
1 Document Identifier: DSP0274

2 Date: 2024-12-11

3 Version: 1.4.0WIP70

4 Security Protocol and Data Model (SPDM)
Specification

7 Supersedes: 1.3.0

8 Document Class: Normative

9 Document Status: Work in Progress

10 Document Language: en-US

Information for Work-in-Progress version:

5 IMPORTANT: This document is not a standard. It does not necessarily reflect the views of DMTF or its

members. Because this document is a Work in Progress, this document may still change, perhaps

profoundly and without notice. This document is available for public review and comment until

superseded.

6 Provide any comments through the DMTF Feedback Portal: https://www.dmtf.org/standards/

feedback

https://www.dmtf.org/standards/feedback
https://www.dmtf.org/standards/feedback

11 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents for uses consistent with this purpose, provided that correct attribution is given. As DMTF

specifications may be revised from time to time, the particular version and release date should always be

noted.

12 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or

identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party's reliance on the standard or incorporation

thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standards, whether such implementation is foreseeable or not, nor to any patent

owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

13 For information about patents held by third-parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

14 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2019–2021, 2023–2024 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Work in Progress Version 1.4.0WIP70

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

15 CONTENTS

1 Foreword . 9

1.1 Acknowledgments . 9

2 Introduction . 11

2.1 Advice . 11

2.2 Conventions. 11

2.2.1 Document conventions . 11

2.2.2 Reserved and unassigned values . 11

2.2.3 Byte ordering. 11

2.2.3.1 Hash byte order . 12

2.2.3.2 Encoded ASN.1 byte order . 12

2.2.3.3 Octet string byte order . 12

2.2.3.4 Signature byte order . 12

2.2.3.4.1 ECDSA signatures byte order . 13

2.2.3.4.2 SM2 signatures byte order . 13

2.2.4 Sizes and lengths . 13

2.2.5 SPDM data type conventions . 13

2.2.5.1 SPDM data types . 13

2.2.5.2 Integers. 14

2.2.6 Version encoding. 14

2.2.7 Notations . 15

2.2.8 Text or string encoding . 16

2.2.9 Deprecated material . 16

2.2.10 Other conventions . 17

3 Scope. 18

4 Normative references. 19

5 Terms and definitions . 21

6 Symbols and abbreviated terms . 26

7 SPDM message exchanges. 27

7.1 Security capability discovery and negotiation . 27

7.2 Identity authentication . 27

7.2.1 Identity provisioning . 28

7.2.1.1 Certificate models . 28

7.2.1.1.1 Device certificate model . 29

7.2.1.1.2 Alias certificate model . 29

7.2.1.1.3 Generic certificate model . 30

7.2.2 Raw public keys . 31

7.2.3 Runtime authentication . 31

7.3 Firmware and configuration measurement . 31

7.4 Secure sessions . 31

7.5 Mutual authentication overview . 32

7.6 Multiple asymmetric key support . 32

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 3

7.7 Custom environments . 32

7.8 Notification overview . 33

8 SPDM messaging protocol . 34

8.1 SPDM connection model . 36

8.2 SPDM bits-to-bytes mapping. 36

8.3 Generic SPDM message format . 37

8.3.1 SPDM version . 38

8.4 SPDM request codes. 39

8.5 SPDM response codes . 41

8.6 SPDM request and response code issuance allowance . 43

8.7 Concurrent SPDM message processing . 45

8.8 Requirements for Requesters . 45

8.9 Requirements for Responders. 46

8.10 Transcript and transcript hash calculation rules . 46

9 Timing requirements . 47

9.1 Timing measurements . 47

9.2 Timing parameters. 47

9.3 Timing specification table . 48

10 SPDM messages . 55

10.1 Capability discovery and negotiation . 55

10.1.1 Negotiated state preamble . 55

10.2 GET_VERSION request and VERSION response messages. 56

10.3 GET_CAPABILITIES request and CAPABILITIES response messages . 59

10.3.1 Supported algorithms block. 71

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages 72

10.4.1 Connection behavior after VCA. 94

10.4.2 Multiple asymmetric key negotiation . 95

10.4.3 Multiple asymmetric key use for Responder authentication . 95

10.4.4 Multiple asymmetric key use for Requester authentication. 95

10.4.5 Multiple asymmetric key connection . 96

10.5 Responder identity authentication . 97

10.6 Requester identity authentication . 98

10.7 Certificates and certificate chains . 98

10.8 GET_DIGESTS request and DIGESTS response messages . 100

10.9 GET_CERTIFICATE request and CERTIFICATE response messages. 104

10.9.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages109

10.9.2 SPDM certificate requirements and recommendations. 110

10.9.2.1 Extended Key Usage authentication OIDs . 113

10.9.2.2 SPDM Non-Critical Certificate Extension OID . 113

10.9.2.2.1 Hardware identity OID . 114

10.9.2.2.2 Mutable certificate OID. 114

10.10 CHALLENGE request and CHALLENGE_AUTH response messages . 115

10.10.1 CHALLENGE_AUTH signature generation. 118

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Work in Progress Version 1.4.0WIP70

10.10.2 CHALLENGE_AUTH signature verification. 119

10.10.2.1 Request ordering and message transcript computation rules for M1 and M2 120

10.10.3 Basic mutual authentication . 122

10.10.3.1 Mutual authentication message transcript . 123

10.11 Firmware and other measurements . 124

10.12 GET_MEASUREMENTS request and MEASUREMENTS response messages 125

10.12.1 Measurement block. 130

10.12.1.1 DMTF specification for the Measurement field of a measurement block 131

10.12.1.1.1 Measurement manifest . 131

10.12.1.1.2 Hash-extend measurements . 132

10.12.1.2 Device mode field of a measurement block . 134

10.12.1.3 Manifest format for a measurement block . 135

10.12.2 MEASUREMENTS signature generation . 136

10.12.3 MEASUREMENTS signature verification . 137

10.13 ERROR response message . 138

10.13.1 Standards body or vendor-defined header . 147

10.14 RESPOND_IF_READY request message format . 148

10.15 VENDOR_DEFINED_REQUEST request message . 149

10.16 VENDOR_DEFINED_RESPONSE response message . 150

10.16.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF

specifications . 151

10.17 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages 152

10.17.1 DHE scheme . 154

10.17.2 ML-KEM scheme. 155

10.17.3 Message formats. 155

10.17.4 Session-based mutual authentication . 162

10.17.4.1 Specify Requester certificate for session-based mutual authentication 163

10.18 FINISH request and FINISH_RSP response messages . 163

10.18.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE 165

10.19 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages 168

10.20 PSK_FINISH request and PSK_FINISH_RSP response messages . 175

10.21 HEARTBEAT request and HEARTBEAT_ACK response messages. 176

10.21.1 Heartbeat additional information . 177

10.22 KEY_UPDATE request and KEY_UPDATE_ACK response messages 177

10.22.1 Session key update synchronization. 179

10.22.2 KEY_UPDATE transport allowances. 182

10.23 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages. 185

10.23.1 Encapsulated request flow . 185

10.23.2 Optimized encapsulated request flow . 185

10.23.3 Triggering GET_ENCAPSULATED_REQUEST . 189

10.24 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK

response messages. 190

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 5

10.24.1 Additional information . 192

10.24.2 Allowance for encapsulated requests . 193

10.24.3 Certain error handling in encapsulated flows . 193

10.24.3.1 Response not ready . 193

10.24.3.2 Timeouts . 194

10.25 END_SESSION request and END_SESSION_ACK response messages 194

10.25.1 END_SESSION additional information . 196

10.26 Certificate provisioning . 196

10.26.1 GET_CSR request and CSR response messages . 196

10.26.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages 199

10.27 Large SPDM message transfer mechanism . 201

10.27.1 CHUNK_SEND request and CHUNK_SEND_ACK response message. 202

10.27.2 CHUNK_GET request and CHUNK_RESPONSE response message. 205

10.27.3 Additional chunk transfer requirements. 207

10.28 Key configuration. 208

10.28.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response 209

10.28.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response 214

10.28.3 Key pair ID modification error handling . 217

10.29 Event mechanism . 217

10.29.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES response

message . 220

10.29.1.1 Event group format additional information . 223

10.29.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response

message . 223

10.29.2.1 Additional subscription list information . 225

10.29.3 SEND_EVENT request and EVENT_ACK response message . 225

10.29.4 Event Instance ID . 227

10.30 GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages. 228

10.30.1 ENDPOINT_INFO signature generation . 231

10.30.2 ENDPOINT_INFO signature verification . 232

10.31 Measurement extension log mechanism . 232

10.31.1 GET_MEASUREMENT_EXTENSION_LOG request and

MEASUREMENT_EXTENSION_LOG response messages . 234

10.31.2 DMTF Measurement Extension Log Format . 236

10.31.3 Example: Verifying Measurement Extension Log Against Hash-Extend Measurement . . . 237

11 Session. 240

11.1 Session handshake phase. 240

11.2 Application phase. 241

11.3 Session termination phase. 241

11.4 Simultaneous active sessions . 241

11.5 Records and session ID. 242

12 Key schedule . 243

12.1 DHE secret computation . 246

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Work in Progress Version 1.4.0WIP70

12.2 KEM K and K' computation . 246

12.3 Transcript hash in key derivation . 247

12.4 TH1 definition . 247

12.5 TH2 definition . 247

12.6 Key schedule major secrets . 248

12.6.1 Request-direction handshake secret. 248

12.6.2 Response-direction handshake secret . 248

12.6.3 Request-direction data secret . 249

12.6.4 Response-direction data secret . 249

12.7 Encryption key and IV derivation . 249

12.8 finished_key derivation . 250

12.9 Deriving additional keys from the Export Master Secret . 250

12.10 Major secrets update . 250

13 Application data . 252

13.1 Nonce derivation . 252

14 General opaque data format . 253

15 Signature generation . 255

15.1 Signing algorithms in extensions . 256

15.2 RSA and ECDSA signing algorithms. 256

15.3 EdDSA signing algorithms. 257

15.3.1 Ed25519 sign . 257

15.3.2 Ed448 sign . 257

15.4 SM2 signing algorithm . 257

15.5 ML-DSA signing algorithm. 258

15.6 SLH-DSA signing algorithm. 258

15.7 Signature algorithm references . 258

16 Signature verification . 261

16.1 Signature verification algorithms in extensions . 261

16.2 RSA and ECDSA signature verification algorithms . 262

16.3 EdDSA signature verification algorithms . 262

16.3.1 Ed25519 verify . 262

16.3.2 Ed448 verify . 262

16.4 SM2 signature verification algorithm . 263

17 ML-DSA signature verification algorithm . 264

18 SLH-DSA signature verification algorithm . 265

19 General ordering rules . 266

20 DMTF event types . 267

20.1 Event type details . 267

20.1.1 Event Lost . 267

20.1.2 Measurement changed event . 268

20.1.3 Measurement pre-update event . 269

20.1.4 Certificate changed event . 270

21 ANNEX A (informative) TLS 1.3. 272

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 7

22 ANNEX B (informative) Device certificate example . 273

23 ANNEX C (informative) OID reference . 275

24 ANNEX D (informative) variable name reference . 276

25 ANNEX E (informative) change log . 278

25.1 Version 1.0.0 (2019-10-16) . 278

25.2 Version 1.1.0 (2020-07-15) . 278

25.3 Version 1.2.0 (2021-11-01) . 278

25.4 Version 1.3.0 (2023-04-05) . 281

25.5 Version 1.4.0 (pending) . 286

26 Bibliography . 290

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Work in Progress Version 1.4.0WIP70

16 1 Foreword

17 The Security Protocols and Data Models (SPDM) Working Group of the DMTF prepared the Security Protocol and

Data Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry members that

promotes enterprise and systems management and interoperability. For information about the DMTF, see DMTF.

18 This version supersedes version 1.2 and its errata versions. For a list of the changes, see ANNEX E (informative)

change log.

19 1.1 Acknowledgments

20 The DMTF acknowledges the following individuals for their contributions to this document:

21 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Jeff Andersen — Google

• Lee Ballard — Dell Technologies

• Steven Bellock — NVIDIA Corporation

• Heng Cai — Alibaba Group

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Andrew Draper — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yi Hou — Microchip

• Guerney Hunt — IBM

• Yuval Itkin — NVIDIA Corporation

• Theo Koulouris — Hewlett Packard Enterprise

• Raghupathy Krishnamurthy — NVIDIA Corporation

• Benjamin Lei — Lenovo

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Chandra Nelogal — Dell Technologies

• Edward Newman — Hewlett Packard Enterprise

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 9

https://www.dmtf.org/

• Alexander Novitskiy — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc., Axiado Corporation

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Lohith Rangappa — Marvell Technology, Inc.

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Vidya Satyamsetti — Google

• Hemal Shah — Broadcom Inc.

• Yoni Shternhell — Western Digital Technologies, Inc.

• Srikanth Varadarajan — Intel Corporation

• Peng Xiao — Alibaba Group

• Qing Yang — Alibaba Group

• Jiewen Yao — Intel Corporation

• Wilson Young — Solidigm

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Work in Progress Version 1.4.0WIP70

22 2 Introduction

23 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges over a variety of transport and physical media. The description of message

exchanges includes authentication and provisioning of hardware identities, measurement for firmware identities,

session key exchange protocols to enable confidentiality with integrity-protected data communication, and other

related capabilities. The SPDM enables efficient access to low-level security capabilities and operations. Other

mechanisms, including non-DMTF-defined mechanisms, can use the SPDM.

24 To cope with the potential threats of emergent quantum computers, the SPDM supports both traditional and post-

quantum cryptography (PQC) algorithms for the signature and authenticated key exchange protocols.

25 2.1 Advice

26 The authors recommend readers visit tutorial and education materials under Security Protocols and Data Models and

Platform Management Communications Infrastructure (PMCI) on the DMTF website prior to or during the reading of

this specification to help understand this specification.

27 2.2 Conventions

28 The following conventions apply to all SPDM specifications.

29 2.2.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

30 2.2.2 Reserved and unassigned values

31 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by the DMTF.

32 Unless otherwise specified, field values marked as Reserved shall be written as zero (0), ignored when read, not

modified, and not interpreted as an error if not zero, and used in transcript hash calculations as is.

33 2.2.3 Byte ordering

34 Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 11

https://www.dmtf.org/standards/spdm
https://www.dmtf.org/standards/pmci

fields is little endian (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

35 2.2.3.1 Hash byte order

36 For fields or values containing a digest or hash, SPDM preserves the byte order of the digest as the specification of a

given hash algorithm defines. SPDM views these digests, simply, as a string of octets where the first byte is the

leftmost byte of the digest, the second byte is the second leftmost byte, the third byte is the third leftmost byte, and

this pattern continues until the last byte of the digest. Thus, the byte order for SPDM digests or hashes is: the first

byte is placed at the lowest offset in the field or value, the second byte is placed at the second lowest offset, the third

byte is placed at the third lowest offset in the field or value and this pattern continues until the last byte.

37 For example, in FIPS 180-4, a SHA 256 hash is the concatenation of eight 32-bit words where each word is in big

endian order, but the order of words does not have any endianness associated with it. SPDM simply views this

256-bit digest as a string of octets that is 32 bytes in size where the first byte is the value at H0[31:24] of the final

digest, the second byte is the value at H0[23:16], the third byte is the value at H0[15:8], the fourth byte is the value at

H0[7:0], the fifth bytes is the value at H1[31:24], and this pattern continues until the last byte, which is the value at

H7[7:0], where the FIPS 180-4 specification defines H0, H1, and H7.

38 2.2.3.2 Encoded ASN.1 byte order

39 For fields or values containing DER, CER, or BER encoded data, SPDM preserves the byte order as described in

X.690 specification. SPDM views a DER, CER, or BER encoded data as simply a string of octets where the first byte

is the leftmost byte of Figure 1 or Figure 2 in the X.690 specification, the second byte is the second leftmost byte, the

third byte is the third leftmost byte, and this pattern continues until the last byte. The first byte is also called either the

Identifier octet or the Leading identifier octet. The X.690 specification defines Figure 1, Figure 2, and identifier octets.

When populating a DER, CER, or BER encoded data in SPDM fields, the first byte is placed in the lowest address,

the second byte is placed in the second lowest offset, the third byte is placed in the third lowest offset in the field or

value and this pattern continues until the last byte.

40 2.2.3.3 Octet string byte order

41 A string of octets is conventionally written from left to right. Also by convention, byte zero of the octet string shall be

the leftmost byte of the octet, byte 1 of the octet string shall be the second leftmost byte of the octet, and this pattern

shall continue until the very last byte. When placing an octet string into an SPDM field, the ith byte of the octet string

shall be placed in the ith offset of that field.

42 For example, if placing an octet stream consisting of "0xAA 0xCB 0x9F 0xD8" into DMTFSpecMeasurementValue field,

then offset 0 (the lowest offset) of DMTFSpecMeasurementValue will contain 0xAA, offset 1 of

DMTFSpecMeasurementValue will contain 0xCB, offset 2 of DMTFSpecMeasurementValue will contain 0x9F, and offset 3 of

DMTFSpecMeasurementValue will contain 0xD8.

43 2.2.3.4 Signature byte order

44 For fields or values containing a signature, SPDM attempts to preserve the byte order of the signature as the

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Work in Progress Version 1.4.0WIP70

specification of a given signature algorithm defines. Most signature specifications define a string of octets as the

format of the signature, and others may explicitly state the endianness such as in the specification for Edwards-

Curve Digital Signature Algorithm. Unless otherwise specified, the byte order of a signature for a given signature

algorithm shall be octet string byte order.

45 2.2.3.4.1 ECDSA signatures byte order

46 FIPS PUB 186-5 defines r , s , and ECDSA signature to be (r, s) , where r and s are just integers. For

ECDSA signatures, excluding SM2, in SPDM, the signature shall be the concatenation of r and s . The size of r

shall be the size of the selected curve. Likewise, the size of s shall be the size of the selected curve. See

BaseAsymAlgo in NEGOTIATE_ALGORITHMS for the size of r and s . The byte order for r and s shall be big-endian

order. When placing ECDSA signatures into an SPDM signature field, r shall come first, followed by s .

47 2.2.3.4.2 SM2 signatures byte order

48 GB/T 32918.2-2016 defines r and s and SM2 signatures to be (r, s) , where r and s are just integers. The

size of r and s shall each be 32 bytes. To form an SM2 signature, r and s shall be converted to an octet stream

according to GB/T 32918.2-2016 and GB/T 32918.1-2016 with a target length of 32 bytes. Let the resulting octet

string of r and s be called SM2_R and SM2_S respectively. The final SM2 signature shall be the concatenation of

SM2_R and SM2_S . When placing SM2 signatures into an SPDM signature field, the SM2 signature byte order shall

be octet string byte order.

49 2.2.4 Sizes and lengths

50 Unless otherwise specified, all sizes and lengths are in units of bytes.

51 2.2.5 SPDM data type conventions

52 2.2.5.1 SPDM data types

53 Table 1 — SPDM data types lists the abbreviations and descriptions for common data types that SPDM message

fields and data structure definitions use. These definitions follow DSP0240.

54 Table 1 — SPDM data types

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version encoding defines the encoding of the version number.

bitfield8 Byte with 8-bit fields.

bitfield16 Two-byte word with 16-bit fields.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 13

55 2.2.5.2 Integers

56 Unless noted otherwise, integers shall be unsigned.

57 2.2.6 Version encoding

58 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major

Major version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification breaks backward compatibility.

Minor

Minor version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification maintains backward compatibility.

59 EXAMPLE:

60 Version 3.7 → 0x37

61 Version 1.0 → 0x10

62 Version 1.2 → 0x12

63 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 or other

previous minor versions. Whether an endpoint supports inter-operation with previous minor versions of the SPDM

specification is an implementation-specific decision.

64 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

65 This specification considers two minor versions to be interoperable when it is possible for an implementation that is

conformant to a higher minor version number to also communicate with an implementation that is conformant to a

lower minor version number with minimal differences in operation. In such a case, the following rules apply:

• Both endpoints shall use the same lower version number in the SPDMVersion field for all messages.

• Functionality shall be limited to what the lower minor version of the SPDM specification defines.

• Computations and other operations between different minor versions of the Secured Messages using SPDM

specification should remain the same, unless security issues of lower minor versions are fixed in higher minor

versions and the fixes require change in computations or other operations. These differences are dependent on

the value in the SPDMVersion field in the message.

• In a newer minor version of the SPDM specification, a given message can be longer, bit fields and enumerations

can contain new values, and reserved fields can gain functionality. Existing numeric and bit fields retain their

existing definitions.

• Errata versions (indicated by a non-zero value in the UpdateVersionNumber field for the GET_VERSION request

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Work in Progress Version 1.4.0WIP70

and VERSION response messages) clarify existing behaviors in the SPDM specification. They maintain bitwise

compatibility with the base version, except as required to fix security vulnerabilities or to correct mistakes from

the base version.

66 For details on the version agreement process, see GET_VERSION request and VERSION response messages. The

detailed version encoding that the VERSION response message returns contains an additional byte that indicates

specification bug fixes or development versions. See Table 9 — Successful VERSION response message format.

67 2.2.7 Notations

68 SPDM specifications use the following notations:

Notation Description

Concatenate()

The concatenation function Concatenate(a, b, ..., z) ,

where the first entry occupies the least-significant bits and the

last entry occupies the most-significant bits.

M:N

In field descriptions, this notation typically represents a range

of byte offsets starting from byte M and continuing to and

including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the

right.

[4]

Square brackets around a number typically indicate a bit

offset.

Bit offsets are zero-based values. That is, the least significant

bit ([LSb]) offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant

bit is on the right.

1b
A lowercase b after a number consisting of 0 s and 1 s

indicates that the number is in binary format.

0x12A Hexadecimal, as indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

{ Payload }

Used mostly in figures, this notation indicates that the payload

specified in the enclosing curly brackets is encrypted and/or

authenticated by the keys derived from one or more major

secrets. The specific secret used is described throughout this

specification. For example, { HEARTBEAT } shows that the

Heartbeat message is encrypted and/or authenticated by the

keys derived from one or more major secrets.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 15

Notation Description

{ Payload }::[[SX]]

Used mostly in figures, this notation indicates that the payload

specified in the enclosing curly brackets is encrypted and/or

authenticated by the keys derived from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the

Heartbeat message is encrypted and/or authenticated by the

keys derived from major secret S2 .

[${message_name}] . ${field_name}

Used to indicate a field in a message.

• ${message_name} is the name of the request or response

message.

• ${field_name} is the name of the field in the request or

response message. An asterisk (*) instead of a field

name means all fields in that message except for any

conditional fields that are empty (as for example

KEY_EXCHANGE . OpaqueData).

69 2.2.8 Text or string encoding

70 When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of

contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset, and the last byte

of the array is at the highest offset. The order of characters in the array shall be such that the leftmost character of

the string is placed at the first byte in the array, the second leftmost character is placed in the second byte, and so

forth until the last character is placed in the last byte.

71 Each byte in the array shall be the numeric value that represents that character, as ASCII — ISO/IEC 646:1991

defines.

72 Table 2 — "spdm" encoding example shows an encoding example of the string "spdm":

73 Table 2 — "spdm" encoding example

Offset Character Value

0 s 0x73

1 p 0x70

2 d 0x64

3 m 0x6D

74 2.2.9 Deprecated material

75 Deprecated material is not recommended for use in new development efforts. Existing and new implementations can

use this material, but they shall move to the favored approach as soon as possible. Implementations can implement

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Work in Progress Version 1.4.0WIP70

any deprecated elements as required by this document to achieve backward compatibility. Although implementations

can use deprecated elements, they are directed to use the favored elements instead.

76 The following typographical convention indicates deprecated material:

77 DEPRECATED

78 Deprecated material appears here.

79 DEPRECATED

80 In places where this typographical convention cannot be used (for example, in tables or figures), the

"DEPRECATED" label is used alone.

81 2.2.10 Other conventions

82 Unless otherwise specified, all figures are informative.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 17

83 3 Scope

84 This specification describes how to use messages, data objects, and sequences to exchange messages between

two devices over a variety of transports and physical media. This specification contains the message exchanges,

sequence diagrams, message formats, and other relevant semantics for such message exchanges, including

authentication of hardware identities and firmware measurements.

85 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Work in Progress Version 1.4.0WIP70

86 4 Normative references

87 The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2021

(9th edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification,

https://www.dmtf.org/dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• IETF RFC 9147, The Datagram Transport Layer Security (DTLS) Protocol Version 1.3, April 2022

• IETF RFC 2986, PKCS #10: Certification Request Syntax Specification, November 2000

• IETF RFC 4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile, May 2008

• IETF RFC 7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS), June 2014

• IETF RFC 7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security

(TLS), August 2016

• IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, November, 2016

• IETF RFC 8032, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

• IETF RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.32, June 25, 2020

• NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 19

https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://datatracker.ietf.org/doc/html/rfc9147
https://tools.ietf.org/html/rfc2986
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Mode (GCM) and GMAC, November 2007

• IETF RFC 8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018

• IETF RFC 8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021

• GB/T 32918.1-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 1: General, August 2016

• GB/T 32918.2-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 2: Digital signature algorithm, August 2016

• GB/T 32918.3-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 3: Key exchange protocol, August 2016

• GB/T 32918.4-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 4: Public key encryption algorithm, August 2016

• GB/T 32918.5-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 5: Parameter definition, August 2016

• GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016

• GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016

• ASN.1 — ISO-822-1-4, DER — ISO-8825-1

◦ ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015

• ASCII — ISO/IEC 646:1991, 09/1991

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-5 Digital Signature

Standard (DSS)

◦ NIST SP 800-186 Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain

Parameters

◦ IETF RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital

Signature Algorithm (ECDSA), August 2013

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• ML-KEM

◦ FIPS PUB 203 Module-Lattice-Based Key-Encapsulation Mechanism Standard

• ML-DSA

◦ FIPS PUB 204 Module-Lattice-Based Digital Signature Standard

• SLH-DSA

◦ FIPS PUB 205 Stateless Hash-Based Digital Signature Standard

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Work in Progress Version 1.4.0WIP70

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/rfc8998
https://www.itu.int/rec/T-REC-X.680-X.693-201508-S/en
https://www.iso.org/standard/4777.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf

88 5 Terms and definitions

89 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

90 The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

91 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

92 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, and annexes labeled "(informative)" do not contain

normative content. Notes and examples are always informative elements.

93 The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this

document.

94 This specification uses these terms:

Term Definition

alias certificate Certificate that is dynamically generated by the component or component firmware.

application data

Data that is specific to the application and whose definition and format is outside the scope

of this specification. Application data usually exists at the application layer, which is, in

general, the layer above SPDM and the transport layer. Examples of data that could be

application data include: messages carried as DMTF MCTP payloads; Internet traffic; PCIe

transaction layer packets (TLPs); camera images and video (MIPI CSI-2 packets); video

display stream (MIPI DSI-2 packets); and touchscreen data (MIPI I3C Touch).

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

authentication Process of determining whether an entity is who or what it claims to be.

byte Eight-bit quantity. Also known as an octet.

certificate authority (CA) Trusted entity that issues certificates.

certificate chain
Typically a series of two or more certificates. Each certificate is signed by the preceding

certificate in the chain.

certificate
Digital form of identification that provides information about an entity and certifies ownership

of a particular asymmetric key-pair.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 21

Term Definition

component
Physical device, contained in a single package. A "component" may also refer to a functional

block implemented in hardware, firmware, and/or software.

device certificate
Certificate that contains information that identifies the component. Can be a leaf certificate

or an intermediate certificate.

device Physical entity such as a network controller or a fan.

DMTF

Formerly known as the Distributed Management Task Force, the DMTF creates open

manageability standards that span diverse emerging and traditional information technology

(IT) infrastructures, including cloud, virtualization, network, servers, and storage. Member

companies and alliance partners worldwide collaborate on standards to improve the

interoperable management of IT.

encapsulated request

A request embedded into an ENCAPSULATED_REQUEST or ENCAPSULATED_RESPONSE_ACK

response message to allow the Responder to issue a request to a Requester. See

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages.

generic certificate
A certificate, for use in certificate slots 1 or greater, that has minimal SPDM requirements to

allow for numerous use cases that the vendor, standards body, or user defines.

endpoint Logical entity that communicates with other endpoints over one or more transport protocols.

event notifier
An SPDM endpoint that is capable of sending asynchronous notifications using SPDM event

mechanisms. See Event mechanism.

event recipient
An SPDM endpoint that is capable of receiving asynchronous notifications using SPDM

event mechanisms. See Event mechanism.

hardware identity A value that represents a unique instance of an endpoint. See Identity authentication.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

invasive debug mode

A device mode that enables debug access that might expose or allow modification of

firmware, hardware, or settings that can access (read or write) security keys, states, and

contexts of the device. A device should not be trusted when it is operating in this mode.

large SPDM message
An SPDM message that is greater than the DataTransferSize of the receiving SPDM

endpoint or greater than the transmit buffer size of the sending SPDM endpoint.

large SPDM request message A large SPDM message that is an SPDM request.

large SPDM response message A large SPDM message that is an SPDM response.

leaf certificate
Last certificate in a certificate chain. A leaf certificate is synonymous with an end entity

certificate as RFC 5280 describes.

measurement Representation of hardware/firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Work in Progress Version 1.4.0WIP70

Term Definition

message transcript

The concatenation of a sequence of messages in the order in which they are sent and

received by an endpoint. The final message included in the message transcript may be

truncated to allow inclusion of a signature in that message which is computed over the

message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and

independently.

monotonically increasing

This specification uses the term monotonically increasing to describe an integer field where

the value of each instance of the field in a series increases from a lower starting point to a

higher ending point without repeating values. For instance, a monotonically increasing field

may contain the values 1, 3, 4, 7, and 9.

most significant byte (MSB) Highest-order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represents the state of the communication between a corresponding

pair of Requester and Responder at the successful completion of the NEGOTIATE_ALGORITHMS

messages.

These parameters may include values provided in VERSION , CAPABILITIES , and

ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to

continue or preserve communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

non-invasive debug mode
A device mode that enables debug access that does not expose or allow modification of

security-critical firmware, hardware, or settings.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same

number occurring more than once is negligible. A nonce may be generated by combining a

random number of at least 64 bits, optionally concatenated with a monotonically increasing

counter of size suitable for the application.

opaque data

Opaque data fields transfer data that is outside the scope of this specification. The

semantics and usage of this data are implementation specific and are also outside the

scope of this specification.

payload

Information-bearing fields of a message. These fields are separate from the transport fields

and elements, such as address fields, framing bits, and checksums, that transport the

message from one point to another.

physical transport binding

Specifications that define how a base messaging protocol is implemented on a particular

physical transport type and medium, such as SMBus/I2C or PCI Express™ Vendor Defined

Messaging.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 23

Term Definition

Platform Management Component

Intercommunication (PMCI)

Working group under the DMTF that defines standardized communication protocols, low-

level data models, and transport definitions that support communications with and between

management controllers and management devices that form a platform management

subsystem within a managed computer system.

record A unit or chunk of data that is either encrypted and/or authenticated.

Requester

Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver,

or destination, of an SPDM response message. A Requester is the sender of the

GET_VERSION request and remains the requester for the remainder of that connection.

Reset
This term is used to denote a Reset or restart of a device that runs the Requester or

Responder code, which typically leads to the loss of all volatile state on the device.

Responder
Ultimate receiver, or destination, of an SPDM request message. It is also the original

transmitter, or source of an SPDM response message.

root certificate
First certificate in a certificate chain, which acts as the trust anchor and is typically self-

signed.

secure session
Provides either encryption or message authentication or both for communicating data over a

transport.

Security Protocols and Data Models (SPDM)

WG

Working group under the DMTF that defines standards to enable security for platforms,

whether for the control plane, data plane, or other infrastructure.

sequentially decreasing

This specification uses the term sequentially decreasing to describe an integer field where

the value of each instance of the field in a series decrements from a higher starting point to

a lower ending point without skipping or repeating values. For instance, a sequentially

decreasing field may contain the values 255, 254, 253, 252, and 251.

sequentially increasing

This specification uses the term sequentially increasing to describe an integer field where

the value of each instance of the field in a series increments from a lower starting point to a

higher ending point without skipping or repeating values. For instance, a sequentially

increasing field may contain the values 1, 2, 3, 4, and 5.

session keys
Any secrets, derived cryptographic keys, or any cryptographic information bound to a

session.

Session-Secrets-Exchange

Any SPDM request and their corresponding response that initiates a session and provides

initial cryptographic exchange. Examples of such requests are KEY_EXCHANGE and

PSK_EXCHANGE .

Session-Secrets-Finish

This term denotes any SPDM request and its corresponding response that finalizes a

session setup and provides the final exchange of cryptographic or other information before

application data can be securely transmitted. Examples of such requests are FINISH and

PSK_FINISH .

SPDM message payload

Portion of the message body of an SPDM message. This portion of the message is separate

from those fields and elements that identify the SPDM version, the SPDM request and

response codes, and the two parameters.

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Work in Progress Version 1.4.0WIP70

Term Definition

SPDM message Unit of communication in SPDM communications. See Generic SPDM message format.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation. A corresponding

SPDM response message acknowledges receipt of an SPDM request message.

SPDM response message
Message that is sent in response to a specific SPDM request message. This message

includes a Response Code field that indicates whether the request completed normally.

trusted computing base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in

the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security

properties of the entire system. By contrast, parts of a computer system outside the TCB

shall not be able to misbehave in a way that would leak any more privileges than are

granted to them in accordance with the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

trusted environment
An environment where the operator is assured of no unauthorized interference in

operations.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 25

https://en.wikipedia.org/wiki/Trusted_computing_base

95 6 Symbols and abbreviated terms

96 The abbreviations that DSP0004, DSP0223, and DSP1001 define apply to this document.

97 The following additional abbreviations are used in this document.

Abbreviation Definition

AEAD Authenticated Encryption with Associated Data

CA certificate authority

DMTF Formerly the Distributed Management Task Force

ECC Elliptic-curve cryptography

ECDSA Elliptic-curve Digital Signature Algorithm

KDF Key Derivation Function

MAC Message Authentication Code

ML-DSA Module-Lattice-Based Digital Signature Standard

ML-KEM Module-Lattice-Based Key Encapsulation Standard

MSB most significant byte

OID Object identifier

PMCI Platform Management Component Intercommunication

PQC Post-Quantum Cryptography

RMA Return Merchandise Authorization

RSA Rivest–Shamir–Adleman

SLH-DSA Stateless Hash-Based Digital Signature Standard

SPDM Security Protocol and Data Model

SVH Standards Body or Vendor Defined Header

TCB trusted computing base

VCA Version-Capabilities-Algorithms

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Work in Progress Version 1.4.0WIP70

98 7 SPDM message exchanges

99 The message exchanges that this specification defines are between two endpoints and are performed and

exchanged through sending and receiving of SPDM messages that SPDM messages defines. The SPDM message

exchanges are defined in a generic fashion that allows the messages to be communicated across different physical

mediums and over different transport protocols.

100 The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate or provision an identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

• Receive notifications of selectable events when certain scenarios transpire.

101 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. The following clauses provide a brief overview of each message exchange capability. Some

message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0

with ECN and Errata through January 7, 2019 defines.

102 7.1 Security capability discovery and negotiation

103 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that this specification defines.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

104 7.2 Identity authentication

105 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

106 At a high level, the authentication of the identity of a Responder involves these processes:

• Identity provisioning

• Runtime authentication

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 27

107 7.2.1 Identity provisioning

108 Identity provisioning is the process that device vendors follow during or after hardware manufacturing to equip a

device with a secure identifier. In the context of this specification, this secure identifier consists of an asymmetric key

pair and, optionally, a certificate to bind the key pair to a particular instance of a device and associate it with

additional metadata. The specifics of key generation and provisioning are outside the scope of this specification.

However, as the security of the SPDM protocol depends on device identities that cannot be easily modified, removed,

or copied, it is strongly recommended that identity keys are unique per device and generated using cryptographically

strong random seeds.

109 7.2.1.1 Certificate models

110 If trust in a device public key is established through a certificate, the certificate is typically part of a certificate chain.

The certificate chain has a root certificate (RootCert) as its root and a leaf certificate as the last certificate in it. The

RootCert is generated by a trusted root certificate authority (CA) and certifies the certificate containing the device

public key either directly or indirectly through a number of intermediate CAs. Authentication initiators use the

RootCert to verify the validity of device certificate chains.

111 If the certificate chain uses the device certificate or alias certificate model, the certificate chain should contain at least

one certificate that includes hardware identity information. One means of conveying hardware identity is by use of a

public key. The Hardware identity OID should be used to indicate which certificate conveys the hardware identity.

Though existing deployments might not include the Hardware identity OID in a certificate, it is strongly recommended

that new deployments include this information. The public/private key pair associated with a hardware identity

certificate is constant on the instance of the device, regardless of the version of firmware running on the device.

112 SPDM defines multiple overarching formats for certificate chains, referred to as certificate chain models. While the

details of each certificate chain model vary, all of them follow the general format of connecting from a root certificate

(RootCert) to a leaf certificate, possibly through one or more intermediate certificates.

113 A Responder can use one or more of the certificate chain models. A Requester should be capable of performing

Runtime authentication on a certificate chain that conforms to any of the models.

114 Figure 1 — SPDM certificate chain models shows the SPDM certificate chain models:

115 Figure 1 — SPDM certificate chain models

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Work in Progress Version 1.4.0WIP70

116

Intermediate

CA

Device
Certificate

...

Root CARoot CA

Intermediate

CA

Device
Certificate

CA

Root CA

Intermediate

CA

...

GenericCert
Model

DeviceCert

Model

Generic
Leaf Certificate

...

AliasCert
Model

Alias

Intermediate

CA

Alias

Certificate

...

117 7.2.1.1.1 Device certificate model

118 When the device certificate (DeviceCert) model is in use, the leaf certificate is a Device Certificate, which contains

the public key that corresponds to the device private key. Through the certificate chain, the root CA indirectly

endorses the device public key in the Device Certificate. In this model, the Device Certificate should contain the

Hardware identity OID.

119 7.2.1.1.2 Alias certificate model

120 When the alias certificate (AliasCert) model is in use, the leaf certificate is an Alias Certificate, in which case there

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 29

may be one or more intermediate AliasCert certificates between the Device Certificate and the leaf Alias Certificate.

In the AliasCert model, the device private key signs the next level Alias Certificate, and then the private key

associated with the public key in each Alias Intermediate CA signs the Alias Certificate below it. When the

AliasCert model is in use, the Device Certificate is referred to as a Device Certificate CA, indicating that the

certificate both contains device hardware identity information and functions as a certificate authority to sign an

additional certificate. In this model, the Device Certificate CA should contain the Hardware identity OID.

121 A device that implements the AliasCert model might factor some mutable information, such as the measurement of

a firmware image, into the derivation of the public/private key pairs for the intermediate and leaf alias certificates.

Therefore, the asymmetric public/private key pairs for each Alias Certificate should be treated as mutable.

122 Through the certificate chain, the root CA indirectly endorses the device public key in the Device Certificate. When

the AliasCert model is in use, the Alias Certificates are endorsed by the device private key, meaning that the Alias

Certificates are also indirectly endorsed by the root CA.

123 When the AliasCert model is used, the device creates and endorses one or more certificates. The certificates from

the root certificate to the Device Certificate are considered immutable because the Responder cannot change them,

as they can only be changed through the SET_CERTIFICATE command or an equivalent capability. The certificates

below the Device Certificate can be created on the device and are mutable certificates in that they can change when

the device state changes, such as a device reset. The Mutable certificate OID should be used to indicate mutable

certificates.

124 In addition, when the AliasCert model is used, one or more Alias Certificates can contain firmware identity

information. Other standards bodies might define the format of the firmware identity information. Such definitions are

outside the scope of this specification.

125 Note that a signature algorithm used with a mutable alias certificate can insert random data during signing, which

would cause the digest of the certificate chain to change each time it is regenerated. An implementer can use a

mechanism that is outside the scope of this specification to ensure that such a signature does not change between

instances of DIGESTS and CERTIFICATE responses.

126 7.2.1.1.3 Generic certificate model

127 With the support of multiple asymmetric keys, the need for another certificate model arises to accommodate varying

use cases that DeviceCert and AliasCert models cannot fulfill. Thus, the generic certificate model offers the

greatest flexibility to the device manufacturer, a manufacturer in the supply chain, and the users of the SPDM

endpoint.

128 As Figure 1 — SPDM certificate chain models illustrates, much like the other certificate models, the generic

certificate model, too, is composed of a chain of certificates starting with the root and ending with the leaf. The root

CA, too, either directly certifies the leaf certificate or indirectly certifies the leaf certificate (GenericCert) through one

or more intermediate certificate authorities. In other words, this model is the most flexible (or least restrictive) of the

certificate models in this specification. The main difference between this model and the other models is that SPDM

shall not impose any requirements on the contents of each certificate in the chain in a generic certificate model other

than the key pair and related information associated in the leaf certificate.

129 For example, in a device certificate model, the leaf certificate can contain elements that specifically identify the

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Work in Progress Version 1.4.0WIP70

device and device manufacturer, whereas the generic certificate model has no such requirement nor any concept of

a device certificate.

130 As such, the generic certificate model applies to certificates in slots greater than slot 0. A model in a certificate slot in

this specification is either a DeviceCert , AliasCert , or GenericCert model.

131 The contents and use cases for the certificates of a generic certificate model, other than the associated key pair and

related information in the leaf certificate, are outside the scope of this specification. Typically, the users of the SPDM

endpoint, the device manufacturer, or standards define the contents and use cases of a generic certificate model.

132 7.2.2 Raw public keys

133 Instead of using certificate chains, the vendor can provision the raw public key of the Responder to the Requester in

a trusted environment; for example, during the secure manufacturing process. In this case, trust of the public key of

the Responder is established without the need for a certificate-based public key infrastructure.

134 The format of the provisioned public key is outside the scope of this specification. Vendors can use proprietary

formats or public key formats that other standards define, such as RFC 7250 and RFC 4716.

135 7.2.3 Runtime authentication

136 Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder

in a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a

unique challenge to the Responder. The Responder uses the private key associated with the leaf certificate to sign

the challenge. The authentication initiator verifies the signature by using the public key associated with the leaf

certificate of the Responder and any intermediate public keys within the certificate chain by using the root certificate

as the trusted anchor.

137 If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication

initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The

authentication initiator verifies the signature by using the public key of the Responder. Device identification can be

handled using the GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages or the transport layer

(which is outside the scope of this specification).

138 7.3 Firmware and configuration measurement

139 A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically either a cryptographic hash value of the data or the raw data itself. The endpoint optionally binds a

measurement with the endpoint identity through the use of digital signatures. This binding enables an authentication

initiator to establish the identity and measurement of the firmware/software or configuration running on the endpoint.

140 7.4 Secure sessions

141 Many devices exchange data that might require protection with other devices. In this specification, this data that is

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 31

being exchanged is generically referred to as application data. The protocol of the application data usually exists at a

higher layer, and as such it is outside the scope of this specification. The protocol of the application data usually

allows for encrypted and/or authenticated data transfer.

142 This specification provides a method to perform a cryptographic key exchange such that the protocol of the

application data can use the exchanged keys to provide a secure channel of communication by using encryption and

message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual

authentication, both of which can be considered equivalent to Runtime authentication. For more details, see the

Session clause.

143 Finally, many SPDM requests and their corresponding responses can also be afforded the same protection. For more

details, see Table 6 — SPDM request and response messages validity and the SPDM request and response code

issuance allowance clause.

144 Figure 2 — SPDM messaging protocol flow gives a very high-level view of when the secure session starts.

145 7.5 Mutual authentication overview

146 The ability of a Responder to verify the authenticity of the Requester is called mutual authentication. Several

mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means

to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity provisioning

clause discusses identity in regards to the Responder but the details also apply to the Requester.

147 In general, when this specification states requirements or recommendations for Responders in the context of identity,

those same rules also apply to Requesters in the context of mutual authentication. The various clauses in this

specification provide more details.

148 7.6 Multiple asymmetric key support

149 An SPDM endpoint can use more than one asymmetric key pair for a negotiated asymmetric algorithm. This enables

cryptographic isolation between different use cases which potentially increases the security posture of the SPDM

endpoint and its corresponding SPDM connections. For example, an SPDM Responder can choose which key-pairs

to use in a CHALLENGE request and which key pairs to use in a GET_MEASUREMENTS request. The SPDM Responder

permits the CHALLENGE and GET_MEASUREMENTS requests to use the same key-pair for signing operations.

150 Additionally, a Responder can allow the Requester to select the use cases to associate with each asymmetric key

pair. The Responder can, also, allow the Requester to request the generation of a new key pair.

151 To facilitate the use of multiple asymmetric keys, the ability to uniquely identify each key pair is essential. To achieve

this, a unique key pair number, called KeyPairID , identifies each asymmetric key pair. Additionally, one or more leaf

certificates can bind to the same asymmetric key pair.

152 7.7 Custom environments

153 A fixed or predetermined environment is an environment where certain characteristics of the environment are fixed or

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Work in Progress Version 1.4.0WIP70

known before the SPDM endpoints communicate with each other. In many cases, these characteristics are

determined even before the environment can operate such as during the design phase. An example of a such an

environment is when two specific endpoints can only communicate with each other. These environments may forfeit

certain SPDM features such as interoperability. However, the security posture and guarantees of these environments

are outside the scope of this specification.

154 7.8 Notification overview

155 To aid an SPDM endpoint in enforcing its security policy requirements in an efficient, reliable, and timely manner, the

SPDM event mechanism provides a method to asynchronously deliver a notification to or receive a notification from

the interested SPDM endpoint. This mechanism allows an interested SPDM endpoint to choose only the event types

it wants to receive. For more details, see Event mechanism.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 33

156 8 SPDM messaging protocol

157 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to

with an SPDM response message as this specification defines unless this specification states otherwise.

158 Figure 2 — SPDM messaging protocol flow is an example of a high-level request-response flow diagram for SPDM.

An endpoint that acts as the Requester sends an SPDM request message to another endpoint that acts as the

Responder, and the Responder returns an SPDM response message to the Requester.

159 Figure 2 — SPDM messaging protocol flow

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Work in Progress Version 1.4.0WIP70

160

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

If supported

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

161 All SPDM request-response messages share a common data format that consists of a four-byte message header

and zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages' details for each of the request and response messages.

162 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages before

issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS

can be saved by the Requester so that after Reset the Requester can skip these requests.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 35

163 8.1 SPDM connection model

164 In SPDM, communication between a pair of SPDM endpoints starts when one endpoint sends a GET_VERSION

request to another SPDM endpoint. The SPDM endpoint that starts the communication is called the Requester. The

endpoint receiving the GET_VERSION and providing the VERSION response is called a Responder. The communication

between a pair of Requester and Responder is called a connection. One or more connections can exist between a

Requester and Responder. Different connections might exist over the same transport or over different transports.

When there are multiple connections over the same transport, the transport is responsible for providing mechanisms

for SPDM endpoints to distinguish between one or more connections. When the transport does not provide such a

mechanism, there shall be one connection between the Requester and Responder over that connection.

165 SPDM endpoints can be both a Requester and Responder. As a Requester, an SPDM endpoint can communicate

with one or more Responders. Likewise, as a Responder, an SPDM endpoint can respond to multiple Requesters.

The SPDM connection model considers each of these communications to be a separate connection. For example, a

pair of SPDM endpoints can be both Requester and Responder to each other. Thus, the SPDM connection model

considers this to be two separate connections.

166 Within a connection, the Requester remains the Requester for the remainder of the connection. Likewise, the

Responder remains the Responder for the remainder of the connection. However, under certain scenarios allowed by

SPDM, a Responder can send a request to a Requester and, likewise, a Requester might provide a response to a

Responder. These cases are limited and this specification explicitly defines these cases. In such scenarios, when a

Requester provides a response, the Requester shall abide by all requirements in this specification as if they are a

Responder for that request. Similarly, when a Responder sends a request, the Responder shall abide by all

requirements in this specification as if they are a Requester for that request.

167 Within a connection, the Requester can establish one or more secure sessions. These secure sessions are

considered to be part of the same connection. Secure sessions can terminate and additional sessions can be

established at any time. A GET_VERSION can reset the connection and all context associated with that connection

including, but not limited to, information such as session keys and session IDs. However, this is not considered a

termination of the connection. A connection can terminate due to external events such as a device reset or an error-

handling strategy implemented on an SPDM endpoint, but such scenarios are outside the scope of this specification.

Connections can be terminated using mechanisms outside the scope of this specification.

168 8.2 SPDM bits-to-bytes mapping

169 All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in sequentially decreasing order down to and including the least numerically assigned byte of that field. The

following two figures illustrate this mapping.

170 Figure 3 — One-byte field bit map shows the one-byte field bit map:

171 Figure 3 — One-byte field bit map

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Work in Progress Version 1.4.0WIP70

172

Byte Offset 3

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example:
A One-Byte Field Starting at Byte Offset 3

173 Figure 4 — Two-byte field bit map shows the two-byte field bit map:

174 Figure 4 — Two-byte field bit map

175

Byte Offset 5

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example:
A Two-Byte Field Starting at Byte Offset 5

Byte Offset 6

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

176 8.3 Generic SPDM message format

177 Table 3 — Generic SPDM message field definitions defines the fields that constitute a generic SPDM message,

including the message header and payload:

178 Table 3 — Generic SPDM message field definitions

Byte offset Bit offset Size (bits) Field Description

0 [7:4] 4 SPDM Major Version

Shall be the major version of the

SPDM Specification. An endpoint

shall not communicate by using an

incompatible SPDM version value.

See Version encoding.

0 [3:0] 4 SPDM Minor Version

Shall be the minor version of the

SPDM Specification. A specification

with a given minor version extends

a specification with a lower minor

version as long as they share the

major version. See Version

encoding.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 37

Byte offset Bit offset Size (bits) Field Description

1 [7:0] 8 Request Response Code

Shall be the request message code

or response code, which Table 4 —

SPDM request codes and Table 5

— SPDM response codes

enumerate. 0x00 through 0x7F

represent response codes and

0x80 through 0xFF represent

request codes. In request

messages, this field is considered

the request code. In response

messages, this field is considered

the response code.

2 [7:0] 8 Param1

Shall be the first one-byte

parameter. The contents of the

parameter are specific to the

Request Response Code .

3 [7:0] 8 Param2

Shall be the second one-byte

parameter. The contents of the

parameter are specific to the

Request Response Code .

4
See the

description.
Variable SPDM message payload

Shall be zero or more bytes that are

specific to the Request Response

Code .

179 8.3.1 SPDM version

180 The SPDMVersion field, present as the first field in all SPDM messages, indicates the version of the SPDM

specification that the format of an SPDM message adheres to. The format of this field shall be the same as byte 0 in

Table 3 — Generic SPDM message field definitions. The value of this field shall be the same value as the version of

this specification except for GET_VERSION and VERSION messages.

181 For example, if the version of this specification is 1.2, the value of SPDMVersion is 0x12 , which also corresponds to

an SPDM Major Version of 1 and an SPDM Minor Version of 2. See Version encoding for more examples.

182 The version of this specification can be found on the title page and in the footer of the other pages in this document.

183 The SPDMVersion for the version of this specification shall be 0x13 .

184 The SPDMversionString shall be a string formed by concatenating the major version, a period ("."), and the minor

version. For example, if the version of this specification is 1.2.3, then SPDMversionString is "1.2" .

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Work in Progress Version 1.4.0WIP70

185 8.4 SPDM request codes

186 Table 4 — SPDM request codes defines the SPDM request codes. The Implementation requirement column

indicates requirements on the Requester.

187 All SPDM-compatible implementations shall use SPDM request codes.

188 If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

189 Table 4 — SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional
Table 38 — GET_DIGESTS request

message format

GET_CERTIFICATE 0x82 Optional
Table 42 — GET_CERTIFICATE request

message format

CHALLENGE 0x83 Optional
Table 48 — CHALLENGE request message

format

GET_VERSION 0x84 Required
Table 8 — GET_VERSION request

message format

CHUNK_SEND 0x85 Optional
Table 101 — CHUNK_SEND request

format

CHUNK_GET 0x86 Optional Table 105 — CHUNK_GET request format

GET_ENDPOINT_INFO 0x87 Optional
Table 125 — GET_ENDPOINT_INFO

request format

GET_MEASUREMENTS 0xE0 Optional
Table 49 — GET_MEASUREMENTS

request message format

GET_CAPABILITIES 0xE1 Required
Table 11 — GET_CAPABILITIES request

message format

GET_SUPPORTED_EVENT_TYPES 0xE2 Optional

Table 115 —

GET_SUPPORTED_EVENT_TYPES

request message format

NEGOTIATE_ALGORITHMS 0xE3 Required
Table 15 — NEGOTIATE_ALGORITHMS

request message format

KEY_EXCHANGE 0xE4 Optional
Table 74 — KEY_EXCHANGE request

message format

FINISH 0xE5 Optional
Table 77 — FINISH request message

format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 39

Request Code value Implementation requirement Message format

PSK_EXCHANGE 0xE6 Optional
Table 79 — PSK_EXCHANGE request

message format

PSK_FINISH 0xE7 Optional
Table 81 — PSK_FINISH request message

format

HEARTBEAT 0xE8 Optional
Table 83 — HEARTBEAT request message

format

KEY_UPDATE 0xE9 Optional
Table 85 — KEY_UPDATE request

message format

GET_ENCAPSULATED_REQUEST 0xEA Optional

Table 88 —

GET_ENCAPSULATED_REQUEST

request message format

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional

Table 90 —

DELIVER_ENCAPSULATED_RESPONSE

request message format

END_SESSION 0xEC Optional
Table 92 — END_SESSION request

message format

GET_CSR 0xED Optional
Table 95 — GET_CSR request message

format

SET_CERTIFICATE 0xEE Optional
Table 98 — SET_CERTIFICATE request

message format

GET_MEASUREMENT_EXTENSION_LOG 0xEF Optional

Table 132 —

GET_MEASUREMENT_EXTENSION_LOG

message format

SUBSCRIBE_EVENT_TYPES 0xF0 Optional
Table 119 — SUBSCRIBE_EVENT_TYPES

request message format

SEND_EVENT 0xF1 Optional
Table 122 — SEND_EVENT request

message format

GET_KEY_PAIR_INFO 0xFC Optional
Table 107 — GET_KEY_PAIR_INFO

request message format

SET_KEY_PAIR_INFO 0xFD Optional
Table 112 — SET_KEY_PAIR_INFO

request message format

VENDOR_DEFINED_REQUEST 0xFE Optional

Table 71 —

VENDOR_DEFINED_REQUEST request

message format

RESPOND_IF_READY 0xFF Required
Table 70 — RESPOND_IF_READY request

message format

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Work in Progress Version 1.4.0WIP70

Request Code value Implementation requirement Message format

Reserved
All other

values

SPDM implementations compatible with

this version shall not use the reserved

request codes.

190 8.5 SPDM response codes

191 The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use Table 5 — SPDM response codes.

192 On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message should be returned.

193 Table 5 — SPDM response codes defines the response codes for SPDM. The Implementation requirement column

indicates requirements on the Responder.

