
1 Document Identifier: DSP0274

2 Date: 2024-08-21

3 Version: 1.1.4

4 Security Protocol and Data Model (SPDM)
Specification

5 Supersedes: 1.1.3

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party's reliance on the standard or incorporation

thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner

or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

12 This document's normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2019–2024 DMTF. All rights reserved.

SPDM Specification DSP0274

2 Published Version 1.1.4

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

13 CONTENTS

1 Foreword . 6

1.1 Acknowledgments . 6

2 Introduction . 7

2.1 Conventions. 7

2.1.1 Document conventions . 7

2.1.2 Reserved and unassigned values . 7

2.1.3 Byte ordering. 7

2.1.4 Sizes and lengths . 7

2.1.5 SPDM data types . 7

2.1.6 Version encoding. 8

2.1.7 Notations . 8

2.1.8 Other conventions . 9

3 Scope. 10

4 Normative references. 11

5 Terms and definitions . 13

6 Symbols and abbreviated terms . 17

7 SPDM message exchanges. 18

7.1 Security capability discovery and negotiation . 18

7.2 Identity authentication . 18

7.2.1 Identity provisioning . 19

7.2.2 Runtime authentication . 19

7.3 Firmware and configuration measurement . 19

7.4 Secure sessions . 19

7.5 Mutual authentication overview . 20

8 SPDM messaging protocol . 21

8.1 SPDM bits-to-bytes mapping. 23

8.2 Generic SPDM message format . 23

8.3 SPDM request codes. 24

8.4 SPDM response codes . 26

8.5 SPDM request and response code issuance allowance . 27

8.6 Concurrent SPDM message processing . 28

8.7 Requirements for Requesters . 28

8.8 Requirements for Responders. 29

9 Timing requirements . 30

9.1 Timing measurements . 30

9.2 Timing specification table . 30

10 SPDM messages . 35

10.1 Capability discovery and negotiation . 35

10.2 GET_VERSION request and VERSION response messages. 35

10.3 GET_CAPABILITIES request and CAPABILITIES response messages . 38

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages 45

DSP0274 SPDM Specification

Version 1.1.4 Published 3

10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS . 65

10.5 Responder identity authentication . 66

10.6 Requester identity authentication . 68

10.6.1 Certificates and certificate chains . 68

10.7 GET_DIGESTS request and DIGESTS response messages . 69

10.8 GET_CERTIFICATE request and CERTIFICATE response messages. 70

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages. 73

10.8.2 Leaf certificate . 73

10.9 CHALLENGE request and CHALLENGE_AUTH response messages . 75

10.9.1 CHALLENGE_AUTH signature generation. 78

10.9.2 CHALLENGE_AUTH signature verification. 80

10.9.3 Basic mutual authentication . 82

10.10 Firmware and other measurements. 85

10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages. 86

10.11.1 Measurement block . 90

10.11.2 MEASUREMENTS signature generation . 92

10.11.3 MEASUREMENTS signature verification . 95

10.12 ERROR response message . 96

10.13 RESPOND_IF_READY request message format . 102

10.14 VENDOR_DEFINED_REQUEST request message . 103

10.15 VENDOR_DEFINED_RESPONSE response message . 105

10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF

specifications . 106

10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages 106

10.16.1 Mutual authentication . 115

10.16.2 Specifying Requester certificate for mutual authentication . 115

10.17 FINISH request and FINISH_RSP response messages . 116

10.17.1 Transcript hash calculation rules. 119

10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages 122

10.19 PSK_FINISH request and PSK_FINISH_RSP response messages . 128

10.20 HEARTBEAT request and HEARTBEAT_ACK response messages. 130

10.20.1 Heartbeat additional information . 131

10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages 131

10.21.1 Session key update synchronization. 132

10.21.2 KEY_UPDATE transport allowances. 135

10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages. 138

10.22.1 Encapsulated request flow . 138

10.22.2 Optimized encapsulated request flow . 138

10.22.3 Triggering GET_ENCAPSULATED_REQUEST . 142

10.22.4 Additional constraints . 142

10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK

response messages. 142

SPDM Specification DSP0274

4 Published Version 1.1.4

10.23.1 Additional information . 145

10.24 END_SESSION request and END_SESSION_ACK response messages 146

11 Session. 148

11.1 Session handshake phase. 148

11.2 Application phase. 149

11.3 Session termination phase. 149

11.4 Simultaneous active sessions . 149

11.5 Records and session ID. 150

12 Key schedule . 151

12.1 Transcript hash in key derivation . 153

12.2 TH1 definition . 153

12.3 TH2 definition . 154

12.4 Key schedule major secrets . 155

12.4.1 Request-direction handshake secret. 155

12.4.2 Response-direction handshake secret . 155

12.4.3 Requester-direction data secret . 155

12.4.4 Responder-direction data secret . 155

12.5 Encryption key and IV derivation . 156

12.6 finished_key derivation . 156

12.7 Deriving additional keys from the Export Master Secret . 157

12.8 Major secrets update . 157

13 Application data . 158

13.1 Nonce derivation . 158

14 ANNEX A (informative) TLS 1.3. 159

15 ANNEX B (normative) Leaf certificate example . 160

16 ANNEX C (informative) Change log. 162

16.1 Version 1.0.0 (2019-10-16) . 162

16.2 Version 1.1.0 (2020-07-15) . 162

16.3 Version 1.1.1 (2021-05-12) . 162

16.4 Version 1.1.2 (2022-03-09) . 163

16.5 Version 1.1.3 (2023-10-08) . 163

16.6 Version 1.1.4 (2024-08-19) . 164

17 Bibliography . 165

DSP0274 SPDM Specification

Version 1.1.4 Published 5

14 1 Foreword

15 The Security Protocols and Data Models (SPDM) Working Group of DMTF prepared the Security Protocol and Data

Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry members that promotes

enterprise and systems management and interoperability. For information about DMTF, see https://www.dmtf.org.

16 1.1 Acknowledgments

17 DMTF acknowledges the following individuals for their contributions to this document:

18 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Lee Ballard — Dell Technologies

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yuval Itkin — Mellanox Technologies

• Theo Koulouris — Hewlett Packard Enterprise

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Edward Newman — Hewlett Packard Enterprise

• Alexander Novitskiy — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc.

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Hemal Shah — Broadcom Inc.

• Srikanth Varadarajan — Intel Corporation

SPDM Specification DSP0274

6 Published Version 1.1.4

https://www.dmtf.org/

19 2 Introduction

20 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges between devices over a variety of transport and physical media. The description of

message exchanges includes authentication of hardware identities, measurement for firmware identities, and session

key exchange protocols to enable confidentiality and integrity protected data communication. The SPDM enables

efficient access to low-level security capabilities and operations. Other mechanisms, including non-SPDM- and

DMTF-defined mechanisms, can use the SPDM.

21 2.1 Conventions

22 The following conventions apply to all SPDM specifications.

23 2.1.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

24 2.1.2 Reserved and unassigned values

25 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by DMTF.

26 Unless otherwise specified, reserved numeric and bit fields shall be written as zero (0) and ignored when read.

27 2.1.3 Byte ordering

28 Unless otherwise specified, for all SPDM specifications byte ordering of multibyte numeric fields or multibyte bit fields

is "little endian" (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

29 2.1.4 Sizes and lengths

30 Unless otherwise specified, all sizes and lengths are in units of bytes.

31 2.1.5 SPDM data types

32 The SPDM data types table lists the abbreviations and descriptions for common data types that SPDM message

fields and data structure definitions use. These definitions follow DSP0240.

DSP0274 SPDM Specification

Version 1.1.4 Published 7

33 SPDM data types

Data type Interpretation

ver8
Eight-bit encoding of the SPDM version number. Version encoding defines the

encoding of the version number.

bitfield8 Byte with eight bit fields. Each bit field can be separately defined.

bitfield16 Two-byte word with 16-bit fields. Each bit field can be separately defined.

34 2.1.6 Version encoding

35 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major

Major version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification breaks backward compatibility.

Minor

Minor version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification maintains backward compatibility.

36 EXAMPLE:

37 Version 3.7 → 0x37

38 Version 1.0 → 0x10

39 Version 1.2 → 0x12

40 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 only, but the

available functionality is limited to what SPDM specification Version 1.0 defines.

41 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

42 The detailed version encoding that the VERSION response message returns contains an additional byte that indicates

specification bug fixes or development versions. See the Successful VERSION response message format table.

43 2.1.7 Notations

44 SPDM specifications use the following notations:

SPDM Specification DSP0274

8 Published Version 1.1.4

Notation Description

M:N

In field descriptions, this notation typically represents a range of byte offsets

starting from byte M and continuing to and including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]

Square brackets around a number typically indicate a bit offset.

Bit offsets are zero-based values. That is, the least significant bit ([LSb])

offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the

right.

1b
A lowercase b after a number consisting of 0 s and 1 s indicates that the

number is in binary format.

0x12A Hexadecimal, indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

{ Payload }

Used mostly in figures, this notation indicates the payload specified in the

enclosing curly brackets is encrypted and/or authenticated by the keys

derived from one or more major secrets. The specific secret used is described

throughout this specification. For example, { HEARTBEAT } shows that the

Heartbeat message is encrypted and/or authenticated by the keys derived

from one or more major secrets.

{ Payload }::[[SX]]

Used mostly in figures, this notation indicates the payload specified in the

enclosing curly brackets is encrypted and/or authenticated by the keys

derived from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the Heartbeat message is

encrypted and/or authenticated by the keys derived from major secret S2 .

45 2.1.8 Other conventions

46 Unless otherwise specified, all figures are informative.

DSP0274 SPDM Specification

Version 1.1.4 Published 9

47 3 Scope

48 This specification describes how to use messages, data objects, and sequences to exchange messages between

two devices over a variety of transports and physical media. This specification contains the message exchanges,

sequence diagrams, message formats, and other relevant semantics for such message exchanges, including

authentication of hardware identities and firmware measurement.

49 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

SPDM Specification DSP0274

10 Published Version 1.1.4

50 4 Normative references

51 The following documents are indispensable for the application of this specification. For dated or versioned

references, only the edition cited, including any corrigenda or DMTF update versions, applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2018

(8th edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification,

https://www.dmtf.org/dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• IETF RFC4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,

May 2008

• IETF RFC7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS), June 2014

• IETF RFC7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security

(TLS), August 2016

• IETF RFC8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family "2.0", Level 00 Revision 01.27, February 7, 2018

• NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, November 2007

• IETF RFC8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018

• ASN.1 — ISO-822-1-4, DER — ISO-8825-1

◦ ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015

DSP0274 SPDM Specification

Version 1.1.4 Published 11

https://www.sae.org/works/committeeResources.do?resourceID=642585
https://www.sae.org/works/committeeResources.do?resourceID=642585
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://tools.ietf.org/html/rfc8439
https://www.itu.int/rec/T-REC-X.680-X.693-201508-S/en

• X.509 — ISO-9594-8

◦ ITU-T X.509, 10/2012

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-4 Digital Signature

Standard (DSS)

◦ Appendix D: Recommended Elliptic Curves for Federal Government Use in FIPS PUB 186-4 Digital

Signature Standard (DSS)

• RSA

◦ Table 3 in TCG Algorithm Registry Family “2.0" Level 00 Revision 01.22, February 9, 2015

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

• Transport Layer Security 1.3

◦ TLS 1.3 RFC 8446

SPDM Specification DSP0274

12 Published Version 1.1.4

https://web.archive.org/web/20150616113008/https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Algorithm_Registry_Rev_1.22.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://tools.ietf.org/html/rfc8446

52 5 Terms and definitions

53 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines

those terms.

54 The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), "may",

"need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described in ISO/IEC

Directives, Part 2, Clause 7. The terms in parenthesis are alternatives for the preceding term, for use in exceptional

cases when the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7

specifies additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal

English meaning.

55 The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

56 The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do not contain normative

content. Notes and examples are always informative elements.

57 The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this

document.

58 This specification uses these terms:

Term Definition

application data

Data that is specific to the application and whose definition and format is outside the scope

of this specification. Application data usually exist at the application layer, which is, in

general, the layer above SPDM and the transport layer. Examples of data that could be

application data include: messages carried as DMTF MCTP payloads; Internet traffic (PCIe

transaction layer packets (TLPs)); camera images and video (MIPI CSI-2 packets); video

display stream (MIPI DSI-2 packets) and touchscreen data (MIPI I3C Touch).

authentication Process of determining whether an entity is who or what it claims to be.

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

byte Eight-bit quantity. Also known as an octet.

certificate
Digital form of identification that provides information about an entity and certifies ownership

of a particular asymmetric key-pair.

certificate authority (CA) Trusted entity that issues certificates.

certificate chain
Series of two or more certificates. Each certificate is signed by the preceding certificate in

the chain.

component Physical entity similar to the PCI Express specification’s definition.

device Physical entity such as a network controller or a fan.

DSP0274 SPDM Specification

Version 1.1.4 Published 13

Term Definition

DMTF

Formerly known as the Distributed Management Task Force, DMTF creates open

manageability standards that span diverse emerging and traditional information technology

(IT) infrastructures, including cloud, virtualization, network, servers, and storage. Member

companies and alliance partners worldwide collaborate on standards to improve the

interoperable management of IT.

endpoint Logical entity that communicates with other endpoints over one or more transport protocols.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

leaf certificate Last certificate in a certificate chain.

measurement Representation of firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

message originator Original transmitter, or source, of an SPDM message.

message transcript

The concatenation of a sequence of messages in the order in which they are sent and

received by an endpoint. The final message included in the message transcript may be

truncated to allow inclusion of a signature in that message which is computed over the

message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and

independently.

most significant byte (MSB) Highest order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represent the state of the communication between a corresponding

pair of Requester and Responder at the successful completion of the NEGOTIATE_ALGORITHMS

messages.

These parameters may include values provided in VERSION , CAPABILITIES and ALGORITHMS

messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to

continue or preserve communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same

number occurring more than once is negligible. Nonce may be generated by combining a

pseudo random number of at least 64 bits, optionally concatenated with a monotonic

counter of size suitable for the application.

opaque data

Opaque data fields transfer data that is outside of the scope of this specification. The

semantics and usage of this data are implementation specific and also outside of the scope

of this specification.

SPDM Specification DSP0274

14 Published Version 1.1.4

Term Definition

payload

Information-bearing fields of a message. These fields are separate from the fields and

elements, such as address fields, framing bits, checksums, and so on, that transport the

message from one point to another. In some instances, a field can be both a payload field

and a transport field.

physical transport binding

Specifications that define how a base messaging protocol is implemented on a particular

physical transport type and medium, such as SMBus/I2C, PCI Express™ Vendor Defined

Messaging, and so on.

record A record is a unit or chunk of data that is either encrypted and/or authenticated.

Requester
Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver,

or destination, of an SPDM response message.

Responder
Ultimate receiver, or destination, of an SPDM request message. It is also the original

transmitter, or source of an SPDM response message.

root certificate First certificate in a certificate chain, which is self-signed.

Security Protocols and Data Models (SPDM)

Working group under DMTF that is responsible for the SPDM Specification, which focuses

on enabling authentication, attestation, and key exchange to enhance infrastructure security.

In addition to developing the core SPDM Specification, the group collaborates with other

standards organizations and developers to support alignment across the industry in the

areas of component authentication, confidentiality, and integrity.

session keys
Session Keys are any secrets, derived cryptographic keys, or any cryptographic information

bound to the session.

Session-Secrets-Exchange

This term denotes any SPDM request and its corresponding response that initiates a

session and provides initial cryptographic exchange. Examples of such requests are

KEY_EXCHANGE and PSK_EXCHANGE .

Session-Secrets-Finish

This term denotes any SPDM request and its corresponding response that finalizes a

session setup and provides the final exchange of cryptographic or other information before

application data can be securely transmitted. Examples of such requests are FINISH and

PSK_FINISH .

secure session
A secure session is a session that provides either or both of encryption or message

authentication for communicating data over a transport.

SPDM message Unit of communication in SPDM communications.

SPDM message payload

Portion of the message body of an SPDM message. This portion of the message is separate

from those fields and elements that identify the SPDM version, the SPDM request and

response codes, and the two parameters.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation. A corresponding

SPDM response message acknowledges receipt of an SPDM request message.

SPDM response message
Message that is sent in response to a specific SPDM request message. This message

includes a Response Code field that indicates whether the request completed normally.

DSP0274 SPDM Specification

Version 1.1.4 Published 15

https://www.dmtf.org/standards/spdm

Term Definition

trusted computing base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in

the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security

properties of the entire system. By contrast, parts of a computer system outside the TCB

shall not be able to misbehave in a way that would leak any more privileges than are

granted to them in accordance to the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

SPDM Specification DSP0274

16 Published Version 1.1.4

https://en.wikipedia.org/wiki/Trusted_computing_base

59 6 Symbols and abbreviated terms

60 The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document.

61 The following additional abbreviations are used in this document.

Abbreviation Definition

AEAD Authenticated Encryption with Associated Data

CA certificate authority

DMTF Formerly the Distributed Management Task Force

MAC Message Authentication Code

MSB most significant byte

SPDM Security Protocol and Data Model

TCB trusted computing base

DSP0274 SPDM Specification

Version 1.1.4 Published 17

62 7 SPDM message exchanges

63 The message exchanges defined in this specification are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages defined in SPDM messages. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

64 The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate the identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

65 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. The following clauses provide a brief overview of each message exchange capability. Some

message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0

with ECN and Errata through January 7, 2019 defines.

66 7.1 Security capability discovery and negotiation

67 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that are defined in this specification.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

68 7.2 Identity authentication

69 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

70 At a high-level, the authentication of the identity of a Responder involves these processes:

• Identity provisioning

• Runtime authentication

SPDM Specification DSP0274

18 Published Version 1.1.4

71 7.2.1 Identity provisioning

72 Identity provisioning is the process that device vendors follow during or after hardware manufacturing. A trusted root

certificate authority (CA) generates a root certificate (RootCert) that is provisioned to the authentication initiator. The

authentication initiator uses this certificate to verify the validity of certificate chains. A device carries a certificate

chain, which has the RootCert as the root of the certificate chain and a device certificate (DeviceCert) as the leaf

certificate of the certificate chain. The device certificate contains the public key that corresponds to the device private

key.

73 Through the certificate chain, the root CA indirectly endorses the per-device public/private key pair in the

DeviceCert , where the private key is provisioned to or generated by the endpoint.

74 Alternatively to certificate chains, the vendor may provision the raw public key of the Responder to the Requester in a

trusted environment; for example, during the secure manufacturing process. In this case, trust of the public key of the

Responder is established without the need for a certificate-based public key infrastructure.

75 The format of the provisioned public key is out of scope of this specification. Vendors can use proprietary formats or

public key formats that other standards define, such as RFC7250 and RFC4716.

76 7.2.2 Runtime authentication

77 Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder

in a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a

unique challenge to the Responder. The Responder uses the private key to sign the challenge. The authentication

initiator verifies the signature by using the public key of the Responder, and any intermediate public keys within the

certificate chain by using the root certificate as the trusted anchor.

78 If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication

initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The

authentication initiator verifies the signature by using the public key of the Responder. The transport layer should

handle device identification, which is outside the scope of this specification.

79 7.3 Firmware and configuration measurement

80 A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically a cryptographic hash value of the data, or the raw data itself. The endpoint optionally binds a measurement

with the endpoint identity through the use of digital signatures. This binding enables an authentication initiator to

establish the identity and measurement of the firmware/software or configuration running on the endpoint.

81 7.4 Secure sessions

82 Many devices exchange data with other devices that may require protection. In this specification, the device-specific

data that is communicated is generically referred to as application data. The protocol of the application data usually

DSP0274 SPDM Specification

Version 1.1.4 Published 19

exists at a higher layer and it is outside the scope of this specification. This protocol of the application data usually

allows for encrypted and/or authenticated data transfer.

83 This specification provides a method to perform a cryptographic key exchange such that the protocol of the

application data can use the exchanged keys to provide a secure channel of communication by using encryption and

message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual

authentication which can be considered equivalent to Runtime authentication. For more details, see the Session

clause.

84 Lastly, but not least, many SPDM requests and their corresponding responses can also be afforded the same

protection. See the SPDM request and response messages validity table and SPDM request and response code

issuance allowance clause for more details.

85 The SPDM messaging protocol flow gives a very high-level view of when the secure session actually starts.

86 7.5 Mutual authentication overview

87 The ability for a Responder to verify the authenticity of the Requester is called mutual authentication. Several

mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means

to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity

authentication discusses identity in regard to the Responder but the details apply to the Requester as well.

88 In general, when this specification places requirements or recommendations for Responders in the context of identity,

those same rules also apply to Requesters in the context of mutual authentication. The various clauses in this

specification will provide more details.

SPDM Specification DSP0274

20 Published Version 1.1.4

89 8 SPDM messaging protocol

90 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to

with an SPDM response message as defined in this specification unless otherwise stated in this specification.

91 The SPDM messaging protocol flow is an example of a high-level request-response flow diagram for SPDM. An

endpoint that acts as the Requester sends an SPDM request message to another endpoint that acts as the

Responder, and the Responder returns an SPDM response message to the Requester.

92 SPDM messaging protocol flow

DSP0274 SPDM Specification

Version 1.1.4 Published 21

93

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

94 All SPDM request-response messages share a common data format, that consists of a four-byte message header

and zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages details each of the request and response messages.

95 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages before

issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS

may be saved by the requester so that after reset the requester may skip these requests.

SPDM Specification DSP0274

22 Published Version 1.1.4

96 8.1 SPDM bits-to-bytes mapping

97 All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in monotonically decreasing order until the least numerically assigned byte of that field. The following two figures

illustrate this mapping.

98 One-byte field bit map

99

Byte 1

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A One-Byte Field

100 Two-byte field bit map

101

Byte 2

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A Two-Byte Field

Byte 3

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

102 8.2 Generic SPDM message format

103 The Generic SPDM message field definitions table defines the fields that constitute a generic SPDM message,

including the message header and payload.

104 Generic SPDM message field definitions

Byte Bits Length (bits) Field Description

0 [7:4] 4 SPDM Major Version

The major version of the

SPDM Specification. An

endpoint shall not

communicate by using an

incompatible SPDM

version value. See Version

encoding.

DSP0274 SPDM Specification

Version 1.1.4 Published 23

Byte Bits Length (bits) Field Description

0 [3:0] 4 SPDM Minor Version

The minor version of the

SPDM Specification. A

specification with a given

minor version extends a

specification with a lower

minor version as long as

they share the major

version. See Version

encoding.

