the (B)MC HW may also monitor H2B_WP and generate an 531
interrupt automatically. 532

c. Alternatively, a platform-specific method can be used to trigger the interrupt to (B)MC. 533

5) In polling mode, the (B)MC FW can continuously read the write pointer to see when it changes. In 534
interrupt mode, it is woken up by the (B)MC HW. 535

6) The (B)MC firmware reads the read/write pointers and determines the number of filled spaces in 536
the circular buffer available for reading. 537

a. If the circular buffer is empty, the host has not sent a packet. This interrupt is for another 538
reason, or it indicates that the host has completed reading the packet(s) last transmitted 539
by the (B)MC. 540

7) The (B)MC FW reads the buffer data written by the host. 541

8) The (B)MC FW updates the read pointer in B2H_RWS. This indicates to the host how much data 542
has been read by the (B)MC, and the host can use the portion of the buffer that has been read 543
already. 544

9) If host notifications are enabled, (B)MC FW shall generate an interrupt to the host. 545

10) When the host software gets interrupted or due to polling of H2B_RP, it can determine that the 546
(B)MC has consumed the data. The host can also poll instead of relying on interrupts. 547

MMBI Specification DSP0282

32 Published Version 1.0.1

8.5 Interrupts (Optional) 548

Interrupts, if enabled by the discovery/control mechanisms of MMBI, shall be triggered for the following 549
reasons (both for host software and (B)MC firmware): 550

• A packet has just been written to the circular buffer. 551

• A packet has just been read from the circular buffer. 552

• The host or (B)MC has initiated an interface reset sequence. 553

• The host or (B)MC has completed its portion of the interface reset sequence and normal 554
operation can begin. 555

An interrupt handler shall: 556

• check the status flags in the MMBI Capability Descriptor (MMBI_Desc)—if a reset is initiated, the 557
flow defined in section 8.1 shall be followed 558

• check if there is a packet in the circular buffer—this can be calculated as per section 8.2—and, if 559
there is data present in the buffer, the interrupt handler should initiate the packet receive flow, as 560
defined in section 8.4. 561

If there are multiple instances of the MMBI interface sharing the same interrupt, the interrupt handler shall 562
check all the instances for the reasons listed above. The order of such a check and interrupt affinity are 563
implementation-specific and out of scope of this specification. 564

9 Multi-Protocol Packet Format 565

If BUFT=0001b (VPSCB) and Packet Protocol Type = 0001b (Multi-protocol Type), the multi-protocol 566

MMBI packets will have the following defined header fields, as shown in Table 6. There is a 4-byte 567
alignment expectation, meaning that padding must be added if necessary for the packet length to be a 568
multiple of 4 bytes. 569

DSP0282 MMBI Specification

Version 1.0.1 Published 33

Table 6 – Multi-Protocol Packet Format 570

Byte(s) Description

0:2 [23:2] Packet Length (PKT_LEN)

The size of the packet, calculated as PKT_LEN+1 multiplied by 4 bytes (can represent up to 16MB
packet).

Values 0x3FFFFF and zero are reserved.

[1:0] Packet padding (PKT_PAD)

Number of padding bytes

3 [7:4] – Reserved

[3:0] – Packet type (PKT_TYPE)

Defines the format of the remaining bytes:

0100b – MCTP over MMBI (see Management Component Transport Protocol (MCTP) Memory-

Mapped Buffer Interface (MMBI) Transport Binding Specification)

0101b – Vendor defined content as defined below

Other values are reserved.

4:N-1 Protocol type specific fields

This field depends on the PKT_TYPE value:

If PKT_TYPE = MCTP = 0100b: format follows MCTP over MMBI (see Management Component

Transport Protocol (MCTP) Memory-Mapped Buffer Interface (MMBI) Transport Binding Specification)

If PKT_TYPE = Vendor defined = 0101b: the following vendor-defined format shall be used:

Byte(s) Description

4:7 Vendor IANA Enterprise Number encoded in little-endian format; for more
information about IANA Enterprise Numbers, please see Internet
Assigned Numbers Authority – Private Enterprise Numbers

8:N-1 Content defined by the vendor

(N:M) Padding (PAD) – optional

Padding bytes as defined in PKT_PAD field.

Note: padding is added to ensure packets are 4-byte aligned

 571

MMBI Specification DSP0282

34 Published Version 1.0.1

ANNEX A 572

(informative) 573

 574

 575

Notations 576

Examples of notations used in this document are as follows: 577

• 2:N In field descriptions, this will typically be used to represent a range of byte offsets 578
starting from byte two and continuing to and including byte N. The lowest offset is on 579
the left; the highest is on the right. 580

• (6) Parentheses around a single number can be used in packet field descriptions to 581
indicate a byte field that may be present or absent. 582

• (3:6) Parentheses around a field consisting of a range of bytes indicates the entire range 583
may be present or absent. The lowest offset is on the left; the highest is on the right. 584

• PCIe Underlined blue text is typically used to indicate a reference to a document or 585
specification called out in clause 2, “Normative References” or to items hyperlinked 586
within the document. 587

• [4] Square brackets around a number are typically used to indicate a bit offset. Bit offsets 588
are given as zero-based values (that is, the least significant bit offset = 0). 589

• [7:5] A range of bit offsets. The most significant bit is on the left, the least significant bit is 590
on the right. 591

• 1b A number consisting of 0s and 1s followed by a lowercase “b” indicates that the 592

number is in binary format. 593

• 0x12A A leading “0x” indicates that the number is in hexadecimal format. 594

DSP0282 MMBI Specification

Version 1.0.1 Published 35

ANNEX B 595

(informative) 596

 597

 598

Change log 599

Version Date Description

1.0.0 2023-07-14 Initial release

1.0.1 2024-10-09 Document title change (“Memory-Mapped BMC Interface” to
“Memory-Mapped Buffer Interface”) to better reflect potential
broader uses of MMBI beyond just BMC

 600

	MCTP
	IDs_and_Codes
	SPDM_binding
	IANA
	SMBIOS
	MCTP_Binding