194 Table 5 — SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Table 39 — Successful DIGESTS

response message format

CERTIFICATE 0x02 Optional

Table 44 — Successful

CERTIFICATE response message

format

CHALLENGE_AUTH 0x03 Optional

Table 49 — Successful

CHALLENGE_AUTH response

message format

VERSION 0x04 Required
Table 9 — Successful VERSION

response message format

CHUNK_SEND_ACK 0x05 Optional
Table 105 — CHUNK_SEND_ACK

response message format

CHUNK_RESPONSE 0x06 Optional
Table 106 — CHUNK_RESPONSE

response format

ENDPOINT_INFO 0x07 Optional
Table 128 — ENDPOINT_INFO

response format

MEASUREMENTS 0x60 Optional

Table 56 — Successful

MEASUREMENTS response

message format

CAPABILITIES 0x61 Required

Table 12 — Successful

CAPABILITIES response message

format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 41

Response Value Implementation requirement Message format

SUPPORTED_EVENT_TYPES 0x62 Optional

Table 116 —

SUPPORTED_EVENT_TYPES

response message format

ALGORITHMS 0x63 Required

Table 23 — Successful

ALGORITHMS response message

format

KEY_EXCHANGE_RSP 0x64 Optional

Table 76 — Successful

KEY_EXCHANGE_RSP response

message format

FINISH_RSP 0x65 Optional
Table 78 — Successful FINISH_RSP

response message format

PSK_EXCHANGE_RSP 0x66 Optional
Table 80 — PSK_EXCHANGE_RSP

response message format

PSK_FINISH_RSP 0x67 Optional

Table 82 — Successful

PSK_FINISH_RSP response

message format

HEARTBEAT_ACK 0x68 Optional
Table 84 — HEARTBEAT_ACK

response message format

KEY_UPDATE_ACK 0x69 Optional
Table 86 — KEY_UPDATE_ACK

response message format

ENCAPSULATED_REQUEST 0x6A Optional

Table 89 —

ENCAPSULATED_REQUEST

response message format

ENCAPSULATED_RESPONSE_ACK 0x6B Optional

Table 91 —

ENCAPSULATED_RESPONSE_ACK

response message format

END_SESSION_ACK 0x6C Optional
Table 94 — END_SESSION_ACK

response message format

CSR 0x6D Optional
Table 97 — CSR response message

format

SET_CERTIFICATE_RSP 0x6E Optional

Table 100 — Successful

SET_CERTIFICATE_RSP response

message format

MEASUREMENT_EXTENSION_LOG 0x6F Optional

Table 133 — Successful

MEASUREMENT_EXTENSION_LOG

message format

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Work in Progress Version 1.4.0WIP70

Response Value Implementation requirement Message format

SUBSCRIBE_EVENT_TYPES_ACK 0x70 Optional

Table 120 —

SUBSCRIBE_EVENT_TYPES_ACK

response message format

EVENT_ACK 0x71 Optional
Table 124 — EVENT_ACK response

message format

KEY_PAIR_INFO 0x7C Optional
Table 108 — KEY_PAIR_INFO

response message format

SET_KEY_PAIR_INFO_ACK 0x7D Optional

Table 114 —

SET_KEY_PAIR_INFO_ACK

response message format

VENDOR_DEFINED_RESPONSE 0x7E Optional

Table 72 —

VENDOR_DEFINED_RESPONSE

response message format

ERROR 0x7F Required
Table 62 — ERROR response

message format

Reserved
All other

values

SPDM implementations compatible

with this version shall not use the

reserved response codes.

195 8.6 SPDM request and response code issuance allowance

196 Table 6 — SPDM request and response messages validity describes the conditions under which a request and

response can be issued.

197 The Session column describes whether the respective request and response can be sent in a session. If the value is

"Allowed", the issuer of the request and response shall be able to send it in a secure session, thereby affording them

the protection of a secure session. If the Session column value is "Prohibited", the issuer shall be prohibited from

sending the respective request and response in a secure session.

198 The Outside of a session column indicates which requests and responses are allowed to be sent free and

independent of a session, thereby lacking the protection of a secure session. An "Allowed" in this column indicates

that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a

"Prohibited" in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

199 A request and its corresponding response can have an "Allowed" value in both the Session and Outside of a

session columns, in which case they can be sent and received in both scenarios but might have additional

restrictions. For details, see the respective request and response clauses.

200 A request and its corresponding response that has an "Allowed" value in the Session and "Prohibited" in the

Outside of a session columns are commands used by the session. These commands only operate on the session

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 43

that they were sent under, which is outside the scope of this specification. The session ID is implicit from the session

used to transmit the commands.

201 Finally, the Session phases column describes which phases of a session the respective request and response shall

be issued when they are allowed to be issued in a session.

202 If, during the session handshake phase, an unexpected request is received using a valid session ID, the Responder

shall either send an ERROR message in the session with ErrorCode=UnexpectedRequest or silently discard the

request.

203 Vendor-defined shall indicate whether a VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE is

"Allowed" or "Prohibited" for use in the Session, Outside of a session, and the applicable Session phases.

204 For details, see the Session clause.

205 Table 6 — SPDM request and response messages validity

Request Response Outside of a session Session Session phases

GET_MEASUREMENTS MEASUREMENTS Allowed Allowed Application Phase

FINISH FINISH_RSP Conditional (**) Allowed
Session

Handshake

PSK_FINISH PSK_FINISH_RSP Prohibited Allowed
Session

Handshake

HEARTBEAT HEARTBEAT_ACK Prohibited Allowed Application Phase

KEY_UPDATE KEY_UPDATE_ACK Prohibited Allowed Application Phase

END_SESSION END_SESSION_ACK Prohibited Allowed Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Vendor-defined
Vendor-

defined
Vendor-defined

CHUNK_SEND CHUNK_SEND_ACK Allowed Allowed All Phases

CHUNK_GET CHUNK_RESPONSE Allowed Allowed All Phases

GET_ENDPOINT_INFO ENDPOINT_INFO Allowed Allowed Application Phase

GET_CSR CSR Allowed Allowed Application Phase

SET_CERTIFICATE SET_CERTIFICATE_RSP Allowed Allowed Application Phase

GET_DIGESTS DIGESTS Allowed Allowed Application Phase

GET_CERTIFICATE CERTIFICATE Allowed Allowed Application Phase

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Work in Progress Version 1.4.0WIP70

Request Response Outside of a session Session Session phases

GET_KEY_PAIR_INFO KEY_PAIR_INFO Allowed Allowed Application Phase

SET_KEY_PAIR_INFO SET_KEY_PAIR_INFO_ACK Allowed Allowed Application Phase

GET_MEASUREMENT_EXTENSION_LOG MEASUREMENT_EXTENSION_LOG Allowed Allowed Application Phase

GET_SUPPORTED_EVENT_TYPES SUPPORTED_EVENT_TYPES Prohibited Allowed Application Phase

SUBSCRIBE_EVENT_TYPES SUBSCRIBE_EVENT_TYPES_ACK Prohibited Allowed Application Phase

SEND_EVENT EVENT_ACK Prohibited Allowed Application Phase

RESPOND_IF_READY Response to Original Request (*) Allowed (*) Allowed (*) All Phases (*)

All others All others Allowed Prohibited Not Applicable

206 (*) See RESPOND_IF_READY request description for details (**) Prohibited when HANDSHAKE_IN_THE_CLEAR_CAP =

0 , Allowed when HANDSHAKE_IN_THE_CLEAR_CAP = 1 .

207 8.7 Concurrent SPDM message processing

208 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

209 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

210 8.8 Requirements for Requesters

211 A Requester shall not have multiple outstanding requests to the same Responder within a connection, with the

following exceptions:

• As the GET_VERSION request and VERSION response messages clause describes, a Requester can issue a

GET_VERSION to a Responder to reset the connection at any time, even if the Requester has existing outstanding

requests to the same Responder.

• In the large SPDM message transfer mechanism, a single large SPDM request message and a single

CHUNK_SEND request can be outstanding at the same time.

212 An outstanding request is a request where the request message has begun transmission, the corresponding

response has not been fully received, and the request is not a retry as described in Timing Requirements.

213 If the Requester has sent a request to a Responder and wants to send a subsequent request to the same

Responder, then the Requester shall wait to send the subsequent request until after the Requester completes one of

the following actions:

• Receives the response from the Responder for the outstanding request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 45

• Times out waiting for a response.

• Receives an indication from the transport layer that transmission of the request message failed.

• The Requester encounters an internal error or Reset.

• The Requester sends a GET_VERSION to reinitialize the session.

214 A Requester might send simultaneous request messages to different Responders.

215 8.9 Requirements for Responders

216 A Responder is not required to process more than one request message at a time, even across connections, with the

following exceptions:

• As the GET_VERSION request and VERSION response messages clause describes, a Requester can issue a

GET_VERSION to a Responder to reset a connection at any time, even if the Requester has existing outstanding

requests to the same Responder.

• In the large SPDM message transfer mechanism, a single large SPDM request message and a single

CHUNK_SEND request can be outstanding at the same time.

• Retries can be issued multiple times to the same Responder, as Timing requirements defines.

217 A Responder that is not ready to accept a new request message or process more than one outstanding request at a

time from the same Requester shall either respond with an ERROR message of ErrorCode=Busy or silently discard the

request message.

218 If a Responder is working on a request message from a Requester, the Responder can respond with an ERROR

message of ErrorCode=Busy .

219 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

220 8.10 Transcript and transcript hash calculation rules

221 The transcript is a concatenation of the prescribed full messages or message fields in order. In the case where a

message is transferred in chunks, only the complete message that is built by the concatenation of chunk payloads

shall be added to the transcript. Consequently, the transcript hash is the hash of the transcript using the negotiated

hash algorithm (BaseHashSel or ExtHashSel of ALGORITHMS). For messages that are encrypted, the plaintext

messages are used in the transcript. Where a transcript indicates that the hash of the specified certificate chain is

used, the hash of the certificate chain is calculated over the specified certificate chain, as Table 37 — Certificate

chain format describes. Messages that contribute to a transcript may be optional and/or conditional and will only

contribute to a transcript if issued. Such messages are identified by the text "if issued" in the transcript definition. For

a given message, if it does not have the "if issued" text in the transcript definition, then it is required to be present in

the transcript. When an endpoint calculates the transcript hash over a series of messages, the endpoint shall ensure

both the existence and the order of the messages as specified by each transcript hash calculation rule.

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Work in Progress Version 1.4.0WIP70

222 9 Timing requirements

223 Table 7 — Timing specification for SPDM messages shows the timing specifications for Requesters and Responders.

224 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester can retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

From the perspective of a Requester, a retry of a request message is the retransmission of the original SPDM

request one or more times in succession directly following the transmission of the original SPDM request. From the

perspective of a Responder, a retry of a request message is the reception of the same SPDM request one or more

times in succession, assuming that the transport receives messages in order. Successive SPDM requests are

different if the values of any bits differ between them, in which case the Responder will process them differently.

225 If the transport is not reliable, then the Responder should support retry by identifying whether a received request is a

retried one or a new one. If the Responder supports retry, then the response to a retried request shall be identical to

the original response. If the transport is reliable, then the Responder may support retry.

226 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) can retry,

but this is outside the scope of this specification.

227 9.1 Timing measurements

228 Unless otherwise stated, a Requester shall measure timing parameters applicable to it from the end of a successful

transmission of an SPDM request to the beginning of the reception of the corresponding SPDM response. With the

exception of RDT , a Responder shall measure timing parameters applicable to it from the end of the reception of the

SPDM request to the beginning of transmission of the response. The requirement assumes that the Responder has

immediate access to the transport.

229 9.2 Timing parameters

230 In Table 7 — Timing specification for SPDM messages, timing parameters are differentiated into two categories: the

timing parameters for non-cryptographic operations (T1) and the timing parameters for cryptographic operations

(T2). The timing parameters are differentiated in this manner to allow a Responder to request additional time for

cryptographic operations. The timing parameters apply to normal conditions, and some operations may take

additional time in some situations. For instance, a Responder may need additional time to process a non-

cryptographic operation because of another operation in progress or some other condition. In this case, the

Responder shall respond with an ERROR message of ErrorCode=ResponseNotReady to indicate that it needs more

time.

231 The Responder can request time beyond ST1 for any non-cryptographic operation other than GET_VERSION . Since

GET_VERSION serves as a reset to the connection, a Requester might send GET_VERSION requests as quickly as

allowed by T1 until it receives a response. The Responder shall not respond to GET_VERSION with an ERROR

message of ErrorCode=ResponseNotReady .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 47

232 9.3 Timing specification table

233 The Ownership column of Table 7 — Timing specification for SPDM messages specifies whether the timing

parameter applies to the Responder or Requester. For encapsulated requests, the Requester shall comply with the

timing parameters where the Ownership indicates a Responder.

234 Table 7 — Timing specification for SPDM messages

Timing parameter Ownership Value Units Description

RTT Requester See the description. µs

The value shall be the worst-

case total time for the

complete transmission and

delivery of an SPDM

message round trip at the

transport layer(s). The actual

value for this parameter is

transport- or media-specific.

Both the actual value and

how an endpoint obtains this

value are outside the scope

of this specification. A

Requester shall measure this

timing parameter from the

end of a successful

transmission of an SPDM

request to the beginning of

the reception of the

corresponding SPDM

response less ST1 or CT ,

depending on the Request.

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Work in Progress Version 1.4.0WIP70

Timing parameter Ownership Value Units Description

ST1 Responder 100,000 µs

This value shall be the

maximum amount of time the

Responder has to provide a

response under normal

conditions to requests that do

not require cryptographic

processing, such as the

GET_CAPABILITIES ,

GET_VERSION , or

NEGOTIATE_ALGORITHMS

request messages.

See Table 11 —

GET_CAPABILITIES request

message format, Table 8 —

GET_VERSION request

message format, and Table

15 —

NEGOTIATE_ALGORITHMS

request message format.

T1 Requester RTT + ST1 µs

This value shall be the

minimum amount of time the

Requester shall wait before

issuing a retry for requests

that do not require

cryptographic processing.

For details, see the ST1

timing parameter.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 49

Timing parameter Ownership Value Units Description

CT Requester and Responder 2 CTExponent µs

CTExponent is reported in

the GET_CAPABILITIES

request message and

CAPABILITIES response

message.

This parameter is applicable

to both a Responder and

Requester as the Ownership

columns shows. Specifically

for a Requester, this field is

applicable when the

Requester provides a

response that requires

cryptographic processing

such as in the mutual

authentication portion of a

KEY_EXCHANGE flow. When

the Requester provides a

response that requires

cryptographic processing, the

Requester shall measure

timing just as a Responder

would.

This timing parameter shall

be the maximum amount of

time the endpoint has to

provide any response

requiring cryptographic

processing under normal

conditions, such as the

GET_MEASUREMENTS or

CHALLENGE request

messages. If the Responder

cannot respond within CT ,

the Responder shall respond

with an ERROR message of

ErrorCode=ResponseNotReady

to indicate that it needs more

time.

See Table 11 —

GET_CAPABILITIES request

message format, Table 12 —

Successful CAPABILITIES

response message format,

Table 49 —

GET_MEASUREMENTS

request message format, and

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Work in Progress Version 1.4.0WIP70

Timing parameter Ownership Value Units Description

Table 48 — CHALLENGE

request message format.

T2 Requester RTT + CT µs

This value shall be the

minimum amount of time the

Requester shall wait before

issuing a retry for requests

that require cryptographic

processing.

For details, see the CT

timing parameter.

RDT Responder 2 RDTExponent µs

This value shall be the

recommended additional

amount of time in

microseconds that the

Responder needs to

complete the requested

cryptographic operation.

When the Responder cannot

complete cryptographic

processing response within

the CT time, it shall provide

RDTExponent as part of the

ERROR response as Table 62

— ERROR response

message format shows. For

details, see

ErrorCode=ResponseNotReady

in Table 64 —

ResponseNotReady

extended error data for the

RDTExponent value. An

SPDM Responder measures

the RDT value from the end

of the transmission of the

ERROR message of

ErrorCode=ResponseNotReady ,

to the beginning of the

reception of the next

RESPOND_IF_READY request

message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 51

Timing parameter Ownership Value Units Description

WT Requester RDT µs

This value shall be the

amount of time that the

Requester should wait before

issuing the

RESPOND_IF_READY request

message as Table 70 —

RESPOND_IF_READY

request message format

shows.

The Requester shall

measure this time parameter

from the reception of the

ERROR response to the

transmission of the

RESPOND_IF_READY request.

The Requester can include

the transmission time of the

ERROR from the Responder

to Requester as time spent

waiting for WT to expire. For

example, if a Responder

indicates WT is two seconds

and the ERROR response

takes one second to

transport to the Requester,

the Requester only needs to

wait an additional one

second upon reception of the

ERROR response.

For details, see the RDT

timing parameter.

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Work in Progress Version 1.4.0WIP70

Timing parameter Ownership Value Units Description

WTMax Requester (RDT * RDTM) - RTT µs

This value shall be the

maximum wait time the

Requester has to issue the

RESPOND_IF_READY request

message, as Table 70 —

RESPOND_IF_READY

request message format

shows, unless the Requester

issued a successful

RESPOND_IF_READY request

message, as Table 70 —

RESPOND_IF_READY

request message format

shows, earlier. The

RESPOND_IF_READY message

follows the most recently

received ERROR message

with ErrorCode =

ResponseNotReady , which

shall specify the wait time for

that cycle. The Requester

shall start measuring time

from the reception of the first

ERROR message of

ErrorCode=ResponseNotReady

with the same Token until

WT Max µs elapses or the

corresponding Response is

successfully received.

After this time has passed,

the Responder is allowed to

drop the response. The

Requester shall take into

account the transmission

time of the ERROR response,

as Table 62 — ERROR

response message format

shows, from the Responder

to Requester when

calculating WT Max .

The RDTM value appears in

Table 64 —

ResponseNotReady

extended error data.

The Responder should

ensure that WT Max does not

result in less than WT in

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 53

Timing parameter Ownership Value Units Description

determination of RDTM .

See

ErrorCode=ResponseNotReady

in Table 64 —

ResponseNotReady

extended error data.

HeartbeatPeriod Requester and Responder Variable s

See the HEARTBEAT

request and

HEARTBEAT_ACK response

clause.

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Work in Progress Version 1.4.0WIP70

235 10 SPDM messages

236 SPDM messages can be divided into the following categories that support different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Measurement

• Key agreement for secure-channel establishment

237 10.1 Capability discovery and negotiation

238 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS .

239 Figure 5 — Capability discovery and negotiation flow shows the high-level request-response flow and sequence for

the capability discovery and negotiation:

240 Figure 5 — Capability discovery and negotiation flow

241

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a

NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.

NEGOTIATE_ALGORITHMS

GET_CAPABILITIES

CAPABILITIES

GET_VERSION

VERSION

ALGORITHMS

242 10.1.1 Negotiated state preamble

243 The VCA (Version-Capabilities-Algorithms) shall be the concatenation of messages GET_VERSION , VERSION ,

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 55

GET_CAPABILITIES , CAPABILITIES , NEGOTIATE_ALGORITHMS , and ALGORITHMS last exchanged between the Requester

and the Responder.

244 If the two endpoints do not support session key establishment with the PSK (Pre-Shared Key) option, or if the two

endpoints support PSK but the negotiated capabilities and algorithms are not provisioned to both endpoints

alongside the PSK, then the Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS to

construct VCA .

245 If the Responder supports caching the negotiated state (CACHE_CAP=1), the Requester might not issue GET_VERSION ,

GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS . In this case, the Requester and the Responder shall store the most

recent VCA as part of the Negotiated State.

246 If the two endpoints support session key establishment with the PSK and if the negotiated capabilities and algorithms

(the C and A of VCA) are provisioned to both endpoints alongside the PSK, then the Requester shall not issue

GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

247 10.2 GET_VERSION request and VERSION response messages

248 This request message shall retrieve the SPDM version of an endpoint. Table 8 — GET_VERSION request message

format shows the GET_VERSION request message format and Table 9 — Successful VERSION response message

format shows the VERSION response message format.

249 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with all

earlier versions.

250 The Requester shall begin the discovery process by sending a GET_VERSION request message with the value of the

SPDMVersion field set to 0x10 . All Responders shall always support the GET_VERSION request message with major

version 0x1 and provide a VERSION response containing all supported versions, as Table 8 — GET_VERSION

request message format describes.

251 The Requester shall consult the VERSION response to select a common supported version, which should be the

latest supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies a

common version that both sides support. A Responder shall not respond to the GET_VERSION request message with

an ERROR message except for ErrorCode s specified in this clause. The selected version shall be the version in the

SPDMVersion field of the Request (other than GET_VERSION) immediately following the GET_VERSION request. If the

Requester uses a version other than the selected version in a Request, the Responder should either return an

ERROR message of ErrorCode=VersionMismatch or silently discard the Request.

252 A Requester can issue a GET_VERSION request message to a Responder at any time, which serves as an exception

to Requirements for Requesters to allow for scenarios where a Requester is required to restart the protocol due to an

internal error or Reset.

253 After receiving a valid GET_VERSION request, the Responder shall invalidate state and data associated with all

previous requests from the same Requester. All active sessions between the Requester and the Responder are

terminated, and information (such as session keys and session IDs) for those sessions should not be used anymore.

Additionally, this message shall clear the previously Negotiated State, if any, in both the Requester and its

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Work in Progress Version 1.4.0WIP70

corresponding Responder. An invalid GET_VERSION request that results in the Responder returning an error to the

Requester shall not affect the connection state. The ERROR message resulting from an invalid GET_VERSION request

shall have the value of the SPDMVersion field set to 0x10 .

254 After sending the VERSION response for a GET_VERSION request, if the Responder completes a runtime code or

configuration change for its hardware or firmware measurement and the change has taken effect, then the

Responder shall either silently discard any request received outside of a session or respond with an ERROR message

of ErrorCode=RequestResynch to any request received outside of a session, until a GET_VERSION request is received.

For requests received within a session, the Responder shall follow the selected session policy that the Requester

selects in Table 75 — Session policy at the time of session establishment.

255 Figure 6 — Discovering the common major version shows the process:

256 Figure 6 — Discovering the common major version

257

ResponderRequester

GET_VERSION (version=1.0)

VERSION (6.4, 6.3, 6.2, 6.1)

Request version always
uses version = 1.0

Supports versions 6.4,
6.3, 6.2, 6.1

GET_CAPABILITIES (version=6.3)

CAPABILITIES

Supports versions 7.1, 7.0, 6.3,
6.2, 6.1, 6.0

Version information
response

Settle on version 6.3

NEGOTIATE_ALGORITHMS (Version = 6.3)

ALGORITHMS ()

258 Table 8 — GET_VERSION request message format shows the GET_VERSION request message format:

259 Table 8 — GET_VERSION request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1 Shall be 0x10 (V1.0).

1 RequestResponseCode 1
Shall be 0x84 = GET_VERSION . See Table 4 — SPDM

request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 57

Byte offset Field Size (bytes) Description

2 Param1 1 Reserved.

3 Param2 1 Reserved.

260 Table 9 — Successful VERSION response message format shows the successful VERSION response message

format:

261 Table 9 — Successful VERSION response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1 Shall be 0x10 (V1.0).

1 RequestResponseCode 1
Shall be 0x04 = VERSION . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:n 2 * n

16-bit version entry. See Table 10 —

VersionNumberEntry definition. Each entry should be

unique.

262 Table 10 — VersionNumberEntry definition shows the VersionNumberEntry definition. See Version encoding for more

details.

263 Table 10 — VersionNumberEntry definition

Bit offset Field Description

[15:12] MajorVersion

Shall be the version of the specification having changes that are

incompatible with one or more functions in earlier major versions of the

specification.

[11:8] MinorVersion

Shall be the version of the specification having changes that are

compatible with functions in earlier minor versions of this major version

specification.

[7:4] UpdateVersionNumber
Shall be the version of the specification with editorial updates and errata

fixes. Informational; ignore when checking versions for interoperability.

[3:0] Alpha

Shall be the pre-release work-in-progress version of the specification.

Because the Alpha value represents an in-development version of the

specification, versions that share the same major and minor version

numbers but have different Alpha versions might not be fully

interoperable. Released versions shall have an Alpha value of zero

(0).

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Work in Progress Version 1.4.0WIP70

264 10.3 GET_CAPABILITIES request and CAPABILITIES response messages

265 This request message shall retrieve the SPDM capabilities of an endpoint.

266 Table 11 — GET_CAPABILITIES request message format shows the GET_CAPABILITIES request message format.

267 Table 12 — Successful CAPABILITIES response message format shows the CAPABILITIES response message

format.

268 Table 13 — Flag fields definitions for the Requester shows the flag fields definitions for the Requester.

269 Likewise, Table 14 — Flag fields definitions for the Responder shows the flag fields definitions for the Responder.

270 To properly support transferring of SPDM messages, the Requester and Responder shall indicate two buffer sizes:

• One for receiving a single SPDM transfer called DataTransferSize

• One for indicating their maximum internal buffer size for processing a single assembled received SPDM

message called MaxSPDMmsgSize

271 Additionally, the Requester and Responder can have a transmit buffer. The transmit buffer size is not communicated

to the other SPDM endpoint, but it can be less than the DataTransferSize of the receiving SPDM endpoint.

272 Both the Requester and Responder shall support a minimum size for both the transmit and receive buffer to

successfully transfer SPDM messages. The minimum size is referred to as MinDataTransferSize. For this version of

the specification, the MinDataTransferSize shall be 42. This value is the size, in bytes, of the SPDM message with

the largest size from this list, assuming all fields are present:

• GET_VERSION

• VERSION assuming no versions returned contain Alpha versions in VersionNumberEntry and version entries are

not duplicated.

• GET_CAPABILITIES

• CAPABILITIES with Param1 in the GET_CAPABILITIES request set to 0.

• CHUNK_SEND using the size of the SPDM Header for the size of the SPDMchunk field.

• CHUNK_SEND_ACK using the maximum size of ERROR message for the size of the ResponseToLargeRequest field.

• CHUNK_GET

• CHUNK_RESPONSE using the size of SPDM Header for the size of the SPDMchunk field.

• ERROR using the maximum size for the ExtendedErrorData

273 The GET_CAPABILITIES request with Extended capabilities (Bit 0 of Param1 set to a value of 1) is only allowed if both

the Requester and Responder support the Large SPDM message transfer mechanism (CHUNK_CAP=1). If the

GET_CAPABILITIES request sets Bit 0 of Param1 to a value of 1, then the Responder shall use the value for

DataTransferSize and MaxSPDMmsgSize from the request for the transmission of the CAPABILITIES response. A

Responder can report that it needs to transmit the response in smaller transfers by sending an ERROR message of

ErrorCode=LargeResponse . If the GET_CAPABILITIES request sets Bit 0 of Param1 to a value of 1 and the Responder

does not support the Large SPDM message transfer mechanism (CHUNK_CAP=0), the Responder shall send an

ERROR message of ErrorCode=InvalidRequest .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 59

274 Table 11 — GET_CAPABILITIES request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE1 = GET_CAPABILITIES . See Table 4 —

SPDM request codes.

2 Param1 1

Shall be the extended capabilities to include in the

response.

• Bit 0. If set in the requests, the Responder shall

include the Supported Algorithms Block in its

CAPABILITIES response if it supports this

extended capability. If the Requester does not

support the Large SPDM message transfer

mechanism (CHUNK_CAP=0), this bit shall be 0.

• All other values reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be exponent of base 2, which is used to

calculate CT .

See Table 7 — Timing specification for SPDM

messages.

The equation for CT shall be 2 CTExponent

microseconds (µs).

For example, if CTExponent is 10, CT is 210 = 1024

µs.

6 Reserved 2 Reserved.

8 Flags 4
See Table 13 — Flag fields definitions for the

Requester.

12 DataTransferSize 4

This field shall indicate the maximum buffer size, in

bytes, of the Requester for receiving a single and

complete SPDM message whose message size is

less than or equal to the value in this field. The value

of this field shall be equal to or greater than

MinDataTransferSize . The DataTransferSize shall

exclude transport headers, encryption headers, and

MAC. This field helps the sender of the SPDM

message know whether or not it needs to utilize the

Large SPDM message transfer mechanism.

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

16 MaxSPDMmsgSize 4

If the Requester supports the Large SPDM message

transfer mechanism, this field shall indicate the

maximum size, in bytes, of the internal buffer of a

Requester used to reassemble a single and

complete Large SPDM message. This field shall be

greater than or equal to DataTransferSize . This

buffer size is most helpful when transferring a Large

SPDM message in multiple chunks because it tells

the sender whether or not there is enough memory

for the fully reassembled SPDM message.

If the Requester does not support the Large SPDM

message transfer mechanism, this field shall be

equal to the DataTransferSize of the Requester.

275 Table 12 — Successful CAPABILITIES response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x61 = CAPABILITIES . See Table 5 —

SPDM response codes.

2 Param1 1

Shall be the extended capabilities included in the

response.

• Bit 0. If the request message sets the Supported

Algorithms extended capability bit and the

Responder supports this extended capability,

then the Responder shall set this bit in the

response and shall include the Supported

Algorithms Block in its CAPABILITIES response.

If the Responder does not support this extended

capability or does not support the Large SPDM

message transfer mechanism (CHUNK_CAP=0),

this bit shall be 0.

• All other values reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 61

Byte offset Field Size (bytes) Description

5 CTExponent 1

Shall be the exponent of base 2, which used to

calculate CT .

See Table 7 — Timing specification for SPDM

messages.

The equation for CT shall be 2 CTExponent

microseconds (µs).

For example, if CTExponent is 10, CT is 210 = 1024

µs.

6 Reserved 2 Reserved.

8 Flags 4
See Table 14 — Flag fields definitions for the

Responder.

12 DataTransferSize 4

This field shall indicate the maximum buffer size, in

bytes, of the Responder for receiving a single and

complete SPDM message whose message size is

less than or equal to the value in this field. The value

of this field shall be equal to or greater than

MinDataTransferSize . The DataTransferSize shall

exclude transport headers, encryption headers, and

MAC. This field helps the sender of the SPDM

message know whether or not it needs to utilize the

Large SPDM message transfer mechanism.

16 MaxSPDMmsgSize 4

If the Responder supports the Large SPDM message

transfer mechanism, this field shall indicate the

maximum size, in bytes, of the internal buffer of a

Responder used to reassemble a single and

complete Large SPDM message. This field shall be

greater than or equal to DataTransferSize . This

buffer size is most helpful when transferring a Large

SPDM message in multiple chunks because it tells

the sender whether or not there is enough memory

for the fully reassembled SPDM message.

If the Responder does not support the Large SPDM

message transfer mechanism, this field shall be

equal to the DataTransferSize of the Responder.

20 SupportedAlgorithms AlgSize or 0

If present, this field shall be AlgSize in size and the

format of the field shall be as described in Supported

algorithms block. If Bit 0 of Param1 does not indicate

that the Supported Algorithm extended capability is

included in this response, then this field shall be

absent.

276 As described in other parts of this specification, a Requester or Responder can reverse roles or take on both roles for

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Work in Progress Version 1.4.0WIP70

certain SPDM messages and flows. Thus, an SPDM endpoint cannot send a Large SPDM message that exceeds the

MaxSPDMmsgSize of the receiving SPDM endpoint. Specifically, a requesting SPDM endpoint shall not send a request

that exceeds the size of MaxSPDMmsgSize of the responding SPDM endpoint. Likewise, a responding SPDM endpoint

shall not send a response that exceeds the size of MaxSPDMmsgSize of the requesting SPDM endpoint. If the size of a

response message exceeds the size of the MaxSPDMmsgSize of the requesting SPDM endpoint, the responding SPDM

endpoint shall respond with an ERROR message of ErrorCode=ResponseTooLarge . If the size of a request message

exceeds the size of the MaxSPDMmsgSize of the responding SPDM endpoint, the responding SPDM endpoint shall

either respond with an ERROR message of ErrorCode=RequestTooLarge or silently discard the request. Additionally, an

SPDM endpoint is expected to provide graceful error handling (for example, buffer overflow/underflow protection) in

the event that it receives an SPDM message that exceeds its MaxSPDMmsgSize .

277 Table 13 — Flag fields definitions for the Requester shows the flag fields definitions for the Requester.

278 Unless otherwise stated, if a Requester indicates support for a capability associated with an SPDM request or

response message, it means the Requester can receive the corresponding request and produce a successful

response. In other words, the Requester is acting as a Responder to that SPDM request associated with that

capability. For example, if a Requester sets the CERT_CAP bit to 1 , the Requester can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

279 AlgSize is the size of the Supported algorithms block. If the Supported Algorithms Block is not included in the

response, then the SupportedAlgorithms field shall be absent.

280 Table 13 — Flag fields definitions for the Requester

Byte offset Bit offset Field Description

0 0 Reserved Reserved.

0 1 CERT_CAP

If set, Requester shall support DIGESTS and

CERTIFICATE response messages. Shall be 0b if

the Requester does not support asymmetric

algorithms.

0 2 CHAL_CAP
DEPRECATED: If set, Requester shall support

CHALLENGE_AUTH response message.

0 [5:3] Reserved Reserved.

0 6 ENCRYPT_CAP

If set, Requester shall support message encryption

in a secure session. If set, when the Requester

chooses to start a secure session, the Requester

shall send one of the Session-Secrets-Exchange

request messages supported by the Responder.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 63

Byte offset Bit offset Field Description

0 7 MAC_CAP

If set, Requester shall support message

authentication in a secure session. If set, when the

Requester chooses to start a secure session, the

Requester shall send one of the Session-Secrets-

Exchange request messages supported by the

Responder. MAC_CAP is not the same as the HMAC in

the RequesterVerifyData or ResponderVerifyData

fields of Session-Secrets-Exchange and Session-

Secrets-Finish messages.

1 0 MUT_AUTH_CAP If set, Requester shall support mutual authentication.

1 1 KEY_EX_CAP

If set, Requester shall support KEY_EXCHANGE

request message. If set, ENCRYPT_CAP or MAC_CAP

shall be set.

1 [3:2] PSK_CAP

Pre-Shared Key capabilities of the Requester.

• 00b . Requester shall not support Pre-Shared

Key capabilities.

• 01b . Requester shall support Pre-Shared Key

• 10b and 11b . Reserved.

If supported, ENCRYPT_CAP or MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Requester shall support

GET_ENCAPSULATED_REQUEST , ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages. Additionally,

the transport may require the Requester to support

these messages.

ENCAP_CAP was previously deprecated because

Basic mutual authentication is deprecated.

Deprecation is removed since some messages, such

as KEY_UPDATE , do not require mutual authentication

but still require ENCAP_CAP .

1 5 HBEAT_CAP
If set, Requester shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Requester shall support KEY_UPDATE

messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Work in Progress Version 1.4.0WIP70

Byte offset Bit offset Field Description

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Requester can support a Responder that

can only send and receive all SPDM messages

exchanged during the Session Handshake Phase in

the clear (such as without encryption and message

authentication). Application data is encrypted and/or

authenticated using the negotiated cryptographic

algorithms as normal. Setting this bit leads to

changes in the contents of certain SPDM messages,

as discussed in other parts of this specification.

If this bit is cleared, the Requester signals that it

requires encryption and/or message authentication

of SPDM messages exchanged during the Session

Handshake Phase.

If the Requester supports Pre-Shared Keys

(PSK_CAP is 01b) and does not support asymmetric

key exchange (KEY_EX_CAP is 0b), then this bit shall

be zero. If the Requester does not support

encryption and message authentication, then this bit

shall be zero.

In other words, this bit indicates whether MAC_CAP

and ENCRYPT_CAP is involved accordingly in the

handshake phase of a secure session or both

encryption and message authentication capabilities

are disabled in the session handshake phase of a

secure session.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Requester was

provisioned to the Responder. The transport layer is

responsible for identifying the Responder. In this

case, the CERT_CAP and MULTI_KEY_CAP of the

Requester shall be 0 .

2 1 CHUNK_CAP
If set, Requester shall support Large SPDM

message transfer mechanism messages.

2 [5:2] Reserved Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 65

Byte offset Bit offset Field Description

2 [7:6] EP_INFO_CAP

The ENDPOINT_INFO response capabilities of the

Requester.

• 00b . The Requester does not support

ENDPOINT_INFO response capabilities.

• 01b . The Requester supports the

ENDPOINT_INFO response but cannot perform

signature generation for this response.

• 10b . The Requester supports the

ENDPOINT_INFO response and can generate

signatures for this response.

• 11b . Reserved.

3 0 Reserved Reserved.

3 1 EVENT_CAP
If set, the Requester is an Event Notifier. See Event

mechanism for details.

3 [3:2] MULTI_KEY_CAP

Shall be the Multiple Asymmetric Key capabilities of

the Requester.

• 00b . Requester shall not support Multiple

Asymmetric Key capabilities.

• 01b . Requester shall only support Multiple

Asymmetric Key capabilities.

• 10b . Requester shall support Multiple

Asymmetric Key capabilities, and Responder can

use RequesterMultiKeyConnSel as Multiple

Asymmetric Key Negotiation describes.

• 11b . Reserved.

If set to 01b or 10b , the Requester shall support

more than one key pair for at least one asymmetric

algorithm for use in Requester authentication such

as in mutual authentication. In the case of mutual

authentication, these are the key pairs belonging to

the Requester.

3 [6:4] Reserved Reserved.

3 7 LARGE_CERT_CAP

If set, Requester shall support using large fields in

the CERTIFICATE response messages. Shall be 0b

if the Requester's CERT_CAP field is 0b .

281 Table 14 — Flag fields definitions for the Responder shows the flag fields definitions for the Responder.

282 Unless otherwise stated, if a Responder indicates support for a capability associated with an SPDM request or

response message, it means the Responder can receive the corresponding request and produce a successful

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Work in Progress Version 1.4.0WIP70

response. For example, if a Responder sets the CERT_CAP bit to 1 , the Responder can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

283 Table 14 — Flag fields definitions for the Responder

Byte offset Bit offset Field Description

0 0 CACHE_CAP

If set, the Responder shall support the ability

to cache the Negotiated State across a Reset.

This allows the Requester to skip reissuing

the GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS requests after a

Reset. The Responder shall cache the

selected cryptographic algorithms as one of

the parameters of the Negotiated State. If the

Requester chooses to skip issuing these

requests after the Reset, the Requester shall

also cache the same selected cryptographic

algorithms.

0 1 CERT_CAP

If set, Responder shall support DIGESTS and

CERTIFICATE response messages. Shall be

0b if the Responder does not support

asymmetric algorithms.

0 2 CHAL_CAP
If set, Responder shall support

CHALLENGE_AUTH response message.

0 [4:3] MEAS_CAP

MEASUREMENTS response capabilities of the

Responder.

• 00b . The Responder shall not support

MEASUREMENTS response capabilities.

• 01b . The Responder shall support

MEASUREMENTS response but cannot

perform signature generation for this

response.

• 10b . The Responder shall support

MEASUREMENTS response and can

generate signatures for this response.

• 11b . Reserved.

Note that, apart from affecting MEASUREMENTS ,

this capability also affects Param2 of

CHALLENGE , Param1 of KEY_EXCHANGE ,

Param1 of PSK_EXCHANGE , and the

MeasurementSummaryHash field of

KEY_EXCHANGE_RSP , CHALLENGE_AUTH , and

PSK_EXCHANGE_RSP . See the respective

request and response clauses for further

details.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 67

Byte offset Bit offset Field Description

0 5 MEAS_FRESH_CAP

• 0 . As part of MEASUREMENTS response

message, the Responder may return

MEASUREMENTS that were computed during

the last Responder's Reset.

• 1 . The Responder shall support

recomputing all MEASUREMENTS without

requiring a Reset and shall always return

fresh MEASUREMENTS as part of

MEASUREMENTS response message.

0 6 ENCRYPT_CAP

If set, Responder shall support message

encryption in a secure session. If set,

PSK_CAP or KEY_EX_CAP shall be set

accordingly to indicate support.

0 7 MAC_CAP

If set, Responder shall support message

authentication in a secure session. If set,

PSK_CAP or KEY_EX_CAP shall be set

accordingly to indicate support. MAC_CAP is

not the same as the HMAC in the

RequesterVerifyData or

ResponderVerifyData fields of Session-

Secrets-Exchange and Session-Secrets-

Finish messages.

1 0 MUT_AUTH_CAP
If set, Responder shall support mutual

authentication.

1 1 KEY_EX_CAP

If set, Responder shall support

KEY_EXCHANGE_RSP response message. If set,

ENCRYPT_CAP or MAC_CAP shall be set.

1 [3:2] PSK_CAP

Pre-Shared Key capabilities of the

Responder.

• 00b . Responder shall not support Pre-

Shared Key capabilities.

• 01b . Responder shall support Pre-

Shared Key but does not provide

ResponderContext for session key

derivation.

• 10b . Responder shall support Pre-

Shared Key and provides

ResponderContext for session key

derivation.

• 11b . Reserved.

If supported, ENCRYPT_CAP or MAC_CAP shall

be set.

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Work in Progress Version 1.4.0WIP70

Byte offset Bit offset Field Description

1 4 ENCAP_CAP

If set, Responder shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages.

Additionally, the transport may require the

Responder to support these messages.

ENCAP_CAP was previously deprecated

because Basic mutual authentication is

deprecated. Deprecation is removed since

some messages, such as KEY_UPDATE , do not

require mutual authentication but still require

ENCAP_CAP .

1 5 HBEAT_CAP
If set, Responder shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Responder shall support KEY_UPDATE

messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and

receive messages without encryption and

message authentication during the Session

Handshake Phase. If set, KEY_EX_CAP shall

also be set. Setting this bit leads to changes

in the contents of certain SPDM messages,

as discussed in other parts of this

specification.

If the Responder supports Pre-Shared Keys

(PSK_CAP is 01b) and does not support

asymmetric key exchange (KEY_EX_CAP is

0b), then this bit shall be zero. If the

Responder does not support encryption and

message authentication, then this bit shall be

zero.

In other words, this bit indicates whether

message authentication and/or encryption

(MAC_CAP and ENCRYPT_CAP) are used in the

handshake phase of a secure session.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Responder was

provisioned to the Requester. The transport

layer is responsible for identifying the

Requester. In this case, the CERT_CAP ,

ALIAS_CERT_CAP , and MULTI_KEY_CAP of the

Responder shall be 0 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 69

Byte offset Bit offset Field Description

2 1 CHUNK_CAP
If set, Responder shall support Large SPDM

message transfer mechanism messages.

2 2 ALIAS_CERT_CAP
If set, the Responder shall use the AliasCert

model. See Identity provisioning for details.

2 3 SET_CERT_CAP
If set, Responder shall support

SET_CERTIFICATE_RSP response messages.

2 4 CSR_CAP

If set, Responder shall support CSR response

messages. If this bit is set, SET_CERT_CAP

shall be set.

2 5 CERT_INSTALL_RESET_CAP

If set, Responder may return an ERROR

message of ErrorCode=ResetRequired to

complete a certificate provisioning request. If

this bit is set, SET_CERT_CAP shall be set and

CSR_CAP can be set.

2 [7:6] EP_INFO_CAP

The ENDPOINT_INFO response capabilities of

the Responder.

• 00b . The Responder shall not support

ENDPOINT_INFO response capabilities.

• 01b . The Responder shall support the

ENDPOINT_INFO response but cannot

perform signature generation for this

response.

• 10b . The Responder shall support the

ENDPOINT_INFO response and can

generate signatures for this response.

• 11b . Reserved.

3 0 MEL_CAP

If set, Responder shall support

MEASUREMENT_EXTENSION_LOG response

message.

3 1 EVENT_CAP
If set, the Responder is an Event Notifier. See

Event mechanism for details.

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Work in Progress Version 1.4.0WIP70

Byte offset Bit offset Field Description

3 [3:2] MULTI_KEY_CAP

Shall be the Multiple Asymmetric Key

capabilities of the Responder.

• 00b . Responder shall not support

Multiple Asymmetric Key capabilities.

• 01b . Responder shall only support

Multiple Asymmetric Key capabilities.

• 10b . Responder shall support Multiple

Asymmetric Key capabilities, and

Requester can use

ResponderMultiKeyConn as Multiple

Asymmetric Key Negotiation describes.

• 11b . Reserved.

If set to 01b or 10b , the Responder shall

support more than one key pair for at least

one asymmetric algorithm for the SPDM

connection to use in Responder

authentication.

3 4 GET_KEY_PAIR_INFO_CAP

If set, Responder shall support

KEY_PAIR_INFO response messages. If the

Responder sets MULTI_KEY_CAP , this bit shall

also be set.

3 5 SET_KEY_PAIR_INFO_CAP
If set, Responder shall support

SET_KEY_PAIR_INFO_ACK response message.

3 6 SET_KEY_PAIR_RESET_CAP

If set, Responder may return an ERROR

message of ErrorCode=ResetRequired to

complete a SET_KEY_PAIR_INFO request. If this

bit is set, SET_KEY_PAIR_INFO_CAP shall be set.

3 7 LARGE_CERT_CAP

If set, Responder shall support using large

fields in the CERTIFICATE response

messages. Shall be 0b if the Responder's

CERT_CAP field is 0b .

284 In the case where an SPDM implementation incorrectly returns an illegal combination of capability flags as they are

defined by this specification (for example, ENCRYPT_CAP is set but both KEY_EX_CAP and PSK_CAP are cleared), the

following guidance is provided: If a Responder detects an illegal capability flag combination reported by the

Requester, it shall issue an ERROR message of ErrorCode=InvalidRequest .

285 10.3.1 Supported algorithms block

286 The Supported Algorithms Block reports all options from the ALGORITHMS response that are supported by the

Responder. The Supported Algorithms Block shall conform to the Table 15 — NEGOTIATE_ALGORITHMS request

message format, including all fields from Param1 through the end of the message, inclusive. When constructing the

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 71

Supported Algorithms Block, the Responder shall follow all requirements for the Requester, and shall set all bits and

values that reflect algorithms that the Responder supports.

287 10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response
messages

288 This request message shall negotiate cryptographic algorithms. In SPDM, the Requester issues

NEGOTIATE_ALGORITHMS to indicate which cryptographic algorithm(s) it supports for each type of cryptographic

operation, and the Responder selects one algorithm of each type using the ALGORITHMS response message. The

selected algorithms shall be used for all relevant cryptographic operations for the duration of the connection. The

criteria a Responder uses to determine which algorithm to select when more than one are supported by both

endpoints are outside the scope of this specification.

289 Figure 7 — Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing

algorithm. Endpoint A issues a NEGOTIATE_ALGORITHMS request message, and endpoint B returns a selected mutually

supported algorithm in the ALGORITHMS response.

290 Figure 7 — Hashing algorithm selection: Example 1

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Work in Progress Version 1.4.0WIP70

291

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

292 If the Requester and Responder support no common algorithms of a particular type, the Responder shall issue an

ALGORITHMS response message with all appropriate selection field values set to zero to indicate that no selection was

made. The Responder should respond to all subsequent requests by this Requester with an ERROR message of

ErrorCode=RequestResynch . The Responder may continue to operate with limited functionality for operations that do

not require negotiated cryptographic algorithms.

293 A Requester shall not issue a NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES

response message.

294 After a Requester issues a NEGOTIATE_ALGORITHMS request, it shall not issue any other SPDM requests, with the

exception of GET_VERSION , until it receives a successful ALGORITHMS response message.

295 For each algorithm type, a Responder shall not select both an SPDM-enumerated algorithm and an extended

algorithm.

296 The SPDM protocol accounts for the possibility that both endpoints issue NEGOTIATE_ALGORITHMS request messages

independently of each other. In this case, the endpoint A Requester and endpoint B Responder communication pair

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 73

might select a different algorithm from the one selected by the endpoint B Requester and endpoint A Responder

communication pair.

297 Table 15 — NEGOTIATE_ALGORITHMS request message format shows the NEGOTIATE_ALGORITHMS request

message format.

298 Table 15 — NEGOTIATE_ALGORITHMS request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE3 = NEGOTIATE_ALGORITHMS . See Table 4

— SPDM request codes.

2 Param1 1
Shall be the number of algorithm structure tables in

this request using ReqAlgStruct .

3 Param2 1 Reserved.

4 Length 2

Shall be the length of the entire request message, in

bytes. Length shall be less than or equal to 128

bytes.

6 MeasurementSpecification 1

Bit mask. The Measurement specification field format

table defines the format for this field. For each

defined measurement specification a Requester

supports, the Requester can set the appropriate bits.

7 OtherParamsSupport 1

Shall be the selection bit mask.

Bit [3:0] - See Opaque Data Format Support and

Selection Table

Bit [4] - This field shall be the

ResponderMultiKeyConn field as Multiple Asymmetric

Key Negotiation describes.

Bit [7:5] - Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

8 BaseAsymAlgo 4

Shall be the bit mask listing Requester-supported

SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature verification. If

the Requester does not support any request/

response pair that requires signature verification, this

value shall be set to zero. If the Requester will not

send any requests that require a signature, this value

should be set to zero. Let SigLen be the size of the

signature in bytes.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048 where

SigLen =256.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048 where

SigLen =256.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072 where

SigLen =384.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072 where

SigLen =384.

• Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256 where

SigLen =64 (32-byte r followed by 32-byte s).

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096 where

SigLen =512.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096 where

SigLen =512.

• Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384 where

SigLen =96 (48-byte r followed by 48-byte s).

• Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521 where

SigLen =132 (66-byte r followed by 66-byte s).

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256

where SigLen =64 (32-byte SM2_R followed by

32-byte SM2_S).

• Byte 1 Bit 2. EdDSA ed25519 where SigLen =64

(32-byte R followed by 32-byte S).

• Byte 1 Bit 3. EdDSA ed448 where SigLen =114

(57-byte R followed by 57-byte S).

• All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 75

Byte offset Field Size (bytes) Description

12 BaseHashAlgo 4

Shall be the bit mask listing Requester-supported

SPDM-enumerated cryptographic hashing

algorithms. If the Requester does not support any

request/response pair that requires hashing

operations, this value shall be set to zero.

• Byte 0 Bit 0. TPM_ALG_SHA_256

• Byte 0 Bit 1. TPM_ALG_SHA_384

• Byte 0 Bit 2. TPM_ALG_SHA_512

• Byte 0 Bit 3. TPM_ALG_SHA3_256

• Byte 0 Bit 4. TPM_ALG_SHA3_384

• Byte 0 Bit 5. TPM_ALG_SHA3_512

• Byte 0 Bit 6. TPM_ALG_SM3_256

• All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

76 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

16 PqcAsymAlgo 4

Shall be the bit mask listing Requester-supported

SPDM-enumerated PQC asymmetric key signature

algorithms for the purpose of signature verification. If

the Requester does not support any request/

response pair that requires signature verification, this

value shall be set to zero. If the Requester will not

send any requests that require a signature, this value

shall be set to zero. Let SigLen be the size of the

signature in bytes.

• Byte 0 Bit 0. ML-DSA-44 where SigLen =2420.

• Byte 0 Bit 1. ML-DSA-65 where SigLen =3309.

• Byte 0 Bit 2. ML-DSA-87 where SigLen =4627.

• Byte 0 Bit 3. SLH-DSA-SHA2-128s where

SigLen =7856.

• Byte 0 Bit 4. SLH-DSA-SHAKE-128s where

SigLen =7856.

• Byte 0 Bit 5. SLH-DSA-SHA2-128f where

SigLen =17088.

• Byte 0 Bit 6. SLH-DSA-SHAKE-128f where

SigLen =17088.

• Byte 0 Bit 7. SLH-DSA-SHA2-192s where

SigLen =16224.

• Byte 1 Bit 0. SLH-DSA-SHAKE-192s where

SigLen =16224.

• Byte 1 Bit 1. SLH-DSA-SHA2-192f where

SigLen =35664.

• Byte 1 Bit 2. SLH-DSA-SHAKE-192f where

SigLen =35664.

• Byte 1 Bit 3. SLH-DSA-SHA2-256s where

SigLen =29792.

• Byte 1 Bit 4. SLH-DSA-SHAKE-256s where

SigLen =29792.

• Byte 1 Bit 5. SLH-DSA-SHA2-256f where

SigLen =49856.

• Byte 1 Bit 6. SLH-DSA-SHAKE-256f where

SigLen =49856.

• All other values reserved.

20 Reserved 8 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 77

Byte offset Field Size (bytes) Description

28 ExtAsymCount 1

Shall be the number of Requester-supported

extended asymmetric key signature algorithms (=A)

for the purpose of signature verification. A + E +

ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4 +

ExtAlgCount5 shall be less than or equal to 20. If the

Requester does not support any request/response

pair that requires signature verification, this value

shall be set to zero.

29 ExtHashCount 1

Shall be the number of Requester-supported

extended hashing algorithms (=E). A + E +

ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4 +

ExtAlgCount5 shall be less than or equal to 20. If the

Requester does not support any request/response

pair that requires hashing operations, this value shall

be set to zero.

30 Reserved 1 Reserved.

31 MELspecification 1

Shall be the bit mask. The Measurement Extension

Log specification field format table defines the format

for this field. The Requester shall set the

corresponding bit for each supported measurement

extension log (MEL) specification.

32 ExtAsym 4 * A

Shall be the list of Requester-supported extended

asymmetric key signature algorithms for the purpose

of signature verification. Table 31 — Extended

Algorithm field format describes the format of this

field.

32 + 4 * A ExtHash 4 * E

Shall be the list of the extended hashing algorithms

supported by Requester. Table 31 — Extended

Algorithm field format describes the format of this

field.

32 + 4 * A + 4 * E ReqAlgStruct AlgStructSize See the AlgStructure request field.

299 AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall

be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

300 Table 16 — Algorithm request structure shows the Algorithm request structure:

301 Table 16 — Algorithm request structure

Security Protocol and Data Model (SPDM) Specification DSP0274

78 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 AlgType 1

Shall be the type of algorithm.

• 0x00 and 0x01. Reserved.

• 0x02. DHE.

• 0x03. AEADCipherSuite .

• 0x04. ReqBaseAsymAlg .

• 0x05. KeySchedule .

• 0x06. ReqPqcAsymAlg .

• 0x07. KEMAlg .

1 AlgCount 1

Shall be the Requester-supported fixed algorithms.

• Bit [7:4]. Number of bytes required to describe

Requester-supported SPDM-enumerated fixed

algorithms (=FixedAlgCount). FixedAlgCount +

2 shall be a multiple of 4.

• Bit [3:0]. Number of Requester-supported

extended algorithms (= ExtAlgCount).

2 AlgSupported FixedAlgCount
Shall be the bit mask listing Requester-supported

SPDM-enumerated algorithms.

2 + FixedAlgCount AlgExternal 4 * ExtAlgCount

Shall be the list of Requester-supported extended

algorithms. Table 31 — Extended Algorithm field

format describes the format of this field.

302 The following tables describe the Algorithm request structures mapped to their respective types:

• Table 17 — DHE structure

• Table 18 — AEAD structure

• Table 19 — ReqBaseAsymAlg structure

• Table 20 — KeySchedule structure

• Table 21 — ReqPqcAsymAlg structure

• Table 22 — KEMAlg structure

303 Table 17 — DHE structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x02 = DHE

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended DHE groups (= ExtAlgCount2).

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 79

Byte offset Field Size (bytes) Description

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated Diffie-Hellman Ephemeral (DHE)

groups. Values in parentheses specify the size of the

corresponding public values associated with each

group.

• Byte 0 Bit 0. ffdhe2048 (D = 256).

• Byte 0 Bit 1. ffdhe3072 (D = 384).

• Byte 0 Bit 2. ffdhe4096 (D = 512).

• Byte 0 Bit 3. secp256r1 (D = 64, C = 32).