1 [7:0] 8 Request Response Code

The request message code

or response code, which

Table 4 and Table 5

enumerate. 0x00 through

0x7F represent response

codes and 0x80 through

0xFF represent request

codes. In request

messages, this field is

considered the request

code. In response

messages, this field is

considered the response

code.

2 [7:0] 8 Param1

The first one-byte

parameter. The contents of

the parameter is specific to

the Request Response

Code .

3 [7:0] 8 Param2

The second one-byte

parameter. The contents of

the parameter is specific to

the Request Response

Code .

4
See the

description.
Variable SPDM message payload

Zero or more bytes that are

specific to the Request

Response Code .

105 8.3 SPDM request codes

106 The SPDM request codes table defines the SPDM request codes. The Implementation requirement column

indicates requirements on the Requester.

107 All SPDM-compatible implementations shall use the following SPDM request codes.

108 If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

SPDM Specification DSP0274

24 Published Version 1.1.4

109 SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional GET_DIGESTS request message format

GET_CERTIFICATE 0x82 Optional
GET_CERTIFICATE request message

format

CHALLENGE 0x83 Optional CHALLENGE request message format

GET_VERSION 0x84 Required GET_VERSION request message format

GET_MEASUREMENTS 0xE0 Optional
GET_MEASUREMENTS request

message format

GET_CAPABILITIES 0xE1 Required
GET_CAPABILITIES request message

format

NEGOTIATE_ALGORITHMS 0xE3 Required
NEGOTIATE_ALGORITHMS request

message format

KEY_EXCHANGE 0xE4 Optional
KEY_EXCHANGE request message

format

FINISH 0xE5 Optional FINISH request message format

PSK_EXCHANGE 0xE6 Optional
PSK_EXCHANGE request message

format

PSK_FINISH 0xE7 Optional PSK_FINISH request message format

HEARTBEAT 0xE8 Optional HEARTBEAT request message format

KEY_UPDATE 0xE9 Optional KEY_UPDATE request message format

GET_ENCAPSULATED_REQUEST 0xEA Optional
GET_ENCAPSULATED_REQUEST

request message format

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional
DELIVER_ENCAPSULATED_RESPONSE

request message format

END_SESSION 0xEC Optional END_SESSION request message format

RESPOND_IF_READY 0xFF Required
RESPOND_IF_READY request message

format

VENDOR_DEFINED_REQUEST 0xFE Optional
VENDOR_DEFINED_REQUEST request

message format

Reserved

0x80 ,

0x85 - 0xDF ,

0xE2 ,

0xED - 0xFD

SPDM implementations compatible with

this version shall not use the reserved

request codes.

DSP0274 SPDM Specification

Version 1.1.4 Published 25

110 8.4 SPDM response codes

111 The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use the following SPDM response codes.

112 On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message should be returned.

113 The SPDM response codes table defines the response codes for SPDM. The Implementation requirement column

indicates requirements on the Responder.

114 SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Successful DIGESTS response

message format

CERTIFICATE 0x02 Optional
Successful CERTIFICATE response

message format

CHALLENGE_AUTH 0x03 Optional
Successful CHALLENGE_AUTH

response message format

VERSION 0x04 Required
Successful VERSION response

message format

MEASUREMENTS 0x60 optional
Successful MEASUREMENTS

response message format

CAPABILITIES 0x61 Required
Successful CAPABILITIES response

message format

ALGORITHMS 0x63 Required
Successful ALGORITHMS response

message format

KEY_EXCHANGE_RSP 0x64 Optional
Successful KEY_EXCHANGE_RSP

response message format

FINISH_RSP 0x65 Optional
Successful FINISH_RSP response

message format

PSK_EXCHANGE_RSP 0x66 Optional
PSK_EXCHANGE_RSP response

message format

PSK_FINISH_RSP 0x67 Optional
Successful PSK_FINISH_RSP

response message format

HEARTBEAT_ACK 0x68 Optional
HEARTBEAT_ACK response

message format

SPDM Specification DSP0274

26 Published Version 1.1.4

Response Value Implementation requirement Message format

KEY_UPDATE_ACK 0x69 Optional
KEY_UPDATE_ACK response

message format

ENCAPSULATED_REQUEST 0x6A Optional
ENCAPSULATED_REQUEST

response message format

ENCAPSULATED_RESPONSE_ACK 0x6B Optional
ENCAPSULATED_RESPONSE_ACK

response message format

END_SESSION_ACK 0x6C Optional
END_SESSION_ACK response

message format

VENDOR_DEFINED_RESPONSE 0x7E Optional
VENDOR_DEFINED_RESPONSE

response message format

ERROR 0x7F ERROR response message format

Reserved

0x00 ,

0x05 - 0x5F ,

0x62 ,

0x6D - 0x7D

SPDM implementations compatible with

this version shall not use the reserved

response codes.

115 8.5 SPDM request and response code issuance allowance

116 The SPDM request and response messages validity table describes the conditions under which a request and

response can be issued.

117 The Session column describes whether the respective request and response can be sent in a session. If the value is

"Allowed", the issuer of the request and response shall be able to send it in a secure session; thereby, affording them

the protection of a secure session. If the Session column value is Prohibited , the issuer shall be prohibited from

sending the respective request and response in a secure session.

118 The Outside of a session column indicates which requests and responses are allowed to be sent free and

independent of a session; thereby lacking the protection of a secure session. An "Allowed" in this column indicates

that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a

"Prohibited" in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

119 A request and its corresponding response can have the Allowed value in both the Session and Outside of a

session columns, in which case, they can be sent and received in both scenarios but may have additional

restrictions. See the respective request and response clause for further details.

120 A request and its corresponding response that has Allowed value in the Session and Prohibited in the Outside of

a session columns are commands used by the session. These commands only operate on the session that they

were sent under, which is outside of the SPDM specification. The session ID is implicit from the session used to

transmit the commands.

DSP0274 SPDM Specification

Version 1.1.4 Published 27

121 Finally, the Session phases column describes which phases of a session the respective request and response shall

be issued when they are allowed to be issued in a session.

122 For details, see the Session clause.

123 SPDM request and response messages validity

Request Response Session
Outside of a

session
Session phases

GET_MEASUREMENT MEASUREMENT Allowed Allowed Application Phase

FINISH FINISH_RSP Allowed Conditional (*) Session Handshake

PSK_FINISH PSK_FINISH_RSP Allowed Allowed Session Handshake

HEARTBEAT HEARTBEAT_ACK Allowed Prohibited Application Phase

KEY_UPDATE KEY_UPDATE_ACK Allowed Prohibited Application Phase

END_SESSION END_SESSION_ACK Allowed Prohibited Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Allowed Allowed Application Phase

All others All others Prohibited Allowed Not Applicable

124 (*) Prohibited when HANDSHAKE_IN_THE_CLEAR_CAP = 0 , Allowed when HANDSHAKE_IN_THE_CLEAR_CAP = 1 .

125 For ERROR response in session handshake or application phase of a session, the Requester is only allowed in

certain situations to send the ERROR response.

126 8.6 Concurrent SPDM message processing

127 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

128 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

129 8.7 Requirements for Requesters

130 A Requester shall not have multiple outstanding requests to the same Responder, with the following exception: as

addressed in GET_VERSION request and VERSION response messages, a Requester may issue a GET_VERSION to

SPDM Specification DSP0274

28 Published Version 1.1.4

a Responder to restart the protocol due to an internal error or reset, even if the Requester has existing outstanding

requests to the same Responder.

131 If the Requester has sent a request to a Responder and wants to send a subsequent request to the same

Responder, then the Requester shall wait to send the subsequent request until after the Requester completes one of

the following actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication, from the transport layer, that transmission of the request message failed.

• The Requester encounters an internal error or reset.

132 A Requester may send simultaneous request messages to different Responders.

133 8.8 Requirements for Responders

134 A Responder is not required to process more than one request message at a time.

135 A Responder that is not ready to accept a new request message shall either respond with an ERROR response

message with ErrorCode=Busy or silently discard the request message.

136 If a Responder is working on a request message from a Requester, the Responder may respond with

ErrorCode=Busy .

137 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

DSP0274 SPDM Specification

Version 1.1.4 Published 29

138 9 Timing requirements

139 The Timing specification for SPDM messages table shows the timing specifications for Requesters and Responders.

140 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester may retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

Because a retried message is identical to the first, a retried message shall not be used in transcript hash

calculations.

141 If the transport is not reliable, then the Responder should support retry by identifying whether a received request is a

retried one or a new one. If the Responder supports retry, then the response to a retried request shall be identical to

the original response. If the transport is reliable, then the Responder may support retry.

142 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) may retry,

but that is outside of the SPDM specification.

143 9.1 Timing measurements

144 A Requester shall measure timing parameters, applicable to it, from the end of a successful transmission of an

SPDM request to the beginning of the reception of the corresponding SPDM response. With the exception of RDT , a

Responder shall measure timing parameters, applicable to it, from the end of the reception of the SPDM request to

the beginning of transmission of the response. The requirement assumes that the Responder has immediate access

to the transport.

145 9.2 Timing specification table

146 The Ownership column in the Timing specification for SPDM messages table specifies whether the timing parameter

applies to the Responder or Requester.

147 Timing specification for SPDM messages

SPDM Specification DSP0274

30 Published Version 1.1.4

Timing parameter Ownership Value Units Description

RTT Requester See the description. µs

Worst case round-trip

transport timing.

The maximum value shall be

the worst case total time for

the complete transmission

and delivery of an SPDM

message round trip at the

transport layer(s). The actual

value for this parameter is

transport- or media-specific.

Both the actual value and

how an endpoint obtains this

value are outside the scope

of this specification.

ST1 Responder 100,000 µs

Shall be the maximum

amount of time the

Responder has to provide a

response to requests that do

not require cryptographic

processing, such as the

GET_CAPABILITIES ,

GET_VERSION , or

NEGOTIATE_ALGORITHMS

request messages.

T1 Requester RTT+ST1 µs

Shall be the minimum

amount of time the

Requester shall wait before

issuing a retry for requests

that do not require

cryptographic processing.

For details, see ST1 .

CT Requester and Responder 2
CTExponent µs

CTExponent is reported in

GET_CAPABILITIES and

CAPABILITIES messages.

This timing parameter shall

be the maximum amount of

time the endpoint has to

provide any response

requiring cryptographic

processing, such as the

GET_MEASUREMENTS or

CHALLENGE request

messages.

DSP0274 SPDM Specification

Version 1.1.4 Published 31

Timing parameter Ownership Value Units Description

T2 Requester RTT+CT µs

Shall be the minimum

amount of time the

Requester shall wait before

issuing a retry for requests

that require cryptographic

processing.

For details, see CT .

RDT Responder 2
RDTExponent µs

Recommended additional

amount of time, in

microseconds that the

Responder needs to

complete the requested

cryptographic operation.

When the Responder cannot

complete cryptographic

processing response within

the CT time, it shall provide

RDTExponent as part of the

ERROR response. See the

ResponseNotReady

extended error data table for

the RDTExponent value.

For details, see

ErrorCode=ResponseNotReady

in the ResponseNotReady

extended error data table. An

SPDM responder measures

the RDT value from the end

of the transmission of the

ERROR message of

ErrorCode=ResponseNotReady ,

to the reception of the next

RESPOND_IF_READY request

message.

SPDM Specification DSP0274

32 Published Version 1.1.4

Timing parameter Ownership Value Units Description

WT Requester RDT µs

Amount of time that the

Requester should wait before

issuing the

RESPOND_IF_READY request

message.

The Requester shall

measure this timing

parameter from the reception

of the ERROR response to the

transmission of

RESPOND_IF_READY request.

The Requester can include

the transmission time of the

ERROR from the Responder

to Requester as time spent

waiting for WT to expire. For

example, if a Responder

indicates WT is two seconds

and the ERROR response

takes one second to

transport to the Requester,

the Requester only needs to

wait an additional one

second upon reception of the

ERROR response.

For details, see RDT .

DSP0274 SPDM Specification

Version 1.1.4 Published 33

Timing parameter Ownership Value Units Description

WT Max Requester (RDT*RDTM)-RTT µs

Maximum wait time the

Requester has to issue

RESPOND_IF_READY request

unless the Requester issued

a successful

RESPOND_IF_READY request

message earlier.

After this time the Responder

is allowed to drop the

response. The Requester

shall take into account the

transmission time of the

ERROR from the Responder

to Requester when

calculating WT Max .

The RDTM value appears in

the ResponseNotReady

extended error data.

The Responder should

ensure that WT Max does not

result in less than WT in

determination of RDTM .

For details, see

ErrorCode=ResponseNotReady

in the ResponseNotReady

extended error data table.

HeartbeatPeriod Requester and Responder Variable s

See HEARTBEAT request

and HEARTBEAT_ACK

response for detail.

SPDM Specification DSP0274

34 Published Version 1.1.4

148 10 SPDM messages

149 SPDM messages can be divided into the following categories, supporting different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Firmware measurements

• Key agreement for secure channel establishment

150 10.1 Capability discovery and negotiation

151 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS .

152 The Capability discovery and negotiation flow shows the high-level request-response flow and sequence for the

capability discovery and negotiation:

153 Capability discovery and negotiation flow

154

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a

NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.

NEGOTIATE_ALGORITHMS

GET_CAPABILITIES

CAPABILITIES

GET_VERSION

VERSION

ALGORITHMS

155 10.2 GET_VERSION request and VERSION response messages

156 This request message shall retrieve the SPDM version of an endpoint. The GET_VERSION request message format

DSP0274 SPDM Specification

Version 1.1.4 Published 35

table shows the GET_VERSION request message format and the Successful VERSION response message format

table shows the VERSION response message format.

157 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with all

earlier versions.

158 The Requester shall begin the discovery process by sending a GET_VERSION request message with major version

0x1 . All Responders shall always support the GET_VERSION request message with major version 0x1 and provide a

VERSION response containing all supported versions, as the GET_VERSION request message format table

describes.

159 The Requester shall consult the VERSION response to select a common supported version, which is typically the

latest supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies a

common version that both sides support. A Responder shall not respond to the GET_VERSION request message an

ERROR message except for ErrorCode s specified in this clause.

160 A Requester can issue a GET_VERSION request message to a Responder at any time, which is as an exception to

Requirements for Requesters to allow for scenarios where a Requester shall restart the protocol due to an internal

error or reset.

161 After receiving a GET_VERSION request, the Responder shall cancel all previous requests from the same Requester.

All active sessions between the Requester and the Responder are terminated, i.e., information (such as session

keys, session IDs) for those sessions should not be used anymore. Additionally, this message shall clear or reset the

previously Negotiated State, if any, in both the Requester and its corresponding Responder.

162 All Responders that have completed a firmware update shall either respond with ErrorCode=RequestResynch to any

request until a GET_VERSION request is received or silently discard the request.

163 Discovering the common major version

SPDM Specification DSP0274

36 Published Version 1.1.4

164

ResponderRequester

GET_VERSION (version=1.0)

VERSION (6.4, 6.3, 6.2, 6.1)

Request version always
uses version = 1.0

Supports versions 6.4,
6.3, 6.2, 6.1

GET_CAPABILITIES (version=6.3)

CAPABILITIES

Supports versions 7.1, 7.0, 6.3,
6.2, 6.1, 6.0

Version information
response

Settle on version 6.3

NEGOTIATE_ALGORITHMS (Version = 6.3)

ALGORITHMS ()

165 GET_VERSION request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x84=GET_VERSION

2 Param1 1 Reserved.

3 Param2 1 Reserved.

166 Successful VERSION response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.0 = 0x10

1 RequestResponseCode 1 0x04=VERSION

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

DSP0274 SPDM Specification

Version 1.1.4 Published 37

Offset Field Size (bytes) Value

5 VersionNumberEntryCount 1
Number of version entries present in this table

(=n).

6 VersionNumberEntry1:<n> 2*n
16-bit version entry. See the VersionNumberEntry

definition table.

167 VersionNumberEntry definition

Bit Field Value

[15:12] MajorVersion

Version of the specification with changes that are incompatible

with one or more functions in earlier major versions of the

specification.

[11:8] MinorVersion

Version of the specification with changes that are compatible

with functions in earlier minor versions of this major version

specification.

[7:4] UpdateVersionNumber

Version of the specification with editorial updates but no

functionality additions or changes. Informational; possible errata

fixes. Ignore when checking versions for interoperability.

[3:0] Alpha

Pre-release work-in-progress version of the specification.

Backward compatible with earlier minor versions of this major

version specification. However, because the Alpha value

represents an in-development version of the specification,

versions that share the same major and minor version numbers

but have different Alpha versions may not be fully

interoperable. Released versions shall have an Alpha value of

zero (0).

168 10.3 GET_CAPABILITIES request and CAPABILITIES response messages

169 This request message shall retrieve the SPDM capabilities of an endpoint.

170 The GET_CAPABILITIES request message format table shows the GET_CAPABILITIES request message format.

171 The Successful CAPABILITIES response message format table shows the CAPABILITIES response message format.

172 The Requester flag fields definitions table shows the flag fields definitions for the Requester.

173 Likewise, the Responder flag fields definitions table shows the flag fields definitions for the Responder.

174 GET_CAPABILITIES request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE1=GET_CAPABILITIES

SPDM Specification DSP0274

38 Published Version 1.1.4

Offset Field Size (bytes) Value

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be exponent of base 2, which is used to

calculate CT .

See the Timing specification for SPDM messages

table.

The equation for CT shall be 2
CTExponent

microseconds (µs).

For example, if CTExponent is 10 , CT is

2
10

=1024 µs .

6 Reserved 2 Reserved.

8 Flags 4 See the Requester flag fields definitions table.

175 Successful CAPABILITIES response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x61=CAPABILITIES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be the exponent of base 2, which used to

calculate CT .

See the Timing specification for SPDM messages

table.

The equation for CT shall be 2
CTExponent

microseconds (µs).

For example, if CTExponent is 10 , CT is

2
10

=1024 µs .

6 Reserved 2 Reserved.

8 Flags 4 See the Responder flag fields definitions table.

DSP0274 SPDM Specification

Version 1.1.4 Published 39

176 Requester flag fields definitions

177 Unless otherwise stated, if a Requester indicates support of a capability associated with an SPDM request or

response message, it means the Requester can receive the corresponding request and produce a successful

response. In other words, the Requester is acting as a Responder to that SPDM request associated with that

capability. For example, if a Requester sets CERT_CAP bit to 1 , the Requester can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 Reserved Reserved.

0 1 CERT_CAP
If set, Requester shall support DIGESTS and

CERTIFICATE response messages.

0 2 CHAL_CAP
If set, Requester shall support CHALLENGE_AUTH

response message.

0 4:3 MEAS_CAP

The corresponding bits of the Responder flag

fields definitions indicate MEASUREMENT

response capabilities. These bits shall be set

to 00b .

0 5 MEAS_FRESH_CAP

The corresponding bit of the Responder flag

fields definitions indicate MEASUREMENT

response capabilities. This bit shall be set to

0b .

0 6 ENCRYPT_CAP

If set, Requester shall support message

encryption in a secure session. If set, when the

Requester chooses to start a secure session,

the Requester shall send one of the Session-

Secrets-Exchange request messages

supported by the Responder.

0 7 MAC_CAP

If set, Requester shall support message

authentication in a secure session. If set, when

the Requester chooses to start a secure

session, the Requester shall send one of the

Session-Secrets-Exchange request messages

supported by the Responder. MAC_CAP is not

the same as the HMAC in the

RequesterVerifyData or ResponderVerifyData

fields of Session-Secrets-Exchange and

Session-Secrets-Finish messages.

1 0 MUT_AUTH_CAP
If set, Requester shall support mutual

authentication.

1 1 KEY_EX_CAP

If set, Requester shall support KEY_EXCHANGE

messages. If set, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

SPDM Specification DSP0274

40 Published Version 1.1.4

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-shared key capabilities of the Requester.

00b . Requester shall not support pre-shared

key capabilities.

01b . Requester shall support pre-shared key

10b and 11b . Reserved.

If supported, one or more of ENCRYPT_CAP and

MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Requester shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages. If

mutual authentication is supported, this field

shall be set.

1 5 HBEAT_CAP
If set, Requester shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Requester shall support KEY_UPDATE

messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Requester can support a Responder

that can only send and receive all SPDM

messages exchanged during the Session

Handshake Phase in the clear (such as

without encryption and message

authentication). Application data is encrypted

and/or authenticated using the negotiated

cryptographic algorithms as normal. Setting

this bit leads to changes in the contents of

certain SPDM messages, discussed in other

parts of this specification.

If this bit is cleared, the Requester signals that

it requires encryption and/or message

authentication of SPDM messages exchanged

during the Session Handshake Phase.

If the Requester does not support encryption

and message authentication, then this bit shall

be zero.

In other words, this bit indicates whether

message authentication and/or encryption (

MAC_CAP and ENCRYPT_CAP) are used in the

handshake phase of a secure session.

DSP0274 SPDM Specification

Version 1.1.4 Published 41

Byte Bit Field Value

2 0 PUB_KEY_ID_CAP

If set, the public key of the Requester was

provisioned to the Responder. The transport

layer is responsible for identifying the

Responder. In this case, the CERT_CAP of the

Requester shall be 0 .

2 7:1 Reserved Reserved.

3 7:0 Reserved Reserved.

178 Responder flag fields definitions

179 Unless otherwise stated, if a Responder indicates support of a capability associated with an SPDM request or

response message, it means the Responder can receive the corresponding request and produce a successful

response. For example, if a Responder sets CERT_CAP bit to 1 , the Responder can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

Byte Bit Field Value

0 0 CACHE_CAP

If set, the Responder shall support the ability to

cache the Negotiated State across a reset. This

allows the Requester to skip reissuing the

GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS requests after a reset. The

Responder shall cache the selected cryptographic

algorithms as one of the parameters of the

Negotiated State. If the Requester chooses to skip

issuing these requests after the reset, the

Requester shall also cache the same selected

cryptographic algorithms.

0 1 CERT_CAP
If set, Responder shall support DIGESTS and

CERTIFICATE response messages.

0 2 CHAL_CAP
If set, Responder shall support CHALLENGE_AUTH

response message.

SPDM Specification DSP0274

42 Published Version 1.1.4

Byte Bit Field Value

0 4:3 MEAS_CAP

MEASUREMENT response capabilities of the

Responder.