• Byte 0 Bit 4. secp384r1 (D = 96, C = 48).

• Byte 0 Bit 5. secp521r1 (D = 132, C = 66).

• Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5 of

GB/T 32918 specification) (D = 64, C = 32).

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount2

Shall be the list of Requester-supported extended

DHE groups and KEM. Table 31 — Extended

Algorithm field format describes the format of this

field.

304 Table 18 — AEAD structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be the 0x03 = AEAD

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended AEAD algorithms (= ExtAlgCount3).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated AEAD algorithms.

• Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit

IV (initialization vector); tag size is specified by

transport layer.

• Byte 0 Bit 1. AES-256-GCM. 256-bit key; 96-bit

IV; tag size is specified by transport layer.

• Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit

key; 96-bit IV; 128-bit tag.

• Byte 0 Bit 3. AEAD_SM4_GCM. 128-bit key;

96-bit IV; tag size is specified by transport layer.

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount3

Shall be the list of Requester-supported extended

AEAD algorithms. Table 31 — Extended Algorithm

field format describes the format of this field.

Security Protocol and Data Model (SPDM) Specification DSP0274

80 Work in Progress Version 1.4.0WIP70

305 Table 19 — ReqBaseAsymAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x04 = ReqBaseAsymAlg

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended asymmetric key signature algorithms

for the purpose of signature generation

(= ExtAlgCount4).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature generation. If

the Requester does not support any request/

response pair that requires signature generation, this

value shall be set to zero.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072.

• Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256.

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096.

• Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384.

• Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521.

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256.

• Byte 1 Bit 2. EdDSA ed25519.

• Byte 1 Bit 3. EdDSA ed448.

• All other values reserved.

For details of SigLen for each algorithm, see Table

15 — NEGOTIATE_ALGORITHMS request message

format.

4 AlgExternal 4 * ExtAlgCount4

Shall be the list of Requester-supported extended

Base and PQC asymmetric key signature algorithms

for the purpose of signature generation. Table 31 —

Extended Algorithm field format describes the format

of this field.

306 Table 20 — KeySchedule structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x05 = KeySchedule

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 81

Byte offset Field Size (bytes) Description

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended key schedule algorithms

(= ExtAlgCount5).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated key schedule algorithms.

• Byte 0 Bit 0. SPDM Key Schedule.

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount5

Shall be the list of Requester-supported extended

key schedule algorithms. Table 31 — Extended

Algorithm field format describes the format of this

field.

307 Table 21 — ReqPqcAsymAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x06 = ReqPqcAsymAlg

1 AlgCount 1

• Bit [7:4]. Number of bytes for PQC signature

algorithms (= ReqPqcAsymAlgCount).

• Bit [3:0]. Shall be 0 .

Security Protocol and Data Model (SPDM) Specification DSP0274

82 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 AlgSupported ReqPqcAsymAlgCount

Shall be the bit mask listing Requester-supported

SPDM-enumerated PQC asymmetric key signature

algorithms for the purpose of signature generation. If

the Requester does not support any request/

response pair that requires signature generation, this

value shall be set to zero.

• Byte 0 Bit 0. ML-DSA-44.

• Byte 0 Bit 1. ML-DSA-65.

• Byte 0 Bit 2. ML-DSA-87.

• Byte 0 Bit 3. SLH-DSA-SHA2-128s.

• Byte 0 Bit 4. SLH-DSA-SHAKE-128s.

• Byte 0 Bit 5. SLH-DSA-SHA2-128f.

• Byte 0 Bit 6. SLH-DSA-SHAKE-128f.

• Byte 0 Bit 7. SLH-DSA-SHA2-192s.

• Byte 1 Bit 0. SLH-DSA-SHAKE-192s.

• Byte 1 Bit 1. SLH-DSA-SHA2-192f.

• Byte 1 Bit 2. SLH-DSA-SHAKE-192f.

• Byte 1 Bit 3. SLH-DSA-SHA2-256s.

• Byte 1 Bit 4. SLH-DSA-SHAKE-256s.

• Byte 1 Bit 5. SLH-DSA-SHA2-256f.

• Byte 1 Bit 6. SLH-DSA-SHAKE-256f.

• All other values reserved.

308 Table 22 — KEMAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x07 = KEMAlg

1 AlgCount 1

• Bit [7:4]. Number of bytes for KEM algorithms

(= KemAlgCount).

• Bit [3:0]. Shall be 0 .

2 AlgSupported KemAlgCount

Shall be the bit mask for indicating a Requester-

supported, SPDM-enumerated KEM algorithms for

the purpose of key encapsulation. If the Requester

does not support any request/response pair that

requires KEM, this value shall be set to zero.

• Byte 0 Bit 0. ML-KEM-512.

• Byte 0 Bit 1. ML-KEM-768.

• Byte 0 Bit 2. ML-KEM-1024.

• All other values reserved.

309 Table 23 — ALGORITHMS response message format shows the ALGORITHMS response message format.

310 Table 23 — Successful ALGORITHMS response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 83

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x63 = ALGORITHMS . See Table 5 — SPDM

response codes.

2 Param1 1
Shall be the number of algorithm structure tables in

this response using RespAlgStruct .

3 Param2 1 Reserved.

4 Length 2
Shall be the length of the response message, in

bytes.

6 MeasurementSpecificationSel 1

Bit mask. If the Responder supports MEL

(MEL_CAP=1b in its CAPABILITIES response) or

measurements (MEAS_CAP=01b or MEAS_CAP=10b in its

CAPABILITIES response), then the Responder shall

select one of the measurement specifications

supported by the Requester and Responder. No

more than one bit shall be set. The Measurement

specification field format table defines the format for

this field.

7 OtherParamsSelection 1

Shall be the selected Parameter Bit Mask. The

Responder shall select one of the opaque data

formats supported by both the Requester and the

Responder. Thus, no more than one bit shall be set

for the opaque data format.

• Bit [3:0]. See Opaque Data Format Support and

Selection Table.

• Bit 4 - This field shall be the

RequesterMultiKeyConnSel as Multiple

Asymmetric Key Negotiation describes.

• Bit [7:5]. Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

84 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

8 MeasurementHashAlgo 4

Shall be the bit mask indicating the SPDM-

enumerated hashing algorithms used for

measurements.

• Byte 0 Bit 0. Raw Bit Stream Only.

• Byte 0 Bit 1. TPM_ALG_SHA_256.

• Byte 0 Bit 2. TPM_ALG_SHA_384.

• Byte 0 Bit 3. TPM_ALG_SHA_512.

• Byte 0 Bit 4. TPM_ALG_SHA3_256.

• Byte 0 Bit 5. TPM_ALG_SHA3_384.

• Byte 0 Bit 6. TPM_ALG_SHA3_512.

• Byte 0 Bit 7. TPM_ALG_SM3_256.

• If the Responder supports measurements

(MEAS_CAP=01b or MEAS_CAP=10b in its

CAPABILITIES response) and if

MeasurementSpecificationSel is non-zero, then

exactly one bit in this bit field shall be set.

Otherwise, the Responder shall set this field to

0 .

• All other values reserved.

A Responder shall select bit 0 only if it supports raw

bit streams as the only form of measurement;

otherwise, the Responder shall select one of the

other bits.

12 BaseAsymSel 4

Shall be the bit mask indicating the SPDM-

enumerated asymmetric key signature algorithm

selected for the purpose of signature generation. If

the Responder does not support any request/

response pair that requires signature generation, this

value shall be set to zero. The total number of bits

set in this field and PqcAsymSel shall be no more

than one.

16 BaseHashSel 4

Shall be the bit mask indicating the SPDM-

enumerated hashing algorithm selected. If the

Responder does not support any request/response

pair that requires hashing operations, this value shall

be set to zero. The Responder shall set no more

than one bit.

20 PqcAsymSel 4

Shall be the bit mask indicating the SPDM-

enumerated PQC asymmetric key signature

algorithm selected for the purpose of signature

generation. If the Responder does not support any

request/response pair that requires signature

generation, this value shall be set to zero. The total

number of bits set in this field and BaseAsymSel

shall be no more than one.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 85

Byte offset Field Size (bytes) Description

24 Reserved 7 Reserved.

31 MELspecificationSel 1

Shall be the bit mask indicating MEL. The Responder

shall select one of the MEL specifications supported

by the Requester and Responder. No more than one

bit shall be set. The Measurement Extension Log

specification field format table defines the format for

this field.

32 ExtAsymSelCount 1

Shall be the number of extended asymmetric key

signature algorithms selected for the purpose of

signature generation. Shall be either 0 or 1 (=A').

If the Responder does not support any request/

response pair that requires signature generation, this

value shall be set to zero.

33 ExtHashSelCount 1

Shall be the number of extended hashing algorithms

selected. Shall be either 0 or 1 (=E'). If the

Responder does not support any request/response

pair that requires hashing operations, this value shall

be set to zero.

34 Reserved 2 Reserved.

36 ExtAsymSel 4 * A'

Shall be the extended asymmetric key signature

algorithm selected for the purpose of signature

generation. The Responder shall use this

asymmetric signature algorithm for all subsequent

applicable response messages to the Requester.

The extended algorithm field format table describes

the format of this field.

36 + 4 * A' ExtHashSel 4 * E'

Shall be the extended hashing algorithm selected.

The Responder shall use this hashing algorithm

during all subsequent response messages to the

Requester. The Requester shall use this hashing

algorithm during all subsequent applicable request

messages to the Responder. The extended algorithm

field format table describes the format of this field.

36 + 4 * A' + 4 * E' RespAlgStruct AlgStructSize See Table 24 — Response AlgStructure field format.

311 AlgStructSize is the sum of the sizes of all the algorithm structure tables, as the following tables show. An algorithm

structure table should be present only if the Responder supports that AlgType . AlgType shall monotonically

increase for subsequent entries.

312 Table 24 — Response AlgStructure field format

Security Protocol and Data Model (SPDM) Specification DSP0274

86 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 AlgType 1

Shall be the type of algorithm.

• 0x00 and 0x01. Reserved.

• 0x02. DHE.

• 0x03. AEADCipherSuite .

• 0x04. ReqBaseAsymAlg .

• 0x05. KeySchedule .

• 0x06. ReqPqcAsymAlg .

• 0x07. KEMAlg .

• All other values reserved.

1 AlgCount 1

Shall be the bit mask listing Responder-supported

fixed algorithm requested by the Requester.

• Bit [7:4]. Number of bytes required to describe

Requester-supported SPDM-enumerated fixed

algorithms (=FixedAlgCount). FixedAlgCount +

2 shall be a multiple of 4.

• Bit [3:0]. Number of Requester-supported,

Responder-selected, extended algorithms

(= ExtAlgCount'). This value shall be either 0 or

1.

2 AlgSupported FixedAlgCount

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

algorithm. Responder shall set at most one bit to 1.

2 + FixedAlgCount AlgExternal 4 * ExtAlgCount'

If present: shall be a Requester-supported,

Responder-selected, extended algorithm. Responder

shall select at most one extended algorithm. Table 31

— Extended Algorithm field format describes the

format of this field.

313 The following tables describe the algorithm types and their associated fixed fields:

• Table 25 — DHE structure

• Table 26 — AEAD structure

• Table 27 — ReqBaseAsymAlg structure

• Table 28 — KeySchedule structure

• Table 29 — ReqPqcAsymAlg structure

• Table 30 — KEMAlg structure

• Table 31 — Extended Algorithm field format

314 Table 25 — DHE structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x02 = DHE

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 87

Byte offset Field Size (bytes) Description

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Shall be the number of Requester-

supported, Responder-selected, extended DHE

groups (= ExtAlgCount2'). This value shall be

either 0 or 1.

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

DHE group. Values in parentheses specify the size of

the corresponding public values associated with

each group. The total number of bits set in this field

and the AlgSupported field of KEMAlg structure

(Table 30) shall be no more than one.

• Byte 0 Bit 0. ffdhe2048 (D = D' = 256).

• Byte 0 Bit 1. ffdhe3072 (D = D' = 384).

• Byte 0 Bit 2. ffdhe4096 (D = D' = 512).

• Byte 0 Bit 3. secp256r1 (D' = 64, C' = 32)

• Byte 0 Bit 4. secp384r1 (D' = 96, C' = 48).

• Byte 0 Bit 5. secp521r1 (D = D' = 132, C = C' =

66).

• Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5 of

GB/T 32918) (D = D' = 64, C = C' = 32).

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount2'

If present: shall be a Requester-supported,

Responder-selected, extended DHE or KEM

algorithm. Table 31 — Extended Algorithm field

format describes the format of this field.

315 Table 26 — AEAD structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x03 = AEAD

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Shall be the number of Requester-

supported, Responder-selected, extended

AEAD algorithms (= ExtAlgCount3'). This value

shall be either 0 or 1.

Security Protocol and Data Model (SPDM) Specification DSP0274

88 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

AEAD algorithm.

• Byte 0 Bit 0. AES-128-GCM.

• Byte 0 Bit 1. AES-256-GCM.

• Byte 0 Bit 2. CHACHA20_POLY1305.

• Byte 0 Bit 3. AEAD_SM4_GCM.

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount3'

If present: shall be a Requester-supported,

Responder-selected, extended AEAD algorithm.

Table 31 — Extended Algorithm field format

describes the format of this field.

316 Table 27 — ReqBaseAsymAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x04 = ReqBaseAsymAlg

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported,

Responder-selected, extended asymmetric key

signature algorithms (= ExtAlgCount4') for the

purpose of signature verification. This value

shall be either 0 or 1.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 89

Byte offset Field Size (bytes) Description

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

asymmetric key signature algorithm for the purpose

of signature verification. If the Responder does not

support any request/response pair that requires

signature verification, this value shall be set to zero.

If the Responder will not send any messages that

require a signature, this value should be set to zero.

The total number of bits set in this field and in the

AlgSupported field of ReqPqcAsymAlg shall be no

more than one.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072.

• Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256.

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096.

• Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384.

• Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521.

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256.

• Byte 1 Bit 2. EdDSA ed25519.

• Byte 1 Bit 3. EdDSA ed448.

• All other values reserved.

For details of SigLen for each algorithm, see Table

15 — NEGOTIATE_ALGORITHMS request message

format.

4 AlgExternal 4 * ExtAlgCount4'

If present: shall be a Requester-supported,

Responder-selected extended Base or PQC

asymmetric key signature algorithm for the purpose

of signature verification. Table 31 — Extended

Algorithm field format describes the format of this

field.

317 Table 28 — KeySchedule structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x05 = KeySchedule

Security Protocol and Data Model (SPDM) Specification DSP0274

90 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Shall be the number of Requester-

supported, Responder-selected, extended key

schedule algorithms (= ExtAlgCount5'). This

value shall be either 0 or 1.

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

key schedule algorithm.

• Byte 0 Bit 0. SPDM key schedule.

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount5'

If present: shall be a Requester-supported,

Responder-selected, extended key schedule

algorithm. Table 31 — Extended Algorithm field

format describes the format of this field.

318 Table 29 — ReqPqcAsymAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x06 = ReqPqcAsymAlg

1 AlgCount 1

• Bit [7:4]. Number of bytes for PQC signature

algorithms (= ReqPqcAsymAlgCount).

• Bit [3:0]. Shall be 0 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 91

Byte offset Field Size (bytes) Description

2 AlgSupported ReqPqcAsymAlgCount

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

PQC asymmetric key signature algorithm for the

purpose of signature verification. If the Responder

does not support any request/response pair that

requires signature verification, this value shall be set

to zero. If the Responder will not send any messages

that require a signature, this value shall be set to

zero.

• Byte 0 Bit 0. ML-DSA-44.

• Byte 0 Bit 1. ML-DSA-65.

• Byte 0 Bit 2. ML-DSA-87.

• Byte 0 Bit 3. SLH-DSA-SHA2-128s.

• Byte 0 Bit 4. SLH-DSA-SHAKE-128s.

• Byte 0 Bit 5. SLH-DSA-SHA2-128f.

• Byte 0 Bit 6. SLH-DSA-SHAKE-128f.

• Byte 0 Bit 7. SLH-DSA-SHA2-192s.

• Byte 1 Bit 0. SLH-DSA-SHAKE-192s.

• Byte 1 Bit 1. SLH-DSA-SHA2-192f.

• Byte 1 Bit 2. SLH-DSA-SHAKE-192f.

• Byte 1 Bit 3. SLH-DSA-SHA2-256s.

• Byte 1 Bit 4. SLH-DSA-SHAKE-256s.

• Byte 1 Bit 5. SLH-DSA-SHA2-256f.

• Byte 1 Bit 6. SLH-DSA-SHAKE-256f.

• All other values reserved.

For details of SigLen for each algorithm, see Table

15 — NEGOTIATE_ALGORITHMS request message

format.

319 Table 30 — KEMAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x07 = KEMAlg

1 AlgCount 1

• Bit [7:4]. Number of bytes for KEM algorithms

(= KemAlgCount).

• Bit [3:0]. Shall be 0 .

Security Protocol and Data Model (SPDM) Specification DSP0274

92 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 AlgSupported KemAlgCount

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

KEM algorithms for the purpose of key

encapsulation. If the Requester does not support any

request/response pair that requires KEM, this value

shall be set to zero.

• Byte 0 Bit 0. ML-KEM-512.

• Byte 0 Bit 1. ML-KEM-768.

• Byte 0 Bit 2. ML-KEM-1024.

• All other values reserved.

320 Table 31 — Extended Algorithm field format

Byte offset Field Size (bytes) Description

0 Registry ID 1

Shall represent the registry or standards body. The

ID column of Table 65 — Registry or standards body

ID describes the value of this field.

1 Reserved 1 Reserved.

2 Algorithm ID 2

Shall indicate the desired algorithm. The registry or

standards body owns the value of this field. See

Table 65 — Registry or standards body ID. At

present, DMTF does not define any algorithms for

use in extended algorithms fields.

321 Table 32 — Opaque Data Format Support and Selection

Bit offset Field Description

0 OpaqueDataFmt0

If set, this bit shall indicate that the format

for all OpaqueData fields in this

specification is defined by the device

vendor or other standards body.

1 OpaqueDataFmt1

If set, this bit shall indicate that the format

for all OpaqueData fields in this

specification is defined by the General

opaque data format.

[3:2] Reserved Reserved.

322 The Opaque Data Format Selection Table shows the bit definition for the format of the Opaque data fields. A

Requester may set more than one bit in the table to indicate each supported format. A Responder shall select no

more than one of the bits supported by both the Requester and the Responder in this table. If the Requester or the

Responder does not set a bit, then all OpaqueData fields in this specification shall be absent by setting the respective

OpaqueDataLength field to a value of zero.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 93

323 Table 33 — Measurement Specification Field Format

Bit offset Field Description

0 DMTFmeasSpec

This bit shall indicate a DMTF-defined measurement

specification. Table 58 — DMTF measurement

specification format defines the format for this

measurement specification.

[1:7] Reserved Reserved

324 The Measurement Specification Field Format Table describes the field format for Measurement specification related

fields. The selected measurement specification (MeasurementSpecificationSel) is used in the MEASUREMENTS

response. See Measurement block and GET_MEASUREMENTS for details.

325 Table 34 — Measurement Extension Log Specification Field Format

Bit offset Field Description

0 DMTFmelSpec

This bit indicates a DMTF-defined measurement

extension log specification. Refer to the DMTF

Measurement Extension Log Format clause for

details. If the Requester supports the DMTF-defined

measurement extension log specification, it shall set

this bit to 1 in MELspecification . If the Responder

selects the DMTF-defined measurement extension

log specification for constructing the MEL, it shall set

this bit to 1 in MELspecificationSel .

[1:7] Reserved Reserved

326 The Measurement Extension Log Specification Field Format Table describes the field format for MEL specification

related fields. The selected MEL specification (MELspecificationSel) is used in construction of the MEL.

327 10.4.1 Connection behavior after VCA

328 With the successful completion of the ALGORITHMS message, all the parameters of the SPDM connection have been

determined. Thus, all SPDM message exchanges after the VCA messages shall comply with the selected

parameters in the ALGORITHMS message, with the exception of GET_VERSION and VERSION messages, or unless

otherwise stated in this specification. To explain this behavior, suppose a Responder supports both RSA and ECDSA

asymmetric algorithms. For an SPDM connection, the Responder selects the TPM_ALG_RSASSA_2048 asymmetric

algorithm in BaseAsymSel and the TPM_ALG_SHA_256 hash algorithm in BaseHashSel . If the Requester on that same

connection issues GET_DIGESTS , the Responder returns TPM_ALG_SHA_256 digests only for those populated slots that

can provide a TPM_ALG_RSASSA_2048 signature for a CHALLENGE_AUTH response. The Responder would violate this

requirement if it returns one or more digests of populated slots that perform ECDSA signatures or if it uses a different

hash algorithm to create the digests.

329 Unless otherwise stated in this specification, and with the exception of GET_VERSION , if a Requester issues a request

Security Protocol and Data Model (SPDM) Specification DSP0274

94 Work in Progress Version 1.4.0WIP70

that violates one or more of the negotiated or selected parameters of a given connection, the Responder shall either

silently discard the request or return an ERROR message with an appropriate error code.

330 10.4.2 Multiple asymmetric key negotiation

331 The Requester and Responder can negotiate the parameters of multiple asymmetric key support for the SPDM

connection. As with other parameters in this request and response, the Responder makes the selection and the

Requester indicates its support. There are two sets of multiple asymmetric key use parameters to negotiate: one for

Responder authentication and one for Requester authentication.

332 10.4.3 Multiple asymmetric key use for Responder authentication

333 The Responder shall report the multiple asymmetric keys capability in the MULTI_KEY_CAP field of CAPABILITIES .

334 If MULTI_KEY_CAP is 10b , the ResponderMultiKeyConn field in NEGOTIATE_ALGORITHMS determines whether or not the

SPDM connection uses multiple asymmetric keys for Responder authentication. The Requester makes the decision

for the SPDM connection in the ResponderMultiKeyConn field. If the Requester sets the ResponderMultiKeyConn field,

the Responder shall support multiple asymmetric keys in the SPDM connection for Responder authentication. If

ResponderMultiKeyConn is not set, the Responder shall support only one key pair per supported asymmetric

algorithm for this SPDM connection.

335 If MULTI_KEY_CAP is 01b , the Responder determines that the SPDM connection uses multiple asymmetric keys. The

ResponderMultiKeyConn field in NEGOTIATE_ALGORITHMS shall be set to acknowledge the Responder capability.

336 If MULTI_KEY_CAP is 00b , the Responder determines that the SPDM connection does not use multiple asymmetric

keys. The ResponderMultiKeyConn field in NEGOTIATE_ALGORITHMS shall be cleared.

337 10.4.4 Multiple asymmetric key use for Requester authentication

338 The Requester shall report the multiple asymmetric keys capability for Requester authentication in the

MULTI_KEY_CAP field of GET_CAPABILITIES .

339 If MULTI_KEY_CAP is 10b , the RequesterMultiKeyConnSel field in the ALGORITHMS message determines whether or not

the SPDM connection uses multiple asymmetric keys for Requester authentication, such as in mutual authentication.

The Responder makes the decision for the SPDM connection in RequesterMultiKeyConnSel . If the Responder sets

the RequesterMultiKeyConnSel field, the Requester shall support multiple asymmetric keys in this SPDM connection

for Requester authentication. If RequesterMultiKeyConnSel is not set, the Requester shall support only one key pair

per supported asymmetric algorithm for this SPDM connection.

340 If MULTI_KEY_CAP is 01b , the Requester determines that the SPDM connection uses multiple asymmetric keys. The

RequesterMultiKeyConnSel field in the ALGORITHMS message shall be set to acknowledge the Requester capability.

341 If MULTI_KEY_CAP is 00b , the Requester determines that the SPDM connection does not use multiple asymmetric

keys. The RequesterMultiKeyConnSel field in the ALGORITHMS message shall be cleared.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 95

342 10.4.5 Multiple asymmetric key connection

343 For the remainder of this specification, the boolean variables MULTI_KEY_CONN_REQ and MULTI_KEY_CONN_RSP indicate

whether or not the responding SPDM endpoint supports more than one key pair for one or more asymmetric

algorithms for key pairs belonging to it in this SPDM connection. If the responding endpoint is the Requester, then

MULTI_KEY_CONN_REQ is used. See Table 35 — MULTI_KEY_CONN_REQ value calculation. If the responding

endpoint is the Responder, then MULTI_KEY_CONN_RSP is used. See Table 36 — MULTI_KEY_CONN_RSP value

calculation.

344 Table 35 — MULTI_KEY_CONN_REQ value calculation

MULTI_KEY_CAP in GET_CAPABILITIES RequesterMultiKeyConnSel in ALGORITHMS MULTI_KEY_CONN_REQ

00b 0 false

00b 1 invalid

01b 0 invalid

01b 1 true

10b 0 false

10b 1 true

345 Table 36 — MULTI_KEY_CONN_RSP value calculation

MULTI_KEY_CAP in CAPABILITIES ResponderMultiKeyConn in NEGOTIATE_ALGORITHMS MULTI_KEY_CONN_RSP

00b 0 false

00b 1 invalid

01b 0 invalid

01b 1 true

10b 0 false

10b 1 true

346 If the responding SPDM endpoint has MULTI_KEY_CAP set to 00b , then the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP shall be false.

347 If the responding SPDM endpoint has MULTI_KEY_CAP set to 01b , then the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP shall be true.

348 If the responding SPDM endpoint has MULTI_KEY_CAP set to 10b , then the value of the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP depends on the peer endpoint. If the responding SPDM endpoint is the

Requester and if RequesterMultiKeyConnSel is set by the Responder, then the value of MULTI_KEY_CONN_REQ shall be

true. If the responding SPDM endpoint is the Responder and if ResponderMultiKeyConn is set by the Requester, then

Security Protocol and Data Model (SPDM) Specification DSP0274

96 Work in Progress Version 1.4.0WIP70

the value of MULTI_KEY_CONN_RSP shall be true. In all other cases, the value of the corresponding MULTI_KEY_CONN_REQ

or MULTI_KEY_CONN_RSP shall be false.

349 10.5 Responder identity authentication

350 This clause describes request messages and response messages associated with the identity of the Responder's

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a Responder

that returns CERT_CAP=1 in its CAPABILITIES response message. The CHALLENGE message that this clause defines

shall be supported by a Responder that returns CHAL_CAP=1 in its CAPABILITIES response message. The

GET_DIGESTS and GET_CERTIFICATE messages are not applicable if the public key of the Responder was provisioned

to the Requester in a trusted environment.

351 Figure 8 — Responder authentication: Example certificate retrieval flow shows the high-level request-response

message flow and sequence for certificate retrieval.

352 Figure 8 — Responder authentication: Example certificate retrieval flow

353

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of certificate chain against
the root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 97

354 The GET_DIGESTS request message and DIGESTS response message can optimize the amount of data required to be

transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of every certificate chain stored on an endpoint are returned with the DIGESTS response

message, enabling the Requester to compare these values to previously retrieved and cached certificate chain hash

values and detect any changes to the certificate chains stored on the device before issuing a GET_CERTIFICATE

request message.

355 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload shall

contain the signature generated by using the private key associated with the leaf certificate over the hash of the

message transcript. See Table 51 — Request ordering and message transcript computation rules for M1/M2.

356 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder, which enables the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM versions.

357 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates.

The message transcript generation for the signature computation is restarted as of the most recent GET_VERSION

request received.

358 10.6 Requester identity authentication

359 If a Requester supports mutual authentication, it shall comply with all requirements placed on a Responder as

specified in Responder identity authentication.

360 If a Responder supports mutual authentication, it shall comply with all requirements placed on a Requester as

specified in Responder identity authentication. The preceding two statements essentially describe a role reversal.

361 10.7 Certificates and certificate chains

362 Each SPDM endpoint that supports identity authentication using certificates shall carry at least one complete

certificate chain. A certificate chain contains an ordered list of certificates, presented as the binary (byte)

concatenation of the fields that Table 37 — Certificate chain format shows. In the context of this specification, a

complete certificate chain is one where: (i) the first certificate either is signed by a Root Certificate (a certificate that

specifies a trust anchor) or is a Root Certificate itself, (ii) each subsequent certificate is signed by the preceding

certificate, and (iii) the final certificate contains the public key used to authenticate the SPDM endpoint. The final

certificate is called the leaf certificate.

363 If an SPDM endpoint does not support multiple asymmetric keys (MULTI_KEY_CAP=0), the SPDM endpoint shall

contain a single public-private key pair per supported algorithm for its leaf certificates, regardless of how many

certificate chains are stored on the device. The Responder selects a single asymmetric key signature algorithm per

Requester regardless of the value of MULTI_KEY_CAP field.

364 Certificate chains are stored in logical locations called slots. Each supported slot shall either be empty or contain one

complete certificate chain. A device shall not contain more than eight slots. Slots are numbered 0 through 7 inclusive.

Slot 0 is populated by default. If a device uses the DeviceCert model (ALIAS_CERT_CAP=0b in its CAPABILITIES

Security Protocol and Data Model (SPDM) Specification DSP0274

98 Work in Progress Version 1.4.0WIP70

response) and if the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is false, then the certificate chain in

every populated slot shall use the DeviceCert model. If a device uses the AliasCert model (ALIAS_CERT_CAP=1b in

its CAPABILITIES response) and if the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is false, then the

certificate chain in every populated slot shall use the AliasCert model. If the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP is false, the CertModel field in certificate info table shall always be zero, no matter whether the

device uses the DeviceCert model or the AliasCert model.

365 If the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true, the certificate model for each populated

certificate slot can be different. Multiple asymmetric key support allows the use of the generic certificate model. The

use of the GenericCert model shall be prohibited when the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP is false.

366 In all cases, the certificate model for slot 0 shall be either the device certificate model or the alias certificate model.

367 Additional slots may be populated through the supply chain such as by a platform integrator or by an end user such

as an IT administrator. A slot mask identifies the certificate chains in the eight slots. Similarly, if the Requester

supports mutual authentication and if MULTI_KEY_CONN_REQ is false, a Requester device shall use either the

DeviceCert model or the AliasCert model and the certificate chain in every populated slot shall use the same

model. Note that the Requester does not have capability flags to indicate the certificate model.

368 If an endpoint supports certificates, then Slot 0 is the default certificate chain slot. Slot 0 shall contain a valid

certificate chain unless the device has not yet had a certificate chain provisioned and is in a trusted environment.

369 Each certificate in a chain shall be in ASN.1 DER-encoded X.509 v3 format as RFC 5280 defines. The ASN.1 DER

encoding of each individual certificate can be analyzed to determine its length.

370 To allow for flexibility in supporting multiple certificate models, the minimum number of certificates within a certificate

chain shall be one and a chain shall contain a leaf certificate.

371 The leaf certificate in the device certificate model shall be the DeviceCert leaf certificate. The leaf certificate in an

alias certificate model shall be the AliasCert leaf certificate. In a generic certificate model, the leaf certificate shall

be the GenericCert leaf certificate. When the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is false

and a certificate chain consists of a single certificate, that certificate can only be a DeviceCert leaf certificate. When

the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true and a certificate chain consists of a single

certificate, that certificate is either a DeviceCert or a GenericCert leaf certificate.

372 When authenticating an SPDM endpoint, a valid certificate slot (SlotID), for slots 0 - 7 inclusively is a supported

certificate slot which contains both a certificate chain and its corresponding key pair. If a request uses an invalid

certificate slot, the responding SPDM endpoint shall either respond with an ERROR message or silently discard the

request.

373 Table 37 — Certificate chain format describes the certificate chain format:

374 Table 37 — Certificate chain format

Byte offset Field Size (bytes) Description

0 Length 4

Shall be the total length of the certificate chain, in

bytes, including all fields in this table. This field is

little endian.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 99

Byte offset Field Size (bytes) Description

4 RootHash H

Shall be the digest of the Root Certificate. Note that

the Root Certificate is ASN.1 DER-encoded for this

digest. This field shall be in hash byte order. H is

the output size, in bytes, of the hash algorithm

selected by the most recent ALGORITHMS response.

4 + H Certificates Length - (4 + H)

Shall be a complete certificate chain consisting of

one or more ASN.1 DER-encoded X.509 v3

certificates. This field shall be in Encoded ASN.1

byte order.

375 10.8 GET_DIGESTS request and DIGESTS response messages

376 This request message shall retrieve the certificate chain digests.

377 Table 38 — GET_DIGESTS request message format shows the GET_DIGESTS request message format.

378 The digests in Table 39 — Successful DIGESTS response message format shall be computed over the certificate

chain as Table 37 — Certificate chain format shows.

379 When the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true, certificate slots have four states that

can be reported by the endpoint. The sub-bullet of each state describes how the state is represented in the DIGESTS

response.

1. Does not exist

◦ The corresponding bit in SupportedSlotMask is not set.

2. Exists and empty

◦ The corresponding bit in SupportedSlotMask is set and the corresponding bit in

ProvisionedSlotMask is not set.

3. Exists with key

◦ The corresponding bits in SupportedSlotMask and ProvisionedSlotMask are set, but the value of

the corresponding CertModel field is zero.

4. Exists with key and cert

◦ The corresponding bits in SupportedSlotMask and ProvisionedSlotMask are set, and the value of

the corresponding CertModel field is non-zero.

380 When a certificate slot does not exist, it shall remain in this state for the remainder of the SPDM connection. The

"exists and empty" state indicates the presence of a certificate slot where neither a key nor a certificate has been

provisioned yet. The "Exists with key" state indicates the certificate slot has only an asymmetric key associated with it

but no certificate chain. The "Exists with key and cert" state indicates the certificate has both an asymmetric key

assigned to it and a certificate chain. The "Exists with key and cert" state is a fully provisioned state. When a

certificate slot exists, the typical progression of states starts at "exists and empty", followed by "Exists with key", and

ends with "Exists with key and cert".

381 Table 38 — GET_DIGESTS request message format

Security Protocol and Data Model (SPDM) Specification DSP0274

100 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x81 = GET_DIGESTS . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

382 Table 39 — Successful DIGESTS response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x01 = DIGESTS . See Table 5 — SPDM response

codes.

2 Param1 1

SupportedSlotMask. This field indicates which slots

the responding SPDM endpoint supports. If

certificate slot X exists in the responding SPDM

endpoint, the bit in position X of this byte shall be set.

(Bit 0 is the least significant bit of the byte.) Likewise,

if certificate slot X does not exist in the responding

SPDM endpoint, bit X of this byte shall not be set

and certificate slot X shall be an invalid value in

various slot ID fields (SlotID) across all SPDM

request messages that contain this field.

3 Param2 1

ProvisionedSlotMask. If slot K contains a certificate

chain that supports the currently negotiated

algorithms for the connection, bit K of this byte shall

be set. (Bit 0 is the least significant bit of the byte.)

Additionally, if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true

and if slot K contains an associated key pair that

supports the currently negotiated algorithms for the

connection, bit K of this byte shall be set. For all

fields from Digest to KeyUsageMask inclusive, the

number of fields returned (denoted by n) shall be

equal to the number of bits set in this byte.

These fields shall be returned in order of increasing

slot number.

If a bit is set in this field, the corresponding bit in

SupportedSlotMask shall also be set.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 101

Byte offset Field Size (bytes) Description

4 Digest[0] H
Digest of the certificate chain in CertSlot[0] . This

field shall be in hash byte order.

...

4 + H * (n - 1) Digest[n-1] H

Digest of the certificate chain in CertSlot[n-1] . This

field shall be in hash byte order. If a certificate chain

is not present in this slot, the value of this field shall

be all zeros.

4 + (H * n) KeyPairID[0] 1

Shall be the KeyPairID of the key pair associated

with CertSlot[0] .

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true.

Otherwise, it shall be absent.

...

3 + (H + 1) * n KeyPairID[n-1] 1

Shall be the KeyPairID of the key pair associated

with CertSlot[n-1] .

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true.

Otherwise, it shall be absent.

4 + (H + 1) * n CertificateInfo[0] 1

Shall be the certificate information for CertSlot[0] .

The format of this field shall be the format that the

certificate info table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true.

Otherwise, it shall be absent.

...

3 + (H + 2) * n CertificateInfo[n-1] 1

Shall be the certificate information for

CertSlot[n-1] . The format of this field shall be the

format that the certificate info table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true.

Otherwise, it shall be absent.

4 + (H + 2) * n KeyUsageMask[0] 2

Shall be the key usage bit mask for CertSlot[0] .

The format of this field shall be the format that the

key usage bit mask table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true.

Otherwise, it shall be absent.

Security Protocol and Data Model (SPDM) Specification DSP0274

102 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

...

2 + (H + 4) * n KeyUsageMask[n-1] 2

Shall be the key usage bit mask for CertSlot[n-1] .

The format of this field shall be the format that the

key usage bit mask table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true.

Otherwise, it shall be absent.

383 Table 40 — Certificate info shows the format for the CertificateInfo fields.

384 Table 40 — Certificate info

Bit offset Field Description

[2:0] CertModel

The value of this field shall indicate the certificate

model that the certificate slot uses.

• Value of 0 indicates either that the certificate

slot does not contain any certificates or that

the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP is false.

• Value of 1 indicates that the certificate slot

uses the DeviceCert model.

• Value of 2 indicates that the certificate slot

uses the AliasCert model.

• Value of 3 indicates that the certificate slot

uses the GenericCert model.

• All other values reserved.

[7:3] Reserved Reserved

385 Table 41 — Key usage bit mask shows the format for the KeyUsageMask fields.

386 Table 41 — Key usage bit mask

Bit offset Field Description

0 KeyExUse

If set, the SlotID fields in

KEY_EXCHANGE ,

KEY_EXCHANGE_RSP and FINISH

can specify this certificate slot.

If not set, the SlotID fields in

KEY_EXCHANGE ,

KEY_EXCHANGE_RSP and FINISH

shall not specify this certificate

slot.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 103

Bit offset Field Description

1 ChallengeUse

If set, the SlotID fields in

CHALLENGE and

CHALLENGE_AUTH can specify

this certificate slot. If not set,

the SlotID fields in CHALLENGE

and CHALLENGE_AUTH shall not

specify this certificate slot.

2 MeasurementUse

If set, the SlotID fields in

GET_MEASUREMENTS and

MEASUREMENTS can specify this

certificate slot. If not set, the

SlotID fields in

GET_MEASUREMENTS and

MEASUREMENTS shall not specify

this certificate slot.

3 EndpointInfoUse

If set, the SlotID fields in

GET_ENDPOINT_INFO and

ENDPOINT_INFO can specify this

certificate slot. If not set, the

SlotID fields in

GET_ENDPOINT_INFO and

ENDPOINT_INFO shall not

specify this certificate slot.

[13:4] Reserved Reserved

14 StandardsKeyUse

If set, this field shall indicate

usage defined by standards

other than specifications

defined by DMTF.

15 VendorKeyUse
If set, this field shall indicate

usage defined by a vendor.

387 For slot 0, at least one of KeyExUse , ChallengeUse , MeasurementUse , and EndpointInfoUse shall be set. The

corresponding capability bits shall be set appropriately.

388 10.9 GET_CERTIFICATE request and CERTIFICATE response messages

389 This request message shall retrieve the certificate chain from the specified slot number.

390 Table 42 — GET_CERTIFICATE request message format shows the GET_CERTIFICATE request message format.

391 GET_CERTIFICATE request attributes shows the GET_CERTIFICATE request attributes.

392 Table 44 — Successful CERTIFICATE response message format shows the CERTIFICATE response message format.

393 Table 45 — CERTIFICATE response attributes shows the CERTIFICATE response attributes.

Security Protocol and Data Model (SPDM) Specification DSP0274

104 Work in Progress Version 1.4.0WIP70

394 The Requester sends one or more GET_CERTIFICATE requests to retrieve the certificate chain of the Responder.

395 Table 42 — GET_CERTIFICATE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x82 = GET_CERTIFICATE . See Table 4 —

SPDM request codes.

2 Param1 1

Bit [7]. A Requester can use the LargeOffset and

LargeLength fields when the Responder's

LARGE_CERT_CAP=01b . This field shall be 0b if the

Responder's LARGE_CERT_CAP field is 0b . If a

Requester uses Offset and Length fields

although the certificate chain size cannot be

represented by these fields, the Responder shall

send an Error message with

ErrorCode=CertChainTooLarge . This request shall

use:

• Offset and Length fields when this field is

set to 0b .

• LargeOffset and LargeLength with Offset

and Length become reserved when this field

is set to 1b .

Bit [6:4]. Reserved

Bit [3:0]. Shall be the SlotID . Slot number of the

Responder certificate chain to read. The value in

this field shall be between 0 and 7 inclusive.

3 Param2 1
Request attributes.

See GET_CERTIFICATE request attributes.

4 Offset 2

Shall be the offset in bytes from the start of the

certificate chain to where the read request

message begins. The Responder shall send its

certificate chain starting from this offset. For the

first GET_CERTIFICATE request for a given slot, the

Requester shall set this field to 0. For subsequent

requests, Offset is set to the next portion of the

certificate in that slot. This field is reserved if

Param1 Bit [7] = 1b .

6 Length 2

Shall be the length of certificate chain data, in

bytes, to be returned in the corresponding

response. This field is an unsigned 16-bit integer.

This field is reserved if Param1 Bit [7] = 1b .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 105

Byte offset Field Size (bytes) Description

8 LargeOffset 4 or 0

Shall be the offset in bytes from the start of the

large certificate chain to where the read request

message begins. The Responder shall send its

large certificate chain starting from this offset. For

the first GET_CERTIFICATE request for a given slot,

the Requester shall set this field to 0. For

subsequent requests, LargeOffset is set to the

next portion of the certificate in that slot. If Param1

Bit[7] = 0b , then this field shall be absent.

12 LargeLength 4 or 0

Shall be the length of large certificate chain data,

in bytes, to be returned in the corresponding

response. This field is an unsigned 32-bit integer.

If Param1 Bit[7] = 0b , then this field shall be

absent.

396 Table 43 — GET_CERTIFICATE request attributes

Bit offset Field Description

0 SlotSizeRequested

When SlotSizeRequested=1b in the GET_CERTIFICATE request, the Responder shall return

the number of bytes available for certificate chain storage in the:

• RemainderLength field of the response if Param1 Bit[7]=0b in the GET_CERTIFICATE

request.

• LargeRemainderLength field of the response if Param1 Bit[7]=1b in the

GET_CERTIFICATE request.

When SlotSizeRequested=1b , the Offset , Length , LargeOffset , and LargeLength

fields in the GET_CERTIFICATE request shall be ignored by the Responder.

[7:1] Reserved Reserved.

397 Table 44 — Successful CERTIFICATE response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x02 = CERTIFICATE . See Table 5 — SPDM

response codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

106 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 Param1 1

Bit [7]. This field shall be the same as the

Requester's Param1 Bit[7] .

• 0b : use PortionLength and RemainderLength

fields.

• 1b : use LargePortionLength and

LargeRemainderLength . PortionLength and

RemainderLength become reserved.

Bit [6:4]. Reserved

Bit [3:0]. Shall be the SlotID . Slot number of the

certificate chain returned.

3 Param2 1
The format of this field shall be the format that Table

45 — CERTIFICATE response attributes defines.

4 PortionLength 2

Shall be the number of bytes of this portion of the

certificate chain. This should be less than or equal to

Length received as part of the request. For

example, the Responder might set this field to a

value less than Length received as part of the

request due to limitations on the transmit buffer of

the Responder. If the requested Length field is 0

then this field shall be set to 0 . If

SlotSizeRequested=1b in the request, this field shall

be set to zero. This field is reserved if Param1

Bit[7] = 1b .

6 RemainderLength 2

Shall be the number of bytes of the certificate chain

that have not been sent yet, after the current

response. For the last response, this field shall be 0

as an indication to the Requester that the entire

certificate chain has been sent. If the requested

Length field is 0 and SlotSizeRequested=0b in the

request, then this field shall return the actual size of

the certificate chain in the slot. See Table 43 —

GET_CERTIFICATE request attributes for more

detail. This field is reserved if Param1 Bit[7] = 1b .

8 CertChain PortionLength or 0

Shall be the requested contents of the target

certificate chain, as described in Certificates and

certificate chains. If SlotSizeRequested=1b in the

request, this field shall be absent. If the requested

Length field is 0 , then this field shall be absent. If

Param1 Bit[7] = 1b , then this field shall be absent.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 107

Byte offset Field Size (bytes) Description

8 LargePortionLength 4 or 0

Shall be the number of bytes of this portion of the

large certificate chain. This should be less than or

equal to LargeLength received as part of the

request. For example, the Responder might set this

field to a value less than LargeLength received as

part of the request due to limitations on the transmit

buffer of the Responder. If the requested

LargeLength field is 0 , then this field shall be

absent. If SlotSizeRequested=1b in the request, this

field shall be set to zero. If Param1 Bit[7] = 0b , then

this field shall be absent.

12 LargeRemainderLength 4 or 0

Shall be the number of bytes of the large certificate

chain that have not been sent yet, after the current

response. For the last response, this field shall be 0

as an indication to the Requester that the entire large

certificate chain has been sent. If the requested

LargeLength field is 0 and SlotSizeRequested=0b

in the request, then this field shall return the actual

size of the large certificate chain in the slot. See

Table 43 — GET_CERTIFICATE request attributes

for more detail. If Param1 Bit[7] = 0b , then this field

shall be absent.

16 LargeCertChain LargePortionLength or 0

Shall be the requested contents of the target large

certificate chain, as described in Certificates and

certificate chains. If SlotSizeRequested=1b in the

request, this field shall be absent. If the requested

LargeLength field is 0 , then this field shall be

absent. If Param1 Bit[7] = 0b , then this field shall be

absent.

398 Table 45 — CERTIFICATE response attributes

Bit offset Field Description

[2:0] CertificateInfo

The value of this field shall be

the certificate model of the slot.

The format of this field shall be

the format of the CertModel

field that the certificate info

table defines.

All other bits Reserved Reserved.

399 Figure 9 — Responder cannot return full length data flow shows the high-level request-response message flow when

the Responder cannot return the entire data requested by the Requester in the first response.

400 Figure 9 — Responder cannot return full length data flow

Security Protocol and Data Model (SPDM) Specification DSP0274

108 Work in Progress Version 1.4.0WIP70

401

ResponderRequester

GET CERTIFICATE(0, 0x1000)

CERTIFICATE (0x800, 0x200)

GET_CERTIFICATE (0x800, 0x200)

CertificateLength = 0xA00
PortionLength = 0x800

RemainderLength = 0x200

CERTIFICATE (0x200, 0)
PortionLength = 0x200
RemainderLength = 0

Responder Buffer Size
 = 0x800

Requests remaining portion,
Offset 0x800, Length 0x0200

Requester Buffer Size
 = 0x1000

402 Endpoints that support the large SPDM message transfer mechanism message set shall use the large SPDM

message transfer mechanism messages to manage the transfer of the requested certificate chain when the

CERTIFICATE response is larger than either the DataTransferSize of the Requester or the transmit buffer of the

Responder. Specifically:

• The Requester sets Param1 Bit[7] to 0b , Offset to 0 , and Length to 0xFFFF in the GET_CERTIFICATE

request, the Responder shall set PortionLength equal to the size of the complete certificate chain stored in the

requested slot, shall set RemainderLength to 0 , and shall store the contents of the complete certificate chain in

CertChain in the CERTIFICATE response. Then the Responder shall fragment and return this response message

in chunks, as per the clauses presented in CHUNK_GET request and CHUNK_RESPONSE response message. In this

case, the Responder shall not return a partial certificate chain.

• The Requester sets Param1 Bit[7] to 1b , LargeOffset to 0 , and LargeLength to 0xFFFFFFFF in the

GET_CERTIFICATE request, the Responder shall set LargePortionLength equal to the size of the complete

certificate chain stored in the requested slot, shall set LargeRemainderLength to 0 , and shall store the contents

of the complete certificate chain in LargeCertChain in the CERTIFICATE response. Then the Responder shall

fragment and return this response message in chunks, as per the clauses presented in CHUNK_GET request and

CHUNK_RESPONSE response message. In this case, the Responder shall not return a partial certificate chain.

403 By setting SlotSizeRequested=1b in the request attributes, the Requester can query the size of the Responder's

certificate slot. The Requester should query the slot size before any action that uses slot storage, because the

Responder might change the value of the slot size based on other actions.

404 10.9.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE
messages

405 If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE

request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports

mutual authentication, the requirements placed on the Requester in the GET_CERTIFICATE request and

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 109

CERTIFICATE response messages clauses shall also apply to the Responder. The preceding two sentences

essentially describe a role reversal.

406 10.9.2 SPDM certificate requirements and recommendations

407 This specification defines a number of X.509 v3 required and optional fields for compliant SPDM certificates. SPDM

certificates also adhere to the requirements as RFC 5280 defines. Unless stated otherwise, the following clauses

apply to those certificates in the chain that are specific to a device instance, that is, the leaf certificate in the

DeviceCert model or the DeviceCert , all intermediate AliasCert s, and the leaf certificate in the AliasCert model.

See identity provisioning.

408 In addition, the Subject Alternative Name certificate extension otherName field is recommended for providing device

information. See the Definition of otherName using the DMTF OID.

409 In Table 46 — Field requirements, the requirements columns define the requirement for the corresponding certificate

models. In these columns, the corresponding field with a value of "Mandatory" shall be present in the leaf certificate.

Likewise, the corresponding field with a value of "Optional" can be present or absent in the leaf certificate. As a note,

this table reflects the minimum requirements from the perspective of this specification. The vendor, users of the

SPDM endpoint, and other standards such as RFC 5280 can place additional or more-restrictive requirements.

410 Table 46 — Field requirements

Field DeviceCert / AliasCert Requirements
GenericCert

Requirements
Description

Basic Constraints Mandatory Mandatory

The CA

value shall

be FALSE .

Version Mandatory Mandatory

The version

of the

encoded

certificate

shall be

present and

shall be 3

(encoded as

value 2).

Serial Number Mandatory Mandatory

The CA-

assigned

serial

number shall

be present

with a

positive

integer

value.

Security Protocol and Data Model (SPDM) Specification DSP0274

110 Work in Progress Version 1.4.0WIP70

Field DeviceCert / AliasCert Requirements
GenericCert

Requirements
Description

Signature Algorithm Mandatory Optional

If present,

the

Signature

algorithm

that the CA

uses shall be

present.

Issuer Mandatory Optional

If present,

the CA

distinguished

name shall

be specified.

Subject Name Mandatory Optional

If present,

the subject

name shall

be present

and shall

represent

the

distinguished

name

associated

with the leaf

certificate.

Validity Mandatory Optional

If present,

see

Certificate

validity

details, and

RFC 5280.

Subject Public Key Info Mandatory Mandatory

The device

public key

and the

algorithm

shall be

present.

Key Usage Mandatory Optional

If present,

the key

usage bit for

digital

signature

shall be set.

411 For intermediate and root certificates the basic constraints field shall be present and the CA value shall be TRUE .

412 Table 47 — Optional fields

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 111

Field Description

Subject Alternative Name otherName

In some cases, it might be desirable to provide device-specific information

as part of the leaf certificate. DMTF chose the otherName field with a

specific format to represent the device information. The use of the

otherName field also provides flexibility for other alliances to provide

device-specific information as part of the leaf certificate. See the

Definition of otherName using the DMTF OID. Note that otherName field

formats specified by other standards are permissible in the certificate.

Extended Key Usage (EKU)

If present in a certificate, the Extended Key Usage extension indicates

one or more purposes for which the public key should be used. See

Extended Key Usage authentication OIDs.

SPDM Non-critical Certificate Extension

If present in a certificate, the SPDM Non-critical Certificate Extension

indicates one or more non-critical OIDs associated with the certificate.

See SPDM Non-Critical Certificate Extension OID.

413 Certificate validity details

414 As per RFC 5280, the certificate validity period is the time interval during which the CA warrants that it will maintain

information about the status of the certificate. The field is represented as an ASN.1-encoded SEQUENCE of two

dates: the date when the certificate validity period begins (notBefore) and the date when the certificate validity

period ends (notAfter).

415 For a leaf certificate whose chain is stored in Slot 0, the notBefore date should be the date of certificate creation,

and the notAfter date should be set to GeneralizedTime value 99991231235959Z . Immutable leaf certificates'

notAfter dates should be set appropriately to ensure that the leaf certificate will not expire during the practical

lifetime of the device.

416 For leaf certificates whose chains are stored in Slots 1-7, the notBefore date should be the date of certificate

creation. The notAfter date can be set according to end user requirements, including values that will result in

certificate expiration and thus require certificate renewal and device recertification during the lifetime of the device.

417 Definition of otherName using the DMTF OID shows the definition of otherName using the DMTF OID:

418 Definition of otherName using the DMTF OID

id-DMTF OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 }

id-DMTF-spdm OBJECT IDENTIFIER ::= { id-DMTF 274 }

DMTFOtherName ::= SEQUENCE {

type-id DMTF-oid

value [0] EXPLICIT ub-DMTF-device-info

}

-- OID for DMTF device info --

id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }

DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

Security Protocol and Data Model (SPDM) Specification DSP0274

112 Work in Progress Version 1.4.0WIP70

-- All printable characters except ":" --

DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --

DMTF-manufacturer ::= DMTF-device-string

-- Device Product --

DMTF-product ::= DMTF-device-string

-- Device Serial Number --

DMTF-serialNumber ::= DMTF-device-string

-- Device information string --

ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-product":"DMTF-

serialNumber})

419 The Leaf certificate example shows an example leaf certificate.

420 10.9.2.1 Extended Key Usage authentication OIDs

421 The following Extended Key Usage purposes are defined for SPDM certificate authentication:

• SPDM Responder Authentication { id-DMTF-spdm 3 }: The presence of this OID shall indicate that a leaf

certificate can be used for Responder authentication purposes.

• SPDM Requester Authentication { id-DMTF-spdm 4 }: The presence of this OID shall indicate that a leaf

certificate can be used for Requester authentication purposes.

422 The presence of both OIDs shall indicate that the leaf certificate can be used for both Requester and Responder

authentication purposes. If present, these OIDs shall appear in the leaf certificate.

423 A Responder device that supports mutual authentication should include the SPDM Responder Authentication OID in

the Extended Key Usage field of its leaf certificate. A Requester device that supports mutual authentication should

include the SPDM Requester Authentication OID in the Extended Key Usage field of its leaf certificate. Note that

alternate OIDs specified by other standards are permissible in the certificate.

424 10.9.2.2 SPDM Non-Critical Certificate Extension OID

425 The id-DMTF-spdm-extension OID is a container of non-critical SPDM OIDs and their corresponding values. The OID

value for id-DMTF-spdm-extension shall be { id-DMTF-spdm 6 }. Furthermore, this OID is a Certificate Extension as

defined in RFC 5280, and its encoding shall follow the Extension syntax also defined in RFC 5280. The Extension

syntax defines three parameters: extnID , critical , and extnValue . The values of these three parameters for id-

DMTF-spdm-extension shall be the DER encoding of the ASN.1 value as the DMTF SPDM Extension Format defines.

426 Definition of DMTF SPDM Extension Format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 113

id-DMTF-spdm-extension Extension ::=

{

extnID { id-DMTF-spdm 6 }

critical FALSE

extnValue id-spdm-cert-oids

}

id-spdm-cert-oids ::= SEQUENCE SIZE (1..MAX) OF id-spdm-cert-oid

id-spdm-cert-oid ::= SEQUENCE

{

spdmOID OBJECT IDENTIFIER

spdmOIDdefinition OCTET STRING OPTIONAL

}

427 The spdmOID field shall contain an OID defined in this specification. Only designated OIDs, permitted by this

specification, shall be allowed in spdmOID . The spdmOIDdefinition field shall be a DER encoding of the ASN.1 value

of the definition indicated by spdmOID .