00b . The Responder shall not support

MEASUREMENTS response capabilities.

01b . The Responder shall support MEASUREMENTS

response but cannot perform signature

generation.

10b . The Responder shall support MEASUREMENTS

response and can generate signatures.

11b . Reserved.

0 5 MEAS_FRESH_CAP

0 . As part of MEASUREMENTS response message,

the Responder may return MEASUREMENTS that

were computed during the last Responder’s reset.

1 . The Responder shall support recomputing all

MEASUREMENTS without requiring a reset or restart,

and shall always return fresh MEASUREMENTS as

part of MEASUREMENTS response message.

0 6 ENCRYPT_CAP

If set, Responder shall support message

encryption in a secure session. If set, one or more

of PSK_CAP or KEY_EX_CAP fields shall be

specified accordingly to indicate support.

0 7 MAC_CAP

If set, Responder shall support message

authentication in a secure session. If set, one or

more of PSK_CAP or KEY_EX_CAP fields shall be

specified accordingly to indicate support. MAC_CAP

is not the same as the HMAC in the

RequesterVerifyData or ResponderVerifyData

fields of Session-Secrets-Exchange and Session-

Secrets-Finish messages.

1 0 MUT_AUTH_CAP
If set, Responder shall support mutual

authentication.

1 1 KEY_EX_CAP

If set, Responder shall support KEY_EXCHANGE

messages. If set, one or more of ENCRYPT_CAP

and MAC_CAP shall be set.

DSP0274 SPDM Specification

Version 1.1.4 Published 43

Byte Bit Field Value

1 3:2 PSK_CAP

Pre-Shared Key capabilities of the Responder.

00b . Responder does not support Pre-Shared

Key capabilities.

01b . Responder shall support Pre-Shared Key

but does not provide ResponderContext for

session key derivation.

10b . Responder shall support Pre-Shared Key

and provides ResponderContext for session key

derivation.

11b . Reserved.

If supported, one or more of ENCRYPT_CAP and

MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Responder shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages. If mutual

authentication is supported, this field shall be set.

1 5 HBEAT_CAP
If set, Responder shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Responder shall support KEY_UPDATE

messages.

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and receive

messages without encryption and message

authentication during the Session Handshake

Phase. If set, KEY_EX_CAP shall also be set.

Setting this bit leads to changes in the contents of

certain SPDM messages, discussed in other parts

of this specification.

If the Responder does not support encryption and

message authentication, then this bit shall be

zero.

In other words, this bit indicates whether message

authentication and/or encryption (MAC_CAP and

ENCRYPT_CAP) are used in the handshake phase

of a secure session.

SPDM Specification DSP0274

44 Published Version 1.1.4

Byte Bit Field Value

2 0 PUB_KEY_ID_CAP

If set, the public key of the Responder was

provisioned to the Requester. The transport layer

is responsible for identifying the Requester. In this

case, CERT_CAP of the Responder shall be 0 .

2 7:1 Reserved Reserved.

3 7:0 Reserved Reserved.

180 10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response
messages

181 This request message shall negotiate cryptographic algorithms. A Requester shall not issue a NEGOTIATE_ALGORITHMS

request message until it receives a successful CAPABILITIES response message.

182 A Requester shall not issue any other SPDM requests, with the exception of GET_VERSION until it receives a

successful ALGORITHMS response message.

183 The NEGOTIATE_ALGORITHMS request message format table shows the NEGOTIATE_ALGORITHMS request message

format.

184 The Successful ALGORITHMS response message format table shows the ALGORITHMS response message format.

185 NEGOTIATE_ALGORITHMS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE3=NEGOTIATE_ALGORITHMS

2 Param1 1
Number of algorithms structure tables

in this request using ReqAlgStruct

3 Param2 1 Reserved

4 Length 2

Length of the entire request message,

in bytes. Length shall be less than or

equal to 128 bytes.

DSP0274 SPDM Specification

Version 1.1.4 Published 45

Offset Field Size (bytes) Value

6 MeasurementSpecification 1

Bit mask. The measurement

specification is used in the

MEASUREMENTS response. Requester

can set all available algorithms

defined in the measurement

specification format. The Requester

can set zero bits if MEASUREMENTS

are not supported.

Bit 0: This bit shall indicate support for

the DMTF-defined measurement

specification. See DMTF specification

for the Measurement field of a

measurement block clauses for

details.

7 Reserved 1 Reserved

SPDM Specification DSP0274

46 Published Version 1.1.4

Offset Field Size (bytes) Value

8 BaseAsymAlgo 4

Bit mask listing Requester-supported

SPDM-enumerated asymmetric key

signature algorithms for the purpose

of signature verification. If the

capabilities do not support this

algorithm, this value is not used and

shall be set to zero. Let S be the size

of the signature in bytes. If the size of

a signature component is less than

specified size, then 0x00 octets are

padded to the left of the most

significant byte.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048 where

S=256.

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048 where

S=256.

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072 where

S=384.

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072 where

S=384.

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

where S=64 (32-byte r followed by

32-byte s).

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096 where

S=512.

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096 where

S=512.

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

where S=96 (48-byte r followed by

48-byte s).

Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521

where S=132 (66-byte r followed by

DSP0274 SPDM Specification

Version 1.1.4 Published 47

Offset Field Size (bytes) Value

66-byte s).

All other values reserved.

12 BaseHashAlgo 4

Bit mask listing Requester-supported

SPDM-enumerated cryptographic

hashing algorithms. If the capabilities

do not support this algorithm, this

value is not used and shall be set to

zero.

Byte 0 Bit 0. TPM_ALG_SHA_256

Byte 0 Bit 1. TPM_ALG_SHA_384

Byte 0 Bit 2. TPM_ALG_SHA_512

Byte 0 Bit 3. TPM_ALG_SHA3_256

Byte 0 Bit 4. TPM_ALG_SHA3_384

Byte 0 Bit 5. TPM_ALG_SHA3_512

All other values reserved.

16 Reserved 12 Reserved

28 ExtAsymCount 1

Number of Requester-supported

extended asymmetric key signature

algorithms (=A) for the purpose of

signature verification. A + E +

ExtAlgCount2 + ExtAlgCount3 +

ExtAlgCount4 + ExtAlgCount5 shall

be less than or equal to 20. If the

capabilities do not support this

algorithm, this value is not used and

shall be set to zero.

29 ExtHashCount 1

Number of Requester-supported

extended hashing algorithms (=E). A

+ E + ExtAlgCount2 + ExtAlgCount3 +

ExtAlgCount4 + ExtAlgCount5 shall

be less than or equal to 20. If the

capabilities do not support this

algorithm, this value is not used and

shall be set to zero.

30 Reserved 2 Reserved

SPDM Specification DSP0274

48 Published Version 1.1.4

Offset Field Size (bytes) Value

32 ExtAsym 4*A

List of Requester-supported extended

asymmetric key signature algorithms

for the purpose of signature

verification. The Extended algorithm

field format table describes the format

of this field.

32 + 4*A ExtHash 4*E

List of the extended hashing

algorithms supported by Requester.

The Extended algorithm field format

table describes the format of this field.

32 + 4*A + 4*E ReqAlgStruct AlgStructSize See the AlgStructure request field.

186 AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall

be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

187 Algorithm request structure

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

[1:0] = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

DSP0274 SPDM Specification

Version 1.1.4 Published 49

Offset Field Size (bytes) Value

1 AlgCount 1

Requester supported

fixed algorithms.

Bit [7:4]. Number of Bytes

required to describe

Requester supported

SPDM-enumerated fixed

algorithms (=

FixedAlgCount).

FixedAlgCount + 2 shall

be a multiple of 4

Bit [3:0] Number of

Requester supported

extended algorithms (=

ExtAlgCount).

2 AlgSupported FixedAlgCount

Bit mask listing

Requester-supported

SPDM-enumerated

algorithms.

2 + FixedAlgCount AlgExternal 4*ExtAlgCount

List of Requester-

supported extended

algorithms. The Extended

algorithm field format

table describes the format

of this field.

188 The following tables describe the associated fixed fields for the individual types.

189 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester-supported

extended DHE groups (=

ExtAlgCount2).

SPDM Specification DSP0274

50 Published Version 1.1.4

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing

Requester-supported

SPDM-enumerated Diffie-

Hellman Ephemeral

(DHE) groups. Values in

parentheses specify the

size of the corresponding

public values associated

with each group.

Byte 0 Bit 0. ffdhe2048 (D

= 256)

Byte 0 Bit 1. ffdhe3072 (D

= 384)

Byte 0 Bit 2. ffdhe4096 (D

= 512)

Byte 0 Bit 3. secp256r1

(D = 64, C = 32)

Byte 0 Bit 4. secp384r1

(D = 96, C = 48)

Byte 0 Bit 5. secp521r1

(D = 132, C = 66)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2

List of Requester-

supported extended DHE

groups. The Extended

algorithm field format

table describes the format

of this field.

190 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester supported

extended AEAD

algorithms (=

ExtAlgCount3).

DSP0274 SPDM Specification

Version 1.1.4 Published 51

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing

Requester-supported

SPDM-enumerated

AEAD algorithms.

Byte 0 Bit 0.

AES-128-GCM. 128-bit

key; 96-bit IV

(initialization vector); tag

size is specified by

transport layer.

Byte 0 Bit 1.

AES-256-GCM. 256-bit

key; 96-bit IV; tag size is

specified by transport

layer.

Byte 0 Bit 2.

CHACHA20_POLY1305.

256-bit key; 96-bit IV;

128-bit tag.

All other values reserved.

4 AlgExternal 4*ExtAlgCount3

List of Requester-

supported extended

AEAD algorithms. The

Extended algorithm field

format table describes the

format of this field.

191 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester

supported extended asymmetric key

signature algorithms for the purpose

of signature generation.(=

ExtAlgCount4).

SPDM Specification DSP0274

52 Published Version 1.1.4

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask listing Requester-supported

SPDM-enumerated asymmetric key

signature algorithms for the purposes

of signature generation.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

4 AlgExternal 4*ExtAlgCount4

List of Requester-supported extended

asymmetric key signature algorithms

for the purpose of signature

generation. The Extended algorithm

field format table describes the format

of this field.

192 KeySchedule structure

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

DSP0274 SPDM Specification

Version 1.1.4 Published 53

Offset Field Size (bytes) Value

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester supported

extended key schedule

algorithms (=

ExtAlgCount5).

2 AlgSupported 2

Bit mask listing

Requester-supported

SPDM-enumerated Key

Schedule algorithms.

Byte 0 Bit 0. SPDM Key

Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5

List of Requester-

supported extended key

schedule algorithms. The

Extended algorithm field

format table describes the

format of this field.

193 Successful ALGORITHMS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x63=ALGORITHMS

2 Param1 1

Number of algorithms

structure tables in this

response using

RespAlgStruct

3 Param2 1 Reserved

4 Length 2
Length of the response

message, in bytes.

SPDM Specification DSP0274

54 Published Version 1.1.4

Offset Field Size (bytes) Value

6 MeasurementSpecificationSel 1

Bit mask. The Responder

shall select one of the

measurement

specifications supported

by the Requester and

Responder. Thus, no more

than one bit shall be set.

The

MeasurementSpecification

field in

NEGOTIATE_ALGORITHMS

defines the format of this

field.

7 Reserved 1 Reserved

DSP0274 SPDM Specification

Version 1.1.4 Published 55

Offset Field Size (bytes) Value

8 MeasurementHashAlgo 4

Bit mask indicating the

SPDM-enumerated

hashing algorithm selected

for measurements.

Bit 0. Raw Bit Stream Only

Bit 1.

TPM_ALG_SHA_256

Bit 2.

TPM_ALG_SHA_384

Bit 3.

TPM_ALG_SHA_512

Bit 4.

TPM_ALG_SHA3_256

Bit 5.

TPM_ALG_SHA3_384

Bit 6.

TPM_ALG_SHA3_512

If the Responder supports

GET_MEASUREMENTS , exactly

one bit in this bit field shall

be set. Otherwise, the

Responder shall set this

field to 0 .

A Responder shall only

select bit 0 if the

Responder supports raw

bit streams as the only

form of measurement;

otherwise, it shall select

one of the other bits.

SPDM Specification DSP0274

56 Published Version 1.1.4

Offset Field Size (bytes) Value

12 BaseAsymSel 4

Bit mask indicating the

SPDM-enumerated

asymmetric key signature

algorithm selected for the

purpose of signature

generation. If the

capabilities do not support

this algorithm, this value is

not used and shall be set

to zero. The Responder

shall set no more than one

bit.

16 BaseHashSel 4

Bit mask indicating the

SPDM-enumerated

hashing algorithm

selected. If the capabilities

do not support this

algorithm, this value is not

used and shall be set to

zero. The Responder shall

set no more than one bit.

20 Reserved 12 Reserved

32 ExtAsymSelCount 1

Number of extended

asymmetric key signature

algorithms selected for the

purpose of signature

generation. Shall be either

0 or 1 (=A'). If the

capabilities do not support

this algorithm, this value is

not used and shall be set

to zero.

33 ExtHashSelCount 1

The number of extended

hashing algorithms

selected. Shall be either

0 or 1 (=E'). If the

capabilities do not support

this algorithm, this value is

not used and shall be set

to zero.

34 Reserved 2 Reserved.

DSP0274 SPDM Specification

Version 1.1.4 Published 57

Offset Field Size (bytes) Value

36 ExtAsymSel 4*A'

The extended asymmetric

key signature algorithm

selected for the purpose of

signature generation. The

Responder shall use this

asymmetric signature

algorithm for all

subsequent applicable

response messages to the

Requester. The Extended

algorithm field format table

describes the format of

this field.

36+4*A' ExtHashSel 4*E'

Extended hashing

algorithm selected. The

Responder shall use this

hashing algorithm during

all subsequent response

messages to the

Requester. The Requester

shall use this hashing

algorithm during all

subsequent applicable

request messages to the

Responder. The Extended

algorithm field format table

describes the format of

this field.

36+4*A'+4*E' RespAlgStruct AlgStructSize
See Response

AlgStructure field format

194 AlgStructSize is the sum of the size of all Algorithm structure tables, as the following tables show. The algorithm

structure table need be present only if the responder supports that AlgType . AlgType shall monotonically increase

for subsequent entries.

195 Response AlgStructure field format

SPDM Specification DSP0274

58 Published Version 1.1.4

Offset Field Size (bytes) Value

0 AlgType 1

Type of algorithm.

[1:0] = Reserved

2 = DHE

3 = AEADCipherSuite

4 = ReqBaseAsymAlg

5 = KeySchedule

All other values reserved.

1 AlgCount 1

Bit mask listing

Responder supported

fixed algorithm requested

by the Requester.

Bit [7:4]. Number of Bytes

required to describe

Requester supported

SPDM-enumerated fixed

algorithms (=

FixedAlgCount).

FixedAlgCount + 2 shall

be a multiple of 4

Bit [3:0] Number of

Requester-supported,

Responder-selected,

extended algorithms (=

ExtAlgCount'). This value

shall be either 0 or 1.

2 AlgSupported FixedAlgCount

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated

algorithm. Responder

shall set at most one bit

to 1.

DSP0274 SPDM Specification

Version 1.1.4 Published 59

Offset Field Size (bytes) Value

2 + FixedAlgCount AlgExternal 4*ExtAlgCount'

If present: a Requester-

supported, Responder-

selected, extended

algorithm. Responder

shall select at most one

external algorithm. The

Extended algorithm field

format table describes the

format of this field.

196 The tables for each of the individual type with the associated fixed fields are described below.

197 DHE structure

Offset Field Size (bytes) Value

0 AlgType 1 0x2=DHE

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester-supported,

Responder-selected,

extended DHE groups (=

ExtAlgCount2'). This

value shall be either 0 or

1.

SPDM Specification DSP0274

60 Published Version 1.1.4

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated DHE

group. Values in

parentheses specify the

size of the corresponding

public values associated

with each group.

Byte 0 Bit 0. ffdhe2048 (D

= 256)

Byte 0 Bit 1. ffdhe3072 (D

= 384)

Byte 0 Bit 2. ffdhe4096 (D

= 512)

Byte 0 Bit 3. secp256r1

(D = 64, C = 32)

Byte 0 Bit 4. secp384r1

(D = 96, C = 48)

Byte 0 Bit 5. secp521r1

(D = 132, C = 66)

All other values reserved.

4 AlgExternal 4*ExtAlgCount2'

If present: a Requester-

supported, Responder-

selected, extended DHE

algorithm. The Extended

algorithm field format

table describes the format

of this field.

198 AEAD structure

Offset Field Size (bytes) Value

0 AlgType 1 0x3=AEAD

DSP0274 SPDM Specification

Version 1.1.4 Published 61

Offset Field Size (bytes) Value

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of

Requester-supported,

Responder-selected,

extended AEAD

algorithms (=

ExtAlgCount3'). This

value shall be either 0 or

1.

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated

AEAD algorithm.

Byte 0 Bit 0.

AES-128-GCM

Byte 0 Bit 1.

AES-256-GCM

Byte 0 Bit 2.

CHACHA20_POLY1305

All other values reserved.

4 AlgExternal 4*ExtAlgCount3'

If present: a Requester-

supported, Responder-

selected, extended AEAD

algorithm. The Extended

algorithm field format

table describes the format

of this field.

199 ReqBaseAsymAlg structure

Offset Field Size (bytes) Value

0 AlgType 1 0x4=ReqBaseAsymAlg

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] = Number of Requester-

supported, Responder-selected,

extended asymmetric key signature

algorithms (= ExtAlgCount4') for the

purpose of signature verification. This

value shall be either 0 or 1.

SPDM Specification DSP0274

62 Published Version 1.1.4

Offset Field Size (bytes) Value

2 AlgSupported 2

Bit mask for indicating a Requester-

supported, Responder-selected,

SPDM-enumerated asymmetric key

signature algorithm for the purposes

of signature verification.

Byte 0 Bit 0.

TPM_ALG_RSASSA_2048

Byte 0 Bit 1.

TPM_ALG_RSAPSS_2048

Byte 0 Bit 2.

TPM_ALG_RSASSA_3072

Byte 0 Bit 3.

TPM_ALG_RSAPSS_3072

Byte 0 Bit 4.

TPM_ALG_ECDSA_ECC_NIST_P256

Byte 0 Bit 5.

TPM_ALG_RSASSA_4096

Byte 0 Bit 6.

TPM_ALG_RSAPSS_4096

Byte 0 Bit 7.

TPM_ALG_ECDSA_ECC_NIST_P384

Byte 1 Bit 0.

TPM_ALG_ECDSA_ECC_NIST_P521

All other values reserved.

4 AlgExternal 4*ExtAlgCount4'

If present: a Requester-supported,

Responder-selected, extended

asymmetric key signature algorithm

for the purpose of signature

verification. The Extended algorithm

field format table describes the format

of this field.

200 KeySchedule structure

Offset Field Size (bytes) Value

0 AlgType 1 0x5=KeySchedule

DSP0274 SPDM Specification

Version 1.1.4 Published 63

Offset Field Size (bytes) Value

1 AlgCount 1

Bit [7:4] = 2.

Bit [3:0] Number of

Requester-supported,

Responder-selected,

extended key schedule

algorithms (=

ExtAlgCount5'). This

value shall be either 0 or

1.

2 AlgSupported 2

Bit mask for indicating a

Requester-supported,

Responder-selected,

SPDM-enumerated Key

Schedule algorithm.

Byte 0 Bit 0. SPDM Key

Schedule.

All other values reserved.

4 AlgExternal 4*ExtAlgCount5'

If present: a Requester-

supported, Responder-

selected, extended key

schedule algorithm. The

Extended algorithm field

format table describes the

format of this field.

201 Extended Algorithm field format

202 Describes algorithms that are external to this specification.

Offset Field Description

0 Registry ID

Shall represent the registry or standards body. The ID column in

the Registry or standards body ID table describes the value of

this field.

1 Reserved Reserved

[2:3] Algorithm ID

Shall indicate the desired algorithm. The registry or standards

body owns the value of this field. For details, see the Registry or

standards body ID table.

203 For each algorithm type, a Responder shall not select both an SPDM-enumerated algorithm and an extended

algorithm.

204 Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.

SPDM Specification DSP0274

64 Published Version 1.1.4

205 In Hashing algorithm selection: Example 1, endpoint A issues NEGOTIATE_ALGORITHMS request message and endpoint

B selects an algorithm of which both endpoints are capable.

206 Hashing algorithm selection: Example 1

207

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

208 The SPDM protocol accounts for the possibility that both endpoints may issue NEGOTIATE_ALGORITHMS request

messages independently of each other. In this case, the endpoint A Requester and endpoint B Responder

communication pair may select a different algorithm compared to the endpoint B Requester and endpoint A

Responder communication pair.

209 10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS

210 With the successful completion of the ALGORITHMS message, all of the parameters for further SPDM message

exchanges between the same pair of Requester and Responder have been determined. Thus, all SPDM message

exchanges after the VERSION , CAPABILITIES AND ALGORITHMS messages shall comply with the selected parameters

DSP0274 SPDM Specification

Version 1.1.4 Published 65

in ALGORITHMS , with the exception of GET_VERSION and VERSION messages, or unless otherwise stated in this

specification. To explain this behavior, suppose a Responder supports both RSA and ECDSA asymmetric algorithms.

The Responder selects the TPM_ALG_RSASSA_2048 asymmetric algorithm in BaseAsymSel and the TPM_ALG_SHA_256

hash algorithm in BaseHashSel . If the corresponding Requester issues a GET_DIGESTS , the Responder returns

TPM_ALG_SHA_256 digests only for those populated slots that can provide a TPM_ALG_RSASSA_2048 signature for a

CHALLENGE_AUTH response. The Responder would violate this requirement if the Responder returns one or more

digests of populated slots that perform ECDSA signatures or uses a different hash algorithm.

211 Unless otherwise stated in this specification and with the exception of GET_VERSION , if a Requester issues a request

that violates one or more of the negotiated or selected parameters, the corresponding Responder shall either silently

discard the request or return an ERROR message with an appropriate error code.

212 10.5 Responder identity authentication

213 This clause describes request messages and response messages associated with the identity of the Responder

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a

Responder that returns CERT_CAP =1 in the CAPABILITIES response message. The CHALLENGE message defined

in this clause shall be supported by a Responder that returns CHAL_CAP =1 in the CAPABILITIES response message.

The GET_DIGESTS and GET_CERTIFICATE messages are not applicable if the public key of the Responder was

provisioned to the Requester in a trusted environment.