428 These clauses describe the definitions and formats of the SPDM OIDs contained in id-DMTF-spdm-extension . If

present, these OIDs shall only be contained in id-DMTF-spdm-extension .

429 10.9.2.2.1 Hardware identity OID

430 The id-DMTF-hardware-identity OID is defined to help identify the hardware identity certificate in a chain regardless

of the certificate chain model used (DeviceCert or AliasCert). If the AliasCert model is used, this OID shall not be

present in any alias certificates in the chain. The id-DMTF-hardware-identity OID shall have a format as Hardware

identity OID format defines.

431 Hardware identity OID format

id-DMTF-hardware-identity id-spdm-cert-oid :: = {

spdmOID { id-DMTF-spdm 2 }

spdmOIDdefinition ABSENT

}

432 10.9.2.2.2 Mutable certificate OID

433 Mutable certificates may include the id-DMTF-mutable-certificate OID to identify them as mutable. If used, this OID

shall be present in all mutable certificates in the chain. The id-DMTF-mutable-certificate OID shall have a format as

Mutable certificate OID format defines.

434 Mutable certificate OID format

Security Protocol and Data Model (SPDM) Specification DSP0274

114 Work in Progress Version 1.4.0WIP70

id-DMTF-mutable-certificate id-spdm-cert-oid ::= {

spdmOID { id-DMTF-spdm 5 }

spdmOIDdefinition ABSENT

}

435 10.10 CHALLENGE request and CHALLENGE_AUTH response messages

436 This request message shall authenticate a Responder through the challenge-response protocol.

437 Table 48 — CHALLENGE request message format shows the CHALLENGE request message format.

438 Table 49 — Successful CHALLENGE_AUTH response message format shows the CHALLENGE_AUTH response

message format.

439 Table 50 — CHALLENGE_AUTH response attribute shows the CHALLENGE_AUTH response attribute.

440 Table 48 — CHALLENGE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x83 = CHALLENGE . See Table 4 — SPDM

request codes.

2 Param1 1

Shall be the SlotID . Slot number of the Responder

certificate chain that shall be used for authentication.

If the public key of the Responder was provisioned to

the Requester in a trusted environment, the value in

this field shall be 0xFF ; otherwise it shall be

between 0 and 7 inclusive.

3 Param2 1

Shall be the type of measurement summary hash

requested:

• 0x0 . No measurement summary hash

requested.

• 0x1 . TCB measurements only.

• 0xFF . All measurements.

• All other values reserved.

If a Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response), the

Requester shall set this value to 0x0 .

4 Nonce 32 The Requester should choose a random value.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 115

Byte offset Field Size (bytes) Description

36 Context 8

The Requester can include application-specific

information in Context. The Requester should fill this

field with zeros if it has no context to provide.

441 Table 49 — Successful CHALLENGE_AUTH response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x03 = CHALLENGE_AUTH . See Table 5 —

SPDM response codes.

2 Param1 1
Shall be the Response Attribute Field. See Table 50

— CHALLENGE_AUTH response attribute.

3 Param2 1

Shall be the slot mask. The bit in position K of this

byte shall be set to 1b if and only if slot number K is

in the "Exists with key and cert" state, that is, slot K

has a key provisioned and contains a certificate

chain (Bit 0 is the least significant bit of the byte).

This field is reserved if the public key of the

Responder was provisioned to the Requester in a

trusted environment.

4 CertChainHash H

Shall be either the hash of the certificate chain as

Table 37 — Certificate chain format describes or, if

the public key of the Responder was provisioned to

the Requester in a trusted environment, the public

key used for authentication. The Requester can use

this value to check that the certificate chain or public

key matches the one requested.

This field shall be in hash byte order.

4 + H Nonce 32 Shall be the Responder-selected random value.

Security Protocol and Data Model (SPDM) Specification DSP0274

116 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

36 + H MeasurementSummaryHash MSHLength = H or 0

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or if

the requested Param2 = 0x0 , this field shall be

absent.

If the requested Param2 = 0x1 , this field shall be the

combined hash of measurements of all measurable

components considered to be in the TCB required to

generate this response, computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...)) , where

MeasurementBlock[x] denotes a measurement of an

element in the TCB and hash is the negotiated base

hashing algorithm. Measurements are concatenated

in ascending order based on their measurement

index as Table 57 — Measurement block format

describes.

If the requested Param2 = 0x1 and if there are no

measurable components in the TCB required to

generate this response, this field shall be 0 .

If the requested Param2 = 0xFF , this field shall be

computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ..., MeasurementBlock[n])) of

all supported measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order. Indices with

no associated measurements shall not be included in

the hash calculation. See the Measurement index

assignments clause.

If the Responder supports both raw bit stream and

digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

36 + H + MSHLength OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

38 + H + MSHLength OpaqueData OpaqueDataLength

The Responder can include Responder-specific

information and/or information that its transport

defines. If present, this field shall conform to the

selected opaque data format in

OtherParamsSelection .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 117

Byte offset Field Size (bytes) Description

38 + H + MSHLength

+ OpaqueDataLength
RequesterContext 8

This field shall be identical to the Context field of the

corresponding request message.

46 + H + MSHLength

+ OpaqueDataLength
Signature SigLen

Shall be the Responder's signature. SigLen is the

size of the asymmetric-signing algorithm output that

the Responder selected in the last ALGORITHMS

response message to the Requester. The

CHALLENGE_AUTH signature generation and

CHALLENGE_AUTH signature verification clauses,

respectively, define the signature generation and

verification processes.

442 Table 50 — CHALLENGE_AUTH response attribute

Bit offset Field Description

[3:0] SlotID

Shall contain the SlotID in the Param1 field of the corresponding CHALLENGE request. If

the Responder's public key was provisioned to the Requester previously, this field shall

be 0xF . The Requester can use this value to check that the certificate matched what

was requested.

[6:4] Reserved Reserved.

7
DEPRECATED:

BasicMutAuthReq

DEPRECATED: When mutual authentication is supported by both Responder and

Requester, the Responder shall set this bit to indicate that the Responder wants to

authenticate the identity of the Requester using the basic mutual authentication flow. The

Requester shall not set this bit in a basic mutual authentication flow. See Basic mutual

authentication flow. If mutual authentication is not supported, this bit shall be zero.

443 10.10.1 CHALLENGE_AUTH signature generation

444 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.445 The Responder shall construct M1, and the Requester shall construct M2 message transcripts. For

Responder authentication, see the request ordering and message transcript computation rules for M1/

M2 table. For Requester authentication in the mutual authentication scenario, see the Mutual

authentication message transcript clause.

◦446 If a response contains ErrorCode=ResponseNotReady :

447 Concatenation function is performed on the contents of both the original request and the

successful response received during RESPOND_IF_READY . Neither the error response

(ResponseNotReady) nor the RESPOND_IF_READY request shall be included in M1/M2.

◦448 If a response contains an ErrorCode other than ResponseNotReady :

449 No concatenation function is performed on the contents of both the original request and response.

Security Protocol and Data Model (SPDM) Specification DSP0274

118 Work in Progress Version 1.4.0WIP70

2.450 The Responder shall generate:

Signature = SPDMsign(PrivKey, M1, "challenge_auth signing");

451 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key associated with the leaf certificate of the Responder in

slot=Param1 of the CHALLENGE request message. If the public key of the Responder was

provisioned to the Requester, then PrivKey shall be the associated private key.

452 10.10.2 CHALLENGE_AUTH signature verification

453 Any modifications to the previous request messages or to the corresponding response messages by an active

person-in-the-middle adversary or media error will result in M2 != M1 and thus lead to verification failure.

454 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.455 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, M2, "challenge_auth signing");

456 where:

◦ SPDMsignatureVerify is described in Signature verification. If result is success , the verification

was successful.

◦ PubKey shall be the public key associated with the leaf certificate of the Responder with

slot=Param1 of the CHALLENGE request message. If the public key of the Responder was

provisioned to the Requester, PubKey is the provisioned public key.

457 Figure 10 — Responder authentication: Runtime challenge-response flow shows the high-level request-response

message flow and sequence for the authentication of the Responder for runtime challenge-response.

458 Figure 10 — Responder authentication: Runtime challenge-response flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 119

459

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies
Responder's signature.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

460 10.10.2.1 Request ordering and message transcript computation rules for M1 and M2

461 This clause applies to Responder-only authentication.

462 Table 51 — Request ordering and message transcript computation rules for M1/M2 defines how the message

transcript is constructed for M1 and M2, which are used in signature calculation and verification in the

CHALLENGE_AUTH response message.

463 The possible request orderings leading up to and including CHALLENGE shall be:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A1, B1,

C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_CERTIFICATE , CHALLENGE (A1, B4, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• GET_CERTIFICATE , CHALLENGE (A2, B4, C1)

• CHALLENGE (A2, B2, C1)

464 Immediately after Reset, M1 and M2 shall be null .

465 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null . If a Negotiated State has been established, this will remain intact.

466 If a Requester sends a GET_VERSION message, the Requester and Responder shall set M1 and M2 to null , clear all

Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

467 For additional rules, see general ordering rules.

468 Table 51 — Request ordering and message transcript computation rules for M1/M2

Security Protocol and Data Model (SPDM) Specification DSP0274

120 Work in Progress Version 1.4.0WIP70

Requests Implementation conditions M1/M2=Concatenate(A, B, C)

Initial value N/A M1/M2=null

GET_VERSION issued

Requester issues this request to allow the

Requester and Responder to determine an agreed-

upon Negotiated State . Also issued when the

Requester detects an out-of-sync condition, or

when the signature verification fails, or when the

Responder provides an unexpected error

response.

M1/M2=null

GET_VERSION , GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS issued

Requester shall always issue these requests in this

order.
A1= VCA

GET_VERSION , GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS skipped

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped these requests if the

Responder had previously indicated CACHE_CAP=1 .

In this case, the Requester and Responder shall

proceed with the previously determined Negotiated

State . These requests and responses are still

required for M1/M2 construction.

A2= VCA

GET_DIGESTS , GET_CERTIFICATE

issued

After NEGOTIATE_ALGORITHMS request completion or

after M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester issued these requests in this order if it

had skipped the previous three requests.

B1=Concatenate(GET_DIGESTS, DIGESTS,

GET_CERTIFICATE, CERTIFICATE)

GET_DIGESTS , GET_CERTIFICATE

skipped

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped these requests because it could

use previously cached certificate information.

B2=null

GET_DIGESTS issued,

GET_CERTIFICATE skipped

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped the GET_CERTIFICATE request

because it could use the previously cached

CERTIFICATE response.

B3=Concatenate(GET_DIGESTS, DIGESTS)

GET_DIGESTS skipped,

GET_CERTIFICATE issued

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped the GET_DIGESTS request

because it could use the previously cached

CERTIFICATE response to make a byte-by-byte

comparison.

B4=Concatenate(GET_CERTIFICATE, CERTIFICATE)

CHALLENGE issued

Requester issued this request to complete security

verification of current requests and responses. The

Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C1=Concatenate(CHALLENGE,

CHALLENGE_AUTH(excluding Signature)) . See Table

48 — CHALLENGE request message format.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 121

Requests Implementation conditions M1/M2=Concatenate(A, B, C)

CHALLENGE completion Completion of CHALLENGE sets M1/M2 to null . M1/M2=null

Other issued

If the Requester issued commands other than

GET_DIGESTS , GET_CERTIFICATE , and CHALLENGE

and skipped CHALLENGE completion, then M1/M2

are set to null .

M1/M2=null

469 The Basic mutual authentication flow is DEPRECATED. Implementations should use session-based mutual

authentication as Figure 21 — Session-based mutual authentication example shows or optimized session-based

mutual authentication as Figure 22 — Optimized session-based mutual authentication example shows.

470 DEPRECATED

471 10.10.3 Basic mutual authentication

472 Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.

Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder.

The preceding two sentences essentially describe a role reversal, unless otherwise stated.

473 The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE_AUTH with

BasicMutAuthReq set. This flow shall utilize message encapsulation as described in the

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages clauses to

retrieve request messages. The basic mutual authentication flow shall end when the encapsulated request flow ends.

474 This flow shall only allow GET_DIGESTS , GET_CERTIFICATE , CHALLENGE , and their corresponding responses to be

encapsulated. If other requests are encapsulated, the Requester can send an ERROR message of

ErrorCode=UnexpectedRequest and shall terminate the flow.

475 Figure 11 — Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

476 Figure 11 — Mutual authentication basic flow

Security Protocol and Data Model (SPDM) Specification DSP0274

122 Work in Progress Version 1.4.0WIP70

477

BASIC
MUTUAL
AUTHENTICATION
FLOW

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

ENCAPSULATED_RESPONSE_ACK (CHALLENGE)

DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH)

BasicMutAuthReq is
set in the response.

Both Requester
and Responder
set MUT_AUTH_CAP
bits.

478 10.10.3.1 Mutual authentication message transcript

479 This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

480 Table 52 — Basic mutual authentication message transcript defines how the message transcript is constructed for

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 123

M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when

the Responder authenticates the Requester.

481 The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in

parenthesis):

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (BMAF0)

• GET_DIGESTS , CHALLENGE (BMAF1)

• GET_CERTIFICATE , CHALLENGE (BMAF2)

• CHALLENGE (BMAF3)

482 When the basic mutual authentication flow starts, that is, when GET_ENCAPSULATED_REQUEST is issued, M1 and M2

shall be set to null .

483 Table 52 — Basic mutual authentication message transcript

Flow ID M1/M2

BMAF0
Concatenate(VCA , GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the

signature)

BMAF1 Concatenate(VCA , GET_DIGESTS , DIGESTS , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF2 Concatenate(VCA , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF3 Concatenate(VCA , CHALLENGE , CHALLENGE_AUTH without the signature)

484 For GET_CERTIFICATE and CERTIFICATE , these messages might need to be issued multiple times to retrieve the entire

certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they are

issued.

485 DEPRECATED

486 10.11 Firmware and other measurements

487 This clause describes request messages and response messages associated with endpoint measurement. All

request messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in its

CAPABILITIES response.

488 Figure 12 — Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If the MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0 and if the Requester

requires fresh measurements, the Responder shall be Reset before GET_MEASUREMENTS is resent. The mechanisms

employed for Resetting the Responder are outside the scope of this specification.

489 Figure 12 — Measurement retrieval flow

Security Protocol and Data Model (SPDM) Specification DSP0274

124 Work in Progress Version 1.4.0WIP70

490

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

491 10.12 GET_MEASUREMENTS request and MEASUREMENTS response
messages

492 Measurements in SPDM are represented in the form of measurement blocks. A measurement block defines the

measurement block structure. A device can present measurements of different elements of its internal state, as well

as metadata to assist in the attestation of its state via measurements, as separate blocks. The GET_MEASUREMENTS

request message enables a Requester to query a Responder for the number of individual measurement blocks it

supports and request either specific blocks or all available blocks. The MEASUREMENTS response message returns the

requested blocks. A collection of one or more measurement blocks is called a measurement record.

493 Because issuing GET_MEASUREMENTS clears the M1/M2 message transcript, it is recommended that a Requester does

not send this message until it has received at least one successful CHALLENGE_AUTH response message from the

Responder. This ensures that the information in message pairs GET_DIGESTS / DIGESTS and

GET_CERTIFICATE / CERTIFICATE has been authenticated at least once.

494 Table 53 — GET_MEASUREMENTS request message format shows the GET_MEASUREMENTS request message

format.

495 Table 54 — GET_MEASUREMENTS request attributes shows the GET_MEASUREMENTS request message attributes.

496 Table 56 — Successful MEASUREMENTS response message format shows the MEASUREMENTS response message

format. The measurement blocks in MeasurementRecord shall be sorted in ascending order by index.

497 Table 53 — GET_MEASUREMENTS request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE0 = GET_MEASUREMENTS . See Table 4 —

SPDM request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 125

Byte offset Field Size (bytes) Description

2 Param1 1
Shall be Request attributes. See Table 54 —

GET_MEASUREMENTS request attributes.

3 Param2 1

Shall be a Measurement operation.

• A value of 0x0 shall query the Responder for

the total number of measurement blocks

available.

• A value of 0xFF shall request all measurement

blocks.

• A value between 0x1 and 0xFE , inclusive, shall

request the Measurement block at the index

corresponding to that value.

4 Nonce NL = 32 or 0

The Requester should choose a random value. This

field is only present if Bit [0] of Param1 is 1 . See

Table 54 — GET_MEASUREMENTS request

attributes.

4 + NL SlotIDParam SL = 1 or 0

This field is only present if Bit [0] of Param1 is 1 .

• Bit [7:4]. Reserved.

• Bit [3:0]. Shall be the SlotID . Slot number of

the Responder certificate chain that shall be

used for authenticating the measurement(s). If

the Responder's public key was provisioned to

the Requester previously, this field shall be 0xF .

See Table 54 — GET_MEASUREMENTS

request attributes.

4 + NL + SL Context 8

The Requester can include application-specific

information in Context. The Requester should fill this

field with zeros if it has no context to provide.

498 Table 54 — GET_MEASUREMENTS request attributes

Security Protocol and Data Model (SPDM) Specification DSP0274

126 Work in Progress Version 1.4.0WIP70

Bit offset Field Description

0 SignatureRequested

If the Responder can generate a signature (MEAS_CAP is 10b in

the CAPABILITIES response and either BaseAsymSel or

ExtAsymSelCount is non-zero) a value of 1 indicates that a

signature on the measurement log is required. The Nonce field

shall be present in the request when this bit is set. The Responder

shall generate and send a signature in the response.

A value of 0 indicates that the Requester does not require a

signature. The Responder shall not generate a signature in the

response. The Nonce field shall be absent in the request.

For Responders that cannot generate a signature (MEAS_CAP is

01b in the CAPABILITIES response or both BaseAsymSel and

ExtAsymSelCount are zero), the Requester shall always use 0 .

1 RawBitStreamRequested

This bit is applicable only if the measurement specification

supports only two representations, raw bit stream and digest, such

as when MeasurementSpecification of the Measurement block

format is set to DMTF , as Table 57 — Measurement block format

describes. If the measurement specification supports other

representations, this bit is ignored.

If the Responder can return either a raw bit stream or a hash for

the requested measurement, value 1 shall request the

Responder to return the raw bit stream version of such

measurement. If the Responder cannot return a raw bit stream for

the measurement (for example, if the raw bit stream contains

confidential data that the Responder cannot expose), it shall return

the corresponding hash. Another scenario in which the Responder

cannot return a raw bit stream is when the MEASUREMENTS message

is greater than the MaxSPDMmsgSize of the Requester. In cases

where the Responder cannot return a raw bit stream, the

Requester can simply request a digest.

Value 0 shall request the Responder to return a hash version of

the measurement. If the Responder cannot return a hash of the

measurement (for example, if the measurement represents a data

structure where a digest is not applicable), it shall return the

corresponding raw bit stream.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 127

Bit offset Field Description

2 NewMeasurementRequested

If the Responder has pending updates to measurement blocks that

have not yet taken effect, then value 1 shall be used to request

the Responder to return new values of the measurement blocks at

the indices requested in Param2 .

Value 0 shall be used to request the Responder to return the

current values of the measurement blocks at the requested

indices.

If the Responder has no pending updates to the measurement

blocks at the requested indices, then the Responder shall return

the current values of the measurement blocks, regardless of the

value of NewMeasurementRequested .

[7:3] Reserved Reserved.

499 Measurement index assignments

500 This specification imposes no requirements on the scope, type, or format of measurement a device associates with a

particular measurement index in the range 0x1 to 0xEF . As a result, Responders can use the same index to report

different types of measurements based on their implementation. If available, a Requester can use a measurement

manifest to discover information about the specific measurement types available from a particular Responder and the

indices to which they correspond. When measurements follow the DMTF measurement specification format that

Table 58 — DMTF measurement specification format describes, a measurement with a

DMTFSpecMeasurementValueType[6:0] equal to either 0x04 or 0x0A is the measurement manifest. If a Requester

specifies a measurement index that a Responder does not support then the Responder shall respond with an ERROR

message of ErrorCode=InvalidRequest .

501 To aid interoperability, this specification reserves indices 0xF0 to 0xFE inclusive for specific purposes. If a

Responder supports a type of measurement that Table 55 — Measurement index assigned range defines, it shall

always assign to it the corresponding index value. A Responder shall not assign indices 0xF0 to 0xFE to

measurements types other than those that Table 55 — Measurement index assigned range defines.

502 Table 55 — Measurement index assigned range

Measurement Index Measurement type Description

0xF0 - 0xFC Reserved Reserved.

0xFD Measurement manifest

Shall be the metadata on available measurements, as type

DMTFSpecMeasurementValueType[6:0] = 0x04 or

DMTFSpecMeasurementValueType[6:0] = 0x0A defines.

0xFE Device mode
Shall be structured device mode information, as type

DMTFSpecMeasurementValueType[6:0] = 0x05 defines.

503 Table 56 — Successful MEASUREMENTS response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

128 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x60 = MEASUREMENTS . See Table 5 —

SPDM response codes.

2 Param1 1

When Param2 in the requested measurement

operation is 0 , this parameter shall return the total

number of measurement indices on the device.

Otherwise, this field is reserved.

3 Param2 1

Bit [7:6]. Reserved.

Bit [5:4]. Content changed. If this message contains

a signature, this field shall indicate if one or more

MeasurementRecord fields of previous MEASUREMENTS

responses in the same measurement log have

changed.

00b : The Responder does not detect changes of

MeasurementRecord fields of previous MEASUREMENTS

responses in the same measurement log, or this

message does not contain a signature.

01b : The Responder detected that one or more

MeasurementRecord fields of previous MEASUREMENTS

responses in the measurement log being signed

have changed. The Requester might consider

issuing GET_MEASUREMENTS again to acquire latest

measurements.

10b : The Responder detected no change in

MeasurementRecord fields of previous MEASUREMENTS

responses in the measurement log being signed.

11b : Reserved.

Bit [3:0]. Shall be the SlotID . If this message

contains a signature, this field shall contain the slot

number of the certificate chain specified in the

GET_MEASUREMENTS request, or 0xF if the

Responder's public key was provisioned to the

Requester previously. If this message does not

contain a signature, this field shall be set to 0x0 .

4 NumberOfBlocks 1

Shall be the number of measurement blocks in the

MeasurementRecord .

If Param2 in the requested measurement operation

is 0 , this field shall be 0 .

5 MeasurementRecordLength 3

Shall be the size of the MeasurementRecord in bytes.

If Param2 in the requested measurement operation

is 0 , this field shall be 0 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 129

Byte offset Field Size (bytes) Description

8 MeasurementRecord
L =

MeasurementRecordLength

Shall be the concatenation of all measurement

blocks that correspond to the requested

Measurement operation. Measurement block defines

the measurement block structure.

8 + L Nonce 32
The Responder should choose a random value. This

field shall always be present.

40 + L OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

42 + L OpaqueData OpaqueDataLength

The Responder can include Responder-specific

information and/or information that its transport

defines. If present, this field shall conform to the

selected opaque data format in

OtherParamsSelection .

42 + L +

OpaqueDataLength
RequesterContext 8

This field shall be identical to the Context field of the

corresponding request message.

50 + L +

OpaqueDataLength
Signature SigLen

Shall be Signature of the measurement log,

excluding the Signature field and signed using the

private key associated with the leaf certificate. The

Responder shall use the asymmetric signing

algorithm it selected during the last ALGORITHMS

response message to the Requester, and SigLen is

the size of that asymmetric signing algorithm output.

This field is conditional and is only present in the

MEASUREMENTS response corresponding to a

GET_MEASUREMENTS request with Param1[0] set to 1 .

504 10.12.1 Measurement block

505 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that corresponds to a particular measurement index and

measurement type.

506 Table 57 — Measurement block format shows the format for a measurement block:

507 Table 57 — Measurement block format

Security Protocol and Data Model (SPDM) Specification DSP0274

130 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 Index 1

Shall be the index. When Param2 of the

GET_MEASUREMENTS request is between 0x1 and

0xFE , inclusive, this field shall match the request.

Otherwise, this field shall represent the index of the

measurement block, where the index starts at 1 and

ends at the index of the last measurement block.

1 MeasurementSpecification 1

Bit mask. The value shall indicate the measurement

specification that the requested Measurement follows

and shall match the selected measurement

specification (MeasurementSpecificationSel) in the

ALGORITHMS message. See Table 23 — Successful

ALGORITHMS response message format. Only one

bit shall be set.

The Measurement specification field format table

defines the format for this field.

2 MeasurementSize 2 Shall be the size of Measurement , in bytes.

4 Measurement MeasurementSize

Shall be the measurement value whose format the

selected measurement specification

(MeasurementSpecificationSel) defines. If

DMTFmeasSpec is selected, the format of this field

shall be as Table 58 — DMTF measurement

specification format defines.

508 10.12.1.1 DMTF specification for the Measurement field of a measurement block

509 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field's Bit 0 (DMTF) is set. Table 58 — DMTF measurement specification format specifies

this format.

510 10.12.1.1.1 Measurement manifest

511 A measurement manifest refers to a data structure that describes the contents of other indices or itself contains

measurements. For instance, a manifest may describe which indices describe the different firmware modules'

measurements. When the Table 58 — DMTF measurement specification format is in use, this specification defines

multiple overarching manifest formats, as described in the DMTFSpecMeasurementValueType values table.

512 When DMTFSpecMeasurementValueType[6:0]=0x04 , the measurement manifest type is a freeform manifest. When read,

the manifest data is placed in the Measurement field of the Table 57 — Measurement block format. The format of a

freeform manifest is implementation specific and outside the scope of this specification.

513 When DMTFSpecMeasurementValueType[6:0]=0x0A , the measurement manifest type is a structured measurement

manifest. The structured manifest starts with an SVH header as Table 61 — Manifest measurement block format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 131

describes. The SVH header is used to indicate the standards body or vendor that defines the manifest format. The

format of the Manifest data in a structured measurement manifest is outside the scope of this specification.

514 10.12.1.1.2 Hash-extend measurements

515 A device may support reporting of measurements through an "extend" scheme, which works as follows:

initialize HEM = MH bytes of 0s

for each extend operation, perform HEM = hash(Concatenate(HEM, DataToExtend)) for all data elements to

extend

516 An example of such a scheme is the Platform Configuration Register "extend" function in Trusted Platform Modules.

The hash() function is the measurement hash algorithm specified by the most recent ALGORITHMS response

message. The initial value of a hash-extend measurement (HEM) shall be MH bytes whose bits are all set to 0 ,

where MH is the size of MeasurementHashAlgo in the most recent ALGORITHMS response message. The hash-extend

measurement is updated by "extending" the current value to include the next data to extend (DataToExtend). The

extend operation is calculating the digest of the current value concatenated with the data to extend. Then repeat the

extend operation for additional data to extend.

517 Hash-extend measurements are reported in a measurement block. A Responder that reports hash-extend

measurements shall set DMTFSpecMeasurementValueType[6:0] to 0x8 for the corresponding measurement index.

518 Table 58 — DMTF measurement specification format

Byte offset Field Size (bytes) Description

0 DMTFSpecMeasurementValueType 1

Composed of:

• Bit [7]. Shall indicate the representation in

DMTFSpecMeasurementValue .

• Bit [6:0]. Indicates what is being measured by

DMTFSpecMeasurementValue .

These values are set independently and are

interpreted as follows:

• [7]=0b . Digest.

• [7]=1b . Raw bit stream. The Responder

should ensure the raw bit stream does not

contain secrets.

• See DMTFSpecMeasurementValueType

values for defined values for

DMTFSpecMeasurementValueType[6:0].

1 DMTFSpecMeasurementValueSize 2

Shall be the size of DMTFSpecMeasurementValue , in

bytes.

When DMTFSpecMeasurementValueType[7]=0b , the

DMTFSpecMeasurementValueSize shall be derived

from the measurement hash algorithm that the

ALGORITHMS response message returns.

Security Protocol and Data Model (SPDM) Specification DSP0274

132 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

3 DMTFSpecMeasurementValue MS

Shall be the cryptographic hash or raw bit stream,

as indicated in DMTFSpecMeasurementValueType[7] .

For cryptographic hashes or digests, this field shall

be in hash byte order. The vendor defines the byte

order for raw bit streams.

519 Table 59 — DMTFSpecMeasurementValueType values

DMTFSpecMeasurementValueType[6:0] Description

0x0 Immutable ROM.

0x1 Mutable firmware.

0x2 Hardware configuration, such as straps.

0x3
Firmware configuration, such as configurable firmware

policy.

0x4

Freeform measurement manifest. When

DMTFSpecMeasurementValueType[6:0]=0x4 , the Responder

should support setting DMTFSpecMeasurementValueType[7] to

either 0b or 1b . The format of this manifest is device

specific.

0x5

Structured representation of debug and device mode. See

Device mode field of a measurement block. When

DMTFSpecMeasurementValueType[6:0]=0x5 ,

DMTFSpecMeasurementValueType[7] shall be set to 1b .

0x6

Mutable firmware's version number. This specification does

not mandate a format for firmware version number. When

DMTFSpecMeasurementValueType[6:0]=0x6 ,

DMTFSpecMeasurementValueType[7] should be set to 1b .

0x7

Mutable firmware's security version number, which should

be formatted as an 8-byte unsigned integer. When

DMTFSpecMeasurementValueType[6:0]=0x7 ,

DMTFSpecMeasurementValueType[7] should be set to 1b .

0x8

Hash-extend measurement. The measurement reported is

an HEM value as defined in Hash-extend measurements.

When DMTFSpecMeasurementValueType[6:0]=0x8 ,

DMTFSpecMeasurementValueType[7] shall be set to 0b .

0x9

Informational. The measurement is for the Requester's

information only and does not carry sensitive security

attributes. For example, human-readable boot progress

information. When

DMTFSpecMeasurementValueType[6:0]=0x9 ,

DMTFSpecMeasurementValueType[7] shall be set to 1b .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 133

DMTFSpecMeasurementValueType[6:0] Description

0xA

Structured measurement manifest. When

DMTFSpecMeasurementValueType[6:0]=0xA , the Responder

shall support setting DMTFSpecMeasurementValueType[7] to

1b , and should support setting

DMTFSpecMeasurementValueType[7] to 0b . The manifest

shall follow the format described in Manifest format for a

measurement block.

All other values Reserved.

520 Table 60 — Device mode field of a measurement block

521 10.12.1.2 Device mode field of a measurement block

Byte offset Field Size (bytes) Description

0 OperationalModeCapabilities 4

Fields with bits set to 1 indicate support for reporting

the associated state in OperationalModeState .

• Bit [0]. Shall indicate support for reporting device

in manufacturing mode.

• Bit [1]. Shall indicate support for reporting device

in validation mode.

• Bit [2]. Shall indicate support for reporting device

in normal operational mode.

• Bit [3]. Shall indicate support for reporting device

in recovery mode.

• Bit [4]. Shall indicate support for reporting device

in Return Merchandise Authorization (RMA)

mode.

• Bit [5]. Shall indicate support for reporting device

in decommissioned mode.

• All other values reserved.

4 OperationalModeState 4

Fields with bits set to 1 indicate true for the reported

state.

• Bit [0]. Shall indicate the device is in

manufacturing mode.

• Bit [1]. Indicates the device is in validation mode.

• Bit [2]. Shall indicate the device is in normal

operational mode.

• Bit [3]. Shall indicate the device is in recovery

mode.

• Bit [4]. Shall indicate the device is in RMA mode.

• Bit [5]. Shall indicate the device is in

decommissioned mode.

• All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

134 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

8 DeviceModeCapabilities 4

Fields with bits set to 1 indicate support for reporting

the associated state in DeviceModeState .

• Bit [0]. Shall indicate support for reporting non-

invasive debug mode is active.

• Bit [1]. Shall indicate support for reporting

invasive debug mode is active.

• Bit [2]. Shall indicate support for reporting non-

invasive debug mode has been active this Reset

cycle.

• Bit [3]. Shall indicate support for reporting

invasive debug mode has been active this Reset

cycle.

• Bit [4]. Shall indicate support for reporting

invasive debug mode has been active on this

device at least once since exiting manufacturing

mode.

• All other values reserved.

12 DeviceModeState 4

Fields with bits set to 1 indicate true for the reported

state.

• Bit [0]. Shall indicate non-invasive debug mode

is active.

• Bit [1]. Shall indicate invasive debug mode is

active.

• Bit [2]. Shall indicate non-invasive debug mode

has been active this Reset cycle.

• Bit [3]. Shall indicate invasive debug mode has

been active this Reset cycle.

• Bit [4]. Shall indicate invasive debug mode has

been active on this device at least once since

exiting manufacturing mode.

• All other values reserved.

522 10.12.1.3 Manifest format for a measurement block

523 When DMTFSpecMeasurementValueType[6:0]=0xA , the response shall be either a manifest or the digest of a manifest. If

DMTFSpecMeasurementValueType[7]=0b , then the Measurement field of the Measurement block shall contain a digest of

the structure described in Table 61 — Manifest measurement block format. If DMTFSpecMeasurementValueType[7]=1b ,

then the Measurement field of the Measurement block shall contain a manifest in the format described in Table 61 —

Manifest measurement block format.

524 Table 61 — Manifest measurement block format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 135

Byte offset Field Size (bytes) Description

0 SVH 2 + VendorIDLen

Shall be a standards body or vendor-defined header,

as described in Table 69 — Standards body or

vendor-defined header (SVH).

2 + VendorIDLen Manifest Variable

Shall contain the manifest data, as defined by the

registry, standards body, or vendor specified in the

ID and VendorID fields.

525 10.12.2 MEASUREMENTS signature generation

526 While a Requester can opt to require a signature in each of the request-response messages, it is advisable that the

cost of the signature generation process is minimized by amortizing it over multiple request-response messages

where applicable. In this scheme, the Requester issues a number of requests without requiring signatures followed

by a final request requiring a signature over the entire set of request-response messages exchanged. The steps to

complete this scheme are as follows:

1.527 The Responder shall construct measurement log L1 and the Requester shall construct measurement

log L2 over their observed messages:

L1/L2 = Concatenate(VCA, GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,

GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,

GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

528 where:

◦ Concatenate is the standard concatenation function.

◦ GET_MEASUREMENTS_REQUEST1 is the entire first GET_MEASUREMENTS request message under

consideration, where the Requester has not requested a signature on that specific

GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSE1 is the entire MEASUREMENTS response message without the signature

bytes that the Responder sent in response to GET_MEASUREMENTS_REQUEST1 .

◦ GET_MEASUREMENTS_REQUESTn-1 is the entire last consecutive GET_MEASUREMENTS request message

under consideration, where the Requester has not requested a signature on that specific

GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSEn-1 is the entire MEASUREMENTS response message without the signature

bytes that the Responder sent in response to GET_MEASUREMENTS_REQUESTn-1 .

◦ GET_MEASUREMENTS_REQUESTn is the entire first GET_MEASUREMENTS request message under

consideration, where the Requester has requested a signature on that specific GET_MEASUREMENTS

request. n is a number greater than or equal to 1 . When n equals 1 , the Requester has not

made any GET_MEASUREMENTS requests without signature prior to issuing a GET_MEASUREMENTS

request with signature.

◦ MEASUREMENTS_RESPONSEn is the entire MEASUREMENTS response message without the signature

Security Protocol and Data Model (SPDM) Specification DSP0274

136 Work in Progress Version 1.4.0WIP70

bytes that the Responder sent in response to GET_MEASUREMENTS_REQUESTn .

529 Completion of MEASUREMENTS with signature shall re-initialize L1/L2 to null . Any communication

between Requester and Responder other than a GET_MEASUREMENTS request or response re-initializes

L1/L2 computation to null . The GET_MEASUREMENTS requests and MEASUREMENTS responses before the

L1/L2 re-initialization will not be covered by the signature in the final MEASUREMENTS response.

Consequently, it is recommended that the Requester not use the measurements before verifying the

signature.

530 An ERROR message of ErrorCode=ResponseNotReady or ErrorCode=LargeResponse shall not re-initialize

L1/L2 and the Requester and Responder shall continue to construct L1/L2 with GET_MEASUREMENTS and

MEASUREMENTS . An error response with any error code other than ResponseNotReady or LargeResponse

shall re-initialize L1/L2 to null .

2.531 The Responder shall generate:

Signature = SPDMsign(PrivKey, L1, "measurements signing");

532 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key of the Responder associated with the leaf certificate stored in

SlotID of SlotIDParam in GET_MEASUREMENTS . If the public key of the Responder was provisioned

to the Requester, then PrivKey shall be the associated private key.

533 10.12.3 MEASUREMENTS signature verification

534 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.535 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, L2, "measurements signing")

536 where:

◦ SPDMsignatureVerify is described in Signature verification. A successful verification is when

result is success .

◦ PubKey shall be the public key associated with the leaf certificate stored in SlotID of

SlotIDParam in GET_MEASUREMENTS . PubKey is extracted from the CERTIFICATE response. If the

public key of the Responder was provisioned to the Requester, then PubKey shall be the

provisioned public key.

537 Figure 13 — Measurement signature computation example shows an example of a typical Requester-Responder

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 137

protocol where the Requester issues 1 to n-1 GET_MEASUREMENTS requests without a signature, which is followed by a

single GET_MEASUREMENTS request n with a signature.

538 Figure 13 — Measurement signature computation example

539

GET_MEASUREMENTS (n-1, NoSig)

MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)

MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)

MEASUREMENTS (1, NoSig)
MEASUREMENTS
response 1 with no

signature

...

...

MEASUREMENTS
response n-1 with no

signature

GET_MEASUREMENTS
request 1 with no

signature request

GET_MEASUREMENTS
request n-1 with no

signature request

GET_MEASUREMENTS
request n with signature

request

MEASUREMENTS
response n with signature

computed as described

Requester

Verify Signature computed

as described

540 10.13 ERROR response message

541 For an SPDM operation that results in an error, the Responder should send an ERROR message to the Requester.

542 Table 62 — ERROR response message format shows the ERROR response format.

543 Table 63 — Error code and error data shows the detailed error code, error data, and extended error data.

544 Table 64 — ResponseNotReady extended error data shows the ResponseNotReady extended error data.

545 Table 65 — Registry or standards body ID shows the registry or standards body ID.

546 Table 66 — ExtendedErrorData format for vendor or other standards-defined ERROR response message shows the

ExtendedErrorData format definition for vendor or other standards-defined ERROR response messages.

547 Table 62 — ERROR response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

138 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x7F = ERROR . See Table 5 — SPDM

response codes.

2 Param1 1
Shall be the ErrorCode. See Table 63 — Error code

and error data.

3 Param2 1
Shall be the Error data. See Table 63 — Error code

and error data.

4 ExtendedErrorData 0-32
Shall be Optional extended data. See Table 63 —

Error code and error data.

548 Table 63 — Error code and error data

ErrorCode Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved. Reserved Reserved

InvalidRequest 0x01
One or more request fields

are invalid
0x00

No extended error data is

provided.

Reserved 0x02 Reserved. Reserved
No extended error data is

provided.

Busy 0x03

The Responder received

the request message and

the Responder decided to

ignore the request

message, but the

Responder might be able

to process the request

message if the request

message is sent again in

the future.

0x00
No extended error data is

provided.

UnexpectedRequest 0x04

The Responder received

an unexpected request

message. For example,

CHALLENGE before

NEGOTIATE_ALGORITHMS .

0x00
No extended error data is

provided.

Unspecified 0x05
Unspecified error

occurred.
0x00

No extended error data is

provided.

DecryptError 0x06

The receiver cannot

decrypt or verify data

during the session.

Reserved
No extended error data is

provided.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 139

ErrorCode Value Description Error data ExtendedErrorData

UnsupportedRequest 0x07

The RequestResponseCode

or the SubCode (if

applicable) in the request

message is unsupported.

RequestResponseCode

or the SubCode in the

request message.

No extended error data is

provided

RequestInFlight 0x08

The Responder has

delivered an encapsulated

request to which it is still

waiting for the response.

Reserved
No extended error data is

provided.

InvalidResponseCode 0x09

The Requester delivered

an invalid response for an

encapsulated response.

Reserved
No extended error data is

provided.

SessionLimitExceeded 0x0A

Maximum number of

concurrent sessions

reached.

Reserved
No extended error data is

provided.

SessionRequired 0x0B

The Request message

received by the

Responder is only allowed

within a session.

Reserved
No extended error data is

provided.

ResetRequired 0x0C

The device requires a

reset to complete the

requested operation. This

ErrorCode can be sent in

response to the

GET_DIGESTS ,

GET_CERTIFICATE ,

GET_CSR ,

SET_CERTIFICATE ,

GET_KEY_PAIR_INFO or

SET_KEY_PAIR_INFO

message.

Bit[7:3]. Reserved.

Bit[2:0]. If sent in

response to

GET_CSR , the

Responder-assigned

CSRTrackingTag .

Otherwise, shall be

0 .

No extended error data is

provided.

Security Protocol and Data Model (SPDM) Specification DSP0274

140 Work in Progress Version 1.4.0WIP70

ErrorCode Value Description Error data ExtendedErrorData

ResponseTooLarge 0x0D

Used in the following

scenarios.

• The response is

greater than the

MaxSPDMmsgSize of

the requesting SPDM

endpoint.

• The CHUNK_CAP of the

requesting endpoint is

0 and the response

is larger than the size

of the transmit buffer

of the responding

SPDM endpoint

• The CHUNK_CAP of the

requesting endpoint is

1 , the CHUNK_CAP of

the responding

endpoint is 0 , and

the response is larger

than the

DataTransferSize of

the requesting

endpoint.

Reserved

See Table 67 —

ExtendedErrorData format for

ResponseTooLarge.

RequestTooLarge 0x0E

The request is greater

than the MaxSPDMmsgSize

of the receiving SPDM

endpoint.

Reserved Reserved

LargeResponse 0x0F

The response is greater

than DataTransferSize

and less than or equal to

MaxSPDMmsgSize of the

requesting SPDM

endpoint, or greater than

the transmit buffer size of

the responding SPDM

endpoint.

Reserved

See Table 68 —

ExtendedErrorData format for

LargeResponse.

MessageLost 0x10

The SPDM message is

lost. For example, this

error code can be used to

indicate the loss of a

Large Request, Large

Response, or the request

in a ResponseNotReady .

Reserved Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 141

ErrorCode Value Description Error data ExtendedErrorData

InvalidPolicy 0x11

The Responder received

one or more messages

that violated its security

policy.

For example, if a

Responder requires both

encryption and MAC

capabilities in a secure

session, and the

Requester only supports

encryption, then the

Responder would return

this error code if the

Requester sends

KEY_EXCHANGE .

Reserved Reserved

CertChainTooLarge 0x12

• The GET_CERTIFICATE

message is

requesting a

certificate chain with a

size that cannot be

represented by the

Offset and Length

fields. The Requester

should use

LargeOffset and

LargeLength fields for

subsequent

GET_CERTIFICATE

messages.

• The SET_CERTIFICATE

message contains a

certificate chain with a

size that requires

large fields but

LARGE_CERT_CAP=0b .

Reserved

See Table 68.1 —

ExtendedErrorData format for

CertChainTooLarge.

Reserved 0x13–0x40 Reserved Reserved Reserved

VersionMismatch 0x41

Requested SPDM version

is not supported or is a

different version from the

selected version.

0x00
No extended error data is

provided.

ResponseNotReady 0x42

See the

RESPOND_IF_READY

request message format.

0x00

See Table 64 —

ResponseNotReady extended

error data.

Security Protocol and Data Model (SPDM) Specification DSP0274

142 Work in Progress Version 1.4.0WIP70

ErrorCode Value Description Error data ExtendedErrorData

RequestResynch 0x43

Responder is requesting

Requester to reissue

GET_VERSION to re-

synchronize. An example

is following a firmware

update.

0x00
No extended error data is

provided.

OperationFailed 0x44

An internal error occurred

upon servicing the request

issued by the Requester.

0x00
No extended error data is

provided.

NoPendingRequests 0x45

The Responder does not

have any pending request

for a

GET_ENCAPSULATED_REQUEST

message.

Reserved Reserved

Reserved 0x46–0xFE Reserved. Reserved Reserved

Vendor or Standards-Defined 0xFF
Vendor or standards-

defined

Shall indicate the

registry or standards

body using one of

the values in the ID

column of Table 59

— Registry or

standards body ID.

See Table 66 —

ExtendedErrorData format for

vendor or other standards-

defined ERROR response

message for format definition.

549 Table 64 — ResponseNotReady extended error data

Byte offset Field Size (bytes) Description

0 RDTExponent 1

Shall be the exponent expressed in logarithmic

(base-2 scale) to calculate RDT time in µs after

which the Responder can provide successful

completion response.

For example, the raw value 8 indicates that the

Responder will be ready in 28 = 256 µs.

Requester should use RDT to avoid continuous

pinging and issue the RESPOND_IF_READY request

message, as Table 70 — RESPOND_IF_READY

request message format shows, after RDT time.

For timing requirement details, see Table 7 — Timing

specification for SPDM messages.

1 RequestCode 1
Shall be the request code that triggered this

response.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 143

Byte offset Field Size (bytes) Description

2 Token 1

Shall be the opaque handle that the Requester shall

pass in with the RESPOND_IF_READY request message,

as Table 70 — RESPOND_IF_READY request

message format shows. The Responder can use the

value in this field to provide the correct response

when the Requester issues a RESPOND_IF_READY

request.

3 RDTM 1

Shall be the multiplier used to compute WT Max in µs

to indicate that the response might be dropped after

this delay.

The multiplier shall always be greater than 1.

The Responder might also stop processing the initial

request if the same Requester issues a different

request.

For timing requirement details, see Table 7 — Timing

specification for SPDM messages.

550 Table 65 — Registry or standards body ID

551 For algorithm encoding in extended algorithm fields, consult the respective registry or standards body unless

otherwise specified.

ID Vendor ID length (bytes) Registry or standards body name Description

0x0 0 DMTF
DMTF does not have a

Vendor ID registry.

0x1 2 TCG

VendorID is identified

by using TCG Vendor ID

Registry. For extended

algorithms, see TCG

Algorithm Registry.

0x2 2 USB

VendorID is identified

by using the vendor ID

assigned by USB.

0x3 2 PCI-SIG

VendorID is identified

using PCI-SIG Vendor

ID.

0x4 4 IANA

The Private Enterprise

Number (PEN) assigned

by the Internet Assigned

Numbers Authority

(IANA) identifies the

vendor.

Security Protocol and Data Model (SPDM) Specification DSP0274

144 Work in Progress Version 1.4.0WIP70

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://pcisig.com/membership/member-companies
https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers

ID Vendor ID length (bytes) Registry or standards body name Description

0x5 4 HDBaseT

VendorID is identified

by using HDBaseT

HDCD entity.

0x6 2 MIPI

The Manufacturer ID

assigned by MIPI

identifies the vendor.

0x7 2 CXL
VendorID is identified

by using CXL vendor ID.

0x8 2 JEDEC

VendorID is identified

by using JEDEC vendor

ID.

0x9 0 VESA

For fields and formats

defined by the VESA

standards body, there is

no Vendor ID registry.

0xA Variable IANA CBOR

The CBOR Tag Registry

that identifies the format

of the element, as

assigned by the Internet

Assigned Numbers

Authority (IANA). The

encoding of the CBOR

tag indicates the length

of the tag. When a

CBOR Tag is used with

a standards body or

vendor-defined header,

the VendorIDLen field

shall be set to the length

of the encoded CBOR

tag, followed by the data

payload, which starts

with an encoded CBOR

tag.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 145

https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/
https://vesa.org/
https://www.iana.org/
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

ID Vendor ID length (bytes) Registry or standards body name Description

0xB 2 DMTF-DSP

DMTF does not have a

Vendor ID registry that

identifies a vendor.

However, this ID

provides all DMTF

specifications (DSP) the

ability to carve out a

namespace directly

under its control. Thus,

the VendorID field shall

be the DSP number. For

example, this

specification, DSP 274,

will have a value of 274

(0x112) populated in

that field.

When using this ID ,

the VendorID field shall

always be present with

a valid DSP value and

the VendorIDLen shall

always be 2.

552 Table 66 — ExtendedErrorData format for vendor or other standards-defined ERROR response message

Byte offset Field Size (bytes) Description

0 Len 1

Shall be the length of the VendorID field.

If the vendor defines the error, the value of this field

shall equal the "Vendor ID length", as Table 65 —

Registry or standards body ID describes, of the

corresponding registry or standards body name.

If a registry or standards body defines the error, this

field shall be zero (0), which also indicates that the

VendorID field is not present.

The Error Data field in the ERROR message

indicates the registry or standards body name (that

is, Param2) and is one of the values in the ID column

of Table 65 — Registry or standards body ID.

Security Protocol and Data Model (SPDM) Specification DSP0274

146 Work in Progress Version 1.4.0WIP70

https://www.dmtf.org/

Byte offset Field Size (bytes) Description

1 VendorID Len

The value of this field shall indicate the Vendor ID as

assigned by the registry or standards body. Table 65

— Registry or standards body ID describes the

length of this field. Shall be in little-endian format.

The name of the registry or standards body in the

ERROR is indicated in the Error Data field (that is,

Param2) and is one of the values in the ID column of

Table 65 — Registry or standards body ID.

1 + Len OpaqueErrorData Variable The vendor or standards body defines this value.

553 Table 67 — ExtendedErrorData format for ResponseTooLarge

Byte offset Field Size (bytes) Description

0 ActualSize 4 Shall be the size of the actual response.

554 Table 68 — ExtendedErrorData format for LargeResponse

Byte offset Field Size (bytes) Description

0 Handle 1

Shall be a unique value that identifies the Large SPDM

Response and shall be the same value for all chunks of

the same large SPDM message.

The value of this field should either sequentially increase

or sequentially decrease with each large SPDM

message with the expectation that it will wrap around

after reaching the maximum or minimum value,

respectively, of this field. See CHUNK_GET request and

CHUNK_RESPONSE response message.

555 Table 68.1 — ExtendedErrorData format for CertChainTooLarge

Byte offset Field Size (bytes) Description

0 CertChainLength 4 Shall be the size of the certificate chain.

556 10.13.1 Standards body or vendor-defined header

557 This specification uses the format that Table 69 — Standards body or vendor-defined header (SVH) describes to help

identify the entity that defines the format for a given payload. The clauses in the other parts of this specification

indicate to which payload this header applies. Note, if the payload format in question is defined by a standards body,

the SVH header does not require the use of the VendorID field. Instead, the ID field would be set to the ID of the

standards body, VendorIDLen would be set to 0 , and VendorID would be absent. A standards body, registry, or

vendor that defines a payload format should also define the values to use in the SVH header.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 147

558 Table 69 — Standards body or vendor-defined header (SVH)

Byte offset Field Size (bytes) Description

0 ID 1
Shall be one of the values in the ID column of Table

65 — Registry or standards body ID.

1 VendorIDLen 1

Shall be the Length in bytes of the VendorID field.

If the format of the given payload is specified by a

standards body or registry itself, this field shall be 0.

Otherwise, if the format of the given payload is

specified by an organization that is identified on the

vendor ID list indicated in the ID field, this field shall

be the length indicated in the "Vendor ID length"

column of Table 65 — Registry or standards body ID

for the respective ID .

2 VendorID VendorIDLen

If VendorIDLen is greater than zero, this field shall be

the ID of the vendor corresponding to the ID field.

Otherwise, this field shall be absent.

559 10.14 RESPOND_IF_READY request message format

560 This request message shall ask for the response to the original request upon receipt of the ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return an ERROR message of

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response message.

561 The validity of the RESPOND_IF_READY request (see the SPDM Request and Response messages validity table) is

defined by the original request that caused the RESPOND_IF_READY flow. This means the last request to which the

Responder sent an ERROR message of ErrorCode=ResponseNotReady .

562 Figure 14 — RESPOND_IF_READY flow leading to completion shows the RESPOND_IF_READY flow:

563 Figure 14 — RESPOND_IF_READY flow leading to completion

Security Protocol and Data Model (SPDM) Specification DSP0274

148 Work in Progress Version 1.4.0WIP70

564

CHALLENGE_AUTH()

ResponderRequester

CHALLENGE(0x83)

ERROR (ResponseNotReady, 0x7, 8, 4)

RESPOND_IF_READY(0x83, 0x7)

Sends response in less than CT
μs to meet the crypto timeout

requirement.
ResponseNotReady with

Token=0x7, RDTExponent = 8 and
RDTM = 4

Waits for more than
WT = 2 ^ 8 μs but

less than WTMax =
((2 ^ 8) × 4) – μs

Processing is complete

Less than CT μs

Less than CT μs

RTT = 1

565 Table 70 — RESPOND_IF_READY request message format shows the RESPOND_IF_READY request message format.

566 Table 70 — RESPOND_IF_READY request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xFF = RESPOND_IF_READY . See Table 4 —

SPDM request codes.

2 Param1 1

Shall be the original request code that triggered the

ResponseNotReady error code response. Shall match

the request code returned as part of the

ResponseNotReady extended error data.

3 Param2 1
Shall be the token that was returned as part of the

ResponseNotReady extended error data.

567 10.15 VENDOR_DEFINED_REQUEST request message

568 A Requester intending to define a unique request to meet its needs can use this request message. Table 71 —

VENDOR_DEFINED_REQUEST request message format defines the format.

569 The Requester should send this request message only after sending the GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS request sequence.

570 If the vendor wishes to have the requests authenticated, then the vendor shall indicate how the transcript and/or

message transcript are changed to add the vendor-defined commands.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 149

571 Table 71 — VENDOR_DEFINED_REQUEST request message format shows the VENDOR_DEFINED_REQUEST request

message format.

572 Table 71 — VENDOR_DEFINED_REQUEST request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xFE = VENDOR_DEFINED_REQUEST . See Table

4 — SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 StandardID 2

Shall indicate the registry or standards body by using

one of the values in the ID column of Table 65 —

Registry or standards body ID.

6 Len 1

Shall be the length of the Vendor ID field. If the

VendorDefinedReqPayload is standards-defined, Len

shall be 0 . If the VendorDefinedReqPayload is

vendor-defined, Len shall equal "Vendor ID length",

as Table 65 — Registry or standards body ID

describes.

7 VendorID Len
Shall be the Vendor ID as assigned by the registry or

standards body. Shall be in little-endian format.

7 + Len ReqLength 2 Shall be the length of the VendorDefinedReqPayload .

7 + Len + 2 VendorDefinedReqPayload ReqLength This field shall be used to send the request payload.

573 Other DMTF specifications may define VENDOR_DEFINED_REQUEST with StandardID set to 0. See

VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications for more information.

574 10.16 VENDOR_DEFINED_RESPONSE response message

575 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . Table 72 —

VENDOR_DEFINED_RESPONSE response message format defines the format.

576 Table 72 — VENDOR_DEFINED_RESPONSE response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x7E = VENDOR_DEFINED_RESPONSE . See Table

5 — SPDM response codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

150 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 StandardID 2

Shall indicate the registry or standards body using

one of the values in the ID column of Table 65 —

Registry or standards body ID.

6 Len 1

Shall be the length of the Vendor ID field. If the

VendorDefinedRespPayload is standards-defined,

length shall be 0 . If the VendorDefinedRespPayload

is vendor-defined, length shall equal "Vendor ID

length" as Table 65 — Registry or standards body ID

describes.