214 The Responder authentication: Example certificate retrieval flow shows the high-level request-response message

flow and sequence for certificate retrieval.

215 Responder authentication: Example certificate retrieval flow

SPDM Specification DSP0274

66 Published Version 1.1.4

216

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000H)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of the signatures of each
certificate (X.509 containing the public
key) in the certificate chain against the
root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

217 The GET_DIGESTS request message and DIGESTS response message may optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of each of the certificate chains stored on an endpoint is returned with the DIGESTS

response message, such that the Requester can cache the previously retrieved certificate chain hash values to

detect any change to the certificate chains stored on the device before issuing the GET_CERTIFICATE request

message.

218 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload shall

contain the signature generated by using the device private key over the hash of the message transcript. See the

Request ordering and message transcript computation rules for M1/M2 table.

219 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder and enables the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM versions.

220 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates.

DSP0274 SPDM Specification

Version 1.1.4 Published 67

The message transcript generation for the signature computation is restarted with the latest GET_VERSION request

received.

221 10.6 Requester identity authentication

222 If the Requester supports mutual authentication, the requirements placed on the Responder in Responder identity

authentication shall also apply to the Requester.

223 If the Responder supports mutual authentication, the requirements placed on the Requester in Responder identity

authentication shall also apply to the Responder. These two statements essentially describe a role reversal.

224 10.6.1 Certificates and certificate chains

225 Each SPDM endpoint that supports identity authentication using certificates shall carry at least one certificate chain.

A certificate chain contains an ordered list of certificates, presented as the binary (byte) concatenation of the fields

that the Certificate chain format shows.

226 Each certificate shall be in ASN.1 DER-encoded X.509 v3 format. The ASN.1 DER encoding of each individual

certificate can be analyzed to determine its length. The minimum number of certificates within a chain shall be one, in

which case the single certificate is the device-specific certificate. The SPDM endpoint shall contain a single public-

private key pair per supported algorithm for its hardware identity, regardless of how many certificate chains are

stored on the device. The Responder selects a single asymmetric key signature algorithm per Requester.

227 Certificate chains are stored in locations called slots. Each slot shall either be empty or contain one complete

certificate chain. A device shall not contain more than eight slots. Slot 0 is populated by default. Additional slots may

be populated through the supply chain such as by a platform integrator or by an end user such as the IT

administrator. A slot mask identifies the certificate chains from the eight slots.

228 In this document, H refers to the output size, in bytes, of the hash algorithm agreed upon in NEGOTIATE_ALGORITHMS .

229 Certificate chain format

Offset Field Size Description

0 Length 2

Total length of the certificate chain, in bytes,

including all fields in this table. This field is little

endian.

2 Reserved 2 Reserved.

4 RootHash H

Digest of the Root Certificate. Note that Root

Certificate is ASN.1 DER-encoded for this digest.

This field shall be big endian.

SPDM Specification DSP0274

68 Published Version 1.1.4

Offset Field Size Description

4 + H Certificates Length - (4 + H)

One or more ASN.1 DER-encoded X.509 v3

certificates where the first certificate is signed by the

Root Certificate or is the Root Certificate itself and

each subsequent certificate is signed by the

preceding certificate. The last certificate is the leaf

certificate. This field shall be big endian.

230 10.7 GET_DIGESTS request and DIGESTS response messages

231 This request message shall be used to retrieve the certificate chain digests.

232 The GET_DIGESTS request message format table shows the GET_DIGESTS request message format.

233 The Successful DIGESTS response message table shows the DIGESTS response message format.

234 The digests in the Successful DIGESTS response message table shall be big endian, and the digest shall be

computed over the certificate chain as shown in Certificate chain format.

235 GET_DIGESTS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x81=GET_DIGESTS

2 Param1 1 Reserved

3 Param2 1 Reserved

236 Successful DIGESTS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x01=DIGESTS

2 Param1 1 Reserved

DSP0274 SPDM Specification

Version 1.1.4 Published 69

Offset Field Size (bytes) Value

3 Param2 1

Slot mask. The bit in

position K of this byte

shall be set to 1b if and

only if slot number K

contains a certificate

chain for the protocol

version in the

SPDMVersion field. (Bit 0

is the least significant bit

of the byte.) The number

of digests returned shall

be equal to the number of

bits set in this byte. The

digests shall be returned

in order of increasing slot

number.

4 Digest[0] H
Digest of the first

certificate chain.

...

4 + (H * (n -1)) Digest[n-1] H
Digest of the last (nth)

certificate chain.

237 10.8 GET_CERTIFICATE request and CERTIFICATE response messages

238 This request message shall retrieve the certificate chains.

239 The GET_CERTIFICATE request message format table shows the GET_CERTIFICATE request message format.

240 The Successful CERTIFICATE response message table shows the CERTIFICATE response message format.

241 The Requester should, at a minimum, save the public key of the leaf certificate and associate it with each of the

digests returned by DIGESTS message response. The Requester sends one or more GET_CERTIFICATE requests to

retrieve the certificate chain of the Responder.

242 GET_CERTIFICATE request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x82=GET_CERTIFICATE

SPDM Specification DSP0274

70 Published Version 1.1.4

Offset Field Size (bytes) Value

2 Param1 1

Slot number of the target

certificate chain to read

from. The value in this

field shall be between 0

and 7 inclusive.

3 Param2 1 Reserved

4 Offset 2

Offset in bytes from the

start of the certificate

chain to where the read

request message begins.

The Responder should

send its certificate chain

starting from this offset.

For the first

GET_CERTIFICATE request

for a given slot, the

Requester shall set this

field to 0. For subsequent

requests, Offset is set

to the next portion of the

certificate in that slot.

6 Length 2

Length of certificate chain

data, in bytes, to be

returned in the

corresponding response.

Length is an unsigned

16-bit integer.

This value is the smaller

of the following values:

Capacity of the internal

buffer of the Requester

for receiving the

certificate chain of the

Responder.

The RemainderLength of

the preceding

GET_CERTIFICATE

response.

If offset=0 and

length=0xFFFF , the

Requester is requesting

the entire chain.

DSP0274 SPDM Specification

Version 1.1.4 Published 71

243 Successful CERTIFICATE response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x02=CERTIFICATE

2 Param1 1
Slot number of the

certificate chain returned.

3 Param2 1 Reserved.

4 PortionLength 2

Number of bytes of this

portion of certificate

chain. This should be less

than or equal to Length

received as part of the

request. For example, the

Responder might set this

field to a value less than

Length received as part

of the request due to

limitations on the internal

buffer of the Responder.

6 RemainderLength 2

Number of bytes of the

certificate chain that have

not been sent yet after

the current response. For

the last response, this

field shall be 0 as an

indication to the

Requester that the entire

certificate chain has been

sent.

8 CertChain PortionLength

Requested contents of

target certificate chain, as

described in Certificates

and certificate chains.

244 The Responder unable to return full length data flow shows the high-level request-response message flow for

Responder response when it cannot return the entire data requested by the Requester in the first response.

245 Responder unable to return full length data flow

SPDM Specification DSP0274

72 Published Version 1.1.4

246

ResponderRequester

GET CERTIFICATE(0, 0x1000)

CERTIFICATE (0x800, 0x200)

GET_CERTIFICATE (0x800, 0x200)

CertificateLength = 0xA00
PortionLength = 0x800

RemainderLength = 0x200

CERTIFICATE (0x200, 0)
PortionLength = 0x200
RemainderLength = 0

Responder Buffer Size
 = 0x800

Requests remaining portion,
Offset 0x800, Length 0x0200

Requester Buffer Size
 = 0x1000

247 10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE
messages

248 If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE

request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports

mutual authentication, the requirements placed on the Requester in GET_CERTIFICATE request and CERTIFICATE

response messages clause shall also apply to the responder. These two statements essentially describes a role

reversal.

249 10.8.2 Leaf certificate

250 The SPDM endpoints for authentication shall be provisioned with DER-encoded X.509 v3 format certificates. The leaf

certificate shall be signed by a trusted CA and provisioned to the device. For endpoint devices to verify the certificate,

the following required fields shall be present. In addition, to provide device information, use the Subject Alternative

Name certificate extension otherName field. See the Definition of otherName using the DMTF OID.

251 Required fields

Field Description

Version Version of the encoded certificate shall be present and shall be 3 (encoded as value 2).

Serial Number CA-assigned serial number shall be present with a positive integer value.

Signature Algorithm Signature algorithm that CA uses shall be present.

Issuer CA distinguished name shall be specified.

Subject Name
Subject name shall be present and shall represent the distinguished name associated

with the leaf certificate.

DSP0274 SPDM Specification

Version 1.1.4 Published 73

Field Description

Validity Certificates may include this attribute. See RFC5280 for further details.

Subject Public Key Info Device public key and the algorithm shall be present.

Key Usage Shall be present and key usage bit for digital signature shall be set.

252 Optional fields

Field Description

Basic Constraints If present, the CA value shall be FALSE .

Subject Alternative Name otherName

In some cases, it might be desirable to provide device specific information as part of the

device certificate. DMTF chose the otherName field with a specific format to represent the

device information. The use of the otherName field also provides flexibility for other

alliances to provide device specific information as part of the device certificate. See the

Definition of otherName using the DMTF OID.

253 Definition of otherName using the DMTF OID

DMTFOtherName ::= SEQUENCE {

type-id DMTF-oid

value [0] EXPLICIT ub-DMTF-device-info

}

-- OID for DMTF device info --

id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }

DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --

DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --

DMTF-manufacturer ::= DMTF-device-string

-- Device Product --

DMTF-product ::= DMTF-device-string

-- Device Serial Number --

DMTF-serialNumber ::= DMTF-device-string

-- Device information string --

ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-product":"DMTF-

serialNumber})

254 The Leaf certificate example shows an example leaf certificate.

SPDM Specification DSP0274

74 Published Version 1.1.4

255 10.9 CHALLENGE request and CHALLENGE_AUTH response messages

256 This request message shall authenticate a Responder through the challenge-response protocol.

257 The CHALLENGE request message format table shows the CHALLENGE request message format.

258 The Successful CHALLENGE_AUTH response message table shows the CHALLENGE_AUTH response message

format.

259 CHALLENGE request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x83=CHALLENGE

2 Param1 1

Slot number of the

certificate chain of the

Responder that shall be

used for authentication. It

shall be 0xFF if the

public key of the

Responder was

provisioned to the

Requester in a trusted

environment.

3 Param2 1

Requested measurement

summary hash Type:

0x0 . No measurement

summary hash.

0x1 . TCB measurement

hash.

0xFF . All measurements

hash.

All other values reserved.

When Responder does

not support any

measurements,

Requester shall set this

value to 0x0 .

4 Nonce 32
The Requester should

choose a random value.

DSP0274 SPDM Specification

Version 1.1.4 Published 75

260 Successful CHALLENGE_AUTH response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x03=CHALLENGE_AUTH

2 Param1 1

Response Attribute Field. Please see

CHALLENGE_AUTH Response Attribute

Table for details.

3 Param2 1

Slot mask. The bit in position K of this byte

shall be set to 1b if and only if slot number

K contains a certificate chain for the

protocol version in the SPDMVersion field.

Bit 0 is the least significant bit of the byte.

This field is reserved if the public key of the

Responder was provisioned to the

Requester in a trusted environment.

4 CertChainHash H

Hash of the certificate chain or public key

(if the public key of the Responder was

provisioned to the Requester in a trusted

environment) used for authentication. The

Requester can use this value to check that

the certificate chain or public key matches

the one requested. This field is big endian.

4 + H Nonce 32 Responder-selected random value.

SPDM Specification DSP0274

76 Published Version 1.1.4

Offset Field Size (bytes) Value

36 + H MeasurementSummaryHash H

When the Responder does not support

measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested

Param2 =0, this field shall be absent.

When the requested Param2 =1, this field

shall be the combined hash of

Measurements of all measurable

components considered to be in the TCB

required to generate this response,

computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...)) where

MeasurementBlock[x] denotes a

measurement of an element in the TCB.

Measurements are concatenated in

ascending order based on their

measurement index.

When the requested Param2 =1 and there

are no measurable components in the TCB

required to generate this response, this

field shall be 0 .

When requested Param2=0xFF , this field is

computed as the

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported

measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order.

Indices with no associated measurements

shall not be included in the hash

calculation.

36 + 2H OpaqueLength 2
Size of the OpaqueData field. The value

shall not be greater than 1024 bytes.

38 + 2H OpaqueData OpaqueLength

Free-form field, if present. The Responder

may include Responder-specific

information and/or information defined by

its transport.

DSP0274 SPDM Specification

Version 1.1.4 Published 77

Offset Field Size (bytes) Value

38 + 2H +

OpaqueLength
Signature S

S is the size of the asymmetric-signing

algorithm output that the Responder

selected through the last ALGORITHMS

response message to the Requester. The

CHALLENGE_AUTH signature generation

and CHALLENGE_AUTH signature

verification clauses, respectively, define the

signature generation and verification

processes.

261 CHALLENGE_AUTH response attribute

Bit Offset Field Name Description

[3:0] SlotID

This field shall contain the slot number in

the Param1 field of the corresponding

CHALLENGE request. If the Responder’s

public key was provisioned to the

Requester previously, this field shall be

0xF. The Requester can use this value to

check that the certificate matched what

was requested.

[6:4] Reserved Reserved.

7 BasicMutAuthReq

When mutual authentication is supported

by both Responder and Requester, the

Responder shall set this bit to indicate

the Responder wants to authenticate the

identity of the Requester using the basic

mutual authentication flow. The

Requester shall not set this bit in a basic

mutual authentication flow. See Basic

mutual authentication flow for more

details.

If mutual authentication is not supported,

this bit shall be zero; otherwise, it should

be considered an error.

262 10.9.1 CHALLENGE_AUTH signature generation

263 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.264 The Responder shall construct M1 and the Requester shall construct M2 message transcripts. For

Responder authentication, see the Request ordering and message transcript computation rules for

M1/M2 table. For Requester authentication in the mutual authentication scenario, see the Mutual

authentication message transcript clause.

SPDM Specification DSP0274

78 Published Version 1.1.4

265 where:

266 Concatenate() is the standard concatenation function that is performed only after a successful

completion response on the entire request and response contents.

◦267 If a response contains ErrorCode=ResponseNotReady :

268 Concatenation function is performed on the contents of both the original request and the response

received during RESPOND_IF_READY .

◦269 If a response contains an ErrorCode other than ResponseNotReady :

270 No concatenation function is performed on the contents of both the original request and response.

2.271 The Responder shall generate:

Signature = Sign(SK, Hash(M1));

272 where:

◦273 Sign

274 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS response

message that the Responder sent.

275 The Successful ALGORITHMS response message format table describes the BaseAsymSel ,

ExtAsymSel and RespAlgStruct (when AlgType == ReqBaseAsymAlg) fields.

◦276 SK

277 Private key associated with the leaf certificate of the Responder in slot=Param1 of the CHALLENGE

request message. If the public key of the Responder was provisioned to the Requester, then SK

is the associated private key.

◦278 Hash

279 Hashing algorithm the Responder selected through the last ALGORITHMS response message that

the Responder sent.

280 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

281 If the signing algorithm first hashes the message before generating the signature, the signing

algorithm's hashing step shall be skipped.

DSP0274 SPDM Specification

Version 1.1.4 Published 79

282 10.9.2 CHALLENGE_AUTH signature verification

283 Modifications to the previous request messages or the corresponding response messages by an active person-in-

the-middle adversary or media error result in M2!=M1 and lead to verification failure.

284 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.285 The Requester shall perform:

Verify(PK, Hash(M2), Signature);

286 where:

◦287 Verify

288 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

289 The Successful ALGORITHMS response message format table describes the BaseAsymSel ,

ExtAsymSel and RespAlgStruct (when AlgType == ReqBaseAsymAlg) fields.

◦290 PK

291 Public key associated with the leaf certificate of the Responder with slot=Param1 of the

CHALLENGE request message. If the public key of the Responder was provisioned to the

Requester, then PK is the provisioned public key.

◦292 Hash

293 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

as received by the Requester.

294 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

295 If the verification algorithm first hashes the message before generating the signature, the verification

algorithm's hashing step shall be skipped.

296 The Responder authentication: Runtime challenge-response flow shows the high-level request-response message

flow and sequence for the authentication of the Responder for runtime challenge-response.

297 Responder authentication: Runtime challenge-response flow

SPDM Specification DSP0274

80 Published Version 1.1.4

298

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies
Responder's signature.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

299 10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

300 This clause applies to Responder-only authentication.

301 The Request ordering and message transcript computation rules for M1/M2 table defines how the message transcript

is constructed for M1 and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH

response message.

302 The possible request orderings after reset leading up to and including CHALLENGE are:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A1, B1,

C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• CHALLENGE (A2, B2, C1)

303 Immediately after reset, M1 and M2 shall be null.

304 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null. If a Negotiated State has been established, this will remain intact.

305 If a Requester sends a GET_VERSION message, the Requester and Responder shall reset M1 and M2 to null, clear all

Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

306 Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

Reset N/A M1/M2=null

DSP0274 SPDM Specification

Version 1.1.4 Published 81

Requests Implementation requirements M1/M2=Concatenate (A, B, C)

GET_VERSION issued

Requester issues this request to allow the Requester

and Responder to determine an agreed upon Negotiated

State . Also issued if the Requester detects an out of

sync condition, when the signature verification fails or

when the Responder provides an unexpected error

response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Issued

Requester shall always issue these requests in this

order.

A1=Concatenate(GET_VERSION, VERSION,

GET_CAPABILITIES, CAPABILITIES, NEGOTIATE_ALGORITHMS,

ALGORITHMS)

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS

Skipped

Requester skipped issuing these requests after a new

reset if the Responder has previously indicated

CACHE_CAP=1 . In this case, the Requester and

Responder shall proceed with the previously determined

Negotiated State .

A2=null

GET_DIGESTS ,

GET_CERTIFICATE

issued

Requester issued these requests in this order after

NEGOTIATE_ALGORITHMS request completion or

immediately after reset, if it chose to skip the previous

three requests.

B1=Concatenate(GET_DIGESTS, DIGESTS, GET_CERTFICATE,

CERTIFICATE)

GET_DIGESTS ,

GET_CERTIFICATE

skipped

Requester skipped both requests after a new reset since

it could use previously cached certificate information.
B2=null

GET_DIGESTS issued,

GET_CERTIFICATE

skipped

Requester skipped GET_CERTIFICATE request after a new

reset since it could use the previously cached

CERTIFICATE response.

B3=(GET DIGESTS, DIGESTS)

CHALLENGE issued

Requester issued this request to complete security

verification of current requests and responses. The

Signature bytes of CHALLENGE_AUTH shall not be included

in C.

C1=(CHALLENGE, CHALLENGE_AUTH\Signature) . See the

CHALLENGE request message format table.

CHALLENGE completion Completion of CHALLENGE resets M1 and M2. M1/M2=null

Other issued

If the Requester issued GET_MEASUREMENTS or

KEY_EXCHANGE or FINISH or PSK_EXCHANGE or

PSK_FINISH or KEY_UPDATE or HEARTBEAT or

GET_ENCAPSULATED_REQUEST or

DELIVER_ENCAPSULATED_RESPONSE or END_SESSSION

request(s) and skipped CHALLENGE completion, M1 and

M2 are reset to null .

M1/M2=null

307 10.9.3 Basic mutual authentication

308 Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.

SPDM Specification DSP0274

82 Published Version 1.1.4

Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder.

These two statements essentially describe a role reversal, unless otherwise stated.

309 The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE_AUTH with

BasicMutAuthReq set. This flow shall utilize message encapsulation as described in

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages to retrieve

request messages. The basic mutual authentication flow shall end when the encapsulated request flow ends.

310 This flow shall only allow GET_DIGESTS , GET_CERTIFICATE , CHALLENGE and their corresponding responses to be

encapsulated.

311 The Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

312 Mutual authentication basic flow

DSP0274 SPDM Specification

Version 1.1.4 Published 83

313

BASIC
MUTUAL
AUTHENTICATION
FLOW

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

ENCAPSULATED_RESPONSE_ACK (CHALLENGE)

DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH)

BasicMutAuthReq is
set in the response.

Both Requester
and Responder
set MUT_AUTH_CAP
bits.

314 10.9.3.1 Mutual authentication message transcript

315 This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

316 The Basic mutual authentication message transcript table defines how the message transcript is constructed for M1

SPDM Specification DSP0274

84 Published Version 1.1.4

and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when the

Responder authenticates the Requester.

317 The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in

parenthesis):

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (BMAF0)

• GET_DIGESTS , CHALLENGE (BMAF1)

• GET_CERTIFICATE , CHALLENGE (BMAF2)

• CHALLENGE (BMAF3)

318 When the basic mutual authentication flow starts (i.e., when GET_ENCAPSULATED_REQUEST is issued) M1 and M2 shall

be set to NULL.

319 Basic mutual authentication message transcript

Flow ID M1/M2

BMAF0

Concatenate(GET_DIGESTS , DIGESTS , GET_CERTIFICATE ,

CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the

signature)

BMAF1
Concatenate(GET_DIGESTS , DIGESTS , CHALLENGE ,

CHALLENGE_AUTH without the signature)

BMAF2
Concatenate(GET_CERTIFICATE , CERTIFICATE , CHALLENGE ,

CHALLENGE_AUTH without the signature)

BMAF3
Concatenate(CHALLENGE , CHALLENGE_AUTH without the

signature)

320 For GET_CERTIFICATE and CERTIFICATE , these messages may need to be issued multiple times to retrieve the entire

certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they are

issued.

321 10.10 Firmware and other measurements

322 This clause describes request messages and response messages associated with endpoint measurement. All

request messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in

CAPABILITIES response.

323 The Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0, and the Requester requires

fresh measurements, the Responder shall be reset before GET_MEASUREMENTS is resent. The mechanisms employed

for resetting the Responder are outside the scope of this specification.

324 Measurement retrieval flow

DSP0274 SPDM Specification

Version 1.1.4 Published 85

325

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

326 10.11 GET_MEASUREMENTS request and MEASUREMENTS response
messages

327 This request message shall retrieve measurements in the form of measurements blocks. A Requester should not

send this message until it has received at least one successful CHALLENGE_AUTH response message from the

Responder, or should send this message in a secure session. The successful CHALLENGE_AUTH response may have

been received before the last reset.