7 VendorID Len

Shall indicate the Vendor ID as assigned by the

registry or standards body. Shall be in little-endian

format.

7 + Len RespLength 2 Shall be the length of the VendorDefinedRespPayload

7 + Len + 2 VendorDefinedRespPayload RespLength
This value shall be used to send the response

payload.

577 10.16.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
specifications

578 Other DMTF specifications may define VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages with

StandardID set to 0 ("DMTF", as defined in Table 65 — Registry or standards body ID) and Len set to 0. In this

case, VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages shall specify the underlying DMTF

specification that defines them. A DMTF specification which defines the data model of VendorDefinedReqPayload for

VENDOR_DEFINED_REQUEST and the data model of VendorDefinedRespPayload for VENDOR_DEFINED_RESPONSE shall

follow Table 73 — Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is

DMTF.

579 Table 73 — Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

Byte offset Field Size (bytes) Description

0 DSPNumber 2

Shall be the DMTF specification's DSP number as a

16-bit integer. For example, DSP0287 would use

0x011F .

2 DSPVersion 2

Shall be the version number of the DMTF

specification whose DSP number is populated in the

DSPNumber field. The format of the version number

shall follow Table 10 — VersionNumberEntry

definition.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 151

Byte offset Field Size (bytes) Description

4 VendorPayload Variable

Shall be the actual payload data defined by the

DMTF specification whose DSP number is populated

in the DSPNumber field.

580 DMTF DSP can also use StandardID set to 0xB (DMTF-DSP). If the DMTF DSP uses a StandardID of 0xB, then

that DMTF DSP defines the format for both VendorDefinedReqPayload and VendorDefinedRespPayload .

581 10.17 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response
messages

582 This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or, optionally, both parties), negotiate cryptographic parameters (in addition to those negotiated in the

last NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material.

Table 74 — KEY_EXCHANGE request message format shows the KEY_EXCHANGE request message format, and

Table 76 — Successful KEY_EXCHANGE_RSP response message format shows the KEY_EXCHANGE_RSP response

message format. The handshake is completed by the successful exchange of the FINISH request and FINISH_RSP

response messages presented in the next clause. The handshake depends on the tight coupling between these two

request/response message pairs.

583 The Requester-Responder pair can support two modes of handshakes. If HANDSHAKE_IN_THE_CLEAR_CAP is set in both

the Requester and the Responder, all SPDM messages exchanged during the Session Handshake Phase are sent in

the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/or

message authentication during the Session Handshake Phase using the Handshake secret derived at the completion

of the KEY_EXCHANGE_RSP message for subsequent message communication until the completion of the FINISH_RSP

message.

584 Figure 15 — Responder authentication key exchange example shows an example of a Responder authentication key

exchange:

585 Figure 15 — Responder authentication key exchange example

Security Protocol and Data Model (SPDM) Specification DSP0274

152 Work in Progress Version 1.4.0WIP70

586

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

587 Figure 16 — Responder authentication multiple key exchange example shows an example of multiple sessions using

two independent sets of root session keys that coexist at the same time. When HANDSHAKE_IN_THE_CLEAR_CAP = 0 for

the Requester and/or Responder, the specification does not require a specific temporal relationship between the

second KEY_EXCHANGE request message and the first FINISH_RSP response message. However, to simplify

implementation, a Responder might respond with an ERROR message of ErrorCode=Busy to the second

KEY_EXCHANGE request message until the first FINISH_RSP response message is complete. If the handshake is

performed in the clear (that is, if HANDSHAKE_IN_THE_CLEAR_CAP = 1 for both Requester and Responder), a Requester

shall not send a second KEY_EXCHANGE request message until the first FINISH_RSP response message is received. A

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 153

Responder shall respond with an ERROR message of ErrorCode=UnexpectedRequest if it receives a second

KEY_EXCHANGE request message before the first FINISH request is received.

588 Figure 16 — Responder authentication multiple key exchange example

589

KEY_EXCHANGE(K2)

KEY_EXCHANGE_RSP (K2)

ResponderRequester

KEY_EXCHANGE (K1)

KEY_EXCHANGE_RSP (K1)

FINISH (K1)

FINISH_RSP (K1)

FINISH (K2)

FINISH_RSP (K2)

Enables authenticated and/or
 encrypted data transfer (K2)

Enables authenticated and/or
 encrypted data transfer (K1)

Authenticated and/or encrypted
data transfer (K1) continues

590 10.17.1 DHE scheme

591 If the Requester and Responder negotiated a DHE scheme during algorithm negotiation, the handshake includes an

ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder each generate an ephemeral

(that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key pairs in the ExchangeData

fields of the KEY_EXCHANGE request message and KEY_EXCHANGE_RSP response message. The Responder generates a

DHE secret by using the private key of the DHE key pair of the Responder and the public key of the DHE key pair of

the Requester provided in the KEY_EXCHANGE request message. Similarly, the Requester generates a DHE secret by

using the private key of the DHE key pair of the Requester and the public key of the DHE key pair of the Responder

provided in the KEY_EXCHANGE_RSP response message. The DHE secrets are computed as specified in clause 7.4 of

RFC 8446. Assuming that the public keys were received correctly, both the Requester and Responder generate

identical DHE secrets from which session secrets are generated.

592 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent

Security Protocol and Data Model (SPDM) Specification DSP0274

154 Work in Progress Version 1.4.0WIP70

ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC

8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g^X mod p) for the specified

group (see Table 17 — DHE structure for group definitions) encoded as a big-endian integer and padded to the left

with zeros to the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field

in KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the serialization of X and Y, which are the binary

representations of the x and y values respectively in network byte order, padded on the left by zeros if necessary.

The size of each number representation occupies as many octets as are implied by the curve parameters selected.

Specifically, X is [0: C - 1] and Y is [C : D - 1], where C and D are determined by the group (see Table 17 — DHE

structure).

593 For SM2_P256 key exchange, the identifiers IDA and IDB that the GB/T 32918.3-2016 specification defines are

needed to derive the shared secret. If this algorithm is selected, the ID for the Requester (that is, IDA) shall be the

concatenation of "Requester-KEP-dmtf-spdm-v" and SPDMversionString . Likewise, the ID for the Responder (that is,

IDB) shall be the concatenation of "Responder-KEP-dmtf-spdm-v" and SPDMversionString .

594 A Requester should generate a new DHE key pair for each KEY_EXCHANGE request message that the Requester

sends. A Responder should generate a new DHE key pair for each KEY_EXCHANGE_RSP response message that the

Responder sends.

595 10.17.2 ML-KEM scheme

596 If the Requester and Responder negotiated an ML-KEM scheme during algorithm negotiation, then the handshake

starts with the Requester generating an ephemeral ML-KEM key pair and sending the encapsulation key ek to the

Responder in the KEY_EXCHANGE request message. Upon receiving the Requester's ek , the Responder randomly

generates 32-byte m , encapsulates m with ek , and arrives at ciphertext c and 32-byte shared secret key K . The

ciphertext c alongside the Responder's signature and integrity MAC is sent to the Requester in the

KEY_EXCHANGE_RSP response message for the Requester to decapsulate with the Requester's decapsulation key dk .

The decapsulation results in shared secret K' .

597 A Requester should generate a new ML-KEM key pair for each KEY_EXCHANGE request message. A Responder

should generate a new m for calculating K and c upon receiving each KEY_EXCHANGE request message.

598 10.17.3 Message formats

599 Table 74 — KEY_EXCHANGE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE4 = KEY_EXCHANGE . See Table 4 —

SPDM request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 155

Byte offset Field Size (bytes) Description

2 Param1 1

Shall be the type of measurement summary hash

requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response), the

Requester shall set this value to 0x0 .

3 Param2 1

Shall be the SlotID . Slot number of the Responder

certificate chain that shall be used for authentication.

If the public key of the Responder was provisioned to

the Requester in a trusted environment, the value in

this field shall be 0xFF ; otherwise it shall be

between 0 and 7 inclusive.

4 ReqSessionID 2

Shall be the two-byte Requester contribution to allow

construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID (SessionID) =

Concatenate(ReqSessionID, RspSessionID).

6 SessionPolicy 1
Shall be the session policy as Table 75 — Session

policy defines.

7 Reserved 1 Reserved.

8 RandomData 32 Shall be the Requester-provided random data.

Security Protocol and Data Model (SPDM) Specification DSP0274

156 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

40 ExchangeData D

If the Requester and Responder negotiated a DHE

scheme during algorithm negotiation, then this field

shall be the DHE public information generated by the

Requester. If the DHE group selected in the most

recent ALGORITHMS response is finite-field-based

(FFDHE), the ExchangeData represents the

computed public value. If the selected DHE group is

elliptic-curve-based (ECDHE), the ExchangeData

represents the X and Y values in network byte order.

Specifically, X is [0: C - 1] and Y is [C : D - 1]. In both

cases the size of D (and C for ECDHE) is derived

from the selected DHE group, as described in Table

25 — DHE structure.

If the Requester and Responder negotiated a KEM

scheme during algorithm negotiation, then this field

shall be the Requester's KEM encapsulation key

ek . The value of D is specified in Table 30 —

KEMAlg structure.

40 + D OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

42 + D OpaqueData OpaqueDataLength

If present, shall be the OpaqueData sent by the

Requester. Used to indicate any parameters that the

Requester wishes to pass to the Responder as part

of key exchange. If present, this field shall conform to

the selected opaque data format in

OtherParamsSelection .

600 Table 75 — Session policy

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 157

Bit offset Field Description

0 TerminationPolicy

This field specifies the behavior of the Responder when the

Responder completes a runtime code or configuration update that

affects the hardware or firmware measurement of the Responder.

The Requester selects the value. If not set, the Responder shall

terminate the session when the runtime update has taken effect. If

set, the Responder shall decide whether to terminate or continue

with the session based on its own policy. A policy example is one

where the Responder terminates the session whenever an update

to configuration or runtime code changes the security version of

the firmware that manages SPDM sessions. The policy of the

Responder is outside the scope of this specification.

To terminate a session, the Responder shall either respond with an

ERROR message of ErrorCode=RequestResynch to any SPDM

request received within the session or silently discard any request

received within the session until a GET_VERSION request is

received.

1 EventAllPolicy

If set, the Responder shall subscribe the Requester to all events

the Responder supports. Upon successfully entering the

application phase of a session, the Responder may immediately

send events.

If set and EVENT_CAP is not set in CAPABILITIES , the Responder

shall either respond with an ERROR message of

ErrorCode=InvalidRequest or silently discard the request.

[7:2] Reserved Reserved

601 Table 76 — Successful KEY_EXCHANGE_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x64 = KEY_EXCHANGE_RSP . See Table 5 —

SPDM response codes.

2 Param1 1

Shall be HeartbeatPeriod.

The value of this field shall be zero if Heartbeat is not

supported by one of the endpoints. Otherwise, the

value shall be in units of seconds. Zero is a legal

value if Heartbeat is supported, and this means that

a heartbeat is not desired on this session.

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

158 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

4 RspSessionID 2

Shall be the two-byte Responder contribution to

allow construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID = Concatenate(ReqSessionID,

RspSessionID).

6 MutAuthRequested 1

Bit 0. If set, the Responder is requesting to

authenticate the Requester (Session-based mutual

authentication) without using the encapsulated

request flow.

Bit 1. If set, Responder is requesting Session-based

mutual authentication with the encapsulated request

flow.

Bit 2. If set, Responder is requesting Session-based

mutual authentication with an implicit GET_DIGESTS

request. The Responder and Requester shall follow

the optimized encapsulated request flow.

Bit [7:3]. Reserved.

At most one bit of Bit 0, Bit 1, or Bit 2 shall be set.

For encapsulated request flow and the optimized

encapsulated request flow details, see the

GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages

clause.

7 SlotIDParam 1

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID . Slot number of the

Requester certificate chain that shall be used for

mutual authentication, if MutAuthRequested Bit 0 is

set. If the public key of the Requester was

provisioned to the Responder through other means,

the value in this field shall be 0xF ; otherwise it shall

be between 0 and 7 inclusive. All other values

reserved.

For any other value of MutAuthRequested , this field

shall be set to 0 and ignored by the Requester.

8 RandomData 32 Shall be the Responder-provided random data.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 159

Byte offset Field Size (bytes) Description

40 ExchangeData D'

If the Requester and Responder negotiated a DHE

scheme during algorithm negotiation, then this field

shall be the DHE public information generated by the

Responder. If the DHE group selected in the most

recent ALGORITHMS response is finite-field-based

(FFDHE), the ExchangeData represents the

computed public value. If the selected DHE group is

elliptic-curve-based (ECDHE), the ExchangeData

represents the X and Y values in network byte order.

Specifically, X is [0: C' - 1] and Y is [C' : D' - 1]. In

both cases the size of D' (and C' for ECDHE) is

derived from the selected DHE group, as described

in Table 25 — DHE structure.

If the Requester and Responder negotiated a KEM

scheme during algorithm negotiation, then this field

shall be the ciphertext c . The value of D' is

specified in Table 30 — KEMAlg structure.

Security Protocol and Data Model (SPDM) Specification DSP0274

160 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

40 + D' MeasurementSummaryHash MSHLength = H or 0

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or

requested Param1 = 0x0 , this field shall be absent.

If the requested Param1 = 0x1 , this field shall be the

combined hash of measurements of all measurable

components considered to be in the TCB required to

generate this response, computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...)) , where

MeasurementBlock[x] denotes a measurement of an

element in the TCB and hash is the negotiated base

hashing algorithm. Measurements are concatenated

in ascending order based on their measurement

index as Table 57 — Measurement block format

describes.

If the requested Param1 = 0x1 and if there are no

measurable components in the TCB required to

generate this response, this field shall be 0 .

If requested Param1 = 0xFF , this field shall be

computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ..., MeasurementBlock[n])) of

all supported measurements available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order. Indices with

no associated measurements shall not be included in

the hash calculation. See the Measurement index

assignments clause.

If the Responder supports both raw bit stream and

digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

40 + D' + MSHLength OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

42 + D' + MSHLength OpaqueData OpaqueDataLength

If present, shall be the OpaqueData sent by the

Responder. Used to indicate any parameters that the

Responder wishes to pass to the Requester as part

of key exchange. If present, this field shall conform to

the selected opaque data format in

OtherParamsSelection .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 161

Byte offset Field Size (bytes) Description

42 + D' + MSHLength

+ OpaqueDataLength
Signature SigLen

Shall be the Signature over the transcript. SigLen

is the size of the asymmetric signing algorithm output

the Responder selected via the last ALGORITHMS

response message to the Requester. The Transcript

for KEY_EXCHANGE_RSP signature defines the

construction of the transcript.

42 + D' + MSHLength

+ OpaqueDataLength +

SigLen

ResponderVerifyData H or 0

Conditional field.

If the Session Handshake Phase is encrypted and/or

message authenticated, this field shall be of length H

and shall equal the HMAC of the transcript hash,

using finished_key as the secret key and using the

negotiated hash algorithm as the hash function. The

transcript hash shall be the hash of the transcript for

KEY_EXCHANGE_RSP HMAC as Transcript for

KEY_EXCHANGE_RSP HMAC shows. The

finished_key shall be derived from the Response

Direction Handshake Secret and is described in

Finished_key derivation. HMAC is described in RFC

2104.

If both the Requester and Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 1, this field shall be

absent.

602 10.17.4 Session-based mutual authentication

603 Mutual authentication for KEY_EXCHANGE occurs in the session handshake phase of a session.

604 To perform authentication of a Requester, the Responder sets the appropriate bit in the MutAuthRequested field of the

KEY_EXCHANGE_RSP message. When either Bit 1 or Bit 2 of MutAuthRequested are set, the encapsulated request flow

or the optimized encapsulated request flow shall be used accordingly to enable the Responder to obtain the

certificate chains and certificate chain digests of the Requester. For flow details and illustrations, see

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

605 When either bit 1 or bit 2 of MutAuthRequested are set, the only allowed messages in this phase of the session shall

be GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE , and ERROR . If the Requester receives other requests

during this flow, the Requester can respond with an ERROR message of ErrorCode=UnexpectedRequest and shall

terminate the session.

606 If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any messages

between KEY_EXCHANGE_RSP and FINISH request. This is useful for Responders that have obtained a Requester's

certificate chains in a previous interaction.

Security Protocol and Data Model (SPDM) Specification DSP0274

162 Work in Progress Version 1.4.0WIP70

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

607 10.17.4.1 Specify Requester certificate for session-based mutual authentication

608 The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages

exchanged. For Responder-only authentication and for mutual authentication where the Responder has obtained the

certificate chains of the Requester in a previous interaction, key exchange is carried out with two request/response

message pairs (KEY_EXCHANGE and KEY_EXCHANGE_RSP ; FINISH and FINISH_RSP). In other cases where mutual

authentication is desired, additional encapsulated messages are exchanged between KEY_EXCHANGE_RSP and FINISH

to enable the Responder to obtain the certificate chains and certificate chain digests of the Requester. However, in all

cases the certificate chain (or raw public key) the Requester should authenticate against is specified by the

Responder via the SlotID field in KEY_EXCHANGE_RSP , which precedes the aforementioned encapsulated messages.

This means that a Responder has no way of knowing in advance which SlotID value to use when authenticating a

Requester whose certificates it has not obtained in a previous interaction, other than the default (Slot 0).

609 To address this case, the Responder explicitly designates the certificate chain to be used via the final

ENCAPSULATED_RESPONSE_ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in

MutAuthRequested is set to 1 , the Responder shall use an ENCAPSULATED_RESPONSE_ACK request with Param2 = 0x02

and a 1-byte-long Encapsulated Request field containing the SlotID value. The Requester shall use the certificate

chain corresponding to the slot specified in the Encapsulated Request field.

610 If Bit 0 of MutAuthRequested is set, then no encapsulated messages are exchanged after KEY_EXCHANGE_RSP and the

certificate chain of the Requester is determined by the value of SlotIDParam in KEY_EXCHANGE_RSP .

611 10.18 FINISH request and FINISH_RSP response messages

612 This request message shall complete the handshake between Requester and Responder initiated by a

KEY_EXCHANGE request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key

confirmation, bind the identity of each party to the exchanged keys and protect the entire handshake against

manipulation by an active attacker. Upon receiving a FINISH request, the Responder shall ensure the session and

the corresponding session ID were created through a KEY_EXCHANGE request and corresponding KEY_EXCHANGE_RSP

response. Table 77 — FINISH request message format shows the FINISH request message format and Table 78 —

Successful FINISH_RSP response message format shows the FINISH_RSP response message format.

613 Table 77 — FINISH request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE5 = FINISH . See Table 4 — SPDM

request codes.

2 Param1 1

Bit 0. If set, the Signature field is included. This bit

shall be set when Session-based mutual

authentication occurs. All other bits reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 163

Byte offset Field Size (bytes) Description

3 Param2 1

Shall be the SlotID . Only valid if Param1 = 0x01 ,

otherwise reserved. Slot number of the Requester

certificate chain that shall be used for authentication.

If the public key of the Requester was provisioned to

the Responder in a trusted environment, the value in

this field shall be 0xFF ; otherwise it shall be

between 0 and 7 inclusive.

4 Signature SigLen

Shall be the Signature over the transcript. SigLen

is the size of the asymmetric signing algorithm

(ReqBaseAsymAlg or ReqPqcAsymAlg) output the

Responder selected via the last ALGORITHMS

response message to the Requester. If

Param1 = 0x00 , SigLen is zero and this field shall be

absent. Transcript for FINISH signature, mutual

authentication defines the construction of the

transcript, signature generation, and verification.

4 + SigLen RequesterVerifyData H

Shall be an HMAC of the transcript hash using the

finished_key as the secret key and using the

negotiated hash algorithm as the hash function. For

mutual authentication, the transcript hash shall be

the hash of the transcript for FINISH HMAC, mutual

authentication as the transcript for FINISH HMAC,

mutual authentication shows. Otherwise, it shall be

the hash of the transcript for FINISH HMAC,

Responder-only authentication as the transcript for

FINISH HMAC, Responder-only authentication

shows. The finished_key shall be derived from

Request Direction Handshake Secret and is

described in Finished_key derivation. HMAC is

described in RFC 2104.

614 If the handshake is performed in the clear (that is, if HANDSHAKE_IN_THE_CLEAR_CAP = 1 for both Requester and

Responder), and if either Bit 1 or Bit 2 in KEY_EXCHANGE_RSP . MutAuthRequested is set, then upon receiving FINISH

the Responder shall confirm that the value in FINISH . Param2 matches the value that the Responder specified in the

final ENCAPSULATED_RESPONSE_ACK . EncapsulatedRequest .

615 Table 78 — Successful FINISH_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x65 = FINISH_RSP . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

164 Work in Progress Version 1.4.0WIP70

https://tools.ietf.org/html/rfc2104

Byte offset Field Size (bytes) Description

3 Param2 1 Reserved.

4 ResponderVerifyData H or 0

Conditional field.

If the Session Handshake Phase is encrypted and/or

message authenticated (that is, if either the

Requester or the Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 0), this field shall be

absent.

If both the Requester and Responder support

HANDSHAKE_IN_THE_CLEAR_CAP field, this field shall be

of length H and shall equal the HMAC of the

transcript hash using finished_key as the secret

key and using the negotiated hash algorithm as the

hash function. For Session-based mutual

authentication, the transcript hash shall be the hash

of the transcript for FINISH_RSP HMAC, as the

transcript for FINISH_RSP HMAC, mutual

authentication shows. Otherwise, the transcript hash

shall be the hash of the transcript for FINISH_RSP

HMAC, Responder-only authentication as the

transcript for FINISH_RSP HMAC, Responder-only

authentication shows. The finished_key shall be

derived from Response Direction Handshake Secret

and is described in Finished_key derivation. HMAC

is described in RFC 2104.

616 10.18.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE

617 Transcript for KEY_EXCHANGE_RSP signature shows the transcript for the KEY_EXCHANGE_RSP signature:

618 Transcript for KEY_EXCHANGE_RSP signature

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . * except the Signature and ResponderVerifyData fields.

619 The Responder shall generate the KEY_EXCHANGE_RSP signature from:

SPDMsign(PrivKey, transcript, "key_exchange_rsp signing");

620 where

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 165

https://tools.ietf.org/html/rfc2104

• SPDMsign is described by the Signature generation clause.

• PrivKey shall be the private key of the Responder associated with the leaf certificate stored in SlotID in

KEY_EXCHANGE . If the public key of the Responder was provisioned to the Requester, then PrivKey shall be the

associated private key.

• transcript shall be the concatenation of the messages for a KEY_EXCHANGE_RSP signature.

621 The leaf certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY_EXCHANGE request.

622 Likewise, the Requester shall verify the KEY_EXCHANGE_RSP signature using SPDMsignatureVerify(PubKey, signature,

transcript, "key_exchange_rsp signing") , where transcript is the concatenation of the messages for a

KEY_EXCHANGE_RSP signature and PubKey is the public key of the leaf certificate of the Responder. The leaf certificate

of the Responder shall be the one indicated by SlotID in Param2 of KEY_EXCHANGE request. SPDMsignatureVerify is

described in Signature verification. A successful verification shall be when SPDMsignatureVerify returns success .

623 Transcript for KEY_EXCHANGE_RSP HMAC shows the transcript for KEY_EXCHANGE_RSP HMAC:

624 Transcript for KEY_EXCHANGE_RSP HMAC

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . * except the ResponderVerifyData field.

625 Transcript for FINISH signature, mutual authentication shows the transcript for the FINISH signature with mutual

authentication:

626 Transcript for FINISH signature, mutual authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGESTS is issued and MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used.

8. [FINISH] . SPDM Header Fields

627 The Requester shall generate the FINISH signature from SPDMsign(PrivKey, transcript, "finish signing") , where

transcript is the concatenation of the messages for FINISH signature and the PrivKey is the private key of the

leaf certificate of the Requester. The leaf certificate of the Requester shall be the one indicated in SlotID in Param2

of FINISH request. SPDMsign is described in Signature generation.

628 Likewise, the Responder shall verify the FINISH signature using SPDMsignatureVerify(PubKey, signature,

Security Protocol and Data Model (SPDM) Specification DSP0274

166 Work in Progress Version 1.4.0WIP70

transcript, "finish signing") , where transcript is the concatenation of the messages for a FINISH signature

and the PubKey is the public key of the leaf certificate of the Requester. The leaf certificate of the Requester shall be

the one indicated in SlotID in Param2 of the FINISH request. SPDMsignatureVerify is described in Signature

verification. A successful verification is when SPDMsignatureVerify returns success .

629 Transcript for FINISH HMAC, Responder-only authentication shows the transcript for FINISH HMAC with

Responder-only authentication:

630 Transcript for FINISH HMAC, Responder-only authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [FINISH] . SPDM Header Fields

631 Transcript for FINISH HMAC, mutual authentication shows the transcript for FINISH HMAC with mutual

authentication:

632 Transcript for FINISH HMAC, mutual authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGESTS is issued and MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used.

8. [FINISH] . SPDM Header Fields

9. [FINISH] . Signature

633 Transcript for FINISH_RSP HMAC, Responder-only authentication shows the transcript for FINISH_RSP HMAC with

Responder-only authentication:

634 Transcript for FINISH_RSP HMAC, Responder-only authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 167

6. [FINISH] . *

7. [FINISH_RSP] . SPDM Header fields

635 Transcript for FINISH_RSP HMAC, mutual authentication shows the transcript for FINISH_RSP HMAC with mutual

authentication:

636 Transcript for FINISH_RSP HMAC, mutual authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGESTS is issued and MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used.

8. [FINISH] . *

9. [FINISH_RSP] . SPDM Header fields

637 When multiple session keys are being established between the same Requester-Responder pair, the Signature

over the transcript during FINISH request is computed using only the corresponding KEY_EXCHANGE ,

KEY_EXCHANGE_RSP , and FINISH request parameters.

638 For additional rules, see general ordering rules.

639 10.19 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response
messages

640 The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

session key establishment with symmetric-key cryptography. This option is especially useful for endpoints that do not

support asymmetric-key cryptography or certificate processing. This option can also be leveraged to expedite

session key establishment even if asymmetric-key cryptography is supported.

641 This option requires the Requester and Responder to have prior knowledge of a common PSK before the

handshake. Essentially, the PSK serves as a mutual authentication credential and as the base of session key

establishment. As such, only the two endpoints and potentially a trusted third party that provisions the PSK to the two

endpoints know the value of the PSK. For these same reasons, the HANDSHAKE_IN_THE_CLEAR_CAP is not applicable in

a PSK key exchange. Thus, for PSK-based session establishment, both the Responder and the Requester shall

ignore the HANDSHAKE_IN_THE_CLEAR_CAP bit.

642 A Requester can pair with multiple Responders. Likewise, a Responder can pair with multiple Requesters. A

Requester-Responder pair can be provisioned with one or more PSKs. An endpoint can act as a Requester to one

device and simultaneously a Responder to another device. If both endpoints can act as Requester or Responder,

Security Protocol and Data Model (SPDM) Specification DSP0274

168 Work in Progress Version 1.4.0WIP70

then the endpoints shall use different PSKs for each role. It is the responsibility of the transport layer to identify the

peer and establish communication between the two endpoints before the PSK-based session key exchange starts.

643 The PSK can be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK can be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is outside the scope of this specification. The size of the provisioned PSK is

determined by the security strength requirements of the application, but it should be at least 128 bits. It is

recommended to be at least 256 bits in order to resist dictionary attacks, particularly when the Requester and

Responder cannot both contribute sufficient entropy during the exchange.

644 Two message pairs are defined for this option:

• PSK_EXCHANGE / PSK_EXCHANGE_RSP

• PSK_FINISH / PSK_FINISH_RSP

645 The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contextual information between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct

session keys.

646 Figure 17 — PSK_EXCHANGE: Example shows an example of the PSK_EXCHANGE message:

647 Figure 17 — PSK_EXCHANGE: Example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 169

648

NEGOTIATE_ALGORITHMS

ALGORITHMS

PSK_EXCHANGE

PSK_EXCHANGE_RSP

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

PSK_FINISH

PSK_FINISH_RSP

If supported

Optional

649 Table 79 — PSK_EXCHANGE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE6 = PSK_EXCHANGE . See Table 4 —

SPDM request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

170 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 Param1 1

Shall be the type of measurement summary hash

requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response), the

Requester shall set this value to 0x0 .

3 Param2 1
Shall be the session policy. See Table 75 — Session

policy.

4 ReqSessionID 2

Shall be the two-byte Requester contribution to allow

construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID = Concatenate(ReqSessionID,

RspSessionID).

6 P 2 Shall be the length of PSKHint in bytes.

8 R 2 Shall be the length of RequesterContext in bytes.

10 OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

12 PSKHint P
Shall be the information required by the Responder

to retrieve the PSK. Optional.

12 + P RequesterContext R

Shall be the context of the Requester. Shall include a

nonce or non-repeating counter of at least 32 bytes

and, optionally, relevant information contributed by

the Requester.

12 + P + R OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the

Requester is used to indicate any parameters that

the Requester wishes to pass to the Responder as

part of PSK-based key exchange. If present, this field

shall conform to the selected opaque data format in

OtherParamsSelection .

650 The field PSKHint is optional. It is absent if P is set to 0. It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses

PSKHint as an identifier to specify which PSK will be used in this particular session.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 171

• The Responder does not store the actual value of the PSK but can derive the PSK using PSKHint . For example,

if the Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning a PSK can be

derived from the UDS (or a derivative value) and a non-secret salt known by the Requester. During session key

establishment, the salt value is sent to the Responder in PSKHint of PSK_EXCHANGE . This mechanism allows the

Responder to support any number of PSKs without consuming secure storage.

651 The RequesterContext is the contribution of the Requester to session key derivation. It shall contain a nonce or non-

repeating counter to ensure that the derived session keys are ephemeral to mitigate against replay attacks. If a non-

repeating counter is used, the counter shall not be reset for the lifetime of the device. The RequesterContext can

also contain other information from the Requester.

652 Upon receiving a PSK_EXCHANGE request, the Responder:

1. Generates PSK from PSKHint , if necessary.

2. Generates ResponderContext , if supported.

3. Derives the finished_key of the Responder by following the key schedule.

4. Constructs the PSK_EXCHANGE_RSP response message and sends it to the Requester.

653 Table 80 — PSK_EXCHANGE_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x66 = PSK_EXCHANGE_RSP . See Table 5 —

SPDM response codes.

2 Param1 1

Shall be HeartbeatPeriod.

The value of this field shall be zero if Heartbeat is not

supported by one of the endpoints. Otherwise, the

value shall be in units of seconds. Zero is a legal

value if Heartbeat is supported, and this means that

a heartbeat is not desired on this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Shall be the two-byte Responder contribution to

allow construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID (SessionID) =

Concatenate(ReqSessionID, RspSessionID).

6 Reserved 2 Reserved.

8 Q 2 Shall be the length of ResponderContext in bytes.

10 OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

Security Protocol and Data Model (SPDM) Specification DSP0274

172 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

12 MeasurementSummaryHash MSHLength = H or 0

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or

requested Param1 = 0x0 , this field shall be absent.

If the requested Param1 = 0x1 , this field shall be the

combined hash of measurements of all measurable

components considered to be in the TCB required to

generate this response, computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...)) , where

MeasurementBlock[x] denotes a measurement of an

element in the TCB and hash is the negotiated base

hashing algorithm. Measurements are concatenated

in ascending order based on their measurement

index as Table 57 — Measurement block format

describes.

If the requested Param1 = 0x1 and if there are no

measurable components in the TCB required to

generate this response, this field shall be 0 .

If requested Param1 = 0xFF , this field shall be

computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ..., MeasurementBlock[n])) of

all supported measurements available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order. Indices with

no associated measurements shall not be included in

the hash calculation. See the Measurement index

assignments clause.

If the Responder supports both raw bit stream and

digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

12 + MSHLength ResponderContext Q

Shall be the context of the Responder. Optional. If

present, shall include a nonce and/or information

contributed by the Responder.

12 + MSHLength + Q OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the

Responder is used to indicate any parameters that

the Responder wishes to pass to the Requester as

part of PSK-based key exchange. If present, this field

shall conform to the selected opaque data format in

OtherParamsSelection .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 173

Byte offset Field Size (bytes) Description

12 + MSHLength + Q

+ OpaqueDataLength
ResponderVerifyData H

Shall be the data to be verified by the Requester

using the finished_key of the Responder.

654 The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce or

non-repeating counter and other information from the Responder. If a non-repeating counter is used, the counter

shall not be reset for the lifetime of the device. Because the Responder can be a constrained device that cannot

generate a nonce, ResponderContext is optional. However, the Responder is required to use ResponderContext if it

can generate a nonce.

655 Note that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in ResponderContext ,

then the Responder is not challenging the Requester for real-time knowledge of the PSK. Such a session is subject

to replay attacks—that is, a person-in-the-middle attacker could record and replay prior PSK_EXCHANGE and

PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets, so

long as the PSK and session keys of the prior replayed session are not compromised.

656 If ResponderContext is absent, such as when PSK_CAP in the CAPABILITIES of the Responder is 01b , the Requester

shall not send PSK_FINISH , because the session keys are solely determined by the Requester and the Session

immediately enters the Application Phase. If and only if the ResponderContext is present in the response, such as

when PSK_CAP in the CAPABILITIES of the Responder is 10b , the Requester shall send PSK_FINISH with

RequesterVerifyData to prove that it has derived correct session keys.

657 To calculate ResponderVerifyData , the Responder calculates an HMAC. The HMAC key is the finished_key of the

Responder. The data is the hash of the concatenation of all messages sent up to this point between the Requester

and the Responder. For messages that are encrypted, the plaintext messages are used in calculating the hash.

1. [GET_VERSION].*

2. [VERSION].*

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

658 Note that, even if CERTIFICATE and Responder-signed response messages (such as CHALLENGE_AUTH) were issued,

these messages would not be included in the data for calculating ResponderVerifyData . In other words, the identity

of the signer of the response messages is not bound to the identity of the sender of PSK_EXCHANGE_RSP . Therefore, to

mitigate Responder identity impersonation, if the Requester has received a response with a signature and if there is

no cryptographic binding between the signer of the Responder-signed response and the sender of

PSK_EXCHANGE_RSP , then the Requester should not issue PSK_EXCHANGE . The method of cryptographic binding

between the signer of the Responder-signed response and the sender of PSK_EXCHANGE_RSP is outside the scope of

this specification.

659 Upon receiving PSK_EXCHANGE_RSP , the Requester:

1. Derives the finished_key of the Responder by following the key schedule.

Security Protocol and Data Model (SPDM) Specification DSP0274

174 Work in Progress Version 1.4.0WIP70

2. Verifies ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If

verification fails, the Requester terminates the session.

3. If the Responder contributes to session key derivation, such as when the ResponderContext field is

present in the PSK_EXCHANGE_RSP response, it constructs the PSK_FINISH request and sends it to the

Responder.

660 If a successful PSK_EXCHANGE_RSP has been received by the Requester, and the PSK_CAP of the Responder is 10b ,

and the ResponderContext field is present in the PSK_EXCHANGE_RSP response then, for the session ID created by the

PSK_EXCHANGE and PSK_EXCHANGE_RSP messages, the next request shall be PSK_FINISH .

661 10.20 PSK_FINISH request and PSK_FINISH_RSP response messages

662 These messages shall complete the mutually-authenticated handshake between Requester and Responder initiated

by a PSK_EXCHANGE request. The PSK_FINISH request proves to the Responder that the Requester knows the PSK

and has derived the correct session keys. This is achieved by an HMAC value calculated with the finished_key of

the Requester and messages of this session. The Requester shall send PSK_FINISH only if ResponderContext is

present in PSK_EXCHANGE_RSP . Upon receiving a PSK_FINISH request, the Responder shall ensure the session and

the corresponding session ID were created through a PSK_EXCHANGE request and corresponding PSK_EXCHANGE_RSP

response.

663 Table 81 — PSK_FINISH request message format describes the PSK_FINISH request message format:

664 Table 81 — PSK_FINISH request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE7 = PSK_FINISH . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 RequesterVerifyData H
Shall be the data to be verified by the Responder

using the finished_key of the Requester.

665 To calculate RequesterVerifyData , the Requester calculates an HMAC. The key is the finished_key of the

Requester, as described in the Key schedule clause. The data is the hash of the concatenation of all messages sent

so far between the Requester and the Responder. For messages that are encrypted, the plaintext messages are

used in calculating the hash.

1. [GET_VERSION].*

2. [VERSION].*

3. [GET_CAPABILITIES].* (if issued)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 175

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].* except the RequesterVerifyData field

666 For additional rules, see general ordering rules.

667 Upon receiving the PSK_FINISH request, the Responder derives the finished_key of the Requester and calculates

the HMAC independently in the same manner and verifies that the result matches RequesterVerifyData . If

verification is successful, the Responder constructs the PSK_FINISH_RSP response and sends it to the Requester.

Otherwise, the Responder sends the Requester an ERROR message of ErrorCode=InvalidRequest .

668 Table 82 — Successful PSK_FINISH_RSP response message format describes the successful PSK_FINISH_RSP

response message format:

669 Table 82 — Successful PSK_FINISH_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x67 = PSK_FINISH_RSP . See Table 5 —

SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

670 10.21 HEARTBEAT request and HEARTBEAT_ACK response messages

671 This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either the KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages if no other messages are received in this secure session in the

HeartbeatPeriod . The Responder shall terminate the session if session traffic is not received for two successive

HeartbeatPeriod s. Likewise, the Requester shall terminate the session if session traffic, including ERROR responses,

is not received for two successive HeartbeatPeriod s. Session traffic includes encrypted data at the transport layer.

How an SPDM endpoint is informed of encrypted data at the transport layer is outside the scope of this specification.

The Requester can retry HEARTBEAT requests.

672 The timer for the Heartbeat period shall start at either the transmission (for Responders) or the reception (for

Requesters) of the appropriate FINISH_RSP , PSK_FINISH_RSP (PSK_CAP of Responder is 10b), or PSK_EXCHANGE_RSP

(PSK_CAP of Responder is 01b) response messages. When determining the value of HeartbeatPeriod , the

Responder should ensure this value is sufficiently greater than T1 .

Security Protocol and Data Model (SPDM) Specification DSP0274

176 Work in Progress Version 1.4.0WIP70

673 Each secure session shall track the heartbeat period independently of other sessions within the same SPDM

Connection.

674 For session termination details, see session termination phase.

675 Table 83 — HEARTBEAT request message format describes the message format.

676 Table 83 — HEARTBEAT request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE8 = HEARTBEAT request. See Table 4 —

SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

677 Table 84 — HEARTBEAT_ACK response message format describes the format for the Heartbeat Response.

678 Table 84 — HEARTBEAT_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x68 = HEARTBEAT_ACK response. See Table

5 — SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

679 10.21.1 Heartbeat additional information

680 The transport layer might allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

681 10.22 KEY_UPDATE request and KEY_UPDATE_ACK response messages

682 This request shall be used to update session keys. There are many reasons for doing this, but an important one is

when the per-record nonce will soon reach its maximum value and roll over. The KEY_UPDATE request can also be

issued by the Responder using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE request shall perform the

operation given in Param1 and defined in Table 87 — KEY_UPDATE operations. Because the Responder can also

send this request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only

one KEY_UPDATE request for a single direction shall occur at a time. Until the session key update synchronization

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 177

successfully completes, subsequent KEY_UPDATE requests for the same direction shall be considered a retry of the

original KEY_UPDATE request.

683 Table 85 — KEY_UPDATE request message format describes the KEY_UPDATE request message format:

684 Table 85 — KEY_UPDATE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE9 = KEY_UPDATE Request. See Table 4 —

SPDM request codes.

2 Param1 1
Shall indicate the key operation. See Table 87 —

KEY_UPDATE operations.

3 Param2 1

Shall be the requesting SPDM endpoint assigned

tag. This field shall contain a unique number to aid

the responding SPDM endpoint in differentiating

between the original and any retry requests. A retry

request shall contain the same tag number as the

original.

685 Table 86 — KEY_UPDATE_ACK response message format describes the KEY_UPDATE_ACK response message

format:

686 Table 86 — KEY_UPDATE_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x69 = KEY_UPDATE_ACK response. See

Table 5 — SPDM response codes.

2 Param1 1

Shall indicate the key operation. This field shall

reflect the Key Operation field of the request. See

Table 87 — KEY_UPDATE operations

3 Param2 1
Shall be the tag. This field shall reflect the Tag

number (Param2) from the KEY_UPDATE request.

687 Table 87 — KEY_UPDATE operations describes the KEY_UPDATE operations:

688 Table 87 — KEY_UPDATE operations

Value Operation Description

0 Reserved Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

178 Work in Progress Version 1.4.0WIP70

Value Operation Description

1 UpdateKey
Shall update only the single-direction key associated with the direction of

the request.

2 UpdateAllKeys Shall update the keys for both directions.

3 VerifyNewKey
Shall ensure that the key update is successful and that old keys can be

safely discarded.

4 - 255 Reserved Reserved.

689 10.22.1 Session key update synchronization

690 In the key update process, to clarify, the term "sender" means the SPDM endpoint that issued the KEY_UPDATE

request, and the term "receiver" means the SPDM endpoint that received the KEY_UPDATE request. To ensure the key

update process is seamless while still allowing the transmission and reception of records, both sender and receiver

shall follow the prescribed method described in this clause.

691 The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct

keys are used before, during, and after the key update operation. How this is accomplished by the data transport

layer is outside the scope of this specification.

692 Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.

693 The sender shall not use the new transmit key until after reception of the KEY_UPDATE_ACK response.

694 The sender and receiver shall use the new key on the KEY_UPDATE request with the VerifyNewKey command and all

subsequent commands until another key update is performed.

695 In the case of a KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the

KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical

transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

696 If the sender has not received KEY_UPDATE_ACK , the sender can retry or end the session. The sender shall not

proceed to the next step until successfully receiving the corresponding KEY_UPDATE_ACK .

697 Upon the successful reception of the KEY_UPDATE_ACK , the sender shall transmit a KEY_UPDATE request with the

VerifyNewKey operation using the new session keys. The sender can retry until the corresponding KEY_UPDATE_ACK

response is received. However, the sender shall be prohibited, at this point, from restarting this process or going

back to a previous step. Its only recourse in error handling is either to retry the same request or to terminate the

session.

698 For UpdateKey , upon successful reception and verification of the KEY_UPDATE with the VerifyNewKey operation, the

receiver can discard the old session keys. For UpdateAllKeys , upon successful reception and verification of the

KEY_UPDATE_ACK with the UpdateAllKeys operation, the sender can discard the old session keys that protect receiver-

sent messages. Upon successful reception and verification of the KEY_UPDATE with the VerifyNewKey operation, the

receiver can discard the old session keys that protect sender-sent messages.

699 In certain scenarios, the receiver might need additional time to process the KEY_UPDATE request such as when

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 179

processing data already in its buffer. Thus, the receiver can reply with an ERROR message of ErrorCode=Busy . The

sender should retry the request after a reasonable period of time and with a reasonable number of retries to prevent

premature session termination.

700 Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. In this case, the aforementioned synchronization process occurs independently but

simultaneously for each direction.

701 Figure 18 — KEY_UPDATE protocol example flow illustrates a typical key update initiated by the Requester to

update its secret. In this example, the Responder and Requester are both capable of message authentication and

encryption.

702 Figure 18 — KEY_UPDATE protocol example flow

Security Protocol and Data Model (SPDM) Specification DSP0274

180 Work in Progress Version 1.4.0WIP70

703

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateKey,
Tag == 0x01

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,
Tag == 0x01

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,
Tag == 0x02

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x02

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

704 Figure 19 — KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the

Requester to update all secrets. In this example, the Responder and Requester are both capable of message

authentication and encryption.

705 Figure 19 — KEY_UPDATE protocol change all keys example flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 181

706

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateAllKeys,
Tag == 0x01

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,
Tag == 0x01

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,
Tag == 0x02

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x02

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

707 10.22.2 KEY_UPDATE transport allowances

708 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport can

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

mechanism. The transport should define the actual method to use. Such a definition is outside the scope of this

specification.

Security Protocol and Data Model (SPDM) Specification DSP0274

182 Work in Progress Version 1.4.0WIP70

709 Figure 20 — KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a

limitation whereby only a single device (often called the "primary") is allowed to initiate all transactions on that bus.

This physical transport specifies that a Responder shall alert the Requester through a side-band mechanism and to

utilize the GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Note also in this example that

the Requester and Responder are both capable of encryption and message authentication.

710 Figure 20 — KEY_UPDATE protocol example flow 2

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 183

711

…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE
Key Operation == UpdateKey,

Tag == 0x01

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK
Key Operation == UpdateKey,

Tag == 0x01

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE
Key Operation == VerifyNewKey,

Tag == 0x02

 { ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK
Key Operation == VerifyNewKey,

Tag == 0x02

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH_RSP }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

Security Protocol and Data Model (SPDM) Specification DSP0274

184 Work in Progress Version 1.4.0WIP70

712 10.23 GET_ENCAPSULATED_REQUEST request and
ENCAPSULATED_REQUEST response messages

713 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester

and Responder as far as the transport is concerned but enables the Responder to issue its own requests to the

Requester. Message encapsulation is only allowed in certain scenarios, as described in various clauses in other

parts of this specification. For example, Figure 21 — Session-based mutual authentication example and Figure 22 —

Optimized session-based mutual authentication example illustrate the use of this scheme.

714 A Requester issues a GET_ENCAPSULATED_REQUEST request message to retrieve an encapsulated SPDM request

message from the Responder. The response to this message is an ENCAPSULATED_REQUEST that encapsulates the

SPDM request message as if the Responder were acting as a Requester. Table 88 —

GET_ENCAPSULATED_REQUEST request message format describes the request message format. The Responder

shall use the same SPDM version the Requester used.

715 10.23.1 Encapsulated request flow

716 The encapsulated request flow starts with the Requester sending a GET_ENCAPSULATED_REQUEST message and ends

with an ENCAPSULATED_RESPONSE_ACK that carries no more encapsulated requests. The GET_ENCAPSULATED_REQUEST

shall only be issued once, with the exception of retries. This is also illustrated in Figure 21 — Session-based mutual

authentication example.

717 When the Requester issues a GET_ENCAPSULATED_REQUEST , the encapsulated request flow shall start. Upon the

successful reception of the ENCAPSULATED_REQUEST and when the encapsulated response is ready, the Requester

shall continue the flow by issuing the DELIVER_ENCAPSULATED_RESPONSE . During this period, the Requester shall not

issue any other message, with the exception of GET_VERSION , RESPOND_IF_READY , or

DELIVER_ENCAPSULATED_RESPONSE . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE ,

RESPOND_IF_READY , or GET_VERSION , the Responder should respond with an ERROR message of

ErrorCode=RequestInFlight .

718 10.23.2 Optimized encapsulated request flow

719 The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of a

GET_ENCAPSULATED_REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-

Exchange responses; thereby removing the obligation on the Requester to issue a GET_ENCAPSULATED_REQUEST . When

the Responder includes an encapsulated request with a Session-Secrets-Exchange response, the optimized

encapsulated request flow shall start. See Figure 22 — Optimized session-based mutual authentication example.

720 When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated

request, the Requester shall send a DELIVER_ENCAPSULATED_RESPONSE after processing the encapsulated request. The

Requester shall not issue any other requests except for DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY , and

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 185

GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY , or

GET_VERSION , the Responder should respond with an ERROR message of ErrorCode=RequestInFlight .

721 Figure 21 — Session-based mutual authentication example shows an example of session-based mutual

authentication:

722 Figure 21 — Session-based mutual authentication example

Security Protocol and Data Model (SPDM) Specification DSP0274

186 Work in Progress Version 1.4.0WIP70

723

Session-Based
MUTUAL AUTH

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

KEY_EXCHANGE

KEY_EXCHANGE_RSP()

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

FINISH

FINISH_RSP

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

Encapsulated

Request

Flow

724 Figure 22 — Optimized session-based mutual authentication example shows an example of optimized session-based

mutual authentication:

725 Figure 22 — Optimized session-based mutual authentication example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 187

726

ResponderRequester

Session-Based
MUTUAL AUTH

ENCAPSULATED_RESPONSE_ACK()

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK(GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE(DIGEST)

KEY_EXCHANGE_RSP+GET_DIGEST

KEY_EXCHANGE

CERTIFICATE

GET_CERTIFICATE

DIGESTS

GET_DIGESTS

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

FINISH_RSP

FINISH

Optimized

Encapsulated

Request

Flow

727 Table 88 — GET_ENCAPSULATED_REQUEST request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

Security Protocol and Data Model (SPDM) Specification DSP0274

188 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
Shall be 0xEA = GET_ENCAPSULATED_REQUEST . See

Table 4 — SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

728 Table 89 — ENCAPSULATED_REQUEST response message format describes the format of this response.

729 Table 89 — ENCAPSULATED_REQUEST response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6A = ENCAPSULATED_REQUEST response.

See Table 5 — SPDM response codes.

2 Param1 1

Shall be the Responder-allocated Request ID.

This field should be unique to help the Responder

match response to request.

3 Param2 1 Reserved.

4 EncapsulatedRequest Variable

Shall be the SPDM Request Message.

The value of this field shall represent a valid SPDM

request message. The length of this field is

dependent on the SPDM Request message. The

field shall start with the SPDMVersion field. The

SPDMVersion field of the Encapsulated Request shall

be the same as the SPDMVersion of the

ENCAPSULATED_REQUEST response. Both

GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid

requests, and the Requester should respond with an

ERROR message of ErrorCode=UnexpectedRequest if

these requests are encapsulated.

730 10.23.3 Triggering GET_ENCAPSULATED_REQUEST

731 Once a session has been established, the Responder might wish to send a request asynchronously, such as a

KEY_UPDATE request, but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon

receiving the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

732 If the physical transport cannot define an alerting mechanism to the Requester, the Requester can still use the

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 189

encapsulated request flow as a polling mechanism by periodically sending the GET_ENCAPSULATED_REQUEST message.

If the Responder receives a GET_ENCAPSULATED_REQUEST and has no request pending, the Responder should respond

with an ERROR message of ErrorCode=NoPendingRequests .

733 10.24 DELIVER_ENCAPSULATED_RESPONSE request and
ENCAPSULATED_RESPONSE_ACK response messages

734 As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding

response. That mechanism shall be the DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages.

The DELIVER_ENCAPSULATED_RESPONSE , which is an SPDM request, encapsulates the response and delivers it to the

Responder. The ENCAPSULATED_RESPONSE_ACK , which is an SPDM response, acknowledges the reception of the

encapsulated response.

735 Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

736 In an encapsulated request flow, the Requester shall not send any other requests after the successful reception of

the first encapsulated request, with the exception of DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY , or

GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY , or

GET_VERSION after the successful reception of the first DELIVER_ENCAPSULATED_RESPONSE , the Responder should

respond with an ERROR message of ErrorCode=RequestInFlight .

737 If Param2 of ENCAPSULATED_RESPONSE_ACK is set to 0x00 or 0x02 , then this shall be the final encapsulated flow

message that the Responder shall issue and the encapsulated flow shall be completed.

738 The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to

process the response before delivering the next request. See Additional information.

739 Table 90 — DELIVER_ENCAPSULATED_RESPONSE request message format describes the request message

format.

740 Table 90 — DELIVER_ENCAPSULATED_RESPONSE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xEB = DELIVER_ENCAPSULATED_RESPONSE

Request. See Table 4 — SPDM request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

190 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 Param1 1

Shall be the Request ID.

The Requester shall use the same Request ID (that

is, Param1) that was provided by the Responder in

the corresponding ENCAPSULATED_REQUEST or

ENCAPSULATED_RESPONSE_ACK .

If the value was not provided by the Responder (for

example, in the first message of an optimized

encapsulated request flow), Request ID shall be 0.

3 Param2 1 Reserved.

4 EncapsulatedResponse Variable

Shall be the SPDM Response Message.

The value of this field shall represent a valid SPDM

response message. The length of this field is

dependent on the SPDM Response message. The

field shall start with the SPDMVersion field. The

SPDMVersion field of the Encapsulated Response

shall be the same as the SPDMVersion of the

DELIVER_ENCAPSULATED_RESPONSE request. Both

ENCAPSULATED_REQUEST and

ENCAPSULATED_RESPONSE_ACK shall be invalid

responses, and the Responder should respond with

an ERROR message of

ErrorCode=InvalidResponseCode if these responses

are encapsulated.

741 Table 91 — ENCAPSULATED_RESPONSE_ACK response message format describes the response message

format.

742 Table 91 — ENCAPSULATED_RESPONSE_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6B = ENCAPSULATED_RESPONSE_ACK . See

Table 5 — SPDM response codes.

2 Param1 1

Shall be the Request ID.

If EncapsulatedRequest is present and if

Param2 = 0x01 , this field should contain a unique

non-zero number to help the Responder match

response to request. Otherwise, this field shall be

0x00 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 191

Byte offset Field Size (bytes) Description

3 Param2 1

Shall indicate the payload Type.

If set to 0x00 , no request message is encapsulated

and the EncapsulatedRequest field is absent.

If set to 0x01 , the EncapsulatedRequest field

follows.

If set to 0x02 , a 1-byte EncapsulatedRequest field

follows containing the SlotID of the Requester's

certificate chain used for mutual authentication. The

value in this field shall be between 0 and 7 inclusive.

All other values reserved.

4 AckRequestID 1

Shall be the same as Param1 of the

DELIVER_ENCAPSULATED_RESPONSE request message.

The purpose of this field is to help the Requester

distinguish between new requests and retries.

5 Reserved 3 Reserved.

8 EncapsulatedRequest Variable

If Param2 = 0x01 , the value of this field shall

represent a valid SPDM request message. The

length of this field is dependent on the SPDM

Request message. The field shall start with the

SPDMVersion field. The SPDMVersion field of the

EncapsulatedRequest shall be the same as the

SPDMVersion of the ENCAPSULATED_REQUEST response.

Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid

requests, and the Requester shall respond with an

ERROR message of ErrorCode=UnexpectedRequest if

these requests are encapsulated.

If Param2 = 0x02 , the value of this field shall contain

the SlotID corresponding to the certificate chain the

Requester shall use for mutual authentication. The

field size shall be 1 byte.

If Param2 = 0x00 , this field shall be absent.

743 10.24.1 Additional information

744 Using unique Request ID s is highly recommended to aid the Responder in differentiating between retries and new

DELIVER_ENCAPSULATED_RESPONSE messages. For example, if the Responder sent an ENCAPSULATED_RESPONSE_ACK

message with a new encapsulated request and the message failed in transmission over the wire, the Requester

would send a retry but that retry would still contain the response to the previous encapsulated request. Without a

Security Protocol and Data Model (SPDM) Specification DSP0274

192 Work in Progress Version 1.4.0WIP70

different Request ID , the Responder might mistake the retried DELIVER_ENCAPSULATED_RESPONSE for a new request.

This mistake might cause further mistakes to occur.

745 The response timing for ENCAPSULATED_RESPONSE_ACK shall have the same timing constraints as the encapsulated

request. For example, if the encapsulated request is CHALLENGE_AUTH , the Responder, too, would adhere to CT

timing rules when it has a subsequent request. If necessary, the Requester can return an ERROR message of

ErrorCode=ResponseNotReady .

746 The DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages shall only be allowed to

encapsulate certain requests in certain scenarios. For details about these constraints, see the Session, Basic mutual

authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

747 10.24.2 Allowance for encapsulated requests

748 Only certain requests can be encapsulated in any encapsulated request flow. Their corresponding responses,

including ERROR , can also be encapsulated. Additionally, these requests are only allowed in certain flows as

described in various parts of this specification. This consolidated list shall be the requests that are allowed to be

encapsulated:

• CHALLENGE

• GET_CERTIFICATE

• GET_DIGESTS

• KEY_UPDATE

• END_SESSION

• SUBSCRIBE_EVENT_TYPES

• SEND_EVENT

• GET_SUPPORTED_EVENT_TYPES

• GET_ENDPOINT_INFO

749 If a request is not in this list, the request and its corresponding response shall be prohibited from being encapsulated.

750 10.24.3 Certain error handling in encapsulated flows

751 These clauses describe special error scenarios and their handling requirements.

752 10.24.3.1 Response not ready

753 In an encapsulated request flow, a Responder can issue an encapsulated request that can take up to CT time to

fulfill. When the Requester delivers an ERROR message of ErrorCode=ResponseNotReady , the Responder shall not

encapsulate another request by setting Param2 in ENCAPSULATED_RESPONSE_ACK to a value of zero. This effectively and

naturally terminates the encapsulated request flow.

754 The Responder should wait the amount of time indicated in the ERROR message for the particular error code.

755 When the timeout is near expiration, the Responder should perform the following:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 193

1. Trigger its transport-defined alert mechanism to initiate the Encapsulated request flow.

2. When the Requester issues a GET_ENCAPSULATED_REQUEST , the Responder should encapsulate the

RESPOND_IF_READY request populated with the information from the previous ERROR with

ResponseNotReady message.

◦ If the Responder does not do this, the Requester can drop the original response.

756 10.24.3.2 Timeouts

757 If the Responder is not receiving a response to its encapsulated request, the Responder can trigger its transport-

defined alert mechanism. When this occurs, if the Requester is in the middle of an existing encapsulated request flow

with the same Responder, then the existing flow shall terminate and the Requester shall restart the encapsulated

request flow.

758 Both Responder and Requester should comply with the timing requirements prescribed in Timing requirements.

759 10.25 END_SESSION request and END_SESSION_ACK response messages

760 This request shall terminate a session. See the Session termination phase clause.

761 Table 92 — END_SESSION request message format and Table 93 — End session request attributes describe this

format.

762 Table 92 — END_SESSION request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xEC = END_SESSION . See Table 4 — SPDM

request codes.

2 Param1 1 See Table 93 — End session request attributes.

3 Param2 1 Reserved.

763 Table 93 — End session request attributes

Security Protocol and Data Model (SPDM) Specification DSP0274

194 Work in Progress Version 1.4.0WIP70

Bit offset Value Field Description

0 0
Negotiated State Clearing

Indicator

If the Responder does not support Negotiated State

caching (CACHE_CAP=0), this field shall be ignored.

For an END_SESSION request sent from the

Requester to the Responder, the Responder shall

preserve the cached Negotiated State.

For an END_SESSION request sent from the

Responder to the Requester, the value of 0 notifies

the Requester that the Responder has preserved the

cached Negotiated State.

0 1
Negotiated State Clearing

Indicator

If the Responder does not support Negotiated State

caching (CACHE_CAP=0), this field shall be ignored.

For an END_SESSION request sent from the

Requester to the Responder, the Responder shall

also clear the cached Negotiated State as part of

session termination. If there is no cached Negotiated

State to be cleared due to a previous END_SESSION

request message with this field set to 1, this field

shall be ignored.

For an END_SESSION request sent from the

Responder to the Requester, the value of 1 notifies

the Requester that the Responder has cleared the

cached Negotiated State, and the Requester shall

send GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS at the next handshake.

[7:1] Reserved Reserved Reserved.

764 Table 94 — END_SESSION_ACK response message format describes the response message.

765 Table 94 — END_SESSION_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6C = END_SESSION_ACK . See Table 5 —

SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

766 Figure 23 — END_SESSION protocol flow shows the END_SESSION protocol flow:

767 Figure 23 — END_SESSION protocol flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 195

768

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RSP

FINISH(K1)

FINISH_RSP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

769 10.25.1 END_SESSION additional information

770 The transport layer might allow the END_SESSION request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

771 10.26 Certificate provisioning

772 These clauses describe the request and response messages used for provisioning a device with certificate chains.

Provisioning of Slot 0 should only be done in a trusted environment (such as a secure manufacturing environment).

773 10.26.1 GET_CSR request and CSR response messages

774 The GET_CSR request message shall retrieve a Certificate Signing Request (CSR) from the Responder.

775 A Responder shall only process a GET_CSR request if it already possesses an appropriate asymmetric key pair for

the signature suite (that is, the algorithms and associated parameters) required by the request. If more than one

signature suite are supported, selection of the appropriate signature suite (and, thus, the key pair) shall be

determined via the most recent ALGORITHMS response. Upon receiving a GET_CSR request, a Responder shall

generate and sign a CSR for the corresponding public key. The CSR shall be populated with a combination of

attributes provided by the Requester via the RequesterInfo field and other attributes contributed by the Responder

itself. The RequesterInfo format shall comply with the PKCS #10 specification in RFC 2986, specifically the

CertificationRequestInfo format. Vendor-defined extensions shall be encoded using the Attributes type. The

Security Protocol and Data Model (SPDM) Specification DSP0274

196 Work in Progress Version 1.4.0WIP70

Responder may alter the value of requested CertificationRequestInfo fields in RequesterInfo when generating

CSRdata . The Responder shall return an ERROR message with error code InvalidRequest if it cannot support a field

included in the RequesterInfo , or if the value of a requested field is not supported and the Responder cannot alter

the value of the field. If the Responder receives a new GET_CSR request (CSRTrackingTag = 0) while another

GET_CSR request is outstanding and if Overwrite is not specified (that is, Bit 7 of Param2 is set to 0b), the

Responder can either overwrite the existing request and process the new GET_CSR request or respond with an

ERROR message of ErrorCode=Busy . If the Responder receives a GET_CSR request while another GET_CSR request is

outstanding and if Overwrite is specified (that is, Bit 7 of Param2 is set to 1b), the Responder shall overwrite the

existing request and process the new GET_CSR request.

776 If the device requires a reset to complete the GET_CSR request, the device shall respond with an ERROR message of

ErrorCode=ResetRequired with Bit[2:0] of the Error Data field set to a Responder-assigned CSRTrackingTag in

the range of 1 to 7 , inclusive. CSRTrackingTag s are allocated and managed by the Responder. If a Requester is

sending a new GET_CSR request, then the CSRTrackingTag field shall be set to 0 . If the Responder requires a reset

to process a GET_CSR request, but does not have any available CSRTrackingTag s, it shall respond with an ERROR

message of ErrorCode=Busy . After the Responder has processed the reset, the Requester sends a GET_CSR request

with Bit[5:3] in Param2 set to the CSRTrackingTag that the Responder provided in the corresponding ERROR

response, which signals to the Responder to send the CSR response associated with the previous request. After a

Requester has retrieved a CSR response from a previous GET_CSR request, the Responder can discard any

associated CSR data and reuse the CSRTrackingTag . If the Requester sends a GET_CSR request with a non-zero

CSRTrackingTag that the Responder did not generate, the Responder shall either respond with an ERROR message of

ErrorCode=UnexpectedRequest or drop the request.

777 The attributes of the resulting CSR and their values shall comply with the clauses presented in SPDM certificate

requirements and recommendations. If the GET_CSR request conforms to the DeviceCert model, the resulting CSR

shall be for a Device Certificate. If the GET_CSR request conforms to the AliasCert model, the resulting CSR shall

be for a Device Certificate CA. If the GET_CSR request conforms to the GenericCert model, the resulting CSR shall

be for a Generic Leaf Certificate. See Identity provisioning for more details.

778 Table 95 — GET_CSR request message format shows the GET_CSR request message format.

779 Table 97 — CSR response message format shows the CSR response message format.

780 Fields from CSRdata contained in a successful CSR response are assembled into a certificate and should be signed

by an appropriate Certificate Authority. The details of the Public Key Infrastructure used to verify and sign the CSR

and make the final certificate available for provisioning are outside the scope of this specification.

781 Table 95 — GET_CSR request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xED = GET_CSR . See Table 4 — SPDM

request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 197

Byte offset Field Size (bytes) Description

2 Param1 1

KeyPairID. The value of this field shall be the key

pair ID identifying the desired asymmetric key pair to

use in generating the CSR. If MULTI_KEY_CONN_RSP is

false, the value shall be zero; otherwise, the value

shall be non-zero.

3 Param2 1
Request Attributes. Shall be the format as Get CSR

request attributes defines.

4 RequesterInfoLength 2

Shall be the length of the RequesterInfo field in

bytes provided by the Requester. This field can be

0 .

6 OpaqueDataLength 2

Shall be the size of the OpaqueData field that follows

in bytes. The value should not be greater than 1024

bytes. Shall be 0 if no OpaqueData is provided.

8 RequesterInfo RequesterInfoLength
Shall be the optional information provided by the

Requester. This field shall be DER-encoded.

8 +

RequesterInfoLength
OpaqueData OpaqueDataLength

The Requester can include vendor-specific

information for the Responder to generate the CSR.

This field is optional. If present, this field shall

conform to the selected opaque data format in

OtherParamsSelection .

782 Table 96 — Get CSR request attributes

Bit offset Field Description

[2:0] CSRCertModel

This field indicates the desired certificate model of the CSR. The

value and format of this field shall be the same as CertModel in

Certificate info. If MULTI_KEY_CONN_RSP is true the value shall not be

zero.

[5:3] CSRTrackingTag

If the Requester is requesting a previously requested GET_CSR

after a reset has completed, this field shall contain the

CSRTrackingTag of the associated GET_CSR request.

6 Reserved Reserved.

7 Overwrite

If set, the Responder shall stop processing any existing GET_CSR

request and overwrite it with this request, and the Responder shall

discard all previously generated CSRTrackingTag s.

783 The CSRCertModel field in GET CSR request attributes helps the Responder determine the content of the CSR. For

example, if the CSRCertModel indicates a device certificate model, the Responder may add additional OIDs such as

those OIDs defined in this specification. If the CSRCertModel indicates an alias certificate model, the Responder sets

the CA constraint to TRUE in the CSR.

784 Table 97 — CSR response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

198 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6D = CSR . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 CSRLength 2 Shall be the length of the CSRdata in bytes.

6 Reserved 2 Reserved.

8 CSRdata CSRLength
Shall be the requested contents of the CSR. This

field shall be DER-encoded.

785 The CSRdata format shall comply with the PKCS #10 specification in RFC 2986, specifically the

CertificationRequest format. When the Responder supports multiple asymmetric keys (MULTI_KEY_CONN_RSP is true)

in the SPDM connection, the SubjectPublicKeyInfo as defined in RFC 5280 shall contain values consistent with the

requested asymmetric key pair (KeyPairID) in the corresponding request.

786 10.26.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

787 For Slot 0 provisioning, the Requester should issue SET_CERTIFICATE only in a trusted environment (such as a

secure manufacturing environment). For slots 1-7, if the provisioning happens in a trusted environment, the

Requester should issue SET_CERTIFICATE inside a secure session. If the provisioning for slots 1-7 is done outside of

a trusted environment, the Requester shall issue SET_CERTIFICATE inside a secure session. Mutual authentication

and/or other means for checking the authorization of the Requester that issues the SET_CERTIFICATE request should

be performed. Requester authorization is outside the scope of this specification. The device might require a reset to

complete the SET_CERTIFICATE request, potentially so that the device can generate AliasCert certificates using

lower firmware layers. If the device requires a reset to complete the SET_CERTIFICATE request, then the device shall

respond with an ERROR message of ErrorCode=ResetRequired . When ResetRequired is pending and the device

receives a new SET_CERTIFICATE request for the same slot number, the device shall overwrite the existing CertChain

and process the new SET_CERTIFICATE request. If the device temporarily cannot write to a slot, including in the case

when it receives overlapping SET_CERTIFICATE requests from different Requesters, then the device shall respond

with an ERROR message of ErrorCode=Busy .

788 If Bit 7 of SET_CERTIFICATE . Param1 is set to 1 , the Responder shall erase the certificate chain present in the slot

identified by bits [3:0] of SET_CERTIFICATE . Param1 and report it as unpopulated until it is re-provisioned. The

SET_CERTIFICATE Erase operation does not erase the key associated with the specified slot. If the operation

completes successfully, the Responder shall respond with a SET_CERTIFICATE_RSP response message with bits [3:0]

of Param1 identifying the SlotID of the slot that was erased. If the operation failed, the Responder shall respond

with an ERROR message with ErrorCode=OperationFailed . If the specified slot is unpopulated when the

SET_CERTIFICATE Erase operation is issued, the Responder shall respond with an ERROR message with

ErrorCode=InvalidRequest .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 199

789 When a reset is required for a pending previous SET_CERTIFICATE request and the device receives a

GET_CERTIFICATE request for a pending slot or a GET_DIGESTS request, the device shall respond with an

ErrorCode=ResetRequired response.

790 Table 98 — SET_CERTIFICATE request message format shows the SET_CERTIFICATE request message format.

791 Table 100 — Successful SET_CERTIFICATE_RSP response message format shows the SET_CERTIFICATE_RSP

response message format.

792 Table 98 — SET_CERTIFICATE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xEE = SET_CERTIFICATE . See Table 4 —

SPDM request codes.

2 Param1 1
Request attributes. Shall be the format that the set

certificate request attributes table defines.

3 Param2 1

KeyPairID. The value of this field shall be the unique

key pair number identifying the desired asymmetric

key pair to associate with SlotID . If support for

multiple asymmetric keys (MULTI_KEY_CONN_RSP) is

false, the value of this field shall be zero.

4 CertChain Variable

Shall be the contents of the target certificate chain,

as specified in Certificates and certificate chains,

with the additional requirement that it include the root

certificate. If the Responder uses the AliasCert

model (ALIAS_CERT_CAP=1b in its CAPABILITIES

response) and SetCertModel is set to AliasCert ,

this field shall contain a partial certificate chain from

the root CA to the Device Certificate CA. If the

Request attributes . Erase bit is set, this field shall

be absent. If the certificate chain exceeds 64 KB and

LARGE_CERT_CAP=0b in the CAPABILITIES response,

the Responder shall send an Error message with

ErrorCode=CertChainTooLarge .

793 Table 99 — Set certificate request attributes

Bit offset Field Description

[3:0] SlotID
The certificate slot where the new certificate is written. The value

in this field shall be between 0 and 7 inclusive.

Security Protocol and Data Model (SPDM) Specification DSP0274

200 Work in Progress Version 1.4.0WIP70

Bit offset Field Description

[6:4] SetCertModel

This field indicates the certificate model of the certificate chain.

The value and format of this field shall be the same as CertModel

in Certificate info. If the certificate chain was formed with

information from a CSR response, the value in this field shall

match the value in the CSRCertModel field from the corresponding

GET_CSR request. If MULTI_KEY_CONN_RSP is true and Erase is not

set, the value shall not be zero.

7 Erase

If set, the certificate chain in the certificate slot identified by bits

[3:0] shall be deleted. Additionally, if this bit is set, the CertChain

field shall be absent and the value of SetCertModel shall be zero.

794 The Responder should verify that contents of the certificate chain meet the requirements in this specification for the

requested certificate model and key pair. If it does not, the Responder shall retain the current certificate in the

requested SlotID , if present. If an Erase operation occurs on a SlotID that does not contain a certificate or the

request contains invalid parameters, the Responder shall respond with an ERROR message or silently discard the

request.

795 Table 100 — Successful SET_CERTIFICATE_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6E = SET_CERTIFICATE_RSP . See Table 5

— SPDM response codes.

2 Param1 1

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID where the new

certificate is written. The value in this field shall be

the same as SlotID in corresponding

SET_CERTIFICATE Request. If the Erase bit is set in

the Request attributes field, this field shall contain

the SlotID of the slot that was erased. The value in

this field shall be between 0 and 7 inclusive.

3 Param2 1 Reserved.

796 10.27 Large SPDM message transfer mechanism

797 A large SPDM message is an SPDM message whose size is either greater than the DataTransferSize of the

receiving SPDM endpoint or greater than the transmit buffer size of the sending SPDM endpoint. These clauses

provide a transport-agnostic mechanism to transfer large SPDM messages. This mechanism will be used only if the

size of an SPDM message exceeds either the DataTransferSize of the receiving SPDM endpoint or the transmit

buffer size of the sending SPDM endpoint. Additionally, the transport may provide an alternative method to transfer

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 201

large SPDM messages. For SPDM messages that are less than or equal to both the DataTransferSize of the

receiving SPDM endpoint and the transmit buffer size of the sending SPDM endpoint, the sending SPDM endpoint

shall not utilize this transfer mechanism.

798 This transfer mechanism divides a large SPDM message into smaller fragments called chunks. The chunks shall be

numbered and shall be transferred in sequence. The chunks and their sequence of transfer are described thus:

• The first chunk shall be assigned a numeric value of 0, the second chunk shall be assigned a numeric value of 1,

the third chunk shall be assigned a numeric value of 2, and this pattern shall continue up to and including the

last chunk. Each of these numeric values is called a chunk sequence number.

• The first chunk shall contain the first set of bytes of the large SPDM message, the second chunk shall contain

the second set of bytes, the third chunk shall contain the third set of bytes, and this pattern shall continue up to

and including the last chunk.

• All chunks shall represent all bytes of the large SPDM message without altering the message in any way.

• The sequence of transfer shall start with chunk sequence number 0 and shall continue with sequentially

increasing chunk sequence numbers up to and including the last chunk.

• The chunked transfer shall not be interrupted by any commands that are not part of the chunk transfer

sequence, with the exception of GET_VERSION . The Responder shall return the error

ErrorCode=UnexpectedRequest if an unexpected command is received during the chunked transfer. If CHUNK_GET

is invalid or corrupted, the Requester may receive corresponding error codes (ErrorCode=InvalidRequest ,

ErrorCode=VersionMismatch , etc.). These error codes shall not interrupt the chunk transfer sequence, with

exception of the error code ErrorCode=DecryptError .

• CHUNK_SEND , CHUNK_GET , and their corresponding Responses shall be used to transfer these chunks.

799 The ChunkSeqNo fields indicate the chunk sequence number for a given chunk.

800 The requests and responses, which these clauses define, handle the transfer of each chunk.

801 10.27.1 CHUNK_SEND request and CHUNK_SEND_ACK response message

802 The CHUNK_SEND request and the CHUNK_SEND_ACK response shall be used to send a request to an SPDM endpoint

when the size of the request is greater than either the DataTransferSize of the receiving SPDM endpoint or the

transmit buffer size of the sending SPDM endpoint.

803 Table 101 — CHUNK_SEND request format describes the format for the request.

804 Table 102 — Chunk sender attributes describes the chunk sender attributes.

805 Table 101 — CHUNK_SEND request format table

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x85 = CHUNK_SEND request. See Table 4 —

SPDM request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

202 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 Param1 1
Shall be the Request Attributes. See Table 102 —

Chunk sender attributes.

3 Param2 1

Shall be the handle. This field should uniquely

identify the transfer of a large SPDM message. The

value of this field shall be the same for all chunks of

the same large SPDM message. The value of this

field should either sequentially increase or

sequentially decrease with each large SPDM

message and with the expectation that it will wrap

around after reaching the maximum or minimum

value, respectively, of this field.

4 ChunkSeqNo 4
Shall identify the chunk sequence number

associated with SPDMchunk .

8 ChunkSize 4
Shall indicate the size of SPDMchunk . See Additional

chunk transfer requirements.

12 LargeMessageSize L0 = 0 or 4

Shall indicate the size of the large SPDM message

being transferred. This field shall only be present

when ChunkSeqNo is zero and shall have a non-zero

value. The value of this field shall be greater than the

DataTransferSize of the receiving SPDM endpoint.

12 + L0 SPDMchunk Variable
Shall contain the chunk of the large SPDM request

message associated with ChunkSeqNo .

806 Table 102 — Chunk sender attributes

Bit offset Field Description

0 LastChunk

If set, the chunk indicated by ChunkSeqNo shall

represent the last chunk of the large SPDM

message.

[7:1] Reserved Reserved.

807 Table 103 — CHUNK_SEND_ACK response message format describes the format for the response.

808 Table 103 — CHUNK_SEND_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x05 = CHUNK_SEND_ACK response. See Table 5 —

SPDM response codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 203

Byte offset Field Size (bytes) Description

2 Param1 1
Shall be the Response attributes. See Table 104 —

Chunk receiver attributes.

3 Param2 1

Shall contain the handle from the corresponding

CHUNK_SEND request. This field should uniquely

identify the transfer of a large SPDM message. The

value of this field shall be the same for all chunks of

the same SPDM message.

4 ChunkSeqNo 4
Shall be the same as ChunkSeqNo in the

corresponding request.

6 ResponseToLargeRequest Variable

Shall be present on the last chunk (that is, when

LastChunk is set), or when the EarlyErrorDetected

bit in Param1 is set. This field shall contain the

response to the large SPDM request message.

When the EarlyErrorDetected bit in Param1 is set,

this field shall contain an ERROR message.

809 Table 104 — Chunk receiver attributes describes the chunk receiver attributes:

810 Table 104 — Chunk receiver attributes

Bit offset Field Description

0 EarlyErrorDetected

If set, the receiver of a large SPDM

request message detected an error in

the Request before the last chunk was

received. If set, the sender of the large

SPDM request message shall

terminate the transfer of any remaining

chunks. After addressing the issue, the

sender of the failed large SPDM

request message can transfer the

fixed large SPDM request message as

a new transfer.

[7:1] Reserved Reserved.

811 Upon reception of the last chunk, the receiving SPDM endpoint shall respond with the response corresponding to the

large SPDM request message in ResponseToLargeRequest . If placing the response in ResponseToLargeRequest

causes the size of the CHUNK_SEND_ACK to exceed the DataTransferSize , the receiving end point shall, instead,

respond to CHUNK_SEND with an ERROR message of ErrorCode=LargeResponse . An ERROR message of

ErrorCode=LargeResponse shall not be allowed in ResponseToLargeRequest . ERROR messages with other error codes

can be placed in ResponseToLargeRequest to distinguish between an ERROR message to the CHUNK_SEND request and

an ERROR message that is a response to the large SPDM request message.

812 In the case where the size of the CHUNK_SEND_ACK message is greater than DataTransferSize but the size of

ResponseToLargeRequest is less than DataTransferSize the Responder will chunk a message whose size is less than

DataTransferSize .

Security Protocol and Data Model (SPDM) Specification DSP0274

204 Work in Progress Version 1.4.0WIP70

813 Figure 24 — Large SET_CERTIFICATE example illustrates the sending of a large SPDM request message to a

Responder.

814 Figure 24 — Large SET_CERTIFICATE example

815

Large SET_CERTIFICATE Message

SPDM Header

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Requester Responder

CHUNK_SEND
Handle 5
Chunk Sequence 0
Chunk Size 250 Bytes
Large Message Size 800 Bytes
Chunk 0 Data

(DataTransferSize 266 Bytes)

Total Message Size = 800

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 0

CHUNK_SEND
Handle 5
Chunk Sequence 1
Chunk Size 254 Bytes
Chunk 1 Data

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 1

CHUNK_SEND
Handle 5
Chunk Sequence 3
Last Chunk
Chunk Size 42 Bytes
Chunk 3 Data

...

Handle 5
Chunk Sequence 3
Last Chunk
Response: SET_CERTIFICATE_RSP

CHUNK_SEND_ACK

Chunk Size is DataTransferSize minus
the sizes of all the fields (except for SPDMchunk) of
CHUNK_SEND_REQUEST. Thus, 266 - 12 = 254 bytes.

Chunk Sequence 0 contains an extra field. Thus,
the Chunk Size for the first chunk is 266 - 16 = 250 bytes.

SET_CERTIFICATE_RSP

SPDM Header

816 10.27.2 CHUNK_GET request and CHUNK_RESPONSE response message

817 CHUNK_GET request and CHUNK_RESPONSE response shall be used to retrieve a Large SPDM Response from an SPDM

endpoint when the size of the Response is greater than the DataTransferSize of the SPDM endpoint receiving the

Response or the transmit buffer size of the SPDM endpoint sending the Response.

818 When responding to a Request of any size, if the corresponding response will be a Large SPDM Response, the

responding SPDM endpoint shall respond with an ERROR message of ErrorCode=LargeResponse . This ERROR

message contains a handle to uniquely identify the given Large SPDM Response. The handle shall be used for all

CHUNK_GET Requests retrieving the same large SPDM message. The value of the handle is indicated in the Handle

field of this ERROR message.

819 Table 105 — CHUNK_GET request format describes the format for the request.

820 Table 105 — CHUNK_GET request format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 205

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
Shall be 0x86 = CHUNK_GET request. See Table 4 —

SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1

Shall contain a handle. This field shall be the same

value as given in the Handle field of the ERROR

message of ErrorCode=LargeResponse .

4 ChunkSeqNo 4
Shall indicate the desired chunk sequence number of

the Large SPDM Response to retrieve.

821 Table 106 — CHUNK_RESPONSE response format describes the format for the response.

822 Table 106 — CHUNK_RESPONSE response format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x06 = CHUNK_RESPONSE response. See

Table 5 — SPDM response codes.

2 Param1 1
Shall be the Response attributes. See Table 102 —

Chunk sender attributes.

3 Param2 1

Shall be the handle. This field shall be the same for

all chunks of the same Large SPDM Response. The

value of this field shall be the same value as in

Param2 field of CHUNK_GET .

4 ChunkSeqNo 4

Shall identify the chunk sequence number

associated with SPDMchunk . The value of this field

shall be the same value as ChunkSeqNo in the

CHUNK_GET .

8 ChunkSize 4
Shall indicate the size of SPDMchunk . See Additional

chunk transfer requirements.

12 LargeMessageSize L0 = 0 or 4

Shall indicate the size of the large SPDM message

being transferred. Shall only be present when

ChunkSeqNo is zero and shall have a non-zero value.

The value of this field should be greater than the

DataTransferSize of the receiving SPDM endpoint.

12 + L0 SPDMchunk Variable
Shall contain the chunk of the large SPDM request

message associated with ChunkSeqNo .

823 Figure 25 — Large MEASUREMENT example illustrates the sending and retrieval of a Large SPDM Response that

was the result of a Requester issuing a GET_MEASUREMENTS request.

Security Protocol and Data Model (SPDM) Specification DSP0274

206 Work in Progress Version 1.4.0WIP70

824 Figure 25 — Large MEASUREMENT example

825
Requester Responder

GET_MEASUREMENTS
Measurement Type Raw Bits

(DataTransferSize 312 Bytes)

CHUNK_RESPONSE
Handle 17
Chunk Sequence 0
Chunk Size 296 Bytes
Large Message Size 1000 Bytes
Chunk 0 Data

CHUNK_GET
Handle 17
Chunk Sequence 1

CHUNK_RESPONSE
Handle 17
Chunk Sequence 1
Chunk Size 300 Bytes
Chunk 1 Data

CHUNK_GET
Handle 17
Chunk Sequence 3

CHUNK_RESPONSE
Handle 17
Chunk Sequence 3
Chunk Size: 104 Bytes
Chunk 3 Data
Last Chunk

...

Responder creates the
MEASUREMENTS response with a
total size of 1000 bytes.
This is > 312 bytes

Chunk Size is DataTransferSize
minus the sizes of all the fields
(except for SPDMchunk) of
CHUNK_RESPONSE.
Thus, 312 - 12 = 300 bytes.

Chunk Sequence 0 contains an extra
field. Thus, the Chunk Size for the first
chunk is 312 - 16 = 296 bytes.

ERROR
ErrorCode=LargeResponse
Handle = 17

CHUNK_GET
Handle 17
Chunk Sequence 0

Large MEASUREMENTS Message

SPDM Header

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Total Message Size = 1000

826 10.27.3 Additional chunk transfer requirements

827 When transferring a large SPDM message, an SPDM endpoint shall be prohibited from transferring a chunk

sequence number (that is, a ChunkSeqNo) less than the current chunk sequence number. In other words, an SPDM

endpoint cannot go backwards in the transfer or re-send or re-retrieve a chunk sequence number less than the

current one in the transfer. However, due to retries, an SPDM endpoint might re-send or re-retrieve the current chunk

number in the transfer. Additionally, if the receiving SPDM endpoint receives an out-of-order chunk sequence

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 207

number, the receiving SPDM endpoint shall either silently discard the request or respond with an ERROR message of

ErrorCode=InvalidRequest .

828 The value of ChunkSize fields shall be one that ensures the total size of CHUNK_SEND or CHUNK_RESPONSE does not

exceed the DataTransferSize of the receiving SPDM endpoint. For all chunks that are not the last chunk, ChunkSize

shall be a value where the total size of CHUNK_SEND or CHUNK_RESPONSE shall be from MinDataTransferSize to the

DataTransferSize of the receiving SPDM endpoint. For the last chunk, ChunkSize shall be a value where the total

size of CHUNK_SEND or CHUNK_RESPONSE shall be equal to or less than the DataTransferSize of the receiving SPDM

endpoint.

829 While this transfer mechanism can carry any Request or Response, this transfer mechanism shall prohibit

CHUNK_SEND , CHUNK_GET , and their corresponding responses to be transferred as chunks themselves. Additionally to

ensure the general interoperability and reliability of this transfer mechanism, these messages shall be prohibited from

being transferred in chunks using this transfer mechanism:

• GET_VERSION

• VERSION

• GET_CAPABILITIES

• CAPABILITIES with Param1 in the GET_CAPABILITIES request set to 0.

• ERROR

◦ An ERROR message with an ErrorCode other than LargeResponse can be placed in the

ResponseToLargeRequest of a CHUNK_SEND_ACK response.

830 This transfer mechanism can carry Requests and Responses that are involved in signature generation or verification

and other cryptographic computations. However, this transfer mechanism is not part of any signature generation or

verification or cryptographic computation. In other words, CHUNK_SEND , CHUNK_GET , and their corresponding

responses shall not become part of any data or bit stream, such as message transcript, transcript, and so on, that are

used to verify or generate a signature or other cryptographic information. Signature generation, signature verification,

and other cryptographic computations operate on the large SPDM messages, themselves, which other parts of this

specification define.

831 The ERROR message of ErrorCode=ResponseNotReady shall not be used to directly respond to CHUNK_SEND and

CHUNK_GET requests. However, the ResponseToLargeRequest can contain an ERROR message of

ErrorCode=ResponseNotReady .

832 While a large SPDM message is being transferred in chunks, this large SPDM message is not considered a complete

SPDM message until the last chunk is received. Therefore, as soon as the CHUNK_SEND request begins transmission,

this large SPDM request message is considered to be outstanding.

833 10.28 Key configuration

834 Key configuration is the ability to retrieve or configure various parameters pertaining to asymmetric keys for a given

SPDM endpoint. These clauses describe the requests and responses that provide key-configuration capabilities.

835 SPDM endpoints can contain key pair ID(s) (KeyPairID) that are fixed and already provisioned, key pair IDs that are

configurable, or an assortment of both types. For configurable key pair IDs, one or more parameters related to the

Security Protocol and Data Model (SPDM) Specification DSP0274

208 Work in Progress Version 1.4.0WIP70

key pair are configurable. The requests and responses in these clauses provide the details for each KeyPairID . An

SPDM endpoint shall contain KeyPairID s starting from 1 to TotalKeyPairs inclusive and without gaps regardless of

the value of MULTI_KEY_CAP . Additionally, TotalKeyPairs is a fixed number and represents the maximum number of

key pair IDs in the corresponding SPDM endpoint per SPDM connection.

836 The Responder should authorize the Requester before allowing it to change information related to a key pair. The

method of authorization is outside the scope of this specification.

837 In general, if a key pair ID is configurable, the high-level flow for provisioning and configuring a key pair ID to a

usable state should follow these steps:

1. Use the GET_KEY_PAIR_INFO request and its corresponding response to retrieve information about one

or more key pair ID(s).

2. Use the SET_KEY_PAIR_INFO request and its corresponding response to configure the key pair ID.

◦ Ensure the key pair ID is associated with one or more certificate slots.

3. Use the GET_CSR and/or SET_CERTIFICATE requests and their corresponding responses to provision a

certificate chain to one or more of the certificate slots the key pair ID is associated with.

838 To return a key pair ID to its initial or default values, follow these steps:

1. Use the GET_KEY_PAIR_INFO request and its corresponding response to retrieve information about the

desired key pair ID.

◦ In particular, note all the certificate slots the key pair ID is associated with.

2. Use the SET_CERTIFICATE request and its corresponding response to erase all certificate chains

associated with the key pair ID.

3. Use the SET_KEY_PAIR_INFO request and its corresponding response to erase the key pair ID.

839 Outside of a session, the Requester and Responder should only issue GET_KEY_PAIR_INFO , SET_KEY_PAIR_INFO , and

their corresponding responses while in a trusted environment.

840 Lastly, when PUB_KEY_ID_CAP is set, keys associated with PUB_KEY_ID_CAP shall not be associated with any value of

KeyPairID .

841 10.28.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response

842 The GET_KEY_PAIR_INFO request shall retrieve key pair information from the Responder. This request and its

response shall report information for all key pairs on the Responder independent of any negotiated parameters of the

current SPDM connection. This allows the Requester to inquire about key pair information for all key pair IDs without

restarting the SPDM connection.

843 Table 107 — GET_KEY_PAIR_INFO request message format shows the GET_KEY_PAIR_INFO request message

format.

844 Table 107 — GET_KEY_PAIR_INFO request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 209

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
GET_KEY_PAIR_INFO=0xFC . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 KeyPairID 1
The value of this field shall indicate which key pair

ID's information to retrieve.

845 The corresponding successful response shall be the KEY_PAIR_INFO response as Table 108 — KEY_PAIR_INFO

response message format describes.

846 Table 108 — KEY_PAIR_INFO response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
KEY_PAIR_INFO = 0x7C . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 TotalKeyPairs 1
The value of this field shall indicate the total number

of key pairs on the Responder.

5 KeyPairID 1

The value of this field shall be the same value as the

KeyPairID field in the corresponding request. The

remaining fields in this response shall pertain to the

requested key pair ID in the corresponding Request.

6 Capabilities 2

This field indicates the capabilities of the requested

key pair (KeyPairID). The format of this field shall be

as Table 109 — Key pair capabilities format defines.

8 KeyUsageCapabilities 2

This field shall indicate the key usages the

Responder allows. The format of this field shall be as

Key usage bit mask defines. At least one bit shall be

set. The Responder shall indicate support for one or

more key usages by setting the corresponding bits.

Security Protocol and Data Model (SPDM) Specification DSP0274

210 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

10 CurrentKeyUsage 2

This field shall indicate the currently configured key

usage for the requested key pair ID. The format of

this field shall be as Key usage bit mask defines. If

no bits are set, this field shall indicate that the key

usage for this key pair ID has not yet been

configured. More than one bit can be set. If a bit is

set, the Responder shall support cryptographic

operations (such as signature generation) for the

corresponding key usage.

12 AsymAlgoCapabilities 4

This field shall indicate the asymmetric algorithms

the Responder supports for this key pair ID. The

format of this field shall be as Table 110 —

Asymmetric algorithm capabilities format defines.

The Responder shall indicate support for one or

more asymmetric algorithms by setting the

corresponding bits. At least one bit shall be set in this

field or PqcAsymAlgoCapabilities .

16 CurrentAsymAlgo 4

This field shall indicate the currently configured

asymmetric algorithm for this key pair ID. The format

of this field shall be as Table 110 — Asymmetric

algorithm capabilities format defines. The total

number of bits set in this field and

CurrentPqcAsymAlgo shall be no more than one. If no

bits are set in both fields, it shall indicate that any

asymmetric algorithm for this key pair has not yet

been selected. The set bit shall indicate that the

corresponding asymmetric algorithm is currently

configured.

20 PublicKeyInfoLen 2

This field shall indicate the size in bytes of the

PublicKeyInfo field in this response. A value of zero

shall indicate that the actual key pair is absent or has

yet to be generated. Otherwise, the value of this field

shall be non-zero.

22 AssocCertSlotMask 1

This field is a bit mask representing the currently

associated certificate slots. A set bit at position X

shall indicate an association between certificate slot

X and the requested KeyPairID . If ShareableCap is

not set and SET_KEY_PAIR_INFO_CAP is set, no more

than one bit shall be set. Otherwise, any number of

bits can be set.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 211

Byte offset Field Size (bytes) Description

23 PublicKeyInfo PublicKeyInfoLen

The field shall contain the public key information for

the requested key pair ID. The format of this field

shall be the DER encoding of the

AlgorithmIdentifier structure in an X.509 v3

certificate. See the "4.1.2.7. Subject Public Key Info"

clauses in RFC 5280 for additional details. Within the

AlgorithmIdentifier structure, the parameters

member shall be present and contain values

consistent with the information pertaining to the

requested key pair ID.

23 +

PublicKeyInfoLen
PqcAsymAlgoCapLen 4

This field shall indicate the size in bytes of the

PqcAsymAlgoCapabilities field in this response.

27 +

PublicKeyInfoLen
PqcAsymAlgoCapabilities PqcAsymAlgoCapLen

This field shall indicate the PQC asymmetric

algorithms the Responder supports for this key pair

ID. The format of this field shall be as Table 111 —

PQC asymmetric algorithm capabilities format

defines. The Responder shall indicate support for

one or more PQC asymmetric algorithms by setting

the corresponding bits. At least one bit shall be set in

this field or AsymAlgoCapabilities .

27 +

PublicKeyInfoLen +

PqcAsymAlgoCapLen

CurrentPqcAsymAlgoLen 4
This field shall indicate the size in bytes of the

CurrentPqcAsymAlgo field in this response.

31 +

PublicKeyInfoLen +

PqcAsymAlgoCapLen

CurrentPqcAsymAlgo CurrentPqcAsymAlgoLen

This field shall indicate the currently configured PQC

asymmetric algorithm for this key pair ID. The format

of this field shall be as Table 111 — PQC asymmetric

algorithm capabilities format defines. The total

number of bits set in this field and CurrentAsymAlgo

shall be no more than one. If no bits are set in both

fields, it shall indicate that the any asymmetric

algorithm for this key pair has not yet been selected.

The set bit shall indicate that the corresponding PQC

asymmetric algorithm is currently configured.

847 Table 109 — Key pair capabilities format defines the format for capabilities associated with a key pair ID.

848 Table 109 — Key pair capabilities format

Bit offset Field Description

0 GenKeyCap

If set, this key pair identified by

the given KeyPairID can be

generated or regenerated.

1 ErasableCap

If set, this key pair identified by

the given KeyPairID can be

erased.

Security Protocol and Data Model (SPDM) Specification DSP0274

212 Work in Progress Version 1.4.0WIP70

Bit offset Field Description

2 CertAssocCap

If set, the Responder allows a

Requester to change the

association between the given

KeyPairID and CertSlot .

3 KeyUsageCap

If set, the Responder allows a

Requester to change the key

usage for the given KeyPairID .

4 AsymAlgoCap

If set, the Responder allows a

Requester to change the

asymmetric algorithm or the

PQC asymmetric algorithm for

the given KeyPairID .

5 ShareableCap

If set, the Responder allows a

Requester to associate the

given KeyPairID with more

than one CertSlot . This bit

shall not be set if CertAssocCap

is not set.

All other bits Reserved Reserved.

849 Table 110 — Asymmetric algorithm capabilities format defines the bit mapping for asymmetric algorithms support.

See Table 142 — SPDM Asymmetric Signature Reference Information for references for the asymmetric algorithms.

850 Table 110 — Asymmetric algorithm capabilities format

Bit offset Asymmetric Algorithm

0 RSA 2048

1 RSA 3072

2 RSA 4096

3 ECC NIST P256

4 ECC NIST P384

5 ECC NIST P521

6 SM2 P256

7 Ed25519

8 Ed448

All other bits Reserved.

851 Table 111 — PQC asymmetric algorithm capabilities format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 213

Bit offset PQC Asymmetric Algorithm

0 ML-DSA-44

1 ML-DSA-65

2 ML-DSA-87

3 SLH-DSA-SHA2-128s

4 SLH-DSA-SHAKE-128s

5 SLH-DSA-SHA2-128f

6 SLH-DSA-SHAKE-128f

7 SLH-DSA-SHA2-192s

8 SLH-DSA-SHAKE-192s

9 SLH-DSA-SHA2-192f

10 SLH-DSA-SHAKE-192f

11 SLH-DSA-SHA2-256s

12 SLH-DSA-SHAKE-256s

13 SLH-DSA-SHA2-256f

14 SLH-DSA-SHAKE-256f

All other bits Reserved.

852 10.28.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response

853 The SET_KEY_PAIR_INFO request and the corresponding successful SET_KEY_PAIR_INFO_ACK response shall configure

one or more parameters for one key pair ID (KeyPairID).

854 Table 112 — SET_KEY_PAIR_INFO request message format defines the format for the SET_KEY_PAIR_INFO request.

855 Table 112 — SET_KEY_PAIR_INFO request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
SET_KEY_PAIR_INFO = 0xFD . See Table 4 — SPDM

request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

214 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

2 Param1 1

Operation. This field shall indicate the desired

operation. The format of this field shall be the format

as Table 113 — Key pair operations defines. If the

operation is KeyPairErase , all fields after KeyPairID

field in this request shall be absent.

3 Param2 1 Reserved.

4 KeyPairID 1
The value of this field shall indicate the key pair ID's

information to change.

5 Reserved 1 Reserved.

6 DesiredKeyUsage 2

This field shall indicate the desired key usage

(KEY_PAIR_INFO . CurrentKeyUsage) for the requested

key pair ID (KeyPairID). The format of this field shall

be as Key usage bit mask defines. If no bits are set,

the Responder shall not change the current key

usage. More than one bit can be set. The Requester

shall only select from bits that are set in the

KeyUsageCapabilities field of the KEY_PAIR_INFO

response for the requested KeyPairID . If

KeyUsageCap is not set for the requested KeyPairID ,

this field shall be zero.

8 DesiredAsymAlgo 4

This field shall indicate the desired asymmetric

algorithm (KEY_PAIR_INFO . CurrentAsymAlgo) for the

requested key pair ID. The format of this field shall

be as Table 110 — Asymmetric algorithm capabilities

format defines. If no bits are set, the Responder shall

not change the current configuration for the

asymmetric algorithm. The total number of bits set in

this field and DesiredPqcAsymAlgo shall be no more

than one. The Requester shall only select from bits

that are set in the AsymAlgoCapabilities field of the

KEY_PAIR_INFO response for the requested

KeyPairID . If AsymAlgoCap is not set for the

requested KeyPairID , this field shall be zero.

12 DesiredAssocCertSlotMask 1

This field is a bit mask representing the desired

certificate slot association. A set bit at position X

shall indicate an association between certificate slot

X and the requested KeyPairID . An unset bit at

position X shall indicate no association between

certificate slot X and the requested KeyPairID . The

Responder shall either remove an association or

create an association between the corresponding

certificate slot and the requested KeyPairID ,

depending on the value of each bit in this field. If

ShareableCap is not set, no more than one bit shall

be set.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 215

Byte offset Field Size (bytes) Description

13 DesiredPqcAsymAlgoLen 4
This field shall indicate the size in bytes of the

DesiredPqcAsymAlgo field.

17 DesiredPqcAsymAlgo DesiredPqcAsymAlgoLen

This field shall indicate the desired PQC asymmetric

algorithm (KEY_PAIR_INFO . CurrentPqcAsymAlgo) for

the requested key pair ID. The format of this field

shall be as Table 111 — PQC asymmetric algorithm

capabilities format defines. If no bits are set, the

Responder shall not change the current configuration

for the PQC asymmetric algorithm. The total number

of bits set in this field and DesiredAsymAlgo shall be

no more than one. The Requester shall only select

from bits that are set in the PqcAsymAlgoCapabilities

field of the KEY_PAIR_INFO response for the

requested KeyPairID . If AsymAlgoCap is not set for

the requested KeyPairID , this field shall be zero.

856 Table 113 — Key pair operations defines a numeric mapping to an operation.

857 Table 113 — Key pair operations

Value Operation Name Description

0 ParameterChange

Shall indicate an operation that

modifies one or more key-related

parameters. The

DesiredKeyUsage ,

DesiredAsymAlgo , and

DesiredAssocCertSlotMask fields

shall be present.

1 KeyPairErase

Shall indicate an operation that

erases all information relating to a

KeyPairID . The

DesiredKeyUsage ,

DesiredAsymAlgo , and

DesiredAssocCertSlotMask fields

shall be absent.

2 GenerateKeyPair

Shall indicate an operation that

generates a new key pair for this

KeyPairID . The

DesiredKeyUsage ,

DesiredAsymAlgo , and

DesiredAssocCertSlotMask fields

shall be present.

858 Table 114 — SET_KEY_PAIR_INFO_ACK response message format defines the format for SET_KEY_PAIR_INFO_ACK

response.

859 Table 114 — SET_KEY_PAIR_INFO_ACK response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

216 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
SET_KEY_PAIR_INFO_ACK = 0x7D . See Table 5 —

SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

860 10.28.3 Key pair ID modification error handling

861 These clauses describe some basic configuration error scenarios an SPDM endpoint should handle.

862 The first error scenario is a request for key generation (GenerateKeyPair) when no asymmetric algorithm has been

selected yet. A Responder should respond with an ERROR message of ErrorCode=OperationFailed .

863 Key usage for a key pair ID does not need to be specified until the key pair ID is associated with a certificate slot, so

this information is not needed for a GenerateKeyPair operation. The Responder should decide when it needs to know

the key usage information for a configurable key usage.

864 For a KeyPairErase or GenerateKeyPair operation request, the Responder shall ensure that the requested

KeyPairID has no association with any certificate slot. Otherwise, the Responder should respond with an ERROR

message of ErrorCode=OperationFailed .

865 There is one key pair per KeyPairID and the value of a key pair is bound to the selected asymmetric algorithm

(CurrentAsymAlgo of KEY_PAIR_INFO) of the corresponding KeyPairID . Once a key pair is generated for a

KeyPairID , the Responder shall discard the SET_KEY_PAIR_INFO request or return an ERROR message with

ErrorCode=InvalidRequest when that request changes parameters (ParameterChange) that affect the generated key

pair, such as the asymmetric algorithm.

866 10.29 Event mechanism

867 An SPDM endpoint may want to be notified of changes from another SPDM endpoint. These change notifications are

called events. The SPDM event mechanism provides a framework for the asynchronous notification of events over a

secure session. An Event Notifier is an SPDM endpoint sending an event, and an Event Recipient is an SPDM

endpoint receiving an event. An SPDM endpoint can be both an Event Notifier and an Event Recipient in the same

secure session. See Session for details on secure sessions. There can be multiple sessions between the same

Responder and same Requester. The event mechanism applies to each session individually.

868 An event is identified by its event group, event type, and an event instance ID. An event group is a group of all event

types a given standards body or vendor defines. An event type classifies the event by indicating its type. The event

instance ID is a unique numeric value that represents that occurrence of the event.

869 An Event Recipient can select the event types that it wants to receive. An event subscription is a list of event types

an Event Recipient wants to receive. The Event Notifier manages the event subscription. An Event Notifier shall only

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 217

send events of event types that match the event types in the event subscription. See DMTF Event Types for DMTF-

defined event types.

870 An Event Notifier shall not send any events in a session until an Event Recipient subscribes to one or more events.

871 The Event Flow diagram illustrates a typical event flow for event subscription and event delivery over a transport

capable of asynchronous bidirectional communication.

872 Figure 26 — Event flow diagram

Security Protocol and Data Model (SPDM) Specification DSP0274

218 Work in Progress Version 1.4.0WIP70

873

…

SUBSCRIBE_EVENTS

,

SUBSCRIBE_EVENTS_ACK

Event Group ID indicates DMTF
Event Instance ID == 0

Measurement Event Details

SEND_EVENT

Ack-ed Event Instance ID == 0

EVENT_ACK

…

Event Group ID indicates DMTF
Event Instance ID == 1

Measurement Event Details

SEND_EVENT

Ack-ed Event Instance ID == 1

EVENT_ACK

…

Session-Secrets-Exchange

GET_SUPPORTED_EVENTS

SUPPORTED_EVENTS

Event
Notifier

Event
Recipient

Legend:

Secure Session

874 For transports that prohibit a Responder from asynchronously sending out data, the Event Notifier and Event

Recipient can use the encapsulated request flow to deliver or receive events. The encapsulated request flow allows

for a polling methodology as Triggering GET_ENCAPSULATED_REQUEST describes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 219

875 When EVENT_CAP is set, an Event Notifier shall support SUBSCRIBE_EVENT_TYPES , GET_SUPPORTED_EVENT_TYPES ,

SEND_EVENT , and their corresponding response messages. In addition, an Event Notifier shall support the mandatory

DMTF event types.

876 10.29.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES
response message

877 These request and response messages retrieve the list of all event types supported by the Event Notifier. Each event

type belongs in an event group. An event group contains all event types belonging to the standards body or vendor

that defines them. The SVH identifies the event group. Within an event group, an event type ID identifies the event

type uniquely within the event group. Both the SVH and the event type ID ensure uniqueness for all event types in

this specification.

878 Usually, the Event Notifier does not need to support all event types within an event group or within all event groups.

However, the standards body or vendor defines the requirements for the event types they define.

879 Table 115 — GET_SUPPORTED_EVENT_TYPES request message format describes the message format.

880 Table 115 — GET_SUPPORTED_EVENT_TYPES request message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1 0xE2 = GET_SUPPORTED_EVENT_TYPES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

881 Table 116 — SUPPORTED_EVENT_TYPES response message format describes the message format for this

response.

882 Table 116 — SUPPORTED_EVENT_TYPES response message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as

described in SPDM version.

1 RequestResponseCode 1
0x62 = SUPPORTED_EVENT_TYPES

Response

2 Param1 1

EventGroupCount. Shall be

the number of event groups

listed in

SupportedEventGroupsList .

3 Param2 1 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

220 Work in Progress Version 1.4.0WIP70

Byte Offset Field Size (bytes) Description

4 SupportedEventGroupsListLen 4

The value of this field shall be

the size in bytes of the

SupportedEventGroupsList

and shall be greater than zero.

8 SupportedEventGroupsList SupportedEventGroupsListLen

Shall be a list of all event

types grouped by event group

supported by the Event

Notifier. The format of this field

shall be a list of Event group.

In this format, each event

group contains a list of event

types the Event Notifier

supports. If an event group is

present, it shall be present

exactly once to avoid

duplicates and to minimize the

size of this response. The size

of this field shall be the value

in

SupportedEventGroupsListLen .

See Event group format

additional information for

additional details.

883 Table 117 — Event group format defines the format for listing event types in a single event group.

884 Table 117 — Event group format

Byte Offset Field Size (bytes) Description

0 EventGroupId 2 + VendorIDLen

Shall indicate the event

group the event type

belongs to. The format of

this field shall be the SVH

format. The size of this

field shall be the size of

the SVH.

2 + VendorIDLen EventTypeCount 2

Shall be the total number

of event types listed in

the EventTypeList field

and belonging to

EventGroupId . The value

of this field shall be

greater than zero.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 221

Byte Offset Field Size (bytes) Description

4 + VendorIDLen EventGroupVer 2

Shall be the standards

body or vendor-assigned

version number that

indicates the version of

the event types belonging

to EventGroupId .

6 + VendorIDLen Attributes 4

Attributes. The format of

this field shall be defined

by the messages using

this Event groups format.

For the

SUPPORTED_EVENT_TYPES

response message, see

Event group format

additional information.

For the

SUBSCRIBE_EVENT_TYPES

request message, see

Additional subscription list

information.

10 + VendorIDLen EventTypeList Variable

Shall be a list of event

types in this Event Group

(EventGroupId). The

value in EventTypeCount

field shall indicate the

number of event types in

this list. The format of this

field shall be a list of

Event Type Information.

If an event type is

present, it shall be

present exactly once.

885 Table 118 — Event type information format defines the format for a single event type.

886 Table 118 — Event type information format

Byte Offset Field Size (bytes) Description

0 EventTypeId 2

Shall be a

numeric value

that uniquely

identifies this

event type

within the

corresponding

event group.

Security Protocol and Data Model (SPDM) Specification DSP0274

222 Work in Progress Version 1.4.0WIP70

Byte Offset Field Size (bytes) Description

2 Reserved 2 Reserved.

887 The EventGroupVer field allows for updates to the event type list such as a new event type. An Event Notifier should

add new event types to the end of the list.

888 10.29.1.1 Event group format additional information

889 This clause describes further information for various fields in the Event groups format table. This format is present in

more than one SPDM message.

890 Many fields in the Event group format table have different definitions depending on which SPDM message uses this

table. For SUBSCRIBE_EVENT_TYPES , see Additional subscription list information for requirements on the Event group

format.

891 The following requirements shall apply to the Event group format table contained in SUPPORTED_EVENT_TYPES .

• The value of EventTypeCount field shall be greater than zero.

• The presence of an event type in the EventTypeList field shall indicate that the Event Notifier can send events

of this type.

• The value of Attributes shall be reserved.

892 10.29.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response
message

893 The SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response messages allow an Event Recipient

to communicate the list of SPDM event types it is interested in receiving. This request replaces the current

subscription list.

894 An event subscription is a list of all event types to which an Event Recipient subscribes. Thus, an Event Notifier shall

send events when they occur to an Event Recipient if at least one event type is present in the event subscription of

the corresponding Event Recipient.

895 To subscribe or unsubscribe to an event group, an Event Recipient shall send the SUBSCRIBE_EVENT_TYPES request

message with a complete list of all event types to which the Event Recipient subscribes. An Event Notifier shall

replace the current event subscription with the new subscription from the latest SUBSCRIBE_EVENT_TYPES message. If

the new subscription contains an unsupported or invalid event type, the Responder should respond with an ERROR

message of ErrorCode=InvalidRequest . If an Event Notifier supports multiple Event Recipients, the Event Notifier

shall support a unique event subscription list per session for each subscribed Event Recipient. The

SUBSCRIBE_EVENT_TYPES request message format describes the message format.

896 Table 119 — SUBSCRIBE_EVENT_TYPES request message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in

SPDM version.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 223

Byte Offset Field Size (bytes) Description

1 RequestResponseCode 1 0xF0 = SUBSCRIBE_EVENT_TYPES

2 Param1 1

SubscribeEventGroupCount. Shall be the

number of event groups in SubscribeList .

A value of zero shall indicate that the Event

Recipient no longer subscribes to any events.

This is the equivalent of an empty event

subscription or the removal of all event types

in an event subscription. If the value of this

field is zero, SubscribeListLen and

SubscribeList fields shall be absent.

3 Param2 1 Reserved.

4 SubscribeListLen 4

The value of this field shall be the size in

bytes of SubscribeList . The value of this

field shall be greater than zero.

8 SubscribeList SubscribeListLen

Shall be a list of event types grouped by

event group that the Event Notifier supports

and to which the Event Recipient is

subscribing. The format of this field shall be a

list of Event group. In this format, each event

group contains a list of event types to which

the Event Recipient subscribes. If an event

group is present, it shall be present exactly

once. The size of this field shall be the value

in SubscribeListLen field.

See Additional subscription list information

for additional requirements.

897 Table 120 — SUBSCRIBE_EVENT_TYPES_ACK response message format describes the response format for the

SUBSCRIBE_EVENT_TYPES request.