328 The GET_MEASUREMENTS request message format table shows the GET_MEASUREMENTS request message format.

329 The GET_MEASUREMENTS request attributes table shows the GET_MEASUREMENTS request message attributes.

330 The Successful MEASUREMENTS response message format table shows the MEASUREMENTS response message

format. The measurement blocks in MeasurementRecord shall be placed contiguously from index 1 and shall be

sorted in ascending order by index.

331 GET_MEASUREMENTS request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE0=GET_MEASUREMENTS

2 Param1 1

Request attributes. See

the

GET_MEASUREMENTS

request attributes table.

SPDM Specification DSP0274

86 Published Version 1.1.4

Offset Field Size (bytes) Value

3 Param2 1

Measurement operation.

A value of 0x0 shall query

the Responder for the

total number of

measurement blocks

available.

A value of 0xFF shall

request all measurement

blocks.

A value between 0x1

and 0xFE , inclusively,

shall request the

measurement block at the

index corresponding to

that value.

4 Nonce 32

The Requester should

choose a random value.

This field is only present if

a signature is required on

the response. See the

GET_MEASUREMENTS

request attributes table.

36 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. Slot

number of the certificate

chain of the Responder

that shall be used for

authenticating the

measurement(s). If the

Responder’s public key

was provisioned to the

Requester previously, this

field shall be 0xF . This

field is only present if a

signature is required on

the response. See the

GET_MEASUREMENTS

request attributes table.

332 GET_MEASUREMENTS request attributes

DSP0274 SPDM Specification

Version 1.1.4 Published 87

Bits Value Description

0 1

If the Responder can generate a signature (MEAS_CAP is 10b in the

CAPABILITIES response), the value of this bit shall indicate to the

Responder that a signature is required. The Responder shall

generate a signature in the corresponding response. The Nonce field

shall be present in the request.

0 0

For Responders that can generate signatures, the value of this bit

shall indicate that the Requester does not require a signature. The

Responder shall not generate a signature in the response. The

Nonce field shall be absent in the request.

For Responders that cannot generate a signature (MEAS_CAP is 01b

in the CAPABILITIES response) the Requester shall always use this

value.

[7:1] Reserved Reserved

333 Successful MEASUREMENTS response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x60=MEASUREMENTS

2 Param1 1

When Param2 in the

requested measurement

operation is 0 , this

parameter shall return the

total number of

measurement indices on

the device. Otherwise,

this field is reserved.

3 Param2 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. If this

message contains a

signature, this field

contains the slot number

of the certificate chain

specified in the

GET_MEASUREMENTS

request, or 0xF if the

Responder’s public key

was provisioned to the

Requester previously. If

this message does not

contain a signature, this

field shall be set to 0x0 .

SPDM Specification DSP0274

88 Published Version 1.1.4

Offset Field Size (bytes) Value

4 NumberOfBlocks 1

Number of measurement

blocks (N) in

MeasurementRecord . If

Param2 in the requested

measurement operation

is 0 , this field shall be

0 .

5 MeasurementRecordLength 3

Size of the

MeasurementRecord field

in bytes. If Param2 in the

requested measurement

operation is 0 , this field

shall be 0 .

8 MeasurementRecord L= MeasurementRecordLength

Concatenation of all

measurement blocks that

correspond to the

requested Measurement

operation. Measurement

block defines the

measurement block

structure.

8 + L Nonce 32
The Responder should

choose a random value.

40 + L OpaqueLength 2

Size of the OpaqueData

field in bytes. The value

shall not be greater than

1024 bytes.

42 + L OpaqueData OpaqueLength

Free-form field, if present.

The Responder may

include Responder-

specific information and/

or information defined by

its transport.

DSP0274 SPDM Specification

Version 1.1.4 Published 89

Offset Field Size (bytes) Value

42 + L + OpaqueLength Signature S

Signature of the

GET_MEASUREMENTS

request and

MEASUREMENTS response

messages, excluding the

Signature field and

signed using the device

private key. The

Responder shall use the

asymmetric signing

algorithm it selected

during the last

ALGORITHMS response

message to the

Requester, and S is the

size of that asymmetric

signing algorithm output.

This field is conditional.

334 10.11.1 Measurement block

335 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that correspond to a particular measurement index and

measurement type. The blocks are ordered by Index .

336 The Measurement block format table shows the format for a measurement block:

337 Measurement block format

Offset Field Size (bytes) Value

0 Index 1

Index. Shall represent the

index of the measurement.

In the range of [1, N].

SPDM Specification DSP0274

90 Published Version 1.1.4

Offset Field Size (bytes) Value

1 MeasurementSpecification 1

Bit mask. The value shall

indicate the measurement

specification that the

requested Measurement

follows and shall match

the selected measurement

specification in the

ALGORITHMS message.

See the Successful

ALGORITHMS response

message format table.

Only one bit shall be set in

the measurement block.

Bit 0=DMTF, as specified

in the Measurement field

format when

MeasurementSpecification

field is Bit 0 = DMTF table.

All other bits are reserved.

2 MeasurementSize 2
Size of Measurement , in

bytes.

4 Measurement MeasurementSize

The

MeasurementSpecification

defines the format of this

field.

338 10.11.1.1 DMTF specification for the Measurement field of a measurement block

339 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field selects Bit 0=DMTF. This format is specified in Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF.

340 The measurement manifest of DMTFSpecMeasurementValueType refers to a manifest that describes contents of other

indexes. For example, the set of firmware modules executing on the Responder may change at runtime. The

measurement manifest tells the Requester which firmware modules' measurements are reported in this response and

their indexes. The format of measurement manifest is out of scope of this specification.

341 Measurement field format when MeasurementSpecification field is bit 0 = DMTF

DSP0274 SPDM Specification

Version 1.1.4 Published 91

Offset Field Size (bytes) Value

0 DMTFSpecMeasurementValueType 1

Composed of:

Bit [7] indicates the representation in

DMTFSpecMeasurementValue .

Bits [6:0] indicate what is being

measured by

DMTFSpecMeasurementValue .

These values are set independently

and are interpreted as follows:

[7]=0b . Digest.

[7]=1b . Raw bit stream.

[6:0]=00h . Immutable ROM.

[6:0]=01h . Mutable firmware.

[6:0]=02h . Hardware configuration,

such as straps, debug modes.

[6:0]=03h . Firmware configuration,

such as configurable firmware policy.

[6:0]=04h . Measurement manifest.

All other values reserved.

1 DMTFSpecMeasurementValueSize 2

Size of DMTFSpecMeasurementValue , in

bytes.

When

DMTFSpecMeasurementValueType[7]=0b ,

the DMTFSpecMeasurementValueSize

shall be derived from the

measurement hash algorithm that the

ALGORITHM response message

returns.

3 DMTFSpecMeasurementValue DMTFSpecMeasurementValueSize

DMTFSpecMeasurementValueSize bytes

of cryptographic hash or raw bit

stream, as indicated in

DMTFSpecMeasurementValueType[7] .

342 10.11.2 MEASUREMENTS signature generation

343 While a Requester may opt to require a signature in each individual MEASUREMENTS response, it is advisable that the

SPDM Specification DSP0274

92 Published Version 1.1.4

cost of the signature generation process is minimized by amortizing it over multiple MEASUREMENTS responses where

applicable. In this scheme, the Requester issues a number of GET_MEASUREMENTS requests without requiring

signatures followed by a final GET_MEASUREMENTS request requiring a signature over the entire set of

GET_MEASUREMENTS requests and corresponding MEASUREMENTS responses exchanged. The steps to complete this

scheme are as follows:

1.344 The Responder shall construct L1 and the Requester shall construct L2 over their observed

messages:

L1/L2 = Concatenate(GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,

GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,

GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

345 where:

◦346 Concatenate()

347 Standard concatenation function.

◦348 GET_MEASUREMENTS_REQUEST1

349 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has not

requested a signature on that specific GET_MEASUREMENTS request.

◦350 MEASUREMENTS_RESPONSE1

351 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUEST1 .

◦352 GET_MEASUREMENTS_REQUESTn-1

353 Entire last consecutive GET_MEASUREMENTS request message under consideration, where the

Requester has not requested a signature on that specific GET_MEASUREMENTS request.

◦354 MEASUREMENTS_RESPONSEn-1

355 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn-1 .

◦356 GET_MEASUREMENTS_REQUESTn

357 Entire first GET_MEASUREMENTS request message under consideration, where the Requester has

requested a signature on that specific GET_MEASUREMENTS request.

358 n is a number greater than or equal to 1 .

DSP0274 SPDM Specification

Version 1.1.4 Published 93

359 When n equals 1 , the Requester has not made any GET_MEASUREMENTS requests without

signature prior to issuing a GET_MEASUREMENTS request with signature.

◦360 MEASUREMENTS_RESPONSEn

361 Entire MEASUREMENTS response message without the signature bytes that the Responder sent in

response to GET_MEASUREMENTS_REQUESTn .

362 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response resets L1/L2 computation to null.

2.363 The Responder shall generate:

Signature = Sign(SK, Hash(L1));

364 where:

◦365 Sign

366 Asymmetric signing algorithm that the Responder selected through the last ALGORITHMS response

message that the Responder sent.

367 The Successful ALGORITHMS response message format table describes the BaseAsymSel and

ExtAsymSel fields.

◦368 SK

369 Private key of the Responder associated with the leaf certificate stored in SlotID . If the public

key of the Responder was provisioned to the Requester, then SK is the associated private key.

◦370 Hash

371 Hashing algorithm that the Responder selected through the last ALGORITHMS response message

that the Responder sent.

372 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

373 If the signing algorithm first hashes the message before generating the signature, the signing

algorithm's hashing step shall be skipped.

SPDM Specification DSP0274

94 Published Version 1.1.4

374 10.11.3 MEASUREMENTS signature verification

375 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.376 The Requester shall perform:

Verify(PK, Hash(L2), Signature)

377 where:

◦378 PK

379 Public key associated with the slot 0 certificate of the Responder. PK is extracted from the

CERTIFICATES response. If the public key of the Responder was provisioned to the Requester,

then PK is the provisioned public key.

◦380 Verify

381 Asymmetric verification algorithm that the Responder selected through the last ALGORITHMS

response message that the Requester received.

382 The Successful ALGORITHMS response message format table describes the BaseAsymSel and

ExtAsymSel fields.

◦383 Hash

384 Hashing algorithm the Responder selected through the last sent ALGORITHMS response message

that the Requester sent.

385 The Successful ALGORITHMS response message format table describes the BaseHashSel and

ExtHashSel fields.

386 If the verification algorithm first hashes the message before generating the signature, the verification

algorithm's hashing step shall be skipped.

387 The Measurement signature computation example shows an example of a typical Requester Responder protocol

where the Requester issues 1 to n-1 GET_MEASUREMENTS requests without a signature, followed by a single

GET_MEASUREMENTS request n with a signature.

388 Measurement signature computation example

DSP0274 SPDM Specification

Version 1.1.4 Published 95

389

GET_MEASUREMENTS (n-1, NoSig)

MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)

MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)

MEASUREMENTS (1, NoSig)
MEASUREMENT

response 1 with no

signature

...

...

MEASUREMENT response

n-1 with no signature

GET_MEASUREMENT
request 1 with no

signature request

GET_MEASUREMENT
request n-1 with no

signature request

GET_MEASUREMENT
request n with signature

request

MEASUREMENT response
n with signature computed

as described

Requester

Verify Signature computed

as described

390 10.12 ERROR response message

391 For an SPDM operation that results in an error, the Responder should send an ERROR response message to the

Requester.

392 The ERROR response message format table shows the ERROR response format.

393 The Error code and error data table shows the detailed error code, error data, and extended error data.

394 The ResponseNotReady extended error data table shows the ResponseNotReady extended error data.

395 The Registry or standards body ID table shows the registry or standards body ID.

396 The ExtendedErrorData format for vendor or other standards-defined ERROR response message table shows the

ExtendedErrorData format definition for vendor or other standards-defined ERROR response message.

397 ERROR response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x7F=ERROR

SPDM Specification DSP0274

96 Published Version 1.1.4

Offset Field Size (bytes) Value

2 Param1 1
Error Code. See Error

code and error data.

3 Param2 1
Error Data. See Error

code and error data.

4 ExtendedErrorData 0-32

Optional extended data.

See Error code and error

data.

398 Error code and error data

Error code Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved Reserved Reserved

InvalidRequest 0x01
One or more request

fields are invalid
0x00 No extended error data is provided.

Reserved 0x02 Reserved Reserved Reserved

Busy 0x03

The Responder

received the request

message and the

Responder decided to

ignore the request

message, but the

Responder may be able

to process the request

message if the request

message is sent again

in the future.

0x00 No extended error data is provided.

UnexpectedRequest 0x04

The Responder

received an unexpected

request message. For

example, CHALLENGE

before

NEGOTIATE_ALGORITHMS .

0x00 No extended error data is provided.

Unspecified 0x05
Unspecified error

occurred.
0x00 No extended error data is provided.

DecryptError 0x06

The receiver of the

record cannot decrypt

the record or verify data

during the session

handshake.

Reserved No extended error data is provided.

DSP0274 SPDM Specification

Version 1.1.4 Published 97

Error code Value Description Error data ExtendedErrorData

UnsupportedRequest 0x07

The

RequestResponseCode in

the request message is

unsupported.

RequestResponseCode

in the request

message.

No extended error data is provided

RequestInFlight 0x08

The Responder has

delivered an

encapsulated request to

which it is still waiting for

the response.

Reserved No extended error data is provided.

InvalidResponseCode 0x09

The Requester

delivered an invalid

response for an

encapsulated response.

Reserved No extended error data is provided.

SessionLimitExceeded 0x0A

Maximum number of

concurrent sessions

reached.

Reserved No extended error data is provided.

Reserved 0x0b - 0x40 Reserved Reserved Reserved

MajorVersionMismatch 0x41

Requested SPDM Major

Version is not

supported.

0x00 No extended error data provided.

ResponseNotReady 0x42

See the

RESPOND_IF_READY

request message

format.

0x00
See the ResponseNotReady

extended error data table.

RequestResynch 0x43

Responder is requesting

Requester to reissue

GET_VERSION to

resynchronize. An

example is following a

firmware update.

0x00 No extended error data provided.

Reserved 0x44 - 0xFE Reserved Reserved. Reserved

Vendor/Other Standards Defined 0xFF
Vendor or Other

Standards defined

Shall indicate the

registry or standard

body using one of the

values in the ID

column in the Registry

or standards body ID

table.

See the ExtendedErrorData format

for vendor or other standards-defined

ERROR response message table for

format definition.

399 ResponseNotReady extended error data

SPDM Specification DSP0274

98 Published Version 1.1.4

Offset Field Size (bytes) Value

0 RDTExponent 1

Exponent expressed in

logarithmic (base 2 scale)

to calculate RDT time in

µs after which the

Responder can provide

successful completion

response.

For example, the raw

value 8 indicates that the

Responder will be ready

in 28=256 µs.

Requester should use

RDT to avoid continuous

pinging and issue the

RESPOND_IF_READY

request message after

RDT time.

For timing requirement

details, see the Timing

specification for SPDM

messages table.

1 RequestCode 1
The request code that

triggered this response.

2 Token 1

The opaque handle that

the Requester shall pass

in with the

RESPOND_IF_READY

request message.

DSP0274 SPDM Specification

Version 1.1.4 Published 99

Offset Field Size (bytes) Value

3 RDTM 1

Multiplier used to

compute WT Max in µs to

indicate the response

may be dropped after this

delay.

The multiplier shall

always be greater than 1.

The Responder may also

stop processing the initial

request if the same

Requester issues a

different request.

For timing requirement

details, see the Timing

specification for SPDM

messages table.

400 Registry or standards body ID

401 For algorithm encoding in extended algorithm fields, unless otherwise specified, consult the respective registry or

standards body.

ID Vendor ID length (bytes) Registry or standards body name Description

0x0 0 DMTF

DMTF does not have

a Vendor ID registry.

At present, DMTF

does not have any

algorithms defined for

use in extended

algorithms fields.

0x1 2 TCG

VendorID is identified

by using TCG Vendor

ID Registry. For

extended algorithms,

see TCG Algorithm

Registry.

0x2 2 USB

VendorID is identified

by using the vendor ID

assigned by USB.

0x3 2 PCI-SIG

VendorID is identified

using PCI-SIG Vendor

ID.

SPDM Specification DSP0274

100 Published Version 1.1.4

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://pcisig.com/membership/member-companies

ID Vendor ID length (bytes) Registry or standards body name Description

0x4 4 IANA

The Private Enterprise

Number (PEN)

assigned by the

Internet Assigned

Numbers Authority

(IANA) identifies the

vendor.

0x5 4 HDBaseT

VendorID is identified

by using HDBaseT

HDCD entity.

0x6 2 MIPI

The Manufacturer ID

assigned by MIPI

identifies the vendor.

0x7 2 CXL

VendorID is identified

by using CXL vendor

ID.

0x8 2 JEDEC

VendorID is identified

by using JEDEC

vendor ID.

0x9 0 VESA

For fields and formats

defined by the VESA

standards body, there

is no Vendor ID

registry.

402 ExtendedErrorData format for vendor or other standards-defined ERROR response message

DSP0274 SPDM Specification

Version 1.1.4 Published 101

https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/
https://vesa.org/

Byte offset Length Field name Description

0 1 Len

Length of the VendorID field.

If the ERROR is vendor defined, the

value of this field shall equal the

Vendor ID Len , as the Registry or

standards body ID table describes, of

the corresponding registry or standard

body name.

If the ERROR is defined by a registry or

a standard, this field shall be zero

(0), which also indicates that the

VendorID field is not present.

The Error Data field in the ERROR

message indicates the registry or

standards body name, such as

Param2 , and is one of the values in

the ID column in the Registry or

standards body ID table.

1 Len VendorID

The value of this field shall indicate

the Vendor ID, as assigned by the

registry or standards body. The

Registry or standards body ID table

describes the length of this field. Shall

be in little endian format.

The registry or standards body name

in the ERROR is indicated in the Error

Data field, such as Param2 , and is

one of the values in the ID column in

the Registry or standards body ID

table.

1 + Len Variable OpaqueErrorData
Defined by the vendor or other

standards.

403 10.13 RESPOND_IF_READY request message format

404 This request message shall ask for the response to the original request upon receipt of ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return the ERROR response message, set

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response message.

SPDM Specification DSP0274

102 Published Version 1.1.4

405

CHALLENGE_AUTH()

ResponderRequester

CHALLENGE(0x83)

ERROR (ResponseNotReady, 0x7, 8, 4)

RESPOND_IF_READY(0x83, 0x7)

Sends response in less than CT
μs to meet the crypto timeout

requirement.
ResponseNotReady with

Token=0x7, RDTExponent = 8 and
RDTM = 4

Waits for more than
WT = 2 ^ 8 μs but

less than WTMax =
((2 ^ 8) x 4) – μs

Processing is complete

Less than CT μs

Less than CT μs

RTT = 1

406 The RESPOND_IF_READY request message format table shows the RESPOND_IF_READY request message format.

407 RESPOND_IF_READY request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xFF=RESPOND_IF_READY

2 Param1 1

The original request code

that triggered the

ResponseNotReady error

code response. Shall

match the request code

returned as part of the

ResponseNotReady

extended error data.

3 Param2 1

The token that was

returned as part of the

ResponseNotReady

extended error data.

408 10.14 VENDOR_DEFINED_REQUEST request message

409 A Requester intending to define a unique request to meet its need can use this request message. The

VENDOR_DEFINED_REQUEST request message format table defines the format.

410 The Requester should send this request message only after sending GET_VERSION , GET_CAPABILITIES and

NEGOTIATE_ALGORITHMS request sequence.

DSP0274 SPDM Specification

Version 1.1.4 Published 103

411 If the vendor intends that these messages are to be used before a session has been established, and the vendor

wishes to have the requests authenticated, then the vendor shall indicate how the transcript hashes and/or message

transcript are changed to add the vendor defined commands.

412 The VENDOR_DEFINED_REQUEST request message format table shows the VENDOR_DEFINED_REQUEST request

message format.

413 VENDOR_DEFINED_REQUEST request message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xFE=VENDOR_DEFINED_REQUEST

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2

Shall indicate the registry or

standards body by using one

of the values in the ID column

in the Registry or standards

body ID table.

6 Len 1

Length of the Vendor ID

field. If the

VendorDefinedRequest is

standard defined, Len shall

be 0 . If the

VendorDefinedRequest is

vendor-defined, Len shall

equal Vendor ID Len , as the

Registry or standards body ID

table describes.

7 VendorID Len

Vendor ID, as assigned by

the registry or standards

body. Shall be in little endian

format.

7 + Len ReqLength 2
Length of the

VendorDefinedReqPayload .

7 + Len + 2 VendorDefinedReqPayload ReqLength

The standard or vendor shall

use this field to send the

request payload.

414 Other DMTF specifications may define VENDOR_DEFINED_REQUEST with StandardID set to 0. See

VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications for more information.

SPDM Specification DSP0274

104 Published Version 1.1.4

415 10.15 VENDOR_DEFINED_RESPONSE response message

416 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . The

VENDOR_DEFINED_RESPONSE response message format table defines the format.

417 The VENDOR_DEFINED_RESPONSE response message format table shows the response message format.

418 VENDOR_DEFINED_RESPONSE response message format

Offset Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x7E=VENDOR_DEFINED_RESPONSE

2 Param1 1 Reserved

3 Param2 1 Reserved

4 StandardID 2

Shall indicate the registry or

standard body using one of the

values in the ID column in the

Registry or standards body ID

table.

6 Len 1

Length of the Vendor ID field.

If the VendorDefinedRequest is

standards-defined, length shall

be 0 . If the

VendorDefinedRequest is

vendor-defined, length shall

equal Vendor ID Len , as the

Registry or standards body ID

table describes.

7 VendorID Len

Shall indicate the Vendor ID,

as assigned by the registry or

standards body. Shall be in

little endian format.

7 + Len RespLength 2
Length of the

VendorDefinedRespPayload

7 + Len + 2 VendorDefinedRespPayload RespLength

Standard or vendor shall use

this value to send the

response payload.

DSP0274 SPDM Specification

Version 1.1.4 Published 105

419 10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
specifications

420 Other DMTF specifications may define VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages with

StandardID set to 0 ("DMTF", as defined in the Registry or standards body ID table) and Len set to 0. In this case,

VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages shall specify the underlying DMTF specification

that defines them. A DMTF specification which defines the data model of VendorDefinedReqPayload for

VENDOR_DEFINED_REQUEST and the data model of VendorDefinedRespPayload for VENDOR_DEFINED_RESPONSE shall follow

the Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF table.