898 Table 120 — SUBSCRIBE_EVENT_TYPES_ACK response message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as

described in SPDM version.

1 RequestResponseCode 1
0x70 = SUBSCRIBE_EVENT_TYPES_ACK

Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

899 For event types defined by this specification, see DMTF event types.

Security Protocol and Data Model (SPDM) Specification DSP0274

224 Work in Progress Version 1.4.0WIP70

900 10.29.2.1 Additional subscription list information

901 These clauses describe further information for various fields in SubscribeList whose format is the Event group

format.

902 The value of the EventTypeCount field shall be greater than or equal to zero. If EventTypeCount is zero, then

AllEventTypes shall also be set.

903 The presence of an event type in the EventTypeList field shall subscribe the Event Recipient to that event type.

Likewise, the absence of an event type in the EventTypeList field shall indicate that the Event Recipient does not or

no longer subscribes to this event type. Additionally, the absence of an event group in the SubscribeList shall

indicate that the Event Recipient does not or no longer subscribes to any event types in this event group.

904 The format of the Attributes field shall be as the SUBSCRIBE_EVENT_TYPES request attributes format table defines.

905 Table 121 — SUBSCRIBE_EVENT_TYPES request attributes format

Byte Offset Bit Offset Field Description

0 0 AllEventTypes

If set, the Event

Notifier shall

subscribe the

Event Recipient to

all event types

supported by the

Event Notifier in

the corresponding

Event Group and

the value of

EventTypeCount

shall be zero.

0 [7:1] Reserved Reserved

1 [7:0] Reserved Reserved

2 [7:0] Reserved Reserved

3 [7:0] Reserved Reserved

906 If an Event Recipient sets AllEventTypes , it can receive events of event types it does not understand. In this

scenario, the Event Recipient shall respond with an EVENT_ACK message as SEND_EVENT request and

EVENT_ACK response message describes and stop processing the unknown event type.

907 10.29.3 SEND_EVENT request and EVENT_ACK response message

908 To deliver subscribed events to an Event Recipient, the Event Notifier shall use the SEND_EVENT request message.

This request can contain more than one event.

909 Table 122 — SEND_EVENT request message format describes this request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 225

910 Table 122 — SEND_EVENT request message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1 0xF1 = SEND_EVENT

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 EventCount 4 Shall be the number of elements in EventsList .

8 EventsList Variable

Shall be a list of Event Data. The list should be

sorted in numerically increasing event instance

ID order. The size of this field shall be the size of

this list.

911 Table 123 — Event data table describes the format for details of each event.

912 Table 123 — Event data table

Byte Offset Field Size (bytes) Description

0 EventInstanceId 4
Shall be the event instance id for the

event.

4 Reserved 4 Reserved.

8 EventGroupId 2 + VendorIDLen

Shall indicate the event group the

event type belongs to. The format of

this field shall be SVH format.

10 + VendorIDLen EventTypeId 2

Shall be the numeric value identifying

the event type of this event in

EventGroupId .

12 + VendorIDLen EventDetailLen 2 Shall be the length of EventDetail .

14 + VendorIDLen EventDetail Variable

Shall be the event-specific details of

the event indicated by

EventInstanceId , EventGroupId and

EventTypeId . The format and further

definition of this field is specific to the

event type indicated by EventTypeId

in the event group indicated by

EventGroupId . For the DMTF event

group, see Event type details for

further information. The size of this

field shall be the size of the event-

specific details for this event.

Security Protocol and Data Model (SPDM) Specification DSP0274

226 Work in Progress Version 1.4.0WIP70

913 Table 124 — EVENT_ACK response message format describes the format for the response.

914 Table 124 — EVENT_ACK response message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1

Shall be the

SPDMVersion as

described in

SPDM version.

1 RequestResponseCode 1
0x71 = EVENT_ACK

Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

915 The Event Notifier shall only send unacknowledged event instance IDs.

916 The size of SEND_EVENT data can exceed the DataTransferSize of the Event Recipient, especially if multiple events

happen concurrently. While it is possible to use the Large SPDM message transfer mechanism, the Event Notifier

should try to divide the events into multiple SEND_EVENT requests to ensure efficient delivery of the events instead of

combining all events into a single SEND_EVENT request.

917 An Event Notifier shall send a SEND_EVENT request with only the Event Lost event (EventTypeId =EventLost) as an

indication that the original event was too big in size under any of these conditions:

• The Event Notifier does not support the Large SPDM message transfer mechanism and the SEND_EVENT request

with only one event exceeds the DataTransferSize of the Event Recipient.

• The size of a SEND_EVENT request with only one event is greater than the MaxSPDMmsgSize of the Event

Recipient.

918 The Event Notifier shall follow the requirements in Timing requirements as a Requester for SEND_EVENT . Likewise,

the Event Recipient shall follow the timing requirements as a Responder when receiving a SEND_EVENT request.

919 10.29.4 Event Instance ID

920 Event Instance ID typically reflects the order of events in the Event Notifier from a chronological perspective. The

event instance ID shall start at zero for each secure session and sequentially increase with each occurrence of an

event. This method also allows the Event Recipient to determine if an event was lost.

921 When the event instance ID reaches the maximum value, the Event Notifier shall terminate the session after sending

a SEND_EVENT request containing an event with the maximum value and receiving the corresponding response. An

Event Recipient can also terminate the session.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 227

922 10.30 GET_ENDPOINT_INFO request and ENDPOINT_INFO response
messages

923 The GET_ENDPOINT_INFO request message shall retrieve general information from an endpoint. The SubCode

parameter is used to differentiate between operations, and a request message shall specify only one SubCode . If the

Responder does not support the specified SubCode , the responder shall return an ERROR message of

ErrorCode=UnsupportedRequest .

924 Table 125 — GET_ENDPOINT_INFO request format shows the format of the GET_ENDPOINT_INFO request message.

925 Table 128 — ENDPOINT_INFO response format shows the format of the ENDPOINT_INFO response message.

926 Table 125 — GET_ENDPOINT_INFO request format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x87 = GET_ENDPOINT_INFO . See Table 4 — SPDM

request codes.

2 Param1 1

Shall be the GET_ENDPOINT_INFO SubCode. See

GET_ENDPOINT_INFO SubCodes for the list of

valid values.

3 Param2 1

Bit [7:4]. Reserved.

Bit [3:0]. SlotID that identifies the certificate

chain whose leaf certificate is used to sign the

response. If a signature is not requested (Bit[0] of

the RequestAttributes field is 0), this field shall

be ignored. If the Responder's public key was

provisioned to the Requester previously, this field

shall be 0xF .

4 RequestAttributes 1
Request attributes.

See GET_ENDPOINT_INFO request attributes.

5 Reserved 3 Reserved.

8 Nonce NL = 32 or 0

The Requester should choose a random value.

This field shall only be present if a signature is

requested (SignatureRequested=1b).

927 Table 126 — GET_ENDPOINT_INFO SubCodes

SubCode Value Description

Reserved 0x00 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

228 Work in Progress Version 1.4.0WIP70

SubCode Value Description

DeviceClassIdentifier 0x01

The DeviceClassIdentifier response returns information that can

be used to identify the class of device for the Responder in

question. See ENDPOINT_INFO device class identifier list format

for the definition of the response data.

Reserved All other values
SPDM implementations compatible with this version shall not use

the reserved SubCode s.

928 Table 127 — GET_ENDPOINT_INFO request attributes

Bit offset Field Description

0 SignatureRequested

If the Responder can generate a signature (EP_INFO_CAP=10b

in its CAPABILITIES response and either BaseAsymSel or

ExtAsymSelCount is non-zero), a value of 1 indicates that a

signature on the response is required. When this bit is set to

1 , the Requester shall include the Nonce field in the request,

and the Responder shall generate a signature and send the

signature in the response.

A value of 0 indicates that the Requester does not require a

signature. The Responder shall not generate a signature in the

response. The Nonce field shall be absent in the request and

response.

For Responders that cannot generate a signature

(EP_INFO_CAP=01b in their CAPABILITIES response or both

BaseAsymSel and ExtAsymSelCount are zero), the Requester

shall always set this bit to 0 .

[7:1] Reserved Reserved.

929 Table 128 — ENDPOINT_INFO response format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x07 = ENDPOINT_INFO . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

3 Param2 1

Bit [7:4]. Reserved.

Bit [3:0]. SlotID that identifies the certificate

chain whose leaf certificate is used to sign the

response. If a signature is not requested

(SignatureRequested=0b), this field shall be 0 . If

the Responder's public key was provisioned to the

Requester previously, this field shall be 0xF .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 229

Byte offset Field Size (bytes) Description

4 Reserved 4 Reserved.

8 Nonce NL = 32 or 0

The Responder should choose a random value.

This field shall only be present if Bit[0] of the

RequestAttributes field is 1 .

8 + NL EPInfoLen 4 Shall contain the length of the EPInfo field.

12 + NL EPInfo EPInfoLen

Shall contain endpoint information, as described

in the endpoint information format for the specified

SubCode . The size of this field shall be the size of

the returned endpoint information.

12 + NL + EPInfoLen Signature SigLen

Signature of the endpoint information, excluding

the Signature field and signed using the private

key associated with the leaf certificate. The

Responder shall use the asymmetric signing

algorithm it selected during the last ALGORITHMS

response message to the Requester, and SigLen

is the output size for that asymmetric signing

algorithm. This field is conditional and only

present in the ENDPOINT_INFO response

corresponding to a GET_ENDPOINT_INFO request

with the SignatureRequested bit set to 1 in the

RequestAttributes field. See ENDPOINT_INFO

signature generation and ENDPOINT_INFO

signature verification for more details.

930 The Device Class Identifier format is an extended form of the standards body or vendor-defined header. For a Device

Class Identifier list response, EPInfoLen shall have a size of 4 + IDElemSize . The IDElemSize shall be the sum of

the sizes of the NumIdentifiers of the Device Class Identifier elements. Each Device Class Identifier shall have a

size of 4 + VendorIDLen + the sum of the sizes of the subordinate Device Class Identifiers. Each of the subordinate

Device Class Identifiers shall have a size of 1 + SubIDLen , where SubIDLen may be different for each element.

931 Table 129 — ENDPOINT_INFO device class identifier list format

Byte offset Field Size (bytes) Description

0 NumIdentifiers 1

Shall be the number of Device Class Identifier

elements in this response message. Each

identifier shall be unique.

1 Reserved 3 Reserved.

4 IdentifierElements IDElemSize

Shall contain Device Class Identifier elements, as

defined in ENDPOINT_INFO device class

identifier element format.

932 Table 130 — ENDPOINT_INFO device class identifier element format

Security Protocol and Data Model (SPDM) Specification DSP0274

230 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

0 IDElemLength 1

Shall be the size of this ID element. The value of

IDElemLength shall be the number of bytes from

the SVH . ID field through the last SubordinateID ,

inclusive.

1 SVH 2 + VendorIDLen

Shall be a standards body or vendor-defined

header, as described in Table 69 — Standards

body or vendor-defined header (SVH).

3 + VendorIDLen NumSubIDs 1
Shall be the number of subordinate Device Class

Identifiers.

4 + VendorIDLen SubordinateID

NumSubIDs entries of 1

+ SubIDLen for a given

entry

Shall contain NumSubIDs of subordinate Device

Class Identifiers, of the format described in Device

class identifier subordinate identifier format. If

NumSubIDs is 0, this field shall be absent.

933 If present, one or more subordinate identifier fields contain identifiers that further identify the device. These identifiers

shall be valid in the namespace defined by the standards body specified in the ID field and by the vendor ID

specified in the VendorID field.

934 Table 131 — Device class identifier subordinate identifier format

Byte offset Field Size (bytes) Description

0 SubIDLen 1
Shall contain the length in bytes of this

subordinate identifier.

1 SubIdentifier SubIDLen

Shall contain one subordinate device identifier

that is valid in the namespace of the vendor

identified in the VendorID field. This field shall be

size SubIDLen .

935 10.30.1 ENDPOINT_INFO signature generation

936 The signature for an ENDPOINT_INFO response is generated per request and response pair. To complete the

ENDPOINT_INFO signature generation process, the Responder shall complete these steps:

1.937 The Responder shall construct an information log IL1, and the Requester shall construct an

information log IL2 over their observed messages:

IL1/IL2 = Concatenate(VCA, GET_ENDPOINT_INFO, ENDPOINT_INFO)

938 where:

◦ Concatenate is the standard concatenation function.

◦ GET_ENDPOINT_INFO is the entire GET_ENDPOINT_INFO request message under consideration where

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 231

the Requester has set the SignatureRequested bit in the RequestAttributes field.

◦ ENDPOINT_INFO is the entire ENDPOINT_INFO response message under consideration, except for

the signature field.

2.939 The Responder shall generate:

Signature = SPDMsign(PrivKey, IL1, "endpoint_info signing")

940 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key of the Responder associated with the leaf certificate stored in

SlotID of Param2 in GET_ENDPOINT_INFO . If the public key of the Responder was provisioned to

the Requester, then PrivKey shall be the associated private key.

941 10.30.2 ENDPOINT_INFO signature verification

942 To complete the ENDPOINT_INFO signature verification process, the Requester shall complete this step:

1.943 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, IL2, "endpoint_info signing")

944 where:

◦ SPDMsignatureVerify is described in Signature verification. A successful verification is when

result is success .

◦ PubKey shall be the public key associated with the leaf certificate stored in SlotID of Param2 in

GET_ENDPOINT_INFO , and it is extracted from the CERTIFICATE response. If the public key of the

Responder was provisioned to the Requester, then PubKey shall be the provisioned public key.

945 10.31 Measurement extension log mechanism

946 A Responder device may create and maintain a Measurement Extension Log (MEL) to record device information

such as measurements of firmware and/or software modules loaded during the boot, firmware and/or software

updates, configurations, status of the system, and so on. To construct the MEL, when certain events occur, the

Responder appends data associated with the events to the end of the MEL. The events that cause the MEL update

are specific to and are determined by individual Responder implementations. For example, the Responder may

append the digest and version number of a firmware module to the end of the MEL when the firmware module is

loaded. The MEL grows as entries are added. At reset, the Responder may reset the MEL or preserve the MEL. If

the Responder preserves the MEL across resets, the reset events themselves may be added as new entries to the

Security Protocol and Data Model (SPDM) Specification DSP0274

232 Work in Progress Version 1.4.0WIP70

MEL. Accordingly, the corresponding HEM should also be preserved across resets. The Responder should ensure

that the MEL will not overrun memory or wrap under normal uses.

947 If the MEL_CAP bit in CAPABILITIES is set, the Requester may acquire the MEL of the Responder by issuing a

GET_MEASUREMENT_EXTENSION_LOG request message. The Responder shall respond with the

MEASUREMENT_EXTENSION_LOG response message. If a Requester acquires the hash-extend measurements outside of a

secure session, the Requester should set SignatureRequested=1 in the GET_MEASUREMENTS request or secure the

response using other means outside of this specification.

948 The Hash-extend measurements clause introduces a method of constructing a hash value (type 0x8 of

DMTFSpecMeasurementValueType[6:0]) by extending measurements. The resulting hash guarantees the integrity of the

data participating in the extend operations. Leveraging this mechanism can ensure the integrity of the MEL. To do

this, an entry of the MEL serves as the DataToExtend in calculating HEM . After all entries of the MEL are processed,

the resulting HEM is the hash-extend measurement.

949 To avoid circular dependencies and race conditions, the DataToExtend for calculating HEM shall not include the

GET_MEASUREMENTS request, MEASUREMENTS response, GET_MEASUREMENT_EXTENSION_LOG request, or

MEASUREMENT_EXTENSION_LOG response messages.

950 Figure 27 — Flow for acquiring Hash-Extend Measurement and Measurement Extension Log demonstrates an

example flow for the Requester to obtain hash-extend measurement and the MEL from the Responder.

951 Figure 27 — Flow for acquiring Hash-Extend Measurement and Measurement Extension Log

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 233

952

ResponderRequester

GET_MEASUREMENTS
(Param2=an index of type 08h;

SignatureRequested)

MEASUREMENTS
(hash-extended measurement)

GET_MEASUREMENT_EXTENSION_LOG

MEASUREMENT_EXTENSION_LOG

Sign hash-extended
measurement with
private keyVerify signature of

the Responder

Replicate extend
operations and verify
MEL against hash-
extended measurement

Construct MEL during boot and
runtime.

Extend MEL entries to hash-
extended measurement as
entries are added to MEL.

953 As the example flow shows, a Responder that supports MEL would construct the MEL at runtime independently of

the Requester. The Requester would first issue GET_MEASUREMENTS to obtain the HEM and verify the signature of the

Responder, and then it would issue GET_MEASUREMENT_EXTENSION_LOG to obtain the MEL from the Responder. With

both HEM and MEL, the Requester replicates the extend operations with every entry of the MEL in ascending MEL

index order and compares the result of every extend operation with the HEM received in the MEASUREMENTS response.

If the two values match, then the integrity of the MEL entries used in the extend operations is verified. Note that if the

Responder added new entries to the MEL after generating the HEM in the MEASUREMENTS response and before

responding to GET_MEASUREMENT_EXTENSION_LOG , then the result of the extend operations with all MEL entries would

not match the HEM. In this case, the Requester should issue GET_MEASUREMENTS again to obtain the updated HEM for

verifying the integrity of newly added MEL entries. If the result of the extend operations does not match the HEM and

the Responder did not add new entries to the MEL between MEASUREMENTS and GET_MEASUREMENT_EXTENSION_LOG ,

then the verification is considered to have failed.

954 10.31.1 GET_MEASUREMENT_EXTENSION_LOG request and
MEASUREMENT_EXTENSION_LOG response messages

955 Table 132 — GET_MEASUREMENT_EXTENSION_LOG message format shows the

GET_MEASUREMENT_EXTENSION_LOG request message format.

Security Protocol and Data Model (SPDM) Specification DSP0274

234 Work in Progress Version 1.4.0WIP70

956 Table 133 — Successful MEASUREMENT_EXTENSION_LOG message format shows the

MEASUREMENT_EXTENSION_LOG response message format.

957 Table 132 — GET_MEASUREMENT_EXTENSION_LOG message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0xEF = GET_MEASUREMENT_EXTENSION_LOG . See Table 4

— SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Offset 4

Shall be the offset in bytes from the start of the MEL

to where the read request message begins. The

Responder shall send the MEL starting from this

offset. Offset 0 shall be the first byte of the MEL.

8 Length 4
Shall be the length of the MEL, in bytes, to be

returned in the corresponding response.

958 Note that the large SPDM message transfer mechanism can be used for the MEASUREMENT_EXTENSION_LOG

message. Also note that, if the Responder added new entries to MEL between MEASUREMENT_EXTENSION_LOG

responses, then RemainderLength of a later MEASUREMENT_EXTENSION_LOG response may be greater than

that of the previous MEASUREMENT_EXTENSION_LOG response.

959 Table 133 — Successful MEASUREMENT_EXTENSION_LOG response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x6F = MEASUREMENT_EXTENSION_LOG . See Table 5 —

SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 PortionLength 4

Shall be the number of bytes of this portion of the

MEL. This shall be less than or equal to the Length

received as part of the request. For example, the

Responder might set this field to a value less than

the Length received as part of the request due to

limitations on the transmit buffer of the Responder.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 235

Byte offset Field Size (bytes) Description

8 RemainderLength 4

Shall be the number of bytes remaining in the MEL

from the requested offset + PortionLength . A value

of 0 shall indicate there are no more bytes beyond

the requested offset + PortionLength .

12 MEL PortionLength

Requested contents of the MEL. This field shall

follow the format negotiated in the most recent

ALGORITHMS message.

960 10.31.2 DMTF Measurement Extension Log Format

961 This clause specifies the format of MEL in the MEASUREMENT_EXTENSION_LOG response when the MEL specification

(MELspecificationSel) is "DMTFmelSpec" and the measurement specification (MeasurementSpecificationSel) is

"DMTFmeasSpec" in the most recent ALGORITHMS message (see Table 23 — Successful ALGORITHMS response

message format). The MEL format shown in Table 134 — DMTF Measurement Extension Log format leverages the

DMTF measurement specification format for its entries.

962 Table 134 — DMTF Measurement Extension Log Format

Byte offset Field Size (bytes) Description

0 NumberOfEntries 4 Shall be the number of entries in the MEL.

4 MELEntriesLength 4
Shall be the total number of bytes in all entries of the

MEL.

8 Reserved 8 Reserved.

16 MELEntries MELEntriesLength

Shall be the concatenation of all entries of the MEL.

The size of this field shall be equal to

MELEntriesLength .

963 The MELEntries field of the DMTF Measurement Extension Log consists of all entries of the MEL. Each MEL entry

shall follow the format that Table 135 — DMTF Measurement Extension Log Entry Format defines. In the calculation

of hash-extend measurement, DataToExtend shall be one MEL entry at a time.

964 Table 135 — DMTF Measurement Extension Log Entry Format

Byte offset Field Size (bytes) Description

0 MELIndex 4

Shall be the index of this entry in the MEL. This

field shall be a non-negative integer. The

MELIndex shall be in increasing order.

Security Protocol and Data Model (SPDM) Specification DSP0274

236 Work in Progress Version 1.4.0WIP70

Byte offset Field Size (bytes) Description

4 MeasIndex 1

Shall be the index of the hash-extend

measurement which this entry extends, that is, the

Index of Table 57 — Measurement block format

for this hash-extend measurement

(DMTFSpecMeasurementValueType[6:0] = 0x8) in the

MEASUREMENTS response. MeasIndex values of

MEL entries can interleave. For example, it is

legitimate that a MELIndex of 2 has a MeasIndex

of 0x04, but a MELIndex of 1 and a MELIndex of 3

both have a MeasIndex of 0x05.

If this entry does not extend to any index, then the

Responder shall set this field to 0x00 . In this

case, the entry shall not be used in the extend

operation for calculating HEM.

Some indices are reserved for specific purpose

(see Table 55 — Measurement index assigned

range).

5 Reserved 3 Reserved.

8 Entry
DMTFSpecMeasurementValueSize

+ 3

Shall be the entry data of the DMTF measurement

specification format.

965 10.31.3 Example: Verifying Measurement Extension Log Against Hash-Extend
Measurement

966 Figure 28 — Example for Measurement Extension Log illustrates an example of an MEL with 11 entries and two

corresponding hash-extend measurements at MEASUREMENTS response indices 1 and 2 to which the log entries

extend. The MEL in this example is constructed by the Responder during boot. The Responder implements a simple

ROM–firmware secure boot architecture.

967 Figure 28 — Measurement Extension Log Example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 237

968

Index DMTFMeas
urementVal
ueType

DMTFMeasure
mentValue
Value

1 08h (HEM) <digest-1>

2 08h (HEM) <digest-2>

SPDM MEASUREMENTS
response

DMTF Measurement Extension Log MELEntries Field

MEL
Index

Meas
Index

rese
rved

DMTFMeasurement
ValueType

DMTFMeasure
mentValueSize

DMTFMeasurement
Value

1 0 0 89h: raw bits; informational 3 “ROM”

2 1 0 00h: digest; ROM 48 <digest of ROM>

3 1 0 82h: raw bits; hardware config 128 <hardware config data
of ROM>

4 0 0 89h: raw bits; informational 7 “Boot FW”

5 2 0 87h: raw bits; security version 8 0x0000000000000002

6 2 0 86h: raw bits; version 4 0x0100030A

7 2 0 01h: digest; firmware 48 <digest of boot
firmware>

8 0 0 89h: raw bits; informational 9 “ROM patch”

9 1 0 00h: digest; ROM 48 <digest of ROM patch>

10 0 0 89h: raw bits; informational 14 “Application FW”

11 2 0 01h: digest; firmware 48 <digest of application
firmware>

“Entry” following Table “DMTF Measurement Specification Format”

969 The MEL entries of indices 1, 4, 8, and 10 have a value type of 0x9 (informational). Since these are informational

and do not apply to any measurement index, they are ignored in calculating HEM.

970 The hash-extend measurement at MEASUREMENTS index 1 is used for recording digests of ROM, patch, and hardware

configuration. The MEL entries with MEL indices 2, 3, and 9 fit in this category and they extend to MEASUREMENTS

index 1. Note that an extend operation shall consume the entire entry, including MELIndex , MeasIndex , Reserved ,

and Entry .

971 The hash-extend measurement at MEASUREMENTS index 2 is used for recording the digest of the firmware, firmware

configuration, and version information. The MEL entries with MEL indices 5, 6, 7, and 11 fit in this category, and they

extend to MEASUREMENTS index 2.

972 The Requester verifies the MEL entries by performing the checks illustrated in Figure 29 — Example for Verifying

Measurement Extension Log Entries.

973 Figure 29 — Example for Verifying Measurement Extension Log Entries

Security Protocol and Data Model (SPDM) Specification DSP0274

238 Work in Progress Version 1.4.0WIP70

974
HEM=hash(Concatenation(00...00, MEL index 2 entry))

HEM, MEL index 3 entry))

HEM, MEL index 9 entry))

HEM <digest-1>compare and

If not equal, do not trust MEL indices 2,
3, and 9

HEM=hash(Concatenation(00...00, MEL index 5 entry))

HEM <digest-2>compare and

If not equal, do not trust MEL indices 5,
6, 7, and 11

HEM=hash(Concatenation(

HEM=hash(Concatenation(

HEM, MEL index 6 entry))HEM=hash(Concatenation(

HEM, MEL index 7 entry))HEM=hash(Concatenation(

HEM, MEL index 11 entry))HEM=hash(Concatenation(

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 239

975 11 Session

976 Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it

enables a Requester and Responder to build a secure communication channel with cryptographic information that is

bound ephemerally. Specifically, an SPDM session provides either encryption or message authentication or both.

977 A session has three phases, as Figure 30 — Session phases shows:

• The handshake

• The application

• Termination

978 Figure 30 — Session phases

979

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

980 11.1 Session handshake phase

981 The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for the

authentication of the Requester if the Responder indicated this earlier in its ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key schedule

clause.

982 The purpose of this phase is to first build trust between the Responder and Requester before either side sends

Security Protocol and Data Model (SPDM) Specification DSP0274

240 Work in Progress Version 1.4.0WIP70

application data. Additionally, it also ensures the integrity of the handshake and, to a certain degree, synchronicity

with the derived handshake secrets.

983 In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE shall be used to obtain

requests from the Responder to complete the authentication of the Requester, if the Responder indicated this in its

ALGORITHMS response. During this phase, the Responder shall not asynchronously send requests to the Requester.

The only requests allowed to be encapsulated shall be GET_DIGESTS and GET_CERTIFICATE . The Requester shall

provide a signature in the FINISH request, as the FINISH request and FINISH_RSP response messages clause

describes.

984 If an ERROR message of ErrorCode=DecryptError occurs in this phase, the session shall immediately terminate and

proceed to session termination.

985 A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

986 11.2 Application phase

987 Once the handshake completes and all validation passes, the session reaches the application phase where either

the Responder or the Requester can send application data.

988 During this phase, a Requester can send SPDM messages such as GET_MEASUREMENTS . These messages might

involve transcript calculations. If such calculations are required, they shall be calculated on a per session basis. Once

a session has been established, subsequent messages sent outside of a session shall not contribute to the transcript

within a session.

989 The application phase ends when the HEARTBEAT requirements fail, or with an END_SESSION message, or with an

ERROR message of ErrorCode=DecryptError . The next phase is the session termination phase.

990 11.3 Session termination phase

991 This phase signals the end of the application phase and the enactment of internal clean-up procedures by the

endpoints. Requesters and Responders can have various reasons for terminating a session, which are outside the

scope of this specification.

992 SPDM provides the END_SESSION / END_SESSION_ACK message pair to explicitly trigger the session termination phase if

needed but, depending on the transport, it might simply be an internal phase with no explicit SPDM messages sent

or received.

993 When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as

derived major secrets, DHE secrets and encryption keys. Endpoints might have other internal data associated with a

session that they should also clean up.

994 11.4 Simultaneous active sessions

995 At least one session per connection shall be supported if both Requester and Responder advertise KEY_EXCHANGE or

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 241

PSK_EXCHANGE capabilities in this connection. If a KEY_EXCHANGE or PSK_EXCHANGE request would cause the

Responder's number of simultaneous active sessions to exceed this maximum, the Responder shall respond with an

ERROR message of ErrorCode=SessionLimitExceeded .

996 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverse roles.

For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is

acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session

to SPDM endpoint ABC, now acting as a Responder. Because these two sessions are distinct and separate, the two

endpoints would ensure they do not mix sessions. To ensure proper session handling, each endpoint would ensure

that their portion of the session IDs are unique at the time of Session-Secrets-Exchange. This would form a final

unique session ID for that new session. Additionally, the endpoints can use information at the transport layer to

further ensure proper handling of sessions.

997 11.5 Records and session ID

998 When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either encrypted or authenticated or both. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

999 The actual format and other details of a record are outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

Security Protocol and Data Model (SPDM) Specification DSP0274

242 Work in Progress Version 1.4.0WIP70

1000 12 Key schedule

1001 A key schedule describes how the various keys such as encryption keys used by a session are derived and when

each key is used. The default SPDM key schedule makes heavy use of HKDF-Extract and HKDF-Expand , which

RFC 5869 describes. SPDM defines this additional function:

BinConcat(Length, Version, Label, Context)

1002 where

• BinConcat shall be the concatenation of binary data in the order that Table 136 — BinConcat details shows:

1003 Table 136 — BinConcat details

Order Data Type Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Hash byte order Hash . Length

1004 If Context is null , BinConcat is the concatenation of the first three components only.

1005 Table 137 — Value of Version Text shows values of the 8-byte version text for different SPDM versions.

Hexadecimal equivalents are shown in parentheses for clarity.

1006 Table 137 — Value of Version Text

SPDM

version
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

SPDM 1.1
's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'1'

(0x31)

'.'

(0x2E)

'1'

(0x31)

space

(0x20)

SPDM 1.2
's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'1'

(0x31)

'.'

(0x2E)

'2'

(0x32)

space

(0x20)

SPDM 1.3
's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'1'

(0x31)

'.'

(0x2E)

'3'

(0x33)

space

(0x20)

1007 Note that the eighth byte of the version text is a space (0x20).

1008 The HKDF-Expand function prototype as used by the default SPDM key schedule is as follows:

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 243

https://tools.ietf.org/html/rfc5869

HKDF-Expand(secret, context, Hash.Length)

1009 The HKDF-Extract function prototype is described as follows:

HKDF-Extract(salt, IKM);

1010 where

• IKM is the Input Keying Material.

1011 For HKDF-Expand and HKDF-Extract , the hash function shall be the selected hash function in the ALGORITHMS

response. Hash . Length shall be the length of the output of the hash function selected by the ALGORITHMS response.

1012 Both Responder and Requester shall use the key schedule that Figure 31 — Key schedule shows.

1013 Figure 31 — Key schedule

1014

Security Protocol and Data Model (SPDM) Specification DSP0274

244 Work in Progress Version 1.4.0WIP70

HKDF-Extract (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str1, Hash.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared Key
or KEM K or KEM K’

HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str3, Hash.Length) Request Direction Data Secret

HKDF-Expand (Master-Secret, bin_str4, Hash.Length) Response Direction Data Secret

HKDF-Extract (Salt_1, 0_filled)

Salt_1

HKDF-Expand (Master-Secret, bin_str8, Hash.Length)
Export Master Secret

1015 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given names for clarity.

1016 Table 138 — Key schedule accompanies the figure to complete the key schedule. The Responder and Requester

shall also adhere to the definition of this table.

1017 Table 138 — Key schedule

Variable Definition Value is secret?

Salt_0
A zero-filled array of Hash . Length length for KEY_EXCHANGE session.

A 0xFF-filled array of Hash . Length length for PSK_EXCHANGE session.
No

Salt_1 Used to generate the Master-Secret. Yes

0_filled A zero-filled array of length Hash . Length . No

bin_str0 BinConcat(Hash.Length, Version, "derived", null) No

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 245

Variable Definition Value is secret?

bin_str1 BinConcat(Hash.Length, Version, "req hs data", TH1) No

bin_str2 BinConcat(Hash.Length, Version, "rsp hs data", TH1) No

bin_str3 BinConcat(Hash.Length, Version, "req app data", TH2) No

bin_str4 BinConcat(Hash.Length, Version, "rsp app data", TH2) No

DHE Secret This shall be the secret derived from KEY_EXCHANGE/KEY_EXCHANGE_RSP . Yes

KEM K
This shall be the shared secret key K output from the KEM's

encapsulation function.
Yes

KEM K'
This shall be the shared secret key K' output from the KEM's

decapsulation function.
Yes

Pre-Shared Key PSK Yes

1018 Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the

hash function to compute. As in RFC 8446, the previously defined labels have all been chosen to fit within this

limit.

1019 12.1 DHE secret computation

1020 The DHE secret is a shared secret, and its computation is different per algorithm or algorithm class. These clauses

define the format and computation for DHE algorithms.

1021 For ffdhe2048 , ffdhe3072 , ffdhe4096 , secp256r1 , secp384r1 , and secp521r1 , the format and computation of the

DHE secret shall be the shared secret, which section 7.4 of RFC 8446 defines.

1022 For SM2_P256 , the parameters of this curve are defined in the TCG Algorithm Registry. The DHE secret shall be KA

and KB as defined in GB/T 32918.3-2016. The Requester shall compute KA, and the Responder shall compute KB to

arrive at the same secret value. KA and KB are the results of a KDF. This specification shall use the KDF as defined

by GB/T 32918.3-2016. The size of the DHE secret, referred to as klen in the KDF of GB/T 32918.3 specification,

shall be the key size of the selected AEAD algorithm in RespAlgStruct . Lastly, GB/T 32918.3 allows for a flexible

hash algorithm. The hash algorithm shall be the selected hash algorithm in BaseHashSel or ExtHashSel .

1023 12.2 KEM K and K' computation

1024 If the Requester and Responder negotiated an ML-KEM scheme during algorithm negotiation, the Responder

calculates the shared secret K by executing the encapsulation function defined in Algorithm 20 of the Module-

Lattice-Based Key-Encapsulation Mechanism Standard; the Requester calculates the shared secret K' by executing

the decapsulation function defined in Algorithm 21 of the Module-Lattice-Based Key-Encapsulation Mechanism

Standard.

1025 Next, the two endpoints derive session keys from K and K' using the key schedule, respectively. Note that in rare

Security Protocol and Data Model (SPDM) Specification DSP0274

246 Work in Progress Version 1.4.0WIP70

cases, the K' output from the Requester's decapsulation function may not be equal to K . The Module-Lattice-

Based Key Encapsulation Standard explicitly disallows the indicator of " K not equal K' " to be returned from the

decapsulation function. If K' is not equal to K , the Requester and the Responder will calculate different session

keys from the key schedule. As a result, the first message protected by a session key (that is, the FINISH request)

will fail integrity verification at the receiver end. The Requester and the Responder should handle such rare failures

due to mismatched K and K' the same way as other session message failures.

1026 12.3 Transcript hash in key derivation

1027 The key schedule uses two transcript hashes:

• TH1

• TH2

1028 12.4 TH1 definition

1029 If the Requester and Responder used KEY_EXCHANGE / KEY_EXCHANGE_RSP to exchange initial keying information, TH1

shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [DIGESTS].* (if issued and if MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . * except for the ResponderVerifyData field

1030 If the Requester and Responder used PSK_EXCHANGE / PSK_EXCHANGE_RSP to exchange initial keying information, TH1

shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [PSK_EXCHANGE] . *

3. [PSK_EXCHANGE_RSP] . * except for the ResponderVerifyData field

1031 12.5 TH2 definition

1032 If the Requester and Responder used KEY_EXCHANGE / KEY_EXCHANGE_RSP to exchange initial keying information, TH2

shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [DIGESTS].* (if issued and if MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 247

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGESTS is issued and if MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used. (Valid only in mutual authentication)

8. [FINISH] . *

9. [FINISH_RSP] . *

1033 If the Requester and Responder used PSK_EXCHANGE / PSK_EXCHANGE_RSP to exchange initial keying information, TH2

shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [PSK_EXCHANGE] . *

3. [PSK_EXCHANGE_RSP] . *

4. [PSK_FINISH] . * (if issued)

5. [PSK_FINISH_RSP] . * (if issued)

1034 12.6 Key schedule major secrets

1035 The key schedule produces four major secrets:

• Request-direction handshake secret (S0)

• Response-direction handshake secret (S1)

• Request-direction data secret (S2)

• Response-direction data secret (S3)

1036 Each secret applies in a certain direction of transmission and is only valid during a certain time frame. Each of these

four major secrets will be used to derive their respective encryption keys and IV values to be used in the AEAD

function as selected in the ALGORITHMS response.

1037 12.6.1 Request-direction handshake secret

1038 This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE or PSK_EXCHANGE up to and including FINISH or PSK_FINISH .

1039 12.6.2 Response-direction handshake secret

1040 This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP or PSK_EXCHANGE_RSP up to and including FINISH_RSP or PSK_FINISH_RSP .

Security Protocol and Data Model (SPDM) Specification DSP0274

248 Work in Progress Version 1.4.0WIP70

1041 12.6.3 Request-direction data secret

1042 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Requester to the Responder.

1043 12.6.4 Response-direction data secret

1044 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Responder to the Requester.

1045 Figure 32 — Secrets usage illustrates where each of the major secrets are used, as described previously.

1046 Figure 32 — Secrets usage

1047

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

1048 12.7 Encryption key and IV derivation

1049 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV

value.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 249

EncryptionKey = HKDF-Expand(major-secret, bin_str5, key_length);

IV = HKDF-Expand(major-secret, bin_str6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", null);

bin_str6 = BinConcat(iv_length, Version, "iv", null);

1050 Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in the

ALGORITHMS message.

1051 12.8 finished_key derivation

1052 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various SPDM

messages. The key, finished_key , is defined as follows:

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);

bin_str7 = BinConcat(Hash.Length, Version, "finished", null);

1053 The handshake-secret shall be either a request-direction handshake secret or a response-direction handshake

secret.

1054 12.9 Deriving additional keys from the Export Master Secret

1055 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys

are derived from this secret is outside the scope of this specification. The Export Master Secret is not a major secret

and is not updated through a major secrets update. How the Export Master Secret is updated, if required, is outside

the scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin_str8, Hash.Length);

bin_str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

1056 12.10 Major secrets update

1057 The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

1058 The major secrets shall be re-keyed as a result of this request. To compute the new secret for each new major data

secret, the following algorithm shall be applied.

Security Protocol and Data Model (SPDM) Specification DSP0274

250 Work in Progress Version 1.4.0WIP70

new_secret = HKDF-Expand(current_secret, bin_str9, Hash.Length);

bin_str9 = BinConcat(Hash.Length, Version, "traffic upd", null);

1059 In computing the new secret, current_secret shall be either the current Request-Direction Data Secret or the

Response-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall

be derived from the new secrets and used immediately.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 251

1060 13 Application data

1061 SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect the confidentiality and integrity of data that shall remain secret as well as to protect the

integrity of data that needs to be transmitted in the clear but shall still be protected from manipulation, as is the case

for protocol headers. AEAD algorithms provide both encryption and message authentication. Each algorithm

specifies details such as the size of the nonce, the position and length of the MAC, and many other factors to ensure

a strong cryptographic algorithm.

1062 AEAD functions shall provide the following functions and comply with the requirements defined in RFC 5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);

AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

1063 where

• AEAD_Encrypt is the function that fully encrypts the plaintext , computes the MAC across both the

associated_data and plaintext , and produces the ciphertext , which includes the MAC.

• AEAD_Decrypt is the function that verifies the MAC and, if validation is successful, fully decrypts the ciphertext

and produces the original plaintext .

• encryption_key is the derived encryption key for the respective direction. See the Key schedule clause.

• nonce is the nonce computation. See the Nonce derivation clause.

• associated_data is the associated data.

• plaintext is the data to encrypt.

• ciphertext is the data to decrypt.

1064 13.1 Nonce derivation

1065 Certain AEAD ciphers have specific requirements for nonce construction because their security properties can be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as

those provided in RFC 5116 for nonce derivation.

Security Protocol and Data Model (SPDM) Specification DSP0274

252 Work in Progress Version 1.4.0WIP70

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

1066 14 General opaque data format

1067 The general opaque data format allows for a variety of data defined by an assortment of vendors, standards bodies,

and transport mechanisms to accompany an SPDM message without namespace collisions.

1068 If the OpaqueDataFmt1 bit is selected in OtherParamsSelection of ALGORITHMS , then all opaque data fields in SPDM

messages shall use the format that Table 139 — General opaque data format defines.

1069 Table 139 — General opaque data format

Byte offset Field Size (bytes) Description

0 TotalElements 1 Shall be the total number of elements in OpaqueList .

1 Reserved 3 Reserved.

4 OpaqueList Variable
Shall be a list of opaque elements. See Table 140 —

Opaque element.

1070 Table 140 — Opaque element defines the format for each element in OpaqueList .

1071 Table 140 — Opaque element

Byte offset Field Size (bytes) Description

0 ID 1

Shall be one of the values in the ID

column of Table 65 — Registry or

standards body ID.

1 VendorIDLen 1

Shall be the length in bytes of the

VendorID field.

If the data in OpaqueElementData

belongs to a standards body, this field

shall be 0.

Otherwise, the data in

OpaqueElementData belongs to the

vendor and therefore, this field shall be

the length indicated in the "Vendor ID

length" column of Table 65 — Registry

or standards body ID for the respective

ID .

2 VendorID VendorIDLen

If VendorIDLen is greater than zero,

this field shall be the ID of the vendor

corresponding to the ID field.

Otherwise, this field shall be absent.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 253

Byte offset Field Size (bytes) Description

2 + VendorIDLen OpaqueElementDataLen 2
Shall be the length of

OpaqueElementData .

4 + VendorIDLen OpaqueElementData OpaqueElementDataLen
Shall be the data defined by the

vendor or standards body.

4 + VendorIDLen + OpaqueElementDataLen AlignPadding
AlignPaddingSize =

0, 1, 2, or 3

If 4 + VendorIDLen +

OpaqueElementDataLen does not fall on

a 4-byte boundary, this field shall be

present and of the correct length to

ensure that 4 + VendorIDLen +

OpaqueElementDataLen +

AlignPaddingSize is a multiple of 4.

The value of this field shall be all

zeros, and the size of this field shall be

0, 1, 2, or 3.

Security Protocol and Data Model (SPDM) Specification DSP0274

254 Work in Progress Version 1.4.0WIP70

1072 15 Signature generation

1073 The SPDMsign function used in various part of this specification defines the signature generation algorithm while

accounting for the differences in the various supported cryptographic signing algorithms in the ALGORITHMS message.

1074 The signature generation function takes this form:

signature = SPDMsign(PrivKey, data_to_be_signed, context);

1075 The SPDMsign function shall take these input parameters:

• PrivKey : a secret key

• data_to_be_signed : a bit stream of the data that will be signed

• context : a string

1076 The function shall output a signature using PrivKey and a selected cryptographic signing algorithm.

1077 The signing function shall follow these steps to create spdm_prefix and spdm_context (See Text or string encoding

for encoding rules):

1. Create spdm_prefix . The spdm_prefix shall be the repetition, four times, of the concatenation of

"dmtf-spdm-v", SPDMversionString and ".*". This will form a 64-character string.

2. Create spdm_context . If the Requester is generating the signature, spdm_context shall be the

concatenation of "requester-" and context . If the Responder is generating the signature, the

spdm_context shall be the concatenation of "responder-" and context .

1078 Now follows an example, designated Example 1, of creating a combined_spdm_prefix .

1079 The version of this specification for this example is 1.4.3, the Responder is generating a signature, and the context

is "my example context". Thus, the spdm_prefix is "dmtf-spdm-v1.4.*dmtf-spdm-v1.4.*dmtf-spdm-v1.4.*dmtf-spdm-

v1.4.*". The spdm_context is "responder-my example context".

1080 Next, the combined_spdm_prefix is formed. The combined_spdm_prefix shall be the concatenation of four elements:

spdm_prefix , a byte with a value of zero, zero_pad , and spdm_context . The size of zero_pad shall be the number

of bytes needed to ensure that the length of combined_spdm_prefix is 100 bytes. The size of zero_pad can be zero.

The value of zero_pad shall be zero.

1081 Continuing Example 1, Table 141 — Combined SPDM prefix shows the combined_spdm_prefix with offsets. Offsets

increase from left to right and top to bottom. As shown, the length of combined_spdm_prefix is 100 bytes.

Hexadecimal equivalents are shown in parentheses for clarity. See Text or string encoding for encoding rules. Table

135 concludes Example 1.

1082 Table 141 — Combined SPDM prefix

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 255

Offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0
'd'

(0x64)

'm'

(0x6D)

't'

(0x74)

'f'

(0x66)

'-'

(0x2D)

's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'-'

(0x2D)

'v'

(0x76)

'1'

(0x31)

'.'

(0x2E)

'4'

(0x34)

'.'

(0x2E)

'*'

(0x2A)

0x10
'd'

(0x64)

'm'

(0x6D)

't'

(0x74)

'f'

(0x66)

'-'

(0x2D)

's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'-'

(0x2D)

'v'

(0x76)

'1'

(0x31)

'.'

(0x2E)

'4'

(0x34)

'.'

(0x2E)

'*'

(0x2A)

0x20
'd'

(0x64)

'm'

(0x6D)

't'

(0x74)

'f'

(0x66)

'-'

(0x2D)

's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'-'

(0x2D)

'v'

(0x76)

'1'

(0x31)

'.'

(0x2E)

'4'

(0x34)

'.'

(0x2E)

'*'

(0x2A)

0x30
'd'

(0x64)

'm'

(0x6D)

't'

(0x74)

'f'

(0x66)

'-'

(0x2D)

's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'-'

(0x2D)

'v'

(0x76)

'1'

(0x31)

'.'

(0x2E)

'4'

(0x34)

'.'

(0x2E)

'*'

(0x2A)

0x40 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
'r'

(0x72)

'e'

(0x65)

's'

(0x73)

'p'

(0x70)

'o'

(0x6F)

'n'

(0x6E)

'd'

(0x64)

'e'

(0x65)

0x50
'r'

(0x72)

'-'

(0x2D)

'm'

(0x6D)

'y'

(0x79)

space

(0x20)

'e'

(0x65)

'x'

(0x78)

'a'

(0x61)

'm'

(0x6D)

'p'

(0x70)

'l'

(0x6C)

'e'

(0x65)

space

(0x20)

'c'

(0x63)

'o'

(0x6F)

'n'

(0x6E)

0x60
't'

(0x74)

'e'

(0x65)

'x'

(0x78)

't'

(0x74)

1083 The next step is to form the message_hash . The message_hash shall be the hash of data_to_be_signed using the

selected hash function in either BaseHashSel or ExtHashSel . Many hash algorithms allow implementations to

compute an intermediate hash, sometimes called a running hash. An intermediate hash allows for the updating of the

hash as each byte of the ordered data of the message becomes known. Consequently, the ability to compute an

intermediate hash allows for memory utilization optimizations where an SPDM endpoint can discard bytes of the

message that are already covered by the intermediate hash while waiting for more bytes of the message to be

received.

1084 If the Responder is generating the signature, the selected cryptographic signing algorithm is indicated in

BaseAsymSel , ExtAsymSel , or PqcAsymAlgo in the ALGORITHMS message. If the Requester is generating the

signature, the selected cryptographic signing algorithm is indicated in ReqBaseAsymAlg or ReqPqcAsymAlg of

RespAlgStruct in the ALGORITHMS message.

1085 Because each cryptographic signing algorithm is vastly different, these clauses define the binding of SPDMsign to

those algorithms.

1086 15.1 Signing algorithms in extensions

1087 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in the

ALGORITHMS response, its binding is outside the scope of this specification.

1088 15.2 RSA and ECDSA signing algorithms

1089 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

hash function selected by the Responder in BaseHashSel or ExtHashSel .

Security Protocol and Data Model (SPDM) Specification DSP0274

256 Work in Progress Version 1.4.0WIP70

1090 The private key, defined by the specification for these algorithms, shall be PrivKey .

1091 In the specification for these algorithms, the letter M denotes the message to be signed. M shall be the

concatenation of combined_spdm_prefix and message_hash .

1092 RSA and ECDSA algorithms are described in Signature algorithm references.

1093 The FIPS PUB 186-5 supports deterministic ECDSA as a variant of ECDSA. RFC 6979 describes this deterministic

digital signature generation procedure. This variant does not impact the signature verification process. How an

implementation chooses to support ECDSA or deterministic ECDSA is outside the scope of this specification.

1094 15.3 EdDSA signing algorithms

1095 These algorithms are described in RFC 8032.

1096 The private key, defined by RFC 8032, shall be PrivKey .

1097 In the specification for these algorithms, the letter M denotes the message to be signed.

1098 15.3.1 Ed25519 sign

1099 This specification only defines Ed25519 usage and not its variants.

1100 M shall be the concatenation of combined_spdm_prefix and message_hash .

1101 15.3.2 Ed448 sign

1102 This specification only defines Ed448 usage and not its variants.

1103 M shall be the concatenation of combined_spdm_prefix and message_hash .

1104 Ed448 defines a context string, C . C shall be the spdm_context .

1105 15.4 SM2 signing algorithm

1106 This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable M and IDA.

1107 The private key defined by GB/T 32918.2-2016 shall be PrivKey .

1108 In the specification for SM2, the letter M denotes the message to be signed. M shall be the concatenation of

combined_spdm_prefix and message_hash .

1109 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel .

1110 Lastly, SM2 expects a distinguishing identifier, which identifies the signer and is indicated by the variable IDA. If this

algorithm is selected, the ID shall be an empty string of size 0.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 257

1111 15.5 ML-DSA signing algorithm

1112 The ML-DSA standard defines a signature generation algorithm in Algorithm 2 (ML-DSA.Sign) and a pre-hash

variant in Algorithm 4 (HashML-DSA.Sign). This specification uses Algorithm 2 of ML-DSA and not the pre-hash

variant.

1113 The M input to ML-DSA.Sign shall be the concatenation of combined_spdm_prefix and message_hash . The ML-DSA

standard does not define a specific hash function. Thus, the hash function to use shall be the hash function selected

by the Responder in BaseHashSel or ExtHashSel . The sk input to ML-DSA.Sign shall be PrivKey . The ctx input

to ML-DSA.Sign shall be spdm_context .

1114 The ML-DSA standard supports "hedged" and "deterministic" signing. Both variants use the same signature

verification process. How an implementation chooses to support hedged or deterministic ML-DSA signing is outside

the scope of this specification.

1115 15.6 SLH-DSA signing algorithm

1116 The SLH-DSA standard defines a signature generation algorithm in Algorithm 22 (slh_sign) and a pre-hash variant in

Algorithm 23 (hash_slh_sign). This specification uses Algorithm 22 of SLH-DSA and not the pre-hash variant.

1117 The M input to slh_sign shall be the concatenation of combined_spdm_prefix and message_hash . The SLH-DSA

standard does not define a specific hash function. Thus, the hash function to use shall be the hash function selected

by the Responder in BaseHashSel or ExtHashSel . The SK input to slh_sign shall be PrivKey . The ctx input to

slh_sign shall be spdm_context .

1118 The SLH-DSA standard supports "hedged" and "deterministic" signing. Both variants use the same signature

verification process. How an implementation chooses to support hedged or deterministic SLH-DSA signing is outside

the scope of this specification.

1119 15.7 Signature algorithm references

1120 These clauses provide basic information about each asymmetric algorithms SPDM supports, as Table 142 — SPDM

Asymmetric Signature Reference Information shows. SPDM endpoints shall use the references in the References

column for signature-related operations and the key size as indicated in the Key Size columns for the respective

algorithm. The byte order for a signature when placing it into an SPDM signature field shall be signature byte order.

1121 Table 142 — SPDM Asymmetric Signature Reference Information

Algorithm Name Private Key Size (bits) References

TPM_ALG_RSASSA_2048 2048 Section 8.2 of IETF RFC 8017

TPM_ALG_RSASSA_3072 3072 Section 8.2 of IETF RFC 8017

TPM_ALG_RSASSA_4096 4096 Section 8.2 of IETF RFC 8017

Security Protocol and Data Model (SPDM) Specification DSP0274

258 Work in Progress Version 1.4.0WIP70

Algorithm Name Private Key Size (bits) References

TPM_ALG_RSAPSS_2048 2048 Section 8.1 of IETF RFC 8017

TPM_ALG_RSAPSS_3072 3072 Section 8.1 of IETF RFC 8017

TPM_ALG_RSAPSS_4096 4096 Section 8.1 of IETF RFC 8017

TPM_ALG_ECDSA_ECC_NIST_P256 256

Section 6 of FIPS PUB 186-5

using TPM_ECC_NIST_P256 curve

parameters as TCG Algorithm

Registry defines.

TPM_ALG_ECDSA_ECC_NIST_P384 384

Section 6 of FIPS PUB 186-5

using TPM_ECC_NIST_P384 curve

parameters as TCG Algorithm

Registry defines.

TPM_ALG_ECDSA_ECC_NIST_P521 521

Section 6 of FIPS PUB 186-5

using TPM_ECC_NIST_P521 curve

parameters as TCG Algorithm

Registry defines.

TPM_ALG_SM2_ECC_SM2_P256 256

Section 6 of GB/T 32918.2-2016

using TPM_ECC_SM2_P256 curve

parameters as TCG Algorithm

Registry defines.

EdDSA ed25519 256 IETF RFC 8032

EdDSA ed448 456 IETF RFC 8032

ML-DSA-44 20480
Algorithm 2 and Algorithm 3 of

ML-DSA

ML-DSA-65 32256
Algorithm 2 and Algorithm 3 of

ML-DSA

ML-DSA-87 39168
Algorithm 2 and Algorithm 3 of

ML-DSA

SLH-DSA-SHA2-128s 512
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHAKE-128s 512
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHA2-128f 512
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHAKE-128f 512
Algorithm 22 and Algorithm 24 of

SLH-DSA

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 259

Algorithm Name Private Key Size (bits) References

SLH-DSA-SHA2-192s 768
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHAKE-192s 768
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHA2-192f 768
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHAKE-192f 768
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHA2-256s 1024
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHAKE-256s 1024
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHA2-256f 1024
Algorithm 22 and Algorithm 24 of

SLH-DSA

SLH-DSA-SHAKE-256f 1024
Algorithm 22 and Algorithm 24 of

SLH-DSA

Security Protocol and Data Model (SPDM) Specification DSP0274

260 Work in Progress Version 1.4.0WIP70

1122 16 Signature verification

1123 The SPDMsignatureVerify function, used in various part of this specification, defines the signature verification

algorithm while accounting for the differences in the various supported cryptographic signing algorithms in the

ALGORITHMS message.

1124 The signature verification function takes this form:

SPDMsignatureVerify(PubKey, signature, unverified_data, context);

1125 The SPDMsignatureVerify function shall take these input parameters:

• PubKey : the public key

• signature : a digital signature

• unverified_data : a bit stream of data that needs to be verified

• context : a string

1126 The function shall verify the unverified_data using signature , PubKey , and a selected cryptographic signing

algorithm. SPDMsignatureVerify shall return success if the signature verifies correctly and failure otherwise. Each

cryptographic signing algorithm states the verification steps or criteria for successful verification.

1127 The verifier of the signature shall create spdm_prefix , spdm_context , and combined_spdm_context as described in

Signature generation.