421 Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

Byte offset Field Size (bytes) Description

0 DSPNumber 2

Shall be the DMTF specification's DSP number in a

16-bit integer. For example, DSP0287 would use

0x011F.

2 DSPVersion 2

Shall be the version number of the DMTF

specification whose DSP number is populated in the

DSPNumber field. The format of the version number

shall follow the VersionNumberEntry definition table.

4 VendorPayload Variable

Shall be the actual payload data defined by the

DMTF specification whose DSP number is populated

in the DSPNumber field.

422 10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response
messages

423 This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or optionally both parties), negotiate cryptographic parameters (in addition to those negotiated in the last

NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material. The KEY_EXCHANGE request

message format table shows the KEY_EXCHANGE request message format and the Successful KEY_EXCHANGE_RSP

response message format table shows the KEY_EXCHANGE_RSP response message format. The handshake is

completed by the successful exchange of the FINISH request and FINISH_RSP response messages, presented in

the next clause, and depends on the tight coupling between the two request/response message pairs.

424 The Requester and Responder pair may support two modes of handshakes. If HANDSHAKE_IN_THE_CLEAR_CAP is set in

both the Requester and the Responder all SPDM messages exchanged during the Session Handshake Phase are

sent in the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/

or message authentication during the Session Handshake Phase using the Handshake secret derived at the

completion of KEY_EXCHANGE_RSP message for subsequent message communication until FINISH_RSP

message completion.

425 Responder authentication key exchange example

SPDM Specification DSP0274

106 Published Version 1.1.4

426

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

427 The Responder authentication multiple key exchange example provides an example of multiple sessions using two

independent sets of root session keys that coexist at the same time. When HANDSHAKE_IN_THE_CLEAR_CAP = 0 for both

Requester and Responder, the specification does not require a specific temporal relationship between the second

KEY_EXCHANGE request message and the first FINISH_RSP response message. However, to simplify implementation, a

Responder might respond with an ERROR message of ErrorCode=Busy to the second KEY_EXCHANGE request

message until the first FINISH_RSP response message is complete. If the handshake is performed in the clear (that

is, if HANDSHAKE_IN_THE_CLEAR_CAP = 1 for both Requester and Responder), a Requester shall not send a second

KEY_EXCHANGE request message until the first FINISH_RSP response message is received. A Responder shall

DSP0274 SPDM Specification

Version 1.1.4 Published 107

respond with an ERROR message of ErrorCode=UnexpectedRequest if it receives a second KEY_EXCHANGE request

message before the first FINISH request is received.

428 Responder authentication multiple key exchange example

429

KEY_EXCHANGE(K2)

KEY_EXCHANGE_RSP (K2)

ResponderRequester

KEY_EXCHANGE (K1)

KEY_EXCHANGE_RSP (K1)

FINISH (K1)

FINISH_RSP (K1)

FINISH (K2)

FINISH_RSP (K2)

Enables authenticated and/or
 encrypted data transfer (K2)

Enables authenticated and/or
 encrypted data transfer (K1)

Authenticated and/or encrypted
data transfer (K1) continues

430 The handshake includes an ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder

each generate an ephemeral (that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key

pairs in the ExchangeData fields of the KEY_EXCHANGE request message and KEY_EXCHANGE_RSP response message.

The Responder generates a DHE secret by using the private key of the DHE key pair of the Responder and the

public key of the DHE key pair of the Requester provided in the KEY_EXCHANGE request message. Similarly, the

Requester generates a DHE secret by using the private key of the DHE key pair of the Requester and the public key

of the DHE key pair of the Responder provided in the KEY_EXCHANGE_RSP response message. The DHE secrets are

computed as specified in clause 7.4 of RFC 8446. Assuming that the public keys were received correctly, both the

Requester and Responder generate identical DHE secrets from which session secrets are generated.

431 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent

ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC

8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g^X mod p) for the specified

group (see DHE structure for group definitions) encoded as a big-endian integer and padded to the left with zeros to

SPDM Specification DSP0274

108 Published Version 1.1.4

the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the serialization of X and Y, which are the binary representations

of the x and y values respectively in network byte order, padded on the left by zeros if necessary. The size of each

number representation occupies as many octets as implied by the curve parameters selected. Specifically, X is [0: C

- 1] and Y is [C : D – 1], where C and D are determined by the group.

432 A Requester should generate a fresh DHE key pair for each KEY_EXCHANGE request message that the Requester

sends. A Responder should generate a fresh DHE key pair for each KEY_EXCHANGE_RSP response message that the

Responder sends.

433 KEY_EXCHANGE request message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE4 = KEY_EXCHANGE

2 Param1 1

Requested

MeasurementSummaryHash

type:

0x0 . No measurement

summary hash.

0x1 . TCB

measurement hash.

0xFF . All

measurements hash.

All other values

reserved.

When Responder does

not support any

measurements,

Requester shall set this

value to 0x0 .

DSP0274 SPDM Specification

Version 1.1.4 Published 109

Offset Field Size in bytes Value

3 Param2 1

The slot number of the

target certificate chain

that the Responder will

use for authentication.

The value in this field

shall be between 0 and

7 inclusive to identify a

valid certificate slot. It

shall be 0xFF if the

public key of the

Responder was

provisioned to the

Requester previously.

4 ReqSessionID 2

Two-byte Requester

contribution to allow

construction of a unique

four-byte session ID

between a Requester-

Responder pair. The

final session ID =

Concatenate

(ReqSessionID,

RspSessionID).

6 Reserved 2 Reserved

8 RandomData 32
Requester-provided

random data.

SPDM Specification DSP0274

110 Published Version 1.1.4

Offset Field Size in bytes Value

40 ExchangeData D

DHE public information

generated by the

Requester. If the DHE

group selected in the

most recent ALGORITHMS

response is finite-field-

based (FFDHE), the

ExchangeData

represents the

computed public value.

If the selected DHE

group is elliptic curve-

based (ECDHE), the

ExchangeData

represents the X and Y

values in network byte

order. Specifically, X is

[0: C - 1] and Y is [C : D

– 1]. In both cases the

size of D (and C for

ECDHE) is derived from

the selected DHE group.

40 + D OpaqueDataLength 2

Size of the OpaqueData

field that follows in

bytes. Shall be 0 if no

OpaqueData is provided.

42 + D OpaqueData OpaqueDataLength

If present, OpaqueData

sent by the Requester.

Used to indicate any

parameters that

Requester wishes to

pass to the Responder

as part of key exchange.

434 Successful KEY_EXCHANGE_RSP response message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x64 = KEY_EXCHANGE_RSP

DSP0274 SPDM Specification

Version 1.1.4 Published 111

Offset Field Size in bytes Value

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if

Heartbeat is not supported. Otherwise, the

value shall be in units of seconds. Zero is a

legal value if Heartbeat is supported, but

means that a heartbeat is not desired on

this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow

construction of a unique four-byte session

ID between a Requester-Responder pair.

The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 MutAuthRequested 1

Bit 0 - If set, the Responder is requesting to

authenticate the Requester (mutual

authentication) without using the

encapsulated request flow.

Bit 1 - If set, Responder is requesting

mutual authentication with the

encapsulated request flow.

Bit 2 - If set, Responder is requesting

mutual authentication with an implicit

GET_DIGESTS request. The Responder

and Requester shall follow the optimized

encapsulated request flow.

Bit [7:3] - Reserved.

Only one of Bit 0, Bit 1 and Bit 2 shall be

set.

For details on the encapsulated request

flow or the optimized encapsulated request

flow, see the

GET_ENCAPSULATED_REQUEST

request and ENCAPSULATED_REQUEST

response messages clause.

SPDM Specification DSP0274

112 Published Version 1.1.4

Offset Field Size in bytes Value

7 SlotIDParam 1

Bit[7:4] = Reserved.

Bit[3:0] = SlotID. The slot number of the

certificate chain of the Requester to be

used for mutual authentication, if

MutAuthRequested Bit 0 is set. The value

in this field shall be between 0 and 7

inclusive, or 0xF if the public key of the

Requester was provisioned to the

Responder through other means. All other

values Reserved. For any other value of

MutAuthRequested this field shall be set to

0 and ignored by the Requester.

8 RandomData 32 Responder-provided random data.

40 ExchangeData D

DHE public information generated by the

Responder. If the DHE group selected in

the most recent ALGORITHMS response is

finite-field-based (FFDHE), the

ExchangeData represents the computed

public value. If the selected DHE group is

elliptic curve-based (ECDHE), the

ExchangeData represents the X and Y

values in network byte order. Specifically, X

is [0: C - 1] and Y is [C : D – 1]. In both

cases the size of D (and C for ECDHE) is

derived from the selected DHE group.

DSP0274 SPDM Specification

Version 1.1.4 Published 113

Offset Field Size in bytes Value

40 + D MeasurementSummaryHash H

When the Responder does not support

measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested

Param1 =0, this field shall be absent.

When the requested Param1 =1, this field

shall be the combined hash of

Measurements of all measurable

components considered to be in the TCB

required to generate this response,

computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...)) where

MeasurementBlock[x] denotes a

measurement of an element in the TCB.

Measurements are concatenated in

ascending order based on their

measurement index.

When the requested Param1 =1 and there

are no measurable components in the TCB

required to generate this response, this

field shall be 0 .

When requested Param1=0xFF , this field is

computed as the

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported

measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order.

Indices with no associated measurements

shall not be included in the hash

calculation.

40 + D + H OpaqueDataLength 2

Size of the OpaqueData field that follows in

bytes. Shall be 0 if no OpaqueData is

provided.

42 + D + H OpaqueData OpaqueDataLength

If present, OpaqueData sent by the

Responder. Used to indicate any

parameters that the Responder wishes to

pass to the Requester as part of key

exchange.

SPDM Specification DSP0274

114 Published Version 1.1.4

Offset Field Size in bytes Value

42 + D + H +

OpaqueDataLength
Signature S

Signature over the transcript hash. S is the

size of the asymmetric signing algorithm

output the Responder selected via the last

ALGORITHMS response message using the

private key of the leaf certificate of the

Responder. The construction of the

transcript hash is defined in Transcript

Hash for KEY_EXCHANGE_RSP signature.

42 + D + H +

OpaqueDataLength + S
ResponderVerifyData H

Conditional field.

If the Session Handshake Phase is

encrypted and/or message authenticated,

then this field shall be of length H and it

shall equal the HMAC of the transcript

hash, using finished_key as the secret

key and using the negotiated hash

algorithm as the hash function. The

transcript hash shall be the Transcript

Hash for KEY_EXCHANGE_RSP HMAC. The

finished_key shall be derived from the

Response Direction Handshake Secret and

is described in the finished_key derivation

clause. HMAC is described in RFC 2104.

If both the Requester and Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 1, then this

field shall be absent.

435 10.16.1 Mutual authentication

436 To perform authentication of the Requester in the KEY_EXCHANGE flow, either the encapsulated request flow or the

optimized encapsulated request flow shall be used. For details and illustration of this flow, see

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

437 The only messages that shall be encapsulated in this case are GET_DIGESTS , DIGESTS , GET_CERTIFICATE , and

CERTIFICATE .

438 10.16.2 Specifying Requester certificate for mutual authentication

439 The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages

exchanged. When Responder-only authentication, or mutual authentication where the Responder has obtained the

certificate chains of the Requester in a previous interaction is performed, key exchange is carried out with two

request/response message pairs (KEY_EXCHANGE , KEY_EXCHANGE_RSP , FINISH and FINISH_RSP). In other cases

where mutual authentication is desired, additional encapsulated messages are exchanged between

KEY_EXCHANGE_RSP and FINISH to enable the Responder to obtain the certificate chains and certificate chain digests

of the Requester. However, in all cases the certificate chain (or raw public key) the Requester should authenticate

DSP0274 SPDM Specification

Version 1.1.4 Published 115

https://tools.ietf.org/html/rfc2104

against is specified by the Responder via the SlotID field in KEY_EXCHANGE_RSP , which precedes the aforementioned

encapsulated messages. This means that a Responder authenticating a Requester whose certificates it has not

obtained in a previous interaction, using a slot other than the default (slot 0), has no way of knowing in advance

which SlotID value to use.

440 To address this case, the Responder explicitly designates the certificate chain to be used via the final

ENCAPSULATED_RESPONSE_ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in

MutAuthRequested is set to 1 and SlotID is set to 0 , the Responder shall use a ENCAPSULATED_RESPONSE_ACK

request with Param2 = 0x02 and an 1-byte long Encapsulated Request field containing the SlotID value. This shall

be interpreted by the Requester as a valid request indicating the slot number to be used, and the SlotID field in

KEY_EXCHANGE_RSP shall be ignored.

441 If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any messages

between KEY_EXCHANGE_RSP and FINISH request. The certificate chain of the Requester is determined by the value of

SlotID . This is useful for Responders which have obtained a certificate chains of the Requester in a previous

interaction.

442 10.17 FINISH request and FINISH_RSP response messages

443 This request message shall complete the handshake between Requester and Responder initiated by a

KEY_EXCHANGE request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key

confirmation, bind the identify of each party to the exchanged keys and protect the entire handshake against

manipulation by an active attacker. The FINISH request message format table shows the FINISH request message

format and the Successful FINISH_RSP response message format table shows the FINISH_RSP response message

format.

444 FINISH request message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE5 = FINISH

2 Param1 1

Bit 0 – If set, the

Signature field is

included. This bit shall

be set when mutual

authentication occurs.

All other bits reserved.

SPDM Specification DSP0274

116 Published Version 1.1.4

Offset Field Size in bytes Value

3 Param2 1

Slot ID. Only valid if

Param1 = 0x01 ,

otherwise reserved. Slot

number of the

Requester Certificate

Chain being

authenticated in

Signature field. The

value in this field shall

be between 0 and 7

inclusive. It shall be

0xFF if the public key of

the Requester was

provisioned to the

Responder through

other means.

4 Signature S

Signature over the

transcript hash. S is the

size of the asymmetric

signing algorithm output

the Responder selected

via the last ALGORITHMS

response message

using the private key of

the leaf certificate of the

Requester. S is zero and

field not present if

Param1 = 0x00 . The

construction of the

transcript hash is

defined in Transcript

Hash for FINISH

signature, mutual

authentication.

DSP0274 SPDM Specification

Version 1.1.4 Published 117

Offset Field Size in bytes Value

4+S RequesterVerifyData H

This field shall be an

HMAC of the transcript

hash using the

finished_key as the

secret key and using the

negotiated hash

algorithm as the hash

function. For mutual

authentication, the

transcript hash shall be

the Transcript Hash for

FINISH HMAC, mutual

authentication.

Otherwise, it shall be the

Transcript Hash for

FINISH HMAC,

Responder-only

authentication. The

finished_key shall be

derived from Request

Direction Handshake

Secret and is described

in the finished_key

derivation clauses.

HMAC is described in

RFC 2104.

445 Successful FINISH_RSP response message format

Offset Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x65 = FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

SPDM Specification DSP0274

118 Published Version 1.1.4

https://tools.ietf.org/html/rfc2104

Offset Field Size in bytes Value

4 ResponderVerifyData H

Conditional field.

If the Session Handshake

Phase is encrypted and/or

message authenticated (i.e.,

if either the Requester or the

Responder set

HANDSHAKE_IN_THE_CLEAR_CAP

to 0), this field shall be

absent.

If both the Requester and

Responder support

HANDSHAKE_IN_THE_CLEAR_CAP

field, this field shall be of

length H and it shall equal

the HMAC of the transcript

hash using finished_key as

the secret key and using the

negotiated hash algorithm

as the hash function. For

mutual authentication, the

transcript shall be the

Transcript Hash for

FINISH_RSP HMAC, mutual

authentication. Otherwise,

the transcript hash shall be

the Transcript Hash for

FINISH_RSP HMAC,

Responder Only

authentication. The

finished_key shall be

derived from Response

Direction Handshake Secret

and is described in the

finished_key derivation

clause. HMAC is described

in RFC 2104.

446 10.17.1 Transcript hash calculation rules

447 The transcript hash is calculated by hashing the concatenation of the prescribed full messages or message fields in

order. For messages that are encrypted, the plaintext messages shall be used in calculating the transcript hash.

448 The notation [${message_name}] . ${field_name} is used, where:

• ${message_name} is the name of the request or response message.

• ${field_name} is the name of the field in the request or response message. The asterisk (*) means all fields in

that message, except from any conditional fields that are empty (for example KEY_EXCHANGE.OpaqueData).

DSP0274 SPDM Specification

Version 1.1.4 Published 119

https://tools.ietf.org/html/rfc2104

449 Transcript hash for KEY_EXCHANGE_RSP signature

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].* except the `Signature` and `ResponderVerifyData` fields.

450 Transcript hash for KEY_EXCHANGE_RSP HMAC

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].* except the `ResponderVerifyData` field.

451 Transcript hash for FINISH signature, mutual authentication

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. Hash of the specified certificate chain in DER format (i.e., FINISH Param2)

11. [FINISH].SPDM Header Fields

452 Transcript hash for FINISH HMAC, Responder-only authentication

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)

8. [KEY_EXCHANGE].*

SPDM Specification DSP0274

120 Published Version 1.1.4

9. [KEY_EXCHANGE_RSP].*

10. [FINISH].SPDM Header Fields

453 Transcript hash for FINISH HMAC, mutual authentication

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2).

11. [FINISH].SPDM Header Fields

12. [FINISH].Signature

454 Transcript hash for FINISH_RSP HMAC, Responder-only authentication

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. [FINISH].*

11. [FINISH_RSP].SPDM Header fields

455 Transcript hash for FINISH_RSP HMAC, mutual authentication

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE’s request Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2).

11. [FINISH].*

12. [FINISH_RSP].SPDM Header fields

456 When multiple session keys are being established between the same Requester and Responder pair, Signature over

DSP0274 SPDM Specification

Version 1.1.4 Published 121

Transcript HASH during FINISH request is computed using only the corresponding KEY_EXCHANGE,

KEY_EXCHANGE_RSP and FINISH request parameters.

457 10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response
messages

458 The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

mutual authentication and session key establishment with symmetric-key cryptography. This option is especially

useful for endpoints that do not support asymmetric-key cryptography or certificate processing. This option can also

be leveraged to expedite the session key establishment, even if asymmetric-key cryptography is supported.

459 This option requires the Requester and the Responder to have prior knowledge of a common PSK before the

handshake. Essentially, the PSK serves as a mutual authentication credential and the base of the session key

establishment. As such, only the two endpoints and potentially a trusted third party that provisions the PSK to the two

endpoints may know the value of the PSK.

460 A Requester may be paired with multiple Responders. Likewise, a Responder may be paired with multiple

Requesters. A pair of Requester and Responder may be provisioned with one or more PSKs. If both endpoints can

act as Requester or Responder, then the endpoints shall use different PSKs for each role.

461 An endpoint may act as a Requester to one device and simultaneously a Responder to another device. It is the

responsibility of the transport layer to identify the peer and establish communication between the two endpoints,

before the PSK-based session key exchange starts.

462 The PSK may be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK may be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is out of scope of this specification. The size of the provisioned PSK is determined

by the requirement of security strength of the application, but should be at least 128 bits and recommended to be 256

bits or larger, to resist dictionary attacks especially when the Requester and Responder cannot both contribute

sufficient entropy during the exchange. If the negotiated capabilities and algorithms are provisioned to both endpoints

alongside the PSK, then the Requester shall not issue GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

463 Two message pairs are defined for this option: PSK_EXCHANGE / PSK_EXCHANGE_RSP and PSK_FINISH / PSK_FINISH_RSP .

464 The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contexts between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct

session keys.

465 PSK_EXCHANGE: Example

SPDM Specification DSP0274

122 Published Version 1.1.4

466

NEGOTIATE_ALGORITHMS

ALGORITHMS

PSK_EXCHANGE

PSK_EXCHANGE_RSP

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

PSK_FINISH

PSK_FINISH_RSP

If supported

Optional

467 PSK_EXCHANGE request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE6 = PSK_EXCHANGE

DSP0274 SPDM Specification

Version 1.1.4 Published 123

Offsets Field Size in bytes Value

2 Param1 1

Requested

measurement summary

hash Type:

0x0 . No measurement

summary hash.

0x1 . TCB

measurement hash.

0xFF . All

measurements hash.

All other values

reserved.

When Responder does

not support any

measurements,

Requester shall set this

value to 0x0 .

3 Param2 1 Reserved.

4 ReqSessionID 2

Two-byte Requester

contribution to allow

construction of a unique

four-byte session ID

between a Requester-

Responder pair. The

final session ID =

Concatenate

(ReqSessionID,

RspSessionID).

6 P 2
Length of PSKHint in

bytes.

8 R 2

Length of

RequesterContext in

bytes. R shall be equal

to or greater than H,

where H is the size of

the underlying HMAC

used in the context of

the Requester.

10 OpaqueDataLength 2
Length of OpaqueData

in bytes.

SPDM Specification DSP0274

124 Published Version 1.1.4

Offsets Field Size in bytes Value

12 PSKHint P

Information required by

the Responder to

retrieve the PSK.

Optional.

12 + P RequesterContext R

The context of the

Requester. Shall include

a nonce (random

number or monotonic

counter) of at least 32

bytes and optionally the

information belonging to

the Requester.

12 + P + R OpaqueData OpaqueDataLength

Optional. If present, the

OpaqueData sent by the

Requester is used to

indicate any parameters

that Requester wishes

to pass to the

Responder as part of

PSK-based key

exchange.

468 The field PSKHint is optional (absent if P is set to 0). It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses

PSKHint as an identifier to specify which PSK will be used in this session.

• The Responder does not store the value of the PSK, but can derive the PSK using PSKHint. For example, if the

Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning, a PSK may be

derived from the UDS or its derivative and a non-secret salt known by the Requester. During session key

establishment, the same salt is sent to the Responder in PSKHint of PSK_EXCHANGE. This mechanism allows

the Responder to support any number of PSKs, without consuming secure storage.

469 The RequesterContext is the contribution of the Requester to session key derivation. It shall contain a nonce of at

least 32 bytes to make sure that the derived session keys are ephemeral to mitigate against replay attacks. It is

recommended that the Requester use random number as the nonce. If a random number generator is not available,

the Requester may use a monotonic counter with protection against reset attacks. The RequesterContext may also

contain other information from the Requester.