1128 The next step is to form the unverified_message_hash . The unverified_message_hash shall be the hash of

unverified_data using the selected hash function in either BaseHashSel or ExtHashSel .

1129 If the Responder generated the signature, the selected cryptographic signature verification algorithm is indicated in

BaseAsymSel , ExtAsymSel , or PqcAsymSel in the ALGORITHMS message. If the Requester generated the signature,

the selected cryptographic signature verification algorithm is indicated in ReqBaseAsymAlg or ReqPqcAsymAlg of

RespAlgStruct in the ALGORITHMS message.

1130 Because each cryptographic signature verification algorithm is vastly different, these clauses define the binding of

SPDMsignatureVerify to those algorithms.

1131 16.1 Signature verification algorithms in extensions

1132 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in the

ALGORITHMS response, its binding is outside the scope of this specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 261

1133 16.2 RSA and ECDSA signature verification algorithms

1134 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

hash function selected by the Responder in BaseHashSel or ExtHashSel .

1135 The public key, defined in the specification for these algorithms, shall be PubKey .

1136 In the specification for these algorithms, the letter M denotes the message that is signed. M shall be concatenation

of the combined_spdm_prefix and unverified_message_hash .

1137 For RSA algorithms, SPDMsignatureVerify shall return success when the output of the signature verification

operation, as defined in the RSA specification, is "valid signature". Otherwise, SPDMsignatureVerify shall return a

failure.

1138 For ECDSA algorithms, SPDMsignatureVerify shall return success when the output of "ECDSA Signature

Verification Algorithm" as defined in FIPS PUB 186-5 is "accept" . Otherwise, SPDMsignatureVerify shall return

failure.

1139 RSA and ECDSA algorithms are described in Signature algorithm references.

1140 16.3 EdDSA signature verification algorithms

1141 RFC 8032 describes these algorithms. RFC 8032, also, defines the M , PH , and C variables.

1142 The public key, also defined in RFC 8032, shall be PubKey .

1143 In the specification for these algorithms, the letter M denotes the message to be signed.

1144 16.3.1 Ed25519 verify

1145 M shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

1146 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and when the

constraints of the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise,

SPDMsignatureVerify shall return failure.

1147 16.3.2 Ed448 verify

1148 M shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

1149 Ed448 defines a context string, C . C shall be the spdm_context .

1150 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and when the

constraints of the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise,

SPDMsignatureVerify shall return failure.

Security Protocol and Data Model (SPDM) Specification DSP0274

262 Work in Progress Version 1.4.0WIP70

1151 16.4 SM2 signature verification algorithm

1152 This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDA.

1153 The public key, also defined in GB/T 32918.2-2016, shall be PubKey .

1154 In the specification for SM2, the variable M' is used to denote the message that is signed. M' shall be the

concatenation of combined_spdm_prefix and unverified_message_hash .

1155 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel .

1156 Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDA. See

SM2 signing algorithm to create the value for IDA.

1157 SPDMsignatureVerify shall return success when the Digital signature verification algorithm, as described in GB/T

32918.2-2016, outputs an "accept". Otherwise, SPDMsignatureVerify shall return failure.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 263

1158 17 ML-DSA signature verification algorithm

1159 The ML-DSA standard defines a signature verification algorithm in Algorithm 3 (ML-DSA.Verify) and a pre-hash

variant in Algorithm 5 (HashML-DSA.Verify). This specification uses Algorithm 3 of ML-DSA and not the pre-hash

variant.

1160 The M input to ML-DSA.Verify shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

The ML-DSA standard does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel . The pk input to ML-DSA.Verify shall be

PubKey . The ctx input to ML-DSA.Verify shall be spdm_context .

1161 SPDMsignatureVerify shall return success when ML-DSA.Verify returns TRUE. Otherwise, SPDMsignatureVerify

shall return failure.

Security Protocol and Data Model (SPDM) Specification DSP0274

264 Work in Progress Version 1.4.0WIP70

1162 18 SLH-DSA signature verification algorithm

1163 The SLH-DSA standard defines a signature verification algorithm in Algorithm 24 (slh_verify) and a pre-hash variant

in Algorithm 25 (hash_slh_verify). This specification uses Algorithm 24 of SLH-DSA and not the pre-hash variant.

1164 The M input to slh_verify shall be the concatenation of combined_spdm_prefix and unverified_message_hash . The

SLH-DSA standard does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel . The PK input to slh_verify shall be PubKey . The

ctx input to slh_verify shall be spdm_context .

1165 SPDMsignatureVerify shall return success when slh_verify returns TRUE. Otherwise, SPDMsignatureVerify shall

return failure.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 265

1166 19 General ordering rules

1167 These general ordering rules apply to SPDM messages that form a transcript that eventually gets signed.

1168 Out-of-order requests shall nullify the transcript.

1169 A Requester can retry messages. The retries shall be identical to the first message, excluding transport variances. If

the Responder sees two or more non-identical NEGOTIATE_ALGORITHMS , the Responder shall either return an ERROR

message of ErrorCode=UnexpectedRequest or silently discard non-identical messages. Because a retried message is

identical to the first, a retried message shall not be used in transcript hash calculations.

1170 If a Requester wants to retrieve a CAPABILITIES response with the Supported Algorithms included, the Requester

should first issue GET_CAPABILITIES with Bit 1 in Param1 set to 1. If the Responder does not support the Supported

Algorithms block in its CAPABILITIES response, it responds with an ERROR response. At this point, the Requester can

issue a second GET_CAPABILITIES with Bit 1 in Param1 cleared to 0. In this case, the second request is not

considered a retry, and both requests and their corresponding responses are used in transcript hash calculations.

After a successful CAPABILITIES response, if the Responder sees two or more non-identical GET_CAPABILITIES

requests, the Responder shall either return an ERROR message of ErrorCode=UnexpectedRequest or silently discard

non-identical messages.

1171 For CHALLENGE and Session-Secrets-Exchange, the Responder should ensure it can distinguish between the

respective retry and the respective original message. Failure to distinguish correctly might lead to an authentication

failure, session handshake failures, and other failures. The response to a retried request should be identical to the

original response.

1172 When a transcript hash includes the DIGESTS response, the first DIGESTS that immediately follows the VCA shall be

the DIGESTS response that is used for the remainder of the SPDM connection. If the Requester does not send a

GET_DIGESTS immediately following the VCA, then the DIGESTS shall no longer be part of the transcript for the

remainder of the SPDM connection even if the Requester sends the request later. Similarly, for mutual authentication

in a multi key session, if the first encapsulated response is a DIGESTS response in the session handshake phase,

then that encapsulated DIGESTS shall be included in the transcript hash for the corresponding session. If the first

encapsulated response is not a DIGESTS response from the Requester in mutual authentication, then no

encapsulated DIGESTS response shall be part of the transcript hash for the corresponding session. Furthermore, the

aforementioned rules do not apply to M1 or M2 ordering rules.

Security Protocol and Data Model (SPDM) Specification DSP0274

266 Work in Progress Version 1.4.0WIP70

1173 20 DMTF event types

1174 The DMTF-defined event types are sent using the Event mechanism. DMTF-defined event types shall have an ID

of 0 and VendorIDLen of 0 populated in the EventGroupId field in Event data table. If other DMTF DSP wants to

generate an event, those DMTF DSP shall use an ID of DMTF-DSP accordingly.

1175 The DMTF event types table shows the supported DMTF event types for the DMTF event group. The values in the

Event Type ID column shall be the same values for EventTypeId field in Event data table for the DMTF event group

for the corresponding event in the Event Name column. The version (EventGroupVer) of the DMTF Event Group

shall be 1 .

1176 Table 143 — DMTF event types table

Event Type ID Event Name Requirement Description

0 Reserved Reserved Reserved.

1 EventLost Mandatory Events were lost.

2 MeasurementChanged Optional
One or more measurements

changed.

3 MeasurementPreUpdate Optional

A pending update will change

one or more measurements.

However, the update has not yet

taken effect.

4 CertificateChanged Optional

Information in one or more

certificate slots has changed.

This could be the certificate or

the associated key.

All others Reserved Reserved Reserved.

1177 20.1 Event type details

1178 Each DMTF event type has its own event-specific information, referred to as EventDetail , to describe the event.

These clauses describe the format for each DMTF event type. The event types are listed in the DMTF event types

table.

1179 20.1.1 Event Lost

1180 This event (EventTypeId=EventLost) shall notify the Event Recipient that one or more events were lost. The reasons

for event loss are varied and numerous, but one example is loss due to insufficient resources. This event should be

retried until the Event Recipient acknowledges it. Retrying this event means that this event was not acknowledged

previously.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 267

1181 The Event lost format table describes the format for EventDetail .

1182 Table 144 — Event lost format

Offset Field Size (bytes) Description

0 LastAckedEventInstID 4

Shall be the last

event instance ID

acknowledged by

the Event

Recipient.

4 LastLostEventInstID 4

Shall be the last

lost event instance

ID.

1183 The range of lost events shall be the range from (LastAckedEventInstID + 1) to LastLostEventInstID inclusive.

1184 If the Event Notifier cannot or can no longer track the information in Event lost format, then LastAckedEventInstID

and LastLostEventInstID shall both be 0xFFFF_FFFF.

1185 When resending an "event lost" event, the Event Notifier can update fields in Event lost format if new events are lost

since the last time the "event lost" event was sent.

1186 20.1.2 Measurement changed event

1187 The measurement changed event (EventTypeId=MeasurementChanged) shall notify the Event Recipient when one or

more measurement blocks have changed. The EventDetail format for this event type shall be as Measurement

changed event details format defines.

1188 Table 145 — Measurement changed event details format describes the format for EventDetail for the

MeasurementChanged event.

1189 Table 145 — Measurement changed event details format

Security Protocol and Data Model (SPDM) Specification DSP0274

268 Work in Progress Version 1.4.0WIP70

Offset Field Size (bytes) Description

0 ChangedMeasurements 32

This field is a bit

mask where each

bit indicates

changes to its

corresponding

measurement

index. Specifically,

the bit at bit offset

X shall be set to

indicate a change

to the

Measurement

block at

measurement

index X. At least

one bit in this field

shall be set. Bits 0

and 255 shall be

reserved.

1190 The Event Recipient can issue GET_MEASUREMENTS to obtain further details on the change.

1191 20.1.3 Measurement pre-update event

1192 The measurement pre-update event (EventTypeId=MeasurementPreUpdate) notifies the Event Recipient when one or

more Measurement blocks will change due to a pending update. The EventDetail format for this event type shall be

as Measurement pre-update event details format defines.

1193 Table 146 — Measurement pre-update event details format describes the format for EventDetail for the

MeasurementPreUpdate event.

1194 Table 146 — Measurement pre-update event details format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 269

Offset Field Size (bytes) Description

0 PreUpdateMeasurementChanges 32

This field is a bit

mask where each

bit indicates

pending changes

to the

corresponding

measurement

index in an update

scenario such as a

firmware update or

pending

configuration

change.

Specifically, the bit

at bit offset X shall

be set to indicate

a potential change

to the

Measurement

block at

measurement

index X as a result

of an update. At

least one bit in this

field shall be set.

Bits 0 and 255

shall be reserved.

1195 Upon receiving the MeasurementPreUpdate event, the Event Recipient may send GET_MEASUREMENTS with the

NewMeasurementRequested option (see Table 54 — GET_MEASUREMENTS request attributes) to acquire and

evaluate the Event Notifier's pending new measurements. If the Event Recipient deems the Event Notifier's new

measurements unacceptable, the Event Recipient may terminate the session.

1196 The pre-update notification mechanism does not allow the Event Recipient to stop the Event Notifier from applying

the update. However, an Event Notifier that has sent MeasurementPreUpdate to an Event Recipient should not apply

the update until at least one of the following events happens for each Event Recipient:

• Arrival of EVENT_ACK from the Event Recipient

• Arrival of END_SESSION from the Event Recipient

• Event Recipient timeout (duration defined by implementation)

1197 20.1.4 Certificate changed event

1198 The certificate changed event (EventTypeId=CertificateChanged) shall notify the Event Recipient when data

associated with one or more fields in the DIGESTS response have changed. The EventDetail format for this event

type shall be the Certificate changed event details format.

Security Protocol and Data Model (SPDM) Specification DSP0274

270 Work in Progress Version 1.4.0WIP70

1199 Table 147 — Certificate changed event details format table describes the format for EventDetail for the

CertificateChanged event.

1200 Table 147 — Certificate changed event details format

Offset Field Size (bytes) Description

0 CertificateChanged 1

This field is a bit

mask where each

bit indicates

certificate related

changes to the

corresponding

certificate slot.

Specifically, the bit

at bit offset X shall

be set to indicate

a change to data

associated with

one or more fields

in DIGESTS for

certificate slot X.

At least one bit in

this field shall be

set.

1201 The Event Recipient can issue GET_DIGESTS or GET_CERTIFICATE to obtain further details on the change.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 271

1202 21 ANNEX A (informative) TLS 1.3

1203 This specification heavily models TLS 1.3. TLS 1.3, and consequently this specification, assumes the transport

layers provide the following capabilities or attributes:

• Reliability in transmission and reception of data.

• Transmission of data is either in order or the order of data can be reconstructed at reception.

1204 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends The Datagram Transport Layer Security (DTLS)

Protocol Version 1.3.

Security Protocol and Data Model (SPDM) Specification DSP0274

272 Work in Progress Version 1.4.0WIP70

1205 22 ANNEX B (informative) Device certificate example

1206 Device certificate example shows an example device certificate:

1207 Device certificate example

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 8 (0x8)

Signature Algorithm: ecdsa-with-SHA256

Issuer: C = CA, ST = NC, L = city, O = ACME, OU = ACME Devices, CN = CA

Validity

Not Before: Jan 1 00:00:00 1970 GMT

Not After : Dec 31 23:59:59 9999 GMT

Subject: C = US, ST = NC, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing Unit, CN

= w0123456789

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:

e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:

5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:

ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:

23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:

52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:

a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:

1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:

ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:

98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:

a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:

95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:

70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:

a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:

2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:

66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:

01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:

e8:67

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

X509v3 Key Usage:

Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:

othername: 1.3.6.1.4.1.412.274.1::ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 273

Signature Value:

30:45:02:20:1e:5a:a6:ed:5c:b6:2b:f5:9e:22:28:9c:ef:c7:

aa:db:1c:87:83:48:c1:50:cb:25:04:ab:c9:6e:7c:f5:6b:01:

02:21:00:da:48:d4:49:a5:65:5c:2c:83:fc:05:00:66:48:98:

f8:f0:cb:63:b7:2e:87:db:c8:63:58:6c:21:91:7a:68:95

-----BEGIN CERTIFICATE-----

MIIC4jCCAoigAwIBAgIBCDAKBggqhkjOPQQDAjBcMQswCQYDVQQGEwJDQTELMAkG

A1UECAwCTkMxDTALBgNVBAcMBGNpdHkxDTALBgNVBAoMBEFDTUUxFTATBgNVBAsM

DEFDTUUgRGV2aWNlczELMAkGA1UEAwwCQ0EwIBcNNzAwMTAxMDAwMDAwWhgPOTk5

OTEyMzEyMzU5NTlaMH0xCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJOQzEiMCAGA1UE

CgwZQUNNRSBXaWRnZXQgTWFudWZhY3R1cmluZzEnMCUGA1UECwweQUNNRSBXaWRn

ZXQgTWFudWZhY3R1cmluZyBVbml0MRQwEgYDVQQDDAt3MDEyMzQ1Njc4OTCCASIw

DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALpnR3J42iiB2YGb24gD4RCkkbhI

7WtwPOyiaKk7X3j8rkrRHGN2VKhAMSZ//z7gv5VcSrRvEVbKyBFTI+Edonql8CLY

svtD2t29UmvmpT8PO2C4dNtWCNnuoDBKAyEe7mCt5AB6bmsyHCh+nOjDVNtj/R/R

RiCe74CIAF8l289DRsYfUBl/mCOEOIhHXVGOEWJvDyh3pyAO83QngnCnllsbuxDn

lWL1N0u6IE48yRiyzUtYcKuivPYv7S9Ikr5azFxeqOqdYOj4hX3ADS9qCHTRL+he

Pbc1ph3SpgSZ05BDZjXhdBColztJBVFhB8YIARzcqF+eMJeoGGz5sSxW6GcCAwEA

AaNNMEswCQYDVR0TBAIwADALBgNVHQ8EBAMCBeAwMQYDVR0RBCowKKAmBgorBgEE

AYMcghIBoBgMFkFDTUU6V0lER0VUOjAxMjM0NTY3ODkwCgYIKoZIzj0EAwIDSAAw

RQIgHlqm7Vy2K/WeIiic78eq2xyHg0jBUMslBKvJbnz1awECIQDaSNRJpWVcLIP8

BQBmSJj48Mtjty6H28hjWGwhkXpolQ==

-----END CERTIFICATE-----

Security Protocol and Data Model (SPDM) Specification DSP0274

274 Work in Progress Version 1.4.0WIP70

1208 23 ANNEX C (informative) OID reference

1209 Table 148 — Object identifiers (OIDs) lists all object identifiers (OIDs) that this specification defines:

1210 Table 148 — Object identifiers (OIDs)

OID Identifier Definition Use

{ 1 3 6 1 4 1 412 } id-DMTF DMTF OID Enterprise ID for DMTF

{ id-DMTF 274 } id-DMTF-spdm SPDM OID Base OID for all SPDM OIDs

{ id-DMTF-spdm 1 } id-DMTF-device-info

SPDM certificate

requirements and

recommendations

Certificate device information.

{ id-DMTF-spdm 2 } id-DMTF-hardware-identity Identity provisioning Hardware certificate identifier.

{ id-DMTF-spdm 3 } id-DMTF-eku-responder-auth
Extended Key Usage

authentication OIDs

Certificate Extended Key Usage - SPDM Responder

Authentication.

{ id-DMTF-spdm 4 } id-DMTF-eku-requester-auth
Extended Key Usage

authentication OIDs

Certificate Extended Key Usage - SPDM Requester

Authentication.

{ id-DMTF-spdm 5 } id-DMTF-mutable-certificate Identity provisioning Mutable certificate identifier.

{ id-DMTF-spdm 6 } id-DMTF-SPDM-extension
SPDM Non-Critical

Certificate OID
To contain other OIDs in a certificate extension.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 275

1211 24 ANNEX D (informative) variable name reference

1212 Throughout this document, various sizes and offsets are referred to by a variable. Table 149 — Variables lists

variables used in this document, the definition of the variable, and the location in this document that shows how the

variable is set.

1213 Table 149 — Variables

Symbol Definition Set location

A
Number of Requester-supported extended

asymmetric key signature algorithms.

Table 15 — NEGOTIATE_ALGORITHMS request

message format

A'
Number of extended asymmetric key signature

algorithms selected by the Requester.

Table 23 — Successful ALGORITHMS response

message format

D
The size of D (and C for ECDHE) that is derived

from the selected DHE group.

See the KEY_EXCHANGE request message format in

Table 74 — KEY_EXCHANGE request message

format.

E
Number of Requester-supported extended

hashing algorithms.

Table 15 — NEGOTIATE_ALGORITHMS request

message format

E'
The number of Requester-supported extended

hashing algorithms selected by the Responder.

Table 23 — Successful ALGORITHMS response

message format

Lx where x is a number

A generic variable used to indicate the sizes of

a field. The x is a number starting with zero. An

example of Lx is L0 , L1 and so forth. The

scope of this variable is always local to the table

that uses it. For example, L0 often appears in

more than one table but there is no relationship

between an L0 in one table and an L0 in

another table.

Numerous tables

H
The output size, in bytes, of the hash algorithm

agreed upon in NEGOTIATE_ALGORITHMS .

Table 23 — Successful ALGORITHMS response

message format

HEM Hash-extend measurement. Hash-extend measurements clause.

MS

The length of the cryptographic hash or raw bit

stream, as indicated in

DMTFSpecMeasurementValueType[7] .

Table 58 — DMTF measurement specification format

MSHLength

The length of the MeasurementSummaryHash

field in the CHALLENGE_AUTH , KEY_EXCHANGE_RSP ,

and PSK_EXCHANGE_RSP messages.

Table 49 — Successful CHALLENGE_AUTH response

message format

Security Protocol and Data Model (SPDM) Specification DSP0274

276 Work in Progress Version 1.4.0WIP70

Symbol Definition Set location

NL

The length of the Nonce field in the

GET_MEASUREMENTS request and the

MEASUREMENTS response.

GET_MEASUREMENTS request attributes

n
Number of version entries in the VERSION

response message.

Table 9 — Successful VERSION response message

format

Q Length of the ResponderContext.
Table 80 — PSK_EXCHANGE_RSP response

message format

P Length of the PSKHint . Table 79 — PSK_EXCHANGE request message format

R Length of the RequesterContext . Table 79 — PSK_EXCHANGE request message format

SigLen

The size of the asymmetric-signing algorithm

output, in bytes, that the Responder selected in

the last ALGORITHMS response message.

Table 23 — Successful ALGORITHMS response

message format

SL
The length of the SlotIDParam field in the

GET_MEASUREMENTS request.

Table 49 — GET_MEASUREMENTS request message

format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 277

1214 25 ANNEX E (informative) change log

1215 25.1 Version 1.0.0 (2019-10-16)

• Initial Release

1216 25.2 Version 1.1.0 (2020-07-15)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 181.

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures is now searchable.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

• Clarified that transcript hash could include hash of the raw public key if a certificate is not used.

• New:

◦ Added Session support.

▪ Added SPDM request and response messages to support initiating, maintaining and terminating a

secure session.

▪ Added Key schedule for session secrets derivation.

▪ Added Application Data to provide overview of how data is encrypted and authenticated in a session.

◦ Introduce new terms and definitions.

◦ Added Measurement Manifest to DMTFSpecMeasurementValueType .

◦ Added mutual authentication.

◦ Added Encapsulated request flow to support master-slave types of transports.

1217 25.3 Version 1.2.0 (2021-11-01)

• Clarified SPDM version selection after receiving VERSION Response with error handling for certain scenarios.

• Fix improper reference in DMTFSpecMeasurementValue field in "Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF" table.

Security Protocol and Data Model (SPDM) Specification DSP0274

278 Work in Progress Version 1.4.0WIP70

• Certificate digests in DIGESTS calculation clarified.

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

• Validity period of X.509 v3 certificate clarified in Required Fields

• Remove InvalidSession error code.

• Clarified transport responsibilities in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Clarified the usage of MutAuthRequested field in KEY_EXCHANGE_RSP .

• Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

• Added recommendation for usage of RequesterContext in PSK scenarios.

• Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified timing requirements for encapsulated requests.

• Clarified out of order and retries

• Clarified error handling actions when unexpected requests occur during various mutual authentication flows.

• Refer to slot number fields as SlotID and normalize SlotID fields to 4 bits where possible.

• Changed PSK_FINISH and FINISH changes in Table 6 — SPDM request and response messages validity.

• Clarified HANDSHAKE_IN_THE_CLEAR_CAP usage in PSK_EXCHANGE .

• Change SPDMVersion field in every request and response message, except GET_VERSION / VERSION messages,

to point to a central location in this specification where it explains the appropriate value to populate for this field.

• Clarified use case for Token field in ResponseNotReady .

• Clarified the format of the certificate chain used in the Transcript hash calculation in Transcript hash calculation

rules.

• Renamed Measurement field format when MeasurementSpecification field is Bit 0 = DMTF table to Table 45 —

DMTF measurement specification format.

• Clarified the ENCAP_CAP field in the capabilities of the Requester and Responder.

• Renamed Mutual Authentication in KEY_EXCHANGE to Session-based mutual authentication.

• ERROR responses are no longer required in most error scenarios.

• Clarify the definition of backward-compatible changes in Version encoding.

• Enhanced requirements for when a firmware update occurred on a Responder in GET_VERSION request and

VERSION response messages.

• Clarified error code ResponseNotReady for M1/M2 and L1/L2 computation.

• Clarified byte order for ASN.1 encoded data, hashes and digests.

• Requester should not use PSK_EXCHANGE if CHALLENGE_AUTH and/or MEASUREMENTS with signature

was received from Responder.

• Required GET_VERSION , VERSION , GET_CAPABILITIES , CAPABILITIES , NEGOTIATE_ALGORITHMS , and ALGORITHMS in

transcript even if negotiated state is supported.

• Enhanced signature generation and verification with a prefix to mitigate signature misuse attacks.

• Clarified behavior of END_SESSION with respect to Negotiated State when there are multiple active sessions.

• Added new defined term Reset to mean device reset. Updated use of the word reset for M1/M2, L1/L2.

• Clarified that a Measurement Manifest should support both hash and raw bit stream formats.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 279

• Clarified Measurement Summary Hash construction rules.

• Clarified minimum timing for HEARTBEAT request and HEARTBEAT_ACK response messages to be sufficiently

greater than T1 . Removed command-specific guidance on retry timing.

• Table codification changed to be consistent with DMTF template.

• New:

◦ Added support for AliasCert s.

▪ Compliant Requesters must support a Responder that uses either DeviceCert s or AliasCert s.

◦ Added Certain error handling in encapsulated flows

◦ Added Slot 0 certificate-provisioning methodology.

◦ Added Allowance for encapsulated requests.

◦ Allowed GET_CERTIFICATE followed by CHALLENGE flow after a reset in M1 and M2 message transcript.

◦ Added new features for GET_MEASUREMENTS and MEASUREMENTS :

▪ More measurement value types.

▪ Allow Requester to request hash or raw bit stream for measurement from the Responder.

◦ Added Advice.

◦ Added structured representation of device mode Device mode field of a measurement block.

◦ Added Text or string encoding.

◦ Signature Clarification:

▪ Added Signature generation and Signature verification for clarity and interoperability.

▪ Change Sign and Verify abstract function to SPDMsign and SPDMsignatureVerify respectively.

◦ Added General ordering rules and references to it, to describe additional requirements for the various

transcript and message transcripts.

◦ Added additional clause for checking FINISH . Param2 if handshake is in the clear.

◦ Added OIDs to represent:

▪ Hardware certificate identifier (Identity provisioning)

▪ Certificate Extended Key Usage - SPDM Responder Authentication (Extended Key Usage

authentication OIDs)

▪ Certificate Extended Key Usage - SPDM Requester Authentication (Extended Key Usage

authentication OIDs)

▪ Mutable certificate identifier (Identity provisioning)

◦ Added SM2 to Base Asymmetric Algorithms and Key Exchange Protocols.

◦ Added SM3 to Base Hash Algorithms and Measurement Hash Algorithms.

◦ Added SM4 to AEAD Algorithms.

◦ Changed symbol "S" denoting signature size to "SigLen" throughout document.

◦ Removed potentially confusing mention of "mutual authentication" in PSK_EXCHANGE section.

◦ Add method to transfer large SPDM messages. See Large SPDM message transfer mechanism.

◦ Changed Measurement Summary Hash concatenation function inputs.

◦ Clarified requirements for compliant certificate chains.

◦ Tables and figures are now numbered. Though these numbers might change in future versions of

Security Protocol and Data Model (SPDM) Specification DSP0274

280 Work in Progress Version 1.4.0WIP70

specification, the titles will remain the same.

◦ Allowed Requester to specify session termination policy when Responder completes firmware or

configuration update.

1218 25.4 Version 1.3.0 (2023-04-05)

• Change attribution for this standard from the Platform Management Communications Infrastructure (PMCI)

Working Group to the Security Protocols and Data Models Working Group.

• Fix minor typographical errors.

• Clarified CSRdata requirements.

• Correct indication that Identity Provisioning OIDs are in the certificate Extended Key Usage, and add SPDM

Non-Critical Certificate Extension OID to Table 43 — Optional fields.

• Added Signature Algorithm References clauses to clarify basic information about asymmetric algorithms.

• Clarified Offset and Length fields in GET_CERTIFICATE message.

• Clarified measurement specification related fields in NEGOTIATE_ALGORITHMS , ALGORITHMS and Table 52 —

Measurement block format.

• Added recommended ErrorCode for the case when the Responder detects overlapping SET_CERTIFICATE

commands.

• Clarified DataTransferSize and MaxSPDMmsgSize in GET_CAPABILITIES and CAPABILITIES messages.

• Updated General ordering rules to include discussion of the CAPABILITIES response with the Support Algorithms

block.

• Allow the sender to utilize the Large SPDM message transfer mechanism when the transmit buffer size of the

sender is less than the DataTransferSize of the receiving SPDM endpoint.

• Clarified that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Clarified the relationship between MAC_CAP and ResponderVerifyData or RequesterVerifyData in Session-

Secret-Exchange and Session-Secret-Finish messages.

• Provide more description for HANDSHAKE_IN_THE_CLEAR_CAP in GET_CAPABILITIES and CAPABILITIES messages.

• Added VERSION to the chunking forbidden list.

• Added definition of opaque data.

• Make the layout of tables 62 and 63 consistent with other tables.

• Clarified DER encoding for 'RequesterInfo'

• Added more guidance to RawBitStreamRequested in GET_MEASUREMENTS request.

• Changed ANNEX B from "normative" to "informative".

• Corrected Requester to Responder in Table 71 Successful KEY_EXCHANGE_RSP response message format.

• Correct values in Field and Size columns of Table 61

• Changed the message validity of VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE to

“Vendor-defined”.

• Clarified measurement method for various timing parameters in Timing specification table.

• Corrected the signing algorithm in the FINISH request's Signature field.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 281

https://www.dmtf.org/standards/pmci
https://www.dmtf.org/standards/spdm

• Correct Figure 1 — SPDM certificate chain models to show AliasCert model.

• Clarify how retried messages affect transcript hash in General ordering rules.

• Update Table 7 — Timing specification for SPDM messages to clarify that Responders can exceed ST1 and CT

using ErrorCode=ResponseNotReady .

• Clarified rules around when the old key can be discarded during KEY_UPDATE .

• Updated link and information for IETF DTLS 1.3.

• Clarified that AlgCount field in Algorithm request and response structures shall be a value of 2.

• Edit Figure 22 so that a Secure Session does not encompass Session-Secrets-Exchange.

• Clarified measurement signing capabilities in SignatureRequested field of GET_MEASUREMENTS .

• Clarified retries from the perspective Responder and Requester in Timing requirements.

• Changed "or" to "and" in Large SPDM message transfer mechanism section.

• Clarified that MeasurementHashAlgo should be zero if MeasurementSpecificationSel is zero.

• Remove "in general" from normative text.

• Clarified that the use of BaseAsymAlgo in the NEGOTIATE_ALGORITHMS request is dependent on the capabilities of

the Responder.

• Removed directive to save the public key of the leaf certificate retrieved through the GET_CERTIFICATE request.

• Added trusted environment to glossary.

• Clarified how the value of MinDataTransferSize is calculated.

• Added LargeResponse error to description of chunking certificates.

• Clarified that if endpoint does not support chunking then it must set MaxSPDMmsgSize equal to DataTransferSize .

• Clarified effects on out-of-order message on the transcript and other clarifications in General ordering rules.

• Clarified the definition of Session-Secret-Exchange and removed the duplicate definition of it.

• Replaced wording of "internal buffer" in GET_CERTIFICATE with DataTransferSize and "transmit buffer".

• Specify the hashing algorithm for MeasurementSummaryHash in multiple tables.

• Added normative statement that VERSION entries should be unique.

• Clarified conditions for LargeResponse error.

• Clarified CERTIFICATE response when the Length field of GET_CERTIFICATE is zero.

• Clarified the assumption that version entries are not duplicated when calculating MinDataTransferSize .

• Introduced Context field in CHALLENGE and GET_MEASUREMENTS requests.

• Clarified restrictions on Bit 0 through 2 of the MutAuthRequested field of KEY_EXCHANGE_RSP .

• Separated nonce and non-repeating counter in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Added definitions for sequentially decreasing, sequentially increasing, and monotonically increasing.

• Clarified updating keys in KEY_UPDATE .

• Added size of the transmit buffer as a condition for CHUNK_SEND .

• Clarified measurement support in the MeasurementHashAlgo field of the ALGORITHMS response.

• Clarified conditions under which CERT_CAP must be 0b .

• Allowed GET_DIGESTS and GET_CERTIFICATE in session.

• Clarified that extended algorithms are external to this specification.

Security Protocol and Data Model (SPDM) Specification DSP0274

282 Work in Progress Version 1.4.0WIP70

• Changed "should" to "shall" in the LargeMessageSize field of CHUNK_SEND .

• Clarified (A1, B4, C1) message flow is permitted.

• Required root certificate to always be included in SET_CERTIFICATE .

• Changed "cancel" to "invalidate state and data associated with" in GET_VERSION and VERSION response

messages.

• Removed non-normative text from the Length field of GET_CERTIFICATE .

• Changed link to VCA from acronym to definition in the "transcript computation rules for M1/M2" table.

• Clarified Session-Secrets-Exchange in Optimized encapsulated request flow

• Clarified the Request ID for the first message in an optimized encapsulated request flow.

• Clarified the presence of the SlotIDParam field in GET_MEASUREMENTS .

• Removed informative statement that chunks are equal in size.

• Clarified that SPDM messages sent outside of a session do not contribute to in-session transcripts.

• Fixed typo in table 88.

• Deprecated the CHAL_CAP capability of the Requester.

• Clarified value of HANDSHAKE_IN_THE_CLEAR_CAP when using Pre-Shared Keys.

• Removed "after Reset" from M1/M2 ordering.

• Clarify that Integers are unsigned.

• Clarified requirements for chunking the CERTIFICATE response.

• Clarified relevant capabilities in BaseAsymAlgo, BaseHashAlgo.

• Clarified that Export Master Secret does not get updated with KEY_UPDATE .

• Removed the "full" modifier in front of MeasurementRecord in the MEASUREMENTS response table.

• Fixed typos and removed redundant grammar in Table 50.

• Fixed OID value for id-DMTF-device-info to match earlier releases.

• Clarified definition of DecryptError.

• Clarified that endpoints must ensure proper ordering and existence of messages when calculating transcripts

hashes.

• Fixed typo in table 90.

• Move DMTFSpecMeasurementValueType[6:0] to its own table to improve readability.

• Changed instances of Concatenation() to the defined Concatenate() operator.

• Clarified slots 1-7 certificate provisioning.

• Removed normative text that prohibited reuse of session IDs.

• Clarified that non-encapsulated requests are prohibited during the session handshake phase.

• Removed potentially confusing statements on Slot provisioning for GET_CSR .

• Removed normative error statement from the BasicMutAuthReq field of CHALLENGE_AUTH .

• Clarified exclusion of signature in CHALLENGE_AUTH and usage of concatenation in Table 47

• Clarified that the Negotiated State Preservation Indicator applies to the cached Negotiated State.

• Clarified CSR signing.

• Removed encapsulation requirements from MUT_AUTH_CAP definition.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 283

• Removed deprecation status from ENCAP_CAP.

• Clarified that a provisioned public key can be used to generate the Transcript for KEY_EXCHANGE_RSP

HMAC.

• Clarified use of DataTransferSize and MaxSPDMmsgSize in GET_CAPABILITIES request and CAPABILITIES

response messages.

• Fixed typo in table 52.

• Replaced links to ITU-T X.509 with RFC5280 and removed ITU-T X.509 from the Normative references section.

• Moved general text for transcript calculations from "Transcript and transcript hash calculation rules" to the

"SPDM messaging protocol" section.

• Clarified that KEY_EX_CAP only applies to Requester's request message and Responder's response message.

• Clarified that if either Requester or Responder do not support Heartbeat then the value of HeartbeatPeriod

would be 0 .

• Renamed "VendorLen" to "VendorIDLen".

• Used different Salt_0 value for PSK session in key schedule.

• Corrected PK to PubKey in CHALLENGE_AUTH signature verification.

• Removed quotation mark of VCA in L1/L2 definition.

• Clarified which portions of a certificate chain in the Alias certificate model is immutable.

• Updated link and version to ISO/IEC Directives, Part 2.

• Fixed size of MeasurementSummaryHash field to include 0 as a possible size value when the field is absent.

• Renamed the HMAC-Hash to HKDF-Extract .

• Moved message and field notation to Notations.

• Clarified VCA for the case where capabilities and algorithms are provisioned alongside PSK.

• Clarified that ProvisionedSlotMask in the CHALLENGE_AUTH response is dependent on the negotiated algorithms.

• Clarified runtime measurement change detection.

• Removed "between devices" in the introduction of SPDM.

• Used different Salt_0 value for PSK session in key schedule.

• Removed the restriction to set Length to be 0xFFFF in GET_CERTIFICATE if both endpoints support the large

SPDM message transfer mechanism.

• Clarified RequesterContext in PSK_EXCHANGE.

• The Responder now always returns error ResponseTooLarge and no longer silently discards the request that

caused this error.

• Clarified certificate chain validation in Figure 8.

• Clarified that a GET_VERSION request can also cancel a pending request at the responder in section about

Requirement for Requesters.

• Restructure the Identity provisioning clause. Split the existing content into multiple clauses to help organization

and incorporate the Generic certificate model. Make the use of Device Certificate and Alias Certificate consistent

rather than using the terms DeviceCert and AliasCert to refer to specific certificates.

• Add missing ffdhe3072 in DHE secret computation section.

• Clarified that the Requester should not use PSK_EXCHANGE after receiving any Responder-signed response

Security Protocol and Data Model (SPDM) Specification DSP0274

284 Work in Progress Version 1.4.0WIP70

messages.

• Clarified that SPDM certificates are still compliant to the requirements of RFC 5280.

• Clarified field requirements for SPDM certificates and clarified that RFC 5280 defines the certificate format.

• Clarify allowed session phases for GET_CSR, SET_CERTIFICATE, GET_DIGESTS, and GET_CERTIFICATE in

Table 6 — SPDM request and response messages validity.

• Clarified RESPOND_IF_READY request validity.

• Clarified that erroneous GET_VERSION shall not affect connection state, not session state.

• Clarify the device behavior when a reset is required for a pending previous SET_CERTIFICATE request.

• Clarified sessions can be established one at a time when HANDSHAKE_IN_THE_CLEAR_CAP is set.

• New:

◦ Added Signature byte order and Octet string byte order clauses.

◦ Add the Manifest format for a measurement block to define a measurement manifest header format that

leverages the SVH format.

◦ Added SET_CERT_CAP , CSR_CAP and CERT_INSTALL_RESET_CAP capabilities bits.

◦ Add a section to discuss differences in cryptographic and non-cryptographic Timing parameters.

◦ Added option in SET_CERTIFICATE to delete existing certificate chain from slot.

◦ Add a SlotSizeRequested request attribute to the GET_CERTIFICATE request and CERTIFICATE

response messages.

◦ Added the IANA CBOR registry and VESA standards body to Registry or standards body ID.

◦ Added a tracking tag in GET_CSR request and CSR response messages for use after a reset.

◦ Added missing MaxSPDMmsgSize to GET_CAPABILITIES request and CAPABILITIES response messages.

◦ Add an Overwrite bit to the GET_CSR request.

◦ Added requirements on population of Slot 0 in Certificates and certificate chains.

◦ Added GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages.

◦ Added the InvalidPolicy error code.

◦ Added Supported algorithms block to Successful CAPABILITIES response message format.

◦ Added column to table 132 that specifies whether values are secret or not.

◦ Added new request GET_MEASUREMENT_EXTENSION_LOG and response MEASUREMENT_EXTENSION_LOG ,

measurement extension log formats, and examples.

◦ Added new "hash-extended" measurement type.

◦ Added Multiple asymmetric key support.

◦ Added Generic certificate model.

◦ Added Notification overview and Event Mechanism

◦ Added DMTF event types

◦ Added Custom environments clauses.

◦ Added NewMeasurementRequested in GET_MEASUREMENTS.

◦ Add missing ffdhe3072 in DHE secret computation section.

◦ Change FIPS PUB 186-4 reference to FIPS PUB 186-5.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 285

◦ Defined the data models for the first four bytes of VendorDefinedReqPayload and VendorDefinedRespPayload

when standards body is DMTF.

◦ Added normative information in Table 13 — Flag fields definitions for the Requester and Table 14 — Flag

fields definitions for the Responder.

1219 25.5 Version 1.4.0 (pending)

• Introduced post-quantum cryptography (PQC) support, including digital signature and key encapsulation for

session establishment.

• Clarified that ERROR is only allowed in response to GET_VERSION in cases explicitly defined in this specification.

• Changed instances of "Requester-direction" to "Request-direction" and instances of "Responder-direction" to

"Response-direction".

• Expanded ResponseTooLarge to include the transmit buffer size and DataTransferSize .

• Added clause that sizes and lengths are in units of bytes.

• Clarified that LargeResponse shall not re-initialize L1/L2 to null.

• Clarified relationship between PUB_KEY_ID_CAP and KeyPairID .

• Changed statement about graceful error handling during chunking from normative to non-normative.

• Added evaluation of the Responder's transmit buffer size to LargeResponse .

• Clarify that the key size listed in Table 136 — SPDM Asymmetric Signature Reference Information is the private

key size.

• Removed non-normative text for measurement changed event.

• Removed "If present" from mandatory fields in Field requirements.

• Clarified that start of the Heartbeat timer can include PSK_EXCHANGE_RSP .

• Clarified that WTMax includes the wait time from the most recently received ResponseNotReady .

• Changed endianness of the Context field of BinConcat from little to hash byte order.

• Stated that Event Recipient timeout is defined by the implementation.

• Renamed instances of OEM to vendor-defined.

• Clarified that the CSRTrackingTag is managed by the Responder and is set to 0 on a new GET_CSR request.

• Clarified that key pairs in Param2 of DIGESTS are consistent with negotiated algorithms.

• Clarified in Table 59 — Registry or standards body ID that the registry specifies the value used for the VendorID

field.

• Clarified that Event Notifier needs to wait for all Event Recipients before updating measurement.

• Clarified that MULTI_KEY_CAP is not allowed when PUB_KEY_ID_CAP is enabled.

• Clarified that DMTF event types must be supported by an Event Notifier.

• Clarify the definition of errata versions and that they may contain behavioral changes to fix security issues or

defects.

• Corrected DMTFSpecMeasurementValueType[6:0] to 0x06 for mutable firmware in Table 54 —

DMTFSpecMeasurementValueType values.

• Clarified error condition for EventAllPolicy .

Security Protocol and Data Model (SPDM) Specification DSP0274

286 Work in Progress Version 1.4.0WIP70

• Clarified requirements for AssocCertSlotMask field in GET_KEY_PAIR_INFO response.

• Clarified that a valid certificate slot can only be used for identity authentication.

• Specified Responder's response to invalid measurement index.

• Clarified that CSRCertModel and SetCertModel cannot be 0 when MULTI_KEY_CONN_RSP is true.

• Corrected error in the MEL specification field format table by changing Requester to Responder.

• Clarified Table 63 — Standards body or vendor-defined header (SVH) when the payload is standards body or

registry organization defined.

• Move statement that DMTF does not define extended algorithms to Table 31 — Extended Algorithm field format.

• Clarified that a CSRTrackingTag of 0 indicates a new GET_CSR request, and associated behavior.

• Clarified that size of ResponseToLargeRequest may be smaller than DataTransferSize .

• Clarified that Responders can alter requested CSR fields.

• Clarified that the value of SetCertModel is conditional on the existence of a corresponding CSRCertModel .

• Clarified that authorization for key information only applies to changing it and not retrieving it.

• Figures in SPDM bits-to-bytes-mapping updated.

• Clarify SET_CERTIFICATE Erase behavior when the slot is empty and that the associated key is not erased in the

operation.

• Renamed "Negotiated State Preservation Indicator" field of END_SESSION request to "Negotiated State

Clearing Indicator".

• Clarified that hardware identity is recommended for device and alias certificate models. Add a definition of

hardware identity.

• Added explanation as to how the RDT value is measured at the Responder.

• Add SVH to the table of abbreviated terms.

• Increased size of ChunkSeqNo from 2 bytes to 4 bytes.

• Clarify that CERTIFICATE response shall not return a partial certificate chain in case of chunking enabled and the

Requester asking for a complete certificate chain.

• Remove text that says ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Made normative text for vendor-defined transcripts more general.

• Clarified the value of KeyPairID when MULTI_KEY_CAP is not set.

• Correct the references to Table 5 — SPDM response codes in Table 102 — KEY_PAIR_INFO response

message format and Table 107 — SET_KEY_PAIR_INFO_ACK response message format.

• Clarified that the minimum number of supported sessions shall be one per connection.

• Clarified error handling scenarios in SET_CERTIFICATE request.

• Clarified that both Requester and Responder need to support bits in OtherParamsSelection for them to be

selected by Responder.

• Correct ReqLength to RespLength in Table 66 — VENDOR_DEFINED_RESPONSE response message format.

• Clarified the chunked transfer including transcript update and interruption of the chunk transfer sequence.

• Clarified the definition of RDT as the additional time needed by the responder and not as a delay.

• Removed Overwrite condition from the CSRCertModel field in GET_CSR .

• Adjusted the section numbering for Certificates and certificate chains

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 287

• Added caption for Table 56

• Clarified that only one endpoint needs to set HANDSHAKE_IN_THE_CLEAR_CAP to 0 for the handshake to be secure.

• Removed normative statement about RTT due to redundancy with later normative statements.

• Clarified the requirements for TotalKeyPairs .

• Updated the link to the measurement block in Param2 in the GET_MEASUREMENTS request message

• Clarified Responder's support for retry.

• Fixed wrong side of Certificate owner (Responder shall be Requester and vise versa) in Param2 of FINISH

Request.

• Clarified that SlotID field value in SET_CERTIFICATE_RSP Response shall be the same as SlotID value in

correspondent SET_CERTIFICATE Request.

• Clarified changing parameter rules with SET_KEY_PAIR_INFO on key pair ID with generated key pair.

• Stated that all figures are informative unless otherwise specified explicitly.

• Clarify the offset of Context in GET_MEASUREMENTS request message format.

• Clarify that the KeyExUse bit mask is used for FINISH message.

• Added new ID (DMTF-DSP) in Registry or standards body ID.

• Clarified ID to use in DMTF event types.

• Clarify CertModel value if MULTI_KEY_CAP is not set

• Clarify which DIGESTS response is included in a transcript hash.

• Clarify Param2 (slot mask) of the CHALLENGE_AUTH response message.

• Clarify that MeasurementSpecificationSel shall be set when the Responder supports either MEL or

MEASUREMENTS.

• Clarify the value of version text in Key Schedule.

• Reformatted Table 130 — Value of Version Text and Table 134 — Combined SPDM prefix to improve readability.

• Clarified that HEARTBEAT shall be sent if no other messages within the session were sent/received within

HeartbeatPeriod

• Clarified that HeartbeatPeriod for each secure session is tracked independently

• Removed some recommendations for out of order error handling in General ordering rules.

• Allow the END_SESSION request to be sent from the Responder to the Requester.

• Removed Additional Constraints subchapter from GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages since it's redundant and contradictory.

• Clarify ResetRequired for GET_KEY_PAIR_INFO and SET_KEY_PAIR_INFO .

• Add SET_KEY_PAIR_RESET_CAP capability.

• Fixed typo for PublicKeyInfoLen .

• Clarify that MEASUREMENTS with signature shall re-initialize L1/L2 to null .

• Clarify that an algorithm structure table should be present only if the Responder supports that AlgType .

• Clarify that MEL and HEM may not match and how to handle this scenario.

• Add PQC related fields/structures to NEGOTIATE_ALGORITHMS , ALGORITHMS , GET_CERTIFICATE , CERTIFICATE ,

SET_CERTIFICATE , KEY_PAIR_INFO , and SET_KEY_PAIR_INFO . Updated table numbers throughout to accommodate

Security Protocol and Data Model (SPDM) Specification DSP0274

288 Work in Progress Version 1.4.0WIP70

for the new PQC specific tables.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.4.0WIP70 Work in Progress 289

1220 26 Bibliography

1221 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

Security Protocol and Data Model (SPDM) Specification DSP0274

290 Work in Progress Version 1.4.0WIP70

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Advice
	2.2 Conventions
	2.2.1 Document conventions
	2.2.2 Reserved and unassigned values
	2.2.3 Byte ordering
	2.2.3.1 Hash byte order
	2.2.3.2 Encoded ASN.1 byte order
	2.2.3.3 Octet string byte order
	2.2.3.4 Signature byte order
	2.2.3.4.1 ECDSA signatures byte order
	2.2.3.4.2 SM2 signatures byte order

	2.2.4 Sizes and lengths
	2.2.5 SPDM data type conventions
	2.2.5.1 SPDM data types
	2.2.5.2 Integers

	2.2.6 Version encoding
	2.2.7 Notations
	2.2.8 Text or string encoding
	2.2.9 Deprecated material
	2.2.10 Other conventions

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.1.1 Certificate models
	7.2.1.1.1 Device certificate model
	7.2.1.1.2 Alias certificate model
	7.2.1.1.3 Generic certificate model

	7.2.2 Raw public keys
	7.2.3 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	7.6 Multiple asymmetric key support
	7.7 Custom environments
	7.8 Notification overview
	8 SPDM messaging protocol
	8.1 SPDM connection model
	8.2 SPDM bits-to-bytes mapping
	8.3 Generic SPDM message format
	8.3.1 SPDM version

	8.4 SPDM request codes
	8.5 SPDM response codes
	8.6 SPDM request and response code issuance allowance
	8.7 Concurrent SPDM message processing
	8.8 Requirements for Requesters
	8.9 Requirements for Responders
	8.10 Transcript and transcript hash calculation rules
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing parameters
	9.3 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.1.1 Negotiated state preamble

	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.3.1 Supported algorithms block

	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.4.1 Connection behavior after VCA
	10.4.2 Multiple asymmetric key negotiation
	10.4.3 Multiple asymmetric key use for Responder authentication
	10.4.4 Multiple asymmetric key use for Requester authentication
	10.4.5 Multiple asymmetric key connection

	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.7 Certificates and certificate chains
	10.8 GET_DIGESTS request and DIGESTS response messages
	10.9 GET_CERTIFICATE request and CERTIFICATE response messages
	10.9.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.9.2 SPDM certificate requirements and recommendations
	10.9.2.1 Extended Key Usage authentication OIDs
	10.9.2.2 SPDM Non-Critical Certificate Extension OID
	10.9.2.2.1 Hardware identity OID
	10.9.2.2.2 Mutable certificate OID

	10.10 CHALLENGE request and CHALLENGE_AUTH response messages
	10.10.1 CHALLENGE_AUTH signature generation
	10.10.2 CHALLENGE_AUTH signature verification
	10.10.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.10.3 Basic mutual authentication
	10.10.3.1 Mutual authentication message transcript

	10.11 Firmware and other measurements
	10.12 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.12.1 Measurement block
	10.12.1.1 DMTF specification for the Measurement field of a measurement block
	10.12.1.1.1 Measurement manifest
	10.12.1.1.2 Hash-extend measurements

	10.12.1.2 Device mode field of a measurement block
	10.12.1.3 Manifest format for a measurement block

	10.12.2 MEASUREMENTS signature generation
	10.12.3 MEASUREMENTS signature verification

	10.13 ERROR response message
	10.13.1 Standards body or vendor-defined header

	10.14 RESPOND_IF_READY request message format
	10.15 VENDOR_DEFINED_REQUEST request message
	10.16 VENDOR_DEFINED_RESPONSE response message
	10.16.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications

	10.17 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.17.1 DHE scheme
	10.17.2 ML-KEM scheme
	10.17.3 Message formats
	10.17.4 Session-based mutual authentication
	10.17.4.1 Specify Requester certificate for session-based mutual authentication

	10.18 FINISH request and FINISH_RSP response messages
	10.18.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE

	10.19 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.20 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.21 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.21.1 Heartbeat additional information

	10.22 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.22.1 Session key update synchronization
	10.22.2 KEY_UPDATE transport allowances

	10.23 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.23.1 Encapsulated request flow
	10.23.2 Optimized encapsulated request flow
	10.23.3 Triggering GET_ENCAPSULATED_REQUEST

	10.24 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.24.1 Additional information
	10.24.2 Allowance for encapsulated requests
	10.24.3 Certain error handling in encapsulated flows
	10.24.3.1 Response not ready
	10.24.3.2 Timeouts

	10.25 END_SESSION request and END_SESSION_ACK response messages
	10.25.1 END_SESSION additional information

	10.26 Certificate provisioning
	10.26.1 GET_CSR request and CSR response messages
	10.26.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

	10.27 Large SPDM message transfer mechanism
	10.27.1 CHUNK_SEND request and CHUNK_SEND_ACK response message
	10.27.2 CHUNK_GET request and CHUNK_RESPONSE response message
	10.27.3 Additional chunk transfer requirements

	10.28 Key configuration
	10.28.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response
	10.28.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response
	10.28.3 Key pair ID modification error handling

	10.29 Event mechanism
	10.29.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES response message
	10.29.1.1 Event group format additional information

	10.29.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response message
	10.29.2.1 Additional subscription list information

	10.29.3 SEND_EVENT request and EVENT_ACK response message
	10.29.4 Event Instance ID

	10.30 GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages
	10.30.1 ENDPOINT_INFO signature generation
	10.30.2 ENDPOINT_INFO signature verification

	10.31 Measurement extension log mechanism
	10.31.1 GET_MEASUREMENT_EXTENSION_LOG request and MEASUREMENT_EXTENSION_LOG response messages
	10.31.2 DMTF Measurement Extension Log Format
	10.31.3 Example: Verifying Measurement Extension Log Against Hash-Extend Measurement

	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 DHE secret computation
	12.2 KEM K and K' computation
	12.3 Transcript hash in key derivation
	12.4 TH1 definition
	12.5 TH2 definition
	12.6 Key schedule major secrets
	12.6.1 Request-direction handshake secret
	12.6.2 Response-direction handshake secret
	12.6.3 Request-direction data secret
	12.6.4 Response-direction data secret

	12.7 Encryption key and IV derivation
	12.8 finished_key derivation
	12.9 Deriving additional keys from the Export Master Secret
	12.10 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 General opaque data format
	15 Signature generation
	15.1 Signing algorithms in extensions
	15.2 RSA and ECDSA signing algorithms
	15.3 EdDSA signing algorithms
	15.3.1 Ed25519 sign
	15.3.2 Ed448 sign

	15.4 SM2 signing algorithm
	15.5 ML-DSA signing algorithm
	15.6 SLH-DSA signing algorithm
	15.7 Signature algorithm references
	16 Signature verification
	16.1 Signature verification algorithms in extensions
	16.2 RSA and ECDSA signature verification algorithms
	16.3 EdDSA signature verification algorithms
	16.3.1 Ed25519 verify
	16.3.2 Ed448 verify

	16.4 SM2 signature verification algorithm
	17 ML-DSA signature verification algorithm
	18 SLH-DSA signature verification algorithm
	19 General ordering rules
	20 DMTF event types
	20.1 Event type details
	20.1.1 Event Lost
	20.1.2 Measurement changed event
	20.1.3 Measurement pre-update event
	20.1.4 Certificate changed event

	21 ANNEX A (informative) TLS 1.3
	22 ANNEX B (informative) Device certificate example
	23 ANNEX C (informative) OID reference
	24 ANNEX D (informative) variable name reference
	25 ANNEX E (informative) change log
	25.1 Version 1.0.0 (2019-10-16)
	25.2 Version 1.1.0 (2020-07-15)
	25.3 Version 1.2.0 (2021-11-01)
	25.4 Version 1.3.0 (2023-04-05)
	25.5 Version 1.4.0 (pending)
	26 Bibliography