470 Upon receiving PSK_EXCHANGE request, the Responder:

1. Generates PSK from PSKHint, if necessary.

2. Generates ResponderContext, if supported.

3. Derives the finished_key of the Responder by following Key Schedule.

4. Constructs PSK_EXCHANGE_RSP response message and sends to the Requester.

471 PSK_EXCHANGE_RSP response message format

DSP0274 SPDM Specification

Version 1.1.4 Published 125

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x66 = PSK_EXCHANGE_RSP

2 Param1 1

HeartbeatPeriod

The value of this field shall be zero if

Heartbeat is not supported. Otherwise, the

value shall be in units of seconds. Zero is a

legal value if Heartbeat is supported, but

means that a heartbeat is not desired on

this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Two-byte Responder contribution to allow

construction of a unique four-byte session

ID between a Requester-Responder pair.

The final session ID = Concatenate

(ReqSessionID, RspSessionID).

6 Reserved 2 Reserved.

8 Q 2 Length of ResponderContext in bytes.

10 OpaqueDataLength 2 Length of OpaqueData in bytes.

SPDM Specification DSP0274

126 Published Version 1.1.4

Offsets Field Size in bytes Value

12 MeasurementSummaryHash H

When the Responder does not support

measurements (MEAS_CAP=00b in

CAPABILITIES response) or requested

Param1 =0, this field shall be absent.

When the requested Param1 =1, this field

shall be the combined hash of

Measurements of all measurable

components considered to be in the TCB

required to generate this response,

computed as

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...)) where

MeasurementBlock[x] denotes a

measurement of an element in the TCB.

Measurements are concatenated in

ascending order based on their

measurement index.

When the requested Param1 =1 and there

are no measurable components in the TCB

required to generate this response, this

field shall be 0 .

When requested Param1=0xFF , this field is

computed as the

hash(Concatenation(MeasurementBlock[0],

MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported

measurement blocks available in the

measurement index range 0x01 - 0xFE ,

concatenated in ascending index order.

Indices with no associated measurements

shall not be included in the hash

calculation.

12 + H ResponderContext Q

Context of the Responder. Optional. If

present, shall include a nonce and/or

information belonging to the Responder.

12 + H + Q OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent

by the Responder is used to indicate any

parameters that Responder wishes to pass

to the Requester as part of PSK-based key

exchange.

12 + H + Q +

OpaqueDataLength
ResponderVerifyData H

Data to be verified by the Requester using

the finished_key of the Responder.

472 The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce

(random number or monotonic counter) and other information of the Responder. Because the Responder may be a

DSP0274 SPDM Specification

Version 1.1.4 Published 127

constrained device that is not able to generate a nonce, ResponderContext is optional. However, the Responder is

required to use ResponderContext if it can generate a nonce.

473 It should be noted that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in

ResponderContext, then the Responder is not challenging the Requester for real-time knowledge of PSK. Such a

session is subject to replay attacks - a man-in-the-middle attacker could record and replay prior PSK_EXCHANGE

and PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets,

so long as the PSK or session keys of the prior replayed session are not compromised.

474 If ResponderContext is absent, such as when PSK_CAP in the CAPABILITIES of the Responder is 01b , the Requester

shall not send PSK_FINISH , because the session keys are solely determined by the Requester and the Session

immediately enters the Application Phase. If and only the ResponderContext is present in the response, such as

when PSK_CAP in the CAPABILITIES of the Responder is 10b , the Requester shall send PSK_FINISH with

RequesterVerifyData to prove that it has derived correct session keys.

475 To calculate ResponderVerifyData , the Responder calculates a HMAC. The HMAC key is the finished_key of the

Responder. The data is the hash of the concatenation of specific messages, listed in ResponderVerifyData

messages, needed to fully establish the new session between the Requester and the Responder. For messages that

are encrypted, the plaintext messages shall be used in calculating the hash.

476 ResponderVerifyData messages

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

477 Upon receiving PSK_EXCHANGE_RSP, the Requester:

1. Derives the finished_key of the Responder by following Key Schedule.

2. Verify ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If

verification fails, the Requester aborts the session.

3. If the Responder contributes to session key derivation, such as when PSK_CAP in the CAPABILITIES of

the Responder is 10b , construct PSK_FINISH request and send to the Responder.

478 10.19 PSK_FINISH request and PSK_FINISH_RSP response messages

479 The PSK_FINISH request proves to the Responder that the Requester knows the PSK and has derived the correct

session keys. This is achieved by an HMAC value calculated with the finished_key of the Requester and messages

of this session. The Requester shall send the PSK_FINISH only if ResponderContext is present in

PSK_EXCHANGE_RSP.

480 PSK_FINISH request message format

SPDM Specification DSP0274

128 Published Version 1.1.4

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xE7 = PSK_FINISH

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 RequesterVerifyData H

Data to be verified by

the Responder by using

the finished_key of the

Requester.

481 To calculate RequesterVerifyData, the Requester calculates a HMAC. The key is the finished_key of the Requester,

as described in Key Schedule. The data is the hash of the concatenation of all messages sent so far between the

Requester and the Responder. For messages that are encrypted, the plaintext messages shall be used in calculating

the hash.

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].* except the RequesterVerifyData field

482 Upon receiving PSK_FINISH request, the Responder derives the finished_key of the Requester and calculates the

HMAC independently in the same manner and verifies the result matches RequesterVerifyData. If verified, the

Responder constructs PSK_FINISH_RSP response and sends to the Requester. Otherwise, the Responder sends

ERROR response with error code InvalidRequest to the Requester.

483 Successful PSK_FINISH_RSP response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0x67 = PSK_FINISH_RSP

2 Param1 1 Reserved.

3 Param2 1 Reserved.

DSP0274 SPDM Specification

Version 1.1.4 Published 129

484 10.20 HEARTBEAT request and HEARTBEAT_ACK response messages

485 This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages if no other messages are received in this secure session in the

HeartbeatPeriod . The Responder shall terminate the session if session traffic is not received in twice

HeartbeatPeriod . Likewise, the Requester shall terminate the session if session traffic, including ERROR response, is

not received in twice HeartbeatPeriod . Session traffic includes encrypted data at the transport layer. How SPDM is

informed of encrypted data at the transport layer is outside of the scope of this specification. The Requester may

retry HEARTBEAT requests.

486 The timer for the Heartbeat period shall start at the transmission, for Responders, or reception, for Requester, of the

appropriate FINISH_RSP , PSK_FINISH_RSP (PSK_CAP of Responder is 10b), or PSK_EXCHANGE_RSP (PSK_CAP of

Responder is 01b) response messages. When determining the value of HeartbeatPeriod, the Responder should

ensure this value is sufficiently greater than T1 .

487 Each secure session shall track the heartbeat period independently of other sessions between the same Requester-

Responder pair.

488 For further details of session termination, see Session termination phase.

489 The HEARTBEAT request message format describes the message format.

490 HEARTBEAT request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0xE8 = HEARTBEAT

Request

2 Param1 1 Reserved.

3 Param2 1 Reserved.

491 The HEARTBEAT_ACK response message format describes the format for the Heartbeat Response.

492 HEARTBEAT_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x68 = HEARTBEAT_ACK

Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

SPDM Specification DSP0274

130 Published Version 1.1.4

493 10.20.1 Heartbeat additional information

494 The transport layer may allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

495 10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages

496 To update session keys, this request shall be used. There are many reasons for doing this but an important one is

when the per-record nonce will soon reach its maximum value and rollover. The KEY_UPDATE request can be

issued by the Responder as well using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE

request shall update session keys in the direction of the request only. Because the Responder can also send this

request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only one

KEY_UPDATE request for a single direction shall occur. Until the session key update synchronization successfully

completes, subsequent KEY_UPDATE request for the same direction shall be considered a retry of the original

KEY_UPDATE request.

497 KEY_UPDATE request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0xE9 = KEY_UPDATE

Request

2 Param1 1

Key Operation. See

KEY_UPDATE

Operations Table.

3 Param2 1

Tag. This field shall

contain a unique

number to aid the

responder in

differentiating between

the original and retry

request. A retry request

shall contain the same

tag number as the

original.

498 KEY_UPDATE_ACK response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x69 = KEY_UPDATE_ACK

Response

DSP0274 SPDM Specification

Version 1.1.4 Published 131

Offsets Field Size in bytes Value

2 Param1 1

Key Operation. This

field shall reflect the Key

Operation field of the

request.

3 Param2 1

Tag. This field shall

reflect the Tag number

in the KEY_UPDATE

request.

499 KEY_UPDATE operations

Value Operation Description

0 Reserved Reserved

1 UpdateKey Update the single-direction key.

2 UpdateAllKeys Update keys for both directions.

3 VerifyNewKey
Ensure the key update is successful and the old keys can be safely

discarded.

4 - 255 Reserved Reserved

500 10.21.1 Session key update synchronization

501 For clarity, in the key update process, the term, sender, means the SPDM endpoint that issued the KEY_UPDATE

request and the term, receiver, means the SPDM endpoint that received the KEY_UPDATE request. To ensure the key

update process is seamless while still allowing the transmission and reception of records, both sender and receiver

shall follow the prescribed method described in this clause.

502 The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct

keys are used before, during, and after the key update operation. How this is accomplished by the data transport

layer is outside of the scope of this specification.

503 Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.

504 The sender shall not use the new transmit key until after reception of the KEY_UPDATE_ACK response.

505 The sender and receiver shall use the new key on the KEY_UPDATE request with VerifyNewKey command and all

subsequent commands until another key update is performed.

506 In the case of KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the

KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical

transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

507 If the sender has not received KEY_UPDATE_ACK , the sender may retry or end the session. The sender shall not

proceed to the next step until successfully receiving the corresponding KEY_UPDATE_ACK .

SPDM Specification DSP0274

132 Published Version 1.1.4

508 Upon the successful reception of the KEY_UPDATE_ACK , the sender shall transmit a KEY_UPDATE request with

VerifyNewKey operation using the new session keys. The sender may retry until the corresponding KEY_UPDATE_ACK

response is received. However, the sender shall be prohibited, at this point, from restarting this process or going

back to a previous step. Its only recourse in error handling is either to retry the same request or to terminate the

session. Upon successful reception of the KEY_UPDATE with VerifyNewKey operation, the receiver can now discard

the old session keys. After the sender successfully receives the corresponding KEY_UPDATE_ACK , the transport layer

may start using the new keys.

509 In certain scenarios, the receiver may need additional time to process the KEY_UPDATE request such as processing

data already in its buffer. Thus, the receiver may reply with an ERROR message with ErrorCode=Busy . The sender

should retry the request after a reasonable period of time with a reasonable amount of retries to prevent premature

session termination.

510 Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. Still, the aforementioned synchronization process occurs independently but simultaneously for

each direction.

511 The KEY_UPDATE protocol example flow figure illustrates a typical key update initiated by the Requester to update

its secret. In this example, the Responder and Requester are both capable of message authentication and

encryption.

512 KEY_UPDATE protocol example flow

DSP0274 SPDM Specification

Version 1.1.4 Published 133

513

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateKey,
Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,
Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,
Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x2

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

514 The KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the Requester

to update all secrets. In this example, the Responder and Requester are both capable of message authentication and

encryption.

515 KEY_UPDATE protocol change all keys example flow

SPDM Specification DSP0274

134 Published Version 1.1.4

516

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateAllKeys,
Tag == 0x1

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,
Tag == 0x1

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,
Tag == 0x2

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x2

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

517 10.21.2 KEY_UPDATE transport allowances

518 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport may

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

mechanism. The actual method to use should be defined by the transport and is outside the scope of this

specification.

DSP0274 SPDM Specification

Version 1.1.4 Published 135

519 The KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a limitation

whereby only a single device (often called the master) is allowed to initiate all transactions on that bus. This physical

transport specifies that a Responder shall alert the Requester via a sideband mechanism and to utilize the

GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Also, in this same example, the

Requester and Responder are both capable of encryption and message authentication.

520 KEY_UPDATE protocol example flow 2

SPDM Specification DSP0274

136 Published Version 1.1.4

521

…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE
Key Operation == UpdateKey,

Tag == 0x1

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK
Key Operation == UpdateKey,

Tag == 0x1

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE
Key Operation == VerifyNewKey,

Tag == 0x2

 { ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK
Key Operation == VerifyNewKey,

Tag == 0x2

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH_RSP }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

DSP0274 SPDM Specification

Version 1.1.4 Published 137

522 10.22 GET_ENCAPSULATED_REQUEST request and
ENCAPSULATED_REQUEST response messages

523 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester

and Responder as far as the transport is concerned, but enables the Responder to issue its own requests to the

Requester. Message encapsulation is only allowed in certain scenarios. The Mutual authentication key exchange

figure and Optimized mutual authentication key exchange example figure are examples that illustrate the use of this

scheme.

524 A Requester issues a GET_ENCAPSULATED_REQUEST request message to retrieve an encapsulated SPDM request

message from the Responder. The response to this message (ENCAPSULATED_REQUEST) encapsulates the SPDM

request message as if the Responder was acting as a Requester. The request message format is described in

GET_ENCAPSULATED_REQUEST request format table. The Responder shall use the same SPDM version the Requester

used.

525 10.22.1 Encapsulated request flow

526 The encapsulated request flow starts with the Requester sending a GET_ENCAPSULATED_REQUEST message and ends

with an ENCAPSULATED_RESPONSE_ACK that carries no more encapsulated requests. The GET_ENCAPSULATED_REQUEST

shall only be issued once with the exception of retries. This is also illustrated in Mutual authentication key exchange.

527 When the Requester issues a GET_ENCAPSULATED_REQUEST , the encapsulated request flow shall start. Upon the

successful reception of the ENCAPSULATED_REQUEST and when the encapsulated response is ready, the Requester

shall continue the flow by issuing the DELIVER_ENCAPSULATED_RESPONSE . During this period, with the exception of

GET_VERSION , RESPOND_IF_READY and DELIVER_ENCAPSULATED_RESPONSE , the Requester shall not issue any other

message. If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or

GET_VERSION , the Responder should respond with ErrorCode=RequestInFlight .

528 10.22.2 Optimized encapsulated request flow

529 The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of

GET_ENCAPSULATED_REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-

Exchange responses; thereby, removing the necessity on the Requester from issuing a GET_ENCAPSULATED_REQUEST .

When the Responder includes an encapsulated requests with a Session-Secrets-Exchange response, the optimized

encapsulated request flow shall start. This is also illustrated in Optimized mutual authentication key exchange.

530 When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated

request, the Requester shall send a DELIVER_ENCAPSULATED_RESPONSE after processing the encapsulated request. The

Requester shall not issue any other requests except for DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY and

GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY ,

GET_VERSION or Session-Secrets-Exchange, then the Responder should respond with ErrorCode=RequestInFlight .

SPDM Specification DSP0274

138 Published Version 1.1.4

531 Mutual authentication key exchange example

532

MUTUAL AUTH

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

KEY_EXCHANGE

KEY_EXCHANGE_RSP()

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

FINISH

FINISH_RSP

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

Encapsulated

Request

Flow

533 Optimized mutual authentication key exchange example

DSP0274 SPDM Specification

Version 1.1.4 Published 139

534

ResponderRequester

MUTUAL AUTH

ENCAPSULATED_RESPONSE_ACK()

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK(GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE(DIGEST)

KEY_EXCHANGE_RSP+GET_DIGEST

KEY_EXCHANGE

CERTIFICATE

GET_CERTIFICATE

DIGESTS

GET_DIGESTS

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

FINISH_RSP

FINISH

Optimized

Encapsulated

Request

Flow

535 GET_ENCAPSULATED_REQUEST request message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

SPDM Specification DSP0274

140 Published Version 1.1.4

Offsets Field Size in bytes Value

1 RequestResponseCode 1
0xEA =

GET_ENCAPSULATED_REQUEST

2 Param1 1 Reserved.

3 Param2 1 Reserved.

536 The ENCAPSULATED_REQUEST response message format describes the format this response.

537 ENCAPSULATED_REQUEST response message format

Offsets Field Size in bytes Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x6A = ENCAPSULATED_REQUEST

Response

2 Param1 1

Request ID.

This field should be unique to

help the Responder match

response to request.

3 Param2 1 Reserved.

4 Encapsulated Request Variable

SPDM Request Message.

The value of this field shall

represent a valid SPDM request

message. The length of this

field is dependent on the SPDM

Request message. The field

shall start with the SPDMVersion

field. The SPDMVersion field of

the Encapsulated Request shall

be the same as SPDMVersion of

the ENCAPSULATED_REQUEST

response. Both

GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE

shall be invalid requests and

the Requester should respond

with

ErrorCode=UnexpectedRequest if

these requests are

encapsulated.

DSP0274 SPDM Specification

Version 1.1.4 Published 141

538 10.22.3 Triggering GET_ENCAPSULATED_REQUEST

539 Once a session has been established, the Responder may wish to send a request asynchronously such as a

KEY_UPDATE request but cannot due to the limitations of the physical bus or transport protocol. In such a scenario, the

transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon receiving

the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

540 10.22.4 Additional constraints

541 The GET_ENCAPSULATED_REQUEST and ENCAPSULATED_REQUEST messages shall only be allowed to encapsulate certain

requests in certain scenarios. For details on these constraints, see the Session, Basic mutual authentication, and

KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

542 10.23 DELIVER_ENCAPSULATED_RESPONSE request and
ENCAPSULATED_RESPONSE_ACK response messages

543 As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding

response. That mechanism shall be the DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages.

The DELIVER_ENCAPSULATED_RESPONSE , which is an SPDM request, encapsulates the response and delivers it to the

Responder. The ENCAPSULATED_RESPONSE_ACK , which is an SPDM response, acknowledges the reception of the

encapsulated response.

544 Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

545 In an encapsulated request flow and after the successful reception of the first encapsulated request, the Requester

shall not send any other requests with the exception of DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY and

GET_VERSION . After the successful reception of the first DELIVER_ENCAPSULATED_RESPONSE and if a Responder receives

a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY or GET_VERSION , the Responder should

respond with ErrorCode=RequestInFlight .

546 If Param2 of ENCAPSULATED_RESPONSE_ACK is set to 0x00 or 0x02 then this shall be the final encapsulated flow

message that the Responder shall issue and the encapsulated flow shall be completed.

547 The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to

process the response before delivering the next request. See Additional Information for more details.

548 The request message format is described in DELIVER_ENCAPSULATED_RESPONSE Request Message Format Table.

549 DELIVER_ENCAPSULATED_RESPONSE request message format

Offsets Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

SPDM Specification DSP0274

142 Published Version 1.1.4

Offsets Field Size (bytes) Value

1 RequestResponseCode 1

0xEB =

DELIVER_ENCAPSULATED_RESPONSE

Request

2 Param1 1

Request ID.

The Requester shall use the

same Request ID as provided

by the Responder in the

corresponding

ENCAPSULATED_REQUEST or

ENCAPSULATED_RESPONSE_ACK .

3 Param2 1 Reserved.

4 Encapsulated Response Variable

SPDM Response Message.

The value of this field shall

represent a valid SPDM

response message. The length

of this field is dependent on the

SPDM Response message.

The field shall start with the

SPDMVersion field. The

SPDMVersion field of the

Encapsulated Response shall be

the same as SPDMVersion of

the

DELIVER_ENCAPSULATED_RESPONSE

request. Both

ENCAPSULATED_REQUEST and

ENCAPSULATED_RESPONSE_ACK

shall be invalid responses and

the Responder should respond

with

ErrorCode=InvalidResponseCode

if these responses are

encapsulated.

550 The ENCAPSULATED_RESPONSE_ACK response message format describes the response message format.

551 ENCAPSULATED_RESPONSE_ACK response message format

Offsets Field Size (bytes) Value

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1
0x6B =

ENCAPSULATED_RESPONSE_ACK

DSP0274 SPDM Specification

Version 1.1.4 Published 143

Offsets Field Size (bytes) Value

2 Param1 1

Request ID.

If a request is encapsulated

(Param2 = 0x01) this field

should contain a unique, non-

zero number to help the

Responder match response to

request. Otherwise, this field

shall be 0x00 .

3 Param2 1

Payload Type.

If set to 0x00 no request

message is encapsulated and

the Encapsulated_Request field

is absent.

If set to 0x01 the

Encapsulated_Request field

follows.

If set to 0x02 a 1-byte

Encapsulated_Request field

follows containing the slot

number corresponding to the

certificate chain the Requester

shall authenticate against.

All other values Reserved.

SPDM Specification DSP0274

144 Published Version 1.1.4

Offsets Field Size (bytes) Value

4 Encapsulated Request Variable

If Param2 = 0x01 , the value of

this field shall represent a valid

SPDM request message. The

length of this field is dependent

on the SPDM Request

message. The field shall start

with the SPDMVersion field. The

SPDMVersion field of the

Encapsulated Request shall be

the same as SPDMVersion of

the ENCAPSULATED_REQUEST

response. Both

GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE

shall be invalid requests and

the Requester shall respond

with

ErrorCode=UnexpectedRequest if

these requests are

encapsulated.

If Param2 = 0x02 , the value of

this filed shall contain the slot

number corresponding to the

certificate chain the Requester

shall authenticate against. The

field size shall be 1 Byte.

If Param2 = 0x00 , this field shall

be absent.

552 10.23.1 Additional information

553 Using a unique request ID is highly recommended to aid the Responder in avoiding confusion between a retry and a

new DELIVER_ENCAPSULATED_RESPONSE message. For example, if the Responder sent the ENCAPSULATED_RESPONSE_ACK

with a new encapsulated request and that failed in transmission over the wire, the Requester would send a retry but

that retry would still contain the response to the previous encapsulated request. Without a different request ID, the

Responder might mistake the retried DELIVER_ENCAPSULATED_RESPONSE for a new request when, in fact, it was a retry.

This mistake may cause additional mistakes to occur.

554 In general, the response timing for ENCAPSULATED_RESP_ACK shall be subject to the same timing constraints as the

encapsulated request. For example, if the encapsulated request was CHALLENGE_AUTH , the Responder, too, shall

adhere to CT timing rules when it has a subsequent request. The Responder may return

ErrorCode=ResponseNotReady .

555 The DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages shall only be allowed to

DSP0274 SPDM Specification

Version 1.1.4 Published 145

encapsulate certain requests in certain scenarios. For details on these constraints, see Session, Basic mutual

authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

556 10.24 END_SESSION request and END_SESSION_ACK response messages

557 This request shall terminate a session. Further communication between the Requester and Responder using the

same session ID shall be prohibited. See Session termination phase clause for details.

558 The END_SESSION request message format table describes this format.

559 END_SESSION request message format

Offset Value Field Description

0 SPDMVersion 1 V1.1 = 0x11

1 RequestResponseCode 1 0xEC = END_SESSION

2 Param1 1 See the End session request attributes table.

3 Param2 1 Reserved.

560 End session request attributes

Offset Value Field Description

0 0 Negotiated State Preservation Indicator

If the Responder

supports Negotiated

State caching

(CACHE_CAP=1), the

Responder shall

preserve the Negotiated

State.

0 1 Negotiated State Preservation Indicator

If the Responder

supports Negotiated

State caching, the

Responder shall also

clear the Negotiated

State as part of session

termination.

[7:1] Reserved Reserved Reserved.

561 The END_SESSION_ACK response message format describes the response message.

562 END_SESSION_ACK response message format

Offset Value Field Description

0 SPDMVersion 1 V1.1 = 0x11

SPDM Specification DSP0274

146 Published Version 1.1.4

Offset Value Field Description

1 RequestResponseCode 1 0x6C = END_SESSION_ACK

2 Param1 1 Reserved.

3 Param2 1 Reserved.

563 END_SESSION protocol flow

564

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RSP

FINISH(K1)

FINISH_RSP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

DSP0274 SPDM Specification

Version 1.1.4 Published 147

565 11 Session

566 Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it

enables a Requester and Responder to build a secure communication channel with cryptographic information that is

bound ephemerally. Specifically, an SPDM session provides either or both of encryption or message authentication.

567 There are three phases in a session, as Session phases shows: the handshake, the application, and termination.

568 Session phases

569

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

570 11.1 Session handshake phase

571 The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for

authentication of the Requester if the Responder indicated that earlier in ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key Schedule.

572 The purpose of this phase is to build trust between the Responder and Requester, first, before either side can send

application data. Additionally, it also ensures the integrity of the handshake and to a certain degree, synchronicity

with the derived handshake secrets.

573 In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE shall be used to obtain

requests from the Responder to complete the authentication of the Requester, if the Responder indicated this in

SPDM Specification DSP0274

148 Published Version 1.1.4

ALGORITHMS message. The only requests allowed to be encapsulated shall be GET_DIGESTS and GET_CERTIFICATE .

The Requester shall provide a signature in the FINISH request, as the FINISH request and FINISH_RSP response

messages clause describes.

574 If an error occurs in this phase with ErrorCode = DecryptError , the session shall immediately terminate and proceed

to session termination.

575 A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

576 11.2 Application phase

577 Once the handshake completes and all validation passes, the session reaches the application phase where either

the Responder and Requester may send application data.

578 During this phase, a Requester can send SPDM messages such as GET_MEASUREMENTS . These messages might

involve transcript calculations and if such calculations are required, they shall be calculated on a per session basis.

Once a session has been established, subsequent messages sent outside of a session shall not contribute to the

transcript within a session.

579 The application phase ends when either the HEARTBEAT requirements fail, END_SESSION or an ERROR message with

ErrorCode = DecryptError . The next phase is the session termination phase.

580 11.3 Session termination phase

581 This phase signals the end of the Application phase and the enactment of internal clean-up procedures by the

endpoints. Requesters and Responders may have various reasons for terminating a session, outside the scope of

this specification.

582 SPDM provides the END_SESSION / END_SESSION_ACK message pair to explicitly trigger the session termination phase if

needed, but depending on the transport it may simply be an internal phase with no explicit SPDM messages sent or

received.

583 When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as

derived major secrets, DHE secrets and encryption keys. Endpoints may have other internal data associated with a

session that they should also clean up.

584 11.4 Simultaneous active sessions

585 If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be a minimum

of one. If the KEY_EXCHANGE or PSK_EXCHANGE request will exceed the maximum number of simultaneous active

sessions of the Responder, the Responder shall respond with an Errorcode = SessionLimitExceeded .

586 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverses role.

For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is

acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session

DSP0274 SPDM Specification

Version 1.1.4 Published 149

to SPDM endpoint ABC, now acting as a Responder. Since these two sessions are distinct and separate, the two

endpoints should ensure they do not mix sessions. To ensure proper session handling, each endpoint should ensure

their portion of the session IDs are unique at time of Session-Secrets-Exchange. This would form a final unique

session ID for that new session. Additionally, the endpoints may use information at the transport layer to further

ensure proper handling of sessions.

587 11.5 Records and session ID

588 When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either or both encrypted or authenticated. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

589 The actual format and other details of a record is outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

SPDM Specification DSP0274

150 Published Version 1.1.4

590 12 Key schedule

591 A key schedule describes how the various keys such as encryption keys used by a session are derived, and when

each key is used. The default SPDM key schedule makes heavy use of HMAC as defined by RFC2104 and HKDF-

Expand as described in RFC5869. SPDM defines the following additional functions:

BinConcat(Length, Version, Label, Context)

592 where BinConcat shall be the concatenation of binary data, in the order shown in BinConcat Details Table:

593 BinConcat details

Order Data Form Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash.Length

594 If Context is NULL, then BinConcat is the concatenation of the first three components only.

595 The following table shows the value of the 8-byte version text for SPDM version 1.1. Hexadecimal equivalents are

shown in parentheses for clarity.

596 Version details

SPDM version byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

SPDM 1.1
's'

(0x73)

'p'

(0x70)

'd'

(0x64)

'm'

(0x6D)

'1'

(0x31)

'.'

(0x2E)

'1'

(0x31)

space

(0x20)

597 Note that the eighth byte of the version text is a space (0x20).

598 The HKDF-Expand function prototype, as used by the default SPDM key schedule, is as follows:

HKDF-Expand(secret, context, Hash.Length)

599 The HMAC-Hash function prototype is described as follows:

HMAC-Hash(salt, IKM);

600 where IKM is the Input Keying Material and HMAC-Hash uses HMAC as defined in RFC2104.

DSP0274 SPDM Specification

Version 1.1.4 Published 151

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc2104

601 For HKDF-Expand and HMAC-Hash , the hash function shall be the selected hash function in ALGORITHMS response.

Hash.Length shall be the length of the output of the hash function selected by the ALGORITHMS response.

602 Both Responder and Requester shall use the key schedule shown in the Key Schedule Figure.

603 Key schedule

604

HMAC-Hash (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str1, Hash.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared Key

HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str3, Hash.Length) Requester Direction Data Secret

HKDF-Expand (Master-Secret, bin_str4, Hash.Length) Responder Direction Data Secret

HMAC-Hash (Salt_1, 0_filled)

Salt_1

HKDF-Expand (Master-Secret, bin_str8, Hash.Length)
Export Master Secret

605 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given a name for clarity.

606 The Key Schedule table accompanies the figure to complete the Key Schedule. The Responder and Requester shall

also adhere to the definition of this table.

607 Key schedule

Variable Definition

Salt_0 A zero filled array of Hash.Length length.

SPDM Specification DSP0274

152 Published Version 1.1.4

Variable Definition

0_filled A zero filled array of Hash.Length length.

bin_str0 BinConcat(Hash.Length, Version, "derived", NULL).

bin_str1 BinConcat(Hash.Length, Version, "req hs data", TH1).

bin_str2 BinConcat(Hash.Length, Version, "rsp hs data", TH1).

bin_str3 BinConcat(Hash.Length, Version, "req app data", TH2)

bin_str4 BinConcat(Hash.Length, Version, "rsp app data", TH2)

DHE Secret This shall be the secret derived from KEY_EXCHANGE/KEY_EXCHANGE_RSP

Pre-shared Key PSK

608 Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the hash

function to compute. As in RFC8446 the labels defined above have all been chosen to fit within this limit.

609 12.1 Transcript hash in key derivation

610 There are two transcript hashes used in the key schedule, namely, TH1 and TH2.

611 12.2 TH1 definition

612 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].* except the ResponderVerifyData field

613 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

DSP0274 SPDM Specification

Version 1.1.4 Published 153

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

614 12.3 TH2 definition

615 If the Requester and Responder used KEY_EXCHANGE/KEY_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. Hash of the specified certificate chain in DER format (i.e., KEY_EXCHANGE Param2)

8. [KEY_EXCHANGE].*

9. [KEY_EXCHANGE_RSP].*

10. Hash of the specified certificate chain in DER format (i.e., FINISH’s Param2). (Valid only in mutual

authentication)

11. [FINISH].*

12. [FINISH_RSP].*

616 If the Requester and Responder used PSK_EXCHANGE/PSK_EXCHANGE_RSP to exchange initial keying information, then

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. [GET_VERSION].* (if issued)

2. [VERSION].* (if issued)

3. [GET_CAPABILITIES].* (if issued)

4. [CAPABILITIES].* (if issued)

5. [NEGOTIATE_ALGORITHMS].* (if issued)

6. [ALGORITHMS].* (if issued)

7. [PSK_EXCHANGE].*

8. [PSK_EXCHANGE_RSP].*

9. [PSK_FINISH].* (if issued)

10. [PSK_FINISH_RSP].* (if issued)

SPDM Specification DSP0274

154 Published Version 1.1.4

617 12.4 Key schedule major secrets

618 The key schedule produces four major secrets:

• Request-direction handshake secret (S0)

• Response-direction handshake secret (S1)

• Request-direction data secret (S2)

• Response-direction data secret (S3)

619 Each secret applies in a certain direction of transmission and only valid during a certain time frame. These four major

secrets, each, will be used to derive their respective encryption key and IV to be used in the AEAD function as

selected in the ALGORITHMS response.

620 12.4.1 Request-direction handshake secret

621 This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE or PSK_EXCHANGE up to and including FINISH or PSK_FINISH .

622 12.4.2 Response-direction handshake secret

623 This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP or PSK_EXCHANGE_RSP up to and including FINISH_RSP or PSK_FINISH_RSP .

624 12.4.3 Requester-direction data secret

625 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Requester to the Responder.

626 12.4.4 Responder-direction data secret

627 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Responder to the Requester.

628 The Secrets Usage Figure illustrates where each of the major secrets are used as described previously.

629 Secrets usage

DSP0274 SPDM Specification

Version 1.1.4 Published 155

630

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

631 12.5 Encryption key and IV derivation

632 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV value.

EncryptionKey = HDKF-Expand(major-secret, bin_str5, key_length);

IV = HKDF-Expand(major-secret, bin_str6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", NULL);

bin_str6 = BinConcat(iv_length, Version, "iv", NULL);

633 Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in ALGORITHMS

message.

634 12.6 finished_key derivation

635 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various SPDM

messages. The key, finished_key is defined as follows:

SPDM Specification DSP0274

156 Published Version 1.1.4

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);

bin_str7 = BinConcat(Hash.Length, Version, "finished", NULL);

636 The handshake-secret shall either be request-direction handshake secret or response-direction handshake secret.

637 12.7 Deriving additional keys from the Export Master Secret

638 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys are

derived is outside the scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin_str8, Hash.Length);

bin_str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

639 12.8 Major secrets update

640 The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

641 The major secrets are re-keyed as a result of this. To compute the new secret for each new major data secret, the

following algorithm shall be applied.

new_secret = HKDF-Expand(current_secret, bin_str9, Hash.Length);

bin_str9 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

642 In computing the new secret, current_secret shall either be the current Requester-Direction Data Secret or

Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall

be derived from the new secrets and used immediately.

DSP0274 SPDM Specification

Version 1.1.4 Published 157

643 13 Application data

644 SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect both the confidentiality and integrity of data that shall remain secret, as well as the integrity of

data that need to be transmitted in the clear, such as protocol headers, but shall be protected from manipulation.

AEAD algorithms provide both encryption and message authentication. Each algorithm specifies the details such as

the size of the nonce, the position and length of the MAC and many other factors to ensure a strong cryptographic

algorithm.

645 AEAD functions shall provide the following functions and comply with the requirements defined in RFC5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);

AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

646 where

Value Description

AEAD_Encrypt

Function that fully encrypts the plaintext , computes the MAC across both the

associated_data and plaintext , and produces the ciphertext , which includes the

MAC.

AEAD_Decrypt
Function that verifies the MAC and if validation is successful, fully decrypts the

ciphertext and produces the original plaintext .

encryption_key
Derived encryption key for the respective direction. For details, see the Key schedule

clause.

nonce Nonce computation. For details, see the Nonce derivation clause.

associated_data Associated data.

plaintext Data to encrypt.

ciphertext Data to decrypt.

647 13.1 Nonce derivation

648 Certain AEAD ciphers have specific requirements on nonce construction, as their security properties may be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as

those provided in RFC5116 for nonce derivation.

SPDM Specification DSP0274

158 Published Version 1.1.4

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

649 14 ANNEX A (informative) TLS 1.3

650 This specification heavily models TLS 1.3. TLS 1.3 and consequently this specification assumes the transport layers

provide these capabilities or attributes:

• Reliability in transmission and reception of data.

• Transmission of data is either in order or the order of data can be reconstructed at reception.

651 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends DTLS 1.3, which at the time of this specification is still in

draft form.

DSP0274 SPDM Specification

Version 1.1.4 Published 159

https://github.com/tlswg/dtls13-spec

652 15 ANNEX B (normative) Leaf certificate example

653 The Leaf certificate example shows an example leaf certificate:

654 Leaf certificate example

Data:

Version: 3 (0x2)

Serial Number: 8 (0x8)

Signature Algorithm: ecdsa-with-SHA256

Issuer: C=CA, ST=NC, L=city, O=ACME, OU=ACME Devices, CN=CA

Validity

Not Before: Jan 1 00:00:00 1970 GMT

Not After : Dec 31 23:59:59 9999 GMT

Subject: C=US, ST=NC, O=ACME Widget Manufacturing, OU=ACME Widget Manufacturing Unit, CN=w0123456789

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:

e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:

5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:

ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:

23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:

52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:

a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:

1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:

ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:

98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:

a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:

95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:

70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:

a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:

2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:

66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:

01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:

e8:67

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

X509v3 Key Usage:

Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:

otherName:1.3.6.1.4.1.412.274.1;UTF8STRING:ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256

Signature Value:

30:45:02:21:00:fc:8f:b0:ad:6f:2d:c3:2a:7e:92:6d:29:1d:

c7:fc:0d:48:b0:c6:39:5e:c8:76:d6:40:9a:12:46:c3:39:0e:

SPDM Specification DSP0274

160 Published Version 1.1.4

36:02:20:1a:ea:3a:59:ca:1e:bc:6d:6e:61:79:af:a2:05:7c:

7d:da:41:a9:45:6d:cb:04:49:43:e6:0b:a8:8d:cd:da:e

DSP0274 SPDM Specification

Version 1.1.4 Published 161

655 16 ANNEX C (informative) Change log

656 16.1 Version 1.0.0 (2019-10-16)

• Initial Release

657 16.2 Version 1.1.0 (2020-07-15)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 181.

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures are now searchable.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

• New:

◦ Added Session support.

▪ Added SPDM request and response messages to support initiating, maintaining and terminating a

secure session.

▪ Added Key Schedule for session secrets derivation.

▪ Added Application Data to provide overview of how data is encrypted and authenticated in a session.

◦ Introduce new terms and definitions.

◦ Added Measurement Manifest to DMTFSpecMeasurementValueType .

◦ Added mutual authentication.

◦ Added Encapsulated request flow to support master-slave types of transports.

658 16.3 Version 1.1.1 (2021-05-12)

• Fix improper reference in DMTFSpecMeasurementValue field in "Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF" table.

• Certificate digests in DIGEST calculation clarified.

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

SPDM Specification DSP0274

162 Published Version 1.1.4

• Validity period of X.509v3 certificate clarified in Required Fields

• Clarify which algorithms in NEGOTIATE_ALGORITHMS or ALGORITHMS are for signature generation or verification.

• Remove InvalidSession error code.

• Clarified transport responsibilities in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Clarified the usage of MutAuthRequested field in KEY_EXCHANE_RSP .

• Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

• Added recommendation for usage of RequesterContext in PSK scenarios.

• Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified that plaintext messages are used when calculating the transcript hash.

• ERROR responses are no longer required in most error scenarios.

• In Sign()and Verify() operations, referenced the correct fields in ALGORITHMS .

• Clarify which key to use in Signature fields of KEY_EXCHANGE_RSP and FINISH .

• Clarify messages to hash for ResponderVerifyData in PSK_EXCHANGE_RSP .

659 16.4 Version 1.1.2 (2022-03-09)

• Fix typo and inconsistency in description of PSK_FINISH.

• Clarified measurement specification related fields in NEGOTIATE_ALGORITHMS and ALGORITHMS .

• Changed Measurement Summary Hash concatenation function inputs.

• Clarified minimum timing for HEARTBEAT request and HEARTBEAT_ACK response messages to be sufficiently

greater than T1 . Removed command specific guidance on retry timing.

• Clarify that Responder Timing measurements are measured under the assumption that the Responder can

access the bus.

• Clarified that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Clarified the relationship between MAC_CAP and ResponderVerifyData or RequesterVerifyData in Session-

Secret-Exchange and Session-Secret-Finish messages.

• Provide more description for HANDSHAKE_IN_THE_CLEAR_CAP in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified Offset and Length fields in GET_CERTIFICATE message.

• Clarified how retried messages affect transcript hash in Timing requirements.

• Clarified that extended algorithms are external to this specification.

• Added definition of opaque data.

• Fixed typo in the ExchangeData field of table "Successful KEY_EXCHANGE_RSP response message format".

660 16.5 Version 1.1.3 (2023-10-08)

• Clarified capabilities and algorithms provisioning.

• Added the VESA standards body to Registry or standards body ID.

• Clarified that messages are only hashed once before being signed and verified.

DSP0274 SPDM Specification

Version 1.1.4 Published 163

• Added clause that sizes and lengths are in units of bytes.

• Added section " VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications".

• Clarified that SPDM messages sent outside of a session do not contribute to in-session transcripts.

• Clarified that start of the Heartbeat timer can include PSK_EXCHANGE_RSP .

• Clarified that measurement block indices are to be in ascending order.

• Clarified in Registry or standards body ID that the registry specifies the value used for the VendorID field.

• Clarified that ERROR is only allowed in response to GET_VERSION in cases explicitly defined in this specification.

• Clarified the value of the SlotIDParam field in KEY_EXCHANGE_RSP based on the value of MutAuthRequested .

• Added normative information in the Requester flag fields definitions table and the Responder flag fields

definitions table.

• Clarified sessions can be established one at a time when HANDSHAKE_IN_THE_CLEAR_CAP is set.

• Removed text that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Removed text that prohibited error response codes for GET_CAPABILIITES and NEGOTIATE_ALGORITHMS .

• Added explanation as to how the RDT value is measured at the Responder.

• Clarified the definition of RDT as the additional time needed by the responder and not as a delay.

• Clarified Responder's support for retry.

• Stated that all figures are informative unless otherwise specified explicitly.

661 16.6 Version 1.1.4 (2024-08-19)

• Clarified that HEARTBEAT shall be sent if no other messages within the session were sent/received within

HeartbeatPeriod

• Correct ReqLength to RespLength in VENDOR_DEFINED_RESPONSE response message format.

• Clarified that HeartbeatPeriod for each secure session is tracked independently

SPDM Specification DSP0274

164 Published Version 1.1.4

662 17 Bibliography

663 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

DSP0274 SPDM Specification

Version 1.1.4 Published 165

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Conventions
	2.1.1 Document conventions
	2.1.2 Reserved and unassigned values
	2.1.3 Byte ordering
	2.1.4 Sizes and lengths
	2.1.5 SPDM data types
	2.1.6 Version encoding
	2.1.7 Notations
	2.1.8 Other conventions

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.2 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	8 SPDM messaging protocol
	8.1 SPDM bits-to-bytes mapping
	8.2 Generic SPDM message format
	8.3 SPDM request codes
	8.4 SPDM response codes
	8.5 SPDM request and response code issuance allowance
	8.6 Concurrent SPDM message processing
	8.7 Requirements for Requesters
	8.8 Requirements for Responders
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.4.1 Behavior after VERSION, CAPABILITIES and ALGORITHMS

	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.6.1 Certificates and certificate chains

	10.7 GET_DIGESTS request and DIGESTS response messages
	10.8 GET_CERTIFICATE request and CERTIFICATE response messages
	10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.8.2 Leaf certificate

	10.9 CHALLENGE request and CHALLENGE_AUTH response messages
	10.9.1 CHALLENGE_AUTH signature generation
	10.9.2 CHALLENGE_AUTH signature verification
	10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.9.3 Basic mutual authentication
	10.9.3.1 Mutual authentication message transcript

	10.10 Firmware and other measurements
	10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.11.1 Measurement block
	10.11.1.1 DMTF specification for the Measurement field of a measurement block

	10.11.2 MEASUREMENTS signature generation
	10.11.3 MEASUREMENTS signature verification

	10.12 ERROR response message
	10.13 RESPOND_IF_READY request message format
	10.14 VENDOR_DEFINED_REQUEST request message
	10.15 VENDOR_DEFINED_RESPONSE response message
	10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications

	10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.16.1 Mutual authentication
	10.16.2 Specifying Requester certificate for mutual authentication

	10.17 FINISH request and FINISH_RSP response messages
	10.17.1 Transcript hash calculation rules

	10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.19 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.20 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.20.1 Heartbeat additional information

	10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.21.1 Session key update synchronization
	10.21.2 KEY_UPDATE transport allowances

	10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.22.1 Encapsulated request flow
	10.22.2 Optimized encapsulated request flow
	10.22.3 Triggering GET_ENCAPSULATED_REQUEST
	10.22.4 Additional constraints

	10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.23.1 Additional information

	10.24 END_SESSION request and END_SESSION_ACK response messages
	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 Transcript hash in key derivation
	12.2 TH1 definition
	12.3 TH2 definition
	12.4 Key schedule major secrets
	12.4.1 Request-direction handshake secret
	12.4.2 Response-direction handshake secret
	12.4.3 Requester-direction data secret
	12.4.4 Responder-direction data secret

	12.5 Encryption key and IV derivation
	12.6 finished_key derivation
	12.7 Deriving additional keys from the Export Master Secret
	12.8 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 ANNEX A (informative) TLS 1.3
	15 ANNEX B (normative) Leaf certificate example
	16 ANNEX C (informative) Change log
	16.1 Version 1.0.0 (2019-10-16)
	16.2 Version 1.1.0 (2020-07-15)
	16.3 Version 1.1.1 (2021-05-12)
	16.4 Version 1.1.2 (2022-03-09)
	16.5 Version 1.1.3 (2023-10-08)
	16.6 Version 1.1.4 (2024-08-19)
	17 Bibliography

