
1 Document Identifier: DSP0242

2 Date: 2024-07-29

3 Version: 1.0.0

4 Platform Level Data Model (PLDM) for File
Transfer Specification

5 Supersedes: None

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation

thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner

or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

12 This document’s normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2024 DMTF. All rights reserved.

PLDM for File Transfer Specification DSP0242

2 Published Version 1.0.0

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

13 CONTENTS

1 Foreword . 5

1.1 Acknowledgments . 5

2 Introduction . 6

2.1 Document conventions . 6

3 Scope. 7

4 Normative references. 8

5 Terms and definitions . 9

6 Symbols and abbreviated terms . 10

7 PLDM for File Transfer version . 11

8 PLDM for File Transfer Concepts. 12

8.1 File Metadata. 12

8.2 File Transfer. 13

8.3 File Discovery, Hierarchy and Identity Semantics . 13

8.3.1 Semantics . 13

8.3.2 File Types and Classification. 14

8.3.3 File and Directory Discovery . 15

8.3.4 File System Hierarchy Discovery . 15

8.4 RequestMaxPoll Usage . 15

8.5 RequestCI Usage . 16

8.6 DfOpenExclusive Usage . 16

8.7 File Zero Length . 16

8.7.1 ClientZeroLengthOnly Usage . 16

8.8 DSP0248 PLDM for Platform Monitoring and Control Specification Relationship 17

8.8.1 The File Descriptor Data Model . 18

8.8.2 Required File Sensors. 18

8.8.3 File Size Monitoring Sensor . 19

8.8.4 File Size Monitoring Sensor Thresholds . 20

8.8.5 Device File State Sensor. 20

8.8.6 Sensor and File Transfer command interaction . 21

8.8.7 The Directory Descriptor Data Model . 21

8.8.8 File Data Model . 23

9 PLDM for File Transfer Commands . 26

9.1 DfProperties Command . 27

9.2 DfOpen Command. 28

9.2.1 DfOpen File Host Pushed requirements . 28

9.2.2 DfOpen DfOpenAttribute requirements . 28

9.2.3 DfOpen SerialTxFIFO requirements . 29

9.2.4 DfOpen FileDescriptors count requirements . 29

9.2.5 File Client file exclusivity usage . 29

9.3 DfClose Command . 31

9.4 DfGetFileAttribute Command . 33

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 3

9.5 DfSetFileAttribute Command. 35

9.6 DfHeartbeat Command . 38

9.6.1 Implicit File Close . 38

9.7 Error Completion Codes . 40

9.8 DfRead (DSP0240 MultipartReceive) . 41

9.8.1 Serial FIFO type file characteristics . 41

9.8.2 DfRead command details . 42

9.9 DfFIFOSend (DSP0240 MultipartSend) . 45

10 ANNEX A (informative) Change Log . 47

11 ANNEX B (informative) Sensor Threshold Event Examples . 48

12 ANNEX C (informative) File PDR FileClassification FileCapabilities Examples 50

13 ANNEX D (informative) PLDM for File Transfer Examples . 53

13.1 PLDM for File Transfer initialization example . 53

13.2 Regular log file read . 57

13.3 Polled Serial Log Read . 63

13.4 Pushed Serial Log Read . 66

PLDM for File Transfer Specification DSP0242

4 Published Version 1.0.0

14 1 Foreword

15 The Platform Level Data Model (PLDM) for File Transfer Specification (DSP0242) was prepared by the Platform

Management Communications Infrastructure (PMCI) Work Group.

16 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For information about DMTF, see https://www.dmtf.org.

17 1.1 Acknowledgments

18 DMTF acknowledges the following individuals for their contributions to this document:

• Jeff Wolford – Hewlett Packard Enterprise (Co-Editor)

• Patrick Schoeller – Intel Corporation (Co-Editor)

• Patrick Caporale – Lenovo

• Jim Harford – Broadcom, Inc.

• Yuval Itkin – NVIDIA Corporation

• Tom Joseph – IBM

• Justin King – IBM

• Deepak Kodihalli – NVIDIA Corporation

• Eliel Louzoun – Intel Corporation

• David Rudy – Oracle

• Bill Scherer – Hewlett Packard Enterprise

• Hemal Shah – Broadcom, Inc.

• Supreeth Venkatesh – Advanced Micro Devices

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 5

https://www.dmtf.org/

19 2 Introduction

20 The Platform Level Data Model (PLDM) for File Transfer Specification defines messages and data structures used for

transferring files between PLDM termini, within a PLDM subsystem. Mechanisms to discover files and their metadata

are also defined.

21 2.1 Document conventions

22 Refer to DSP0240 for conventions, notations, and data types that are used across the PLDM specifications.

PLDM for File Transfer Specification DSP0242

6 Published Version 1.0.0

23 3 Scope

24 This specification describes messages and data structures used to transfer files between PLDM termini, within a

PLDM subsystem. It describes mechanisms for the following purposes:

• Discovery of files and directories available on a PLDM terminus for transfer via the File Transfer specific PLDM

PDR Repository entries

• Discovery of the file and directory metadata via PLDM PDR entries and File Transfer specific sensors

• Reading Regular and SerialTxFIFO type files

25 This specification describes the expectations and requirements on PLDM termini that take part in file transfer. The

use cases around file transfer, content, and format of the files, are out of scope for this specification. This

specification does not specify whether a given system is required to implement that capability. However, if a system

does support file transfers over PLDM or other functions described in this specification, the specification defines the

requirements to access and use those functions over PLDM. Portions of this specification rely on information and

definitions from other specifications, that are identified in the Normative references clause. Four of these references

are particularly relevant:

• DMTF DSP0240 — Platform Level Data Model (PLDM) Base Specification, provides definitions of common

terminology, conventions, and notations used across the different PLDM specifications as well as the general

operation of the PLDM protocol and message format.

• DMTF DSP0245 — Platform Level Data Model (PLDM) IDs and Codes Specification, defines the values that are

used to represent different type codes defined for PLDM messages.

• DMTF DSP0248 — PLDM for Platform and Monitoring & Control provides details on file and state sensors, and

the file and directory PLDM PDR structures

• DMTF DSP0249 — PLDM State Set Specification provides the definition of the FILE State Sensor

26 The goal of this specification is to model the discovery and access semantics on the industry standard ISO C

Language FILE Library and enable easier and faster adoption. The ISO C Language FILE Library semantics, such as

open, read, and close, are expected to be familiar to the reader. Additionally, to the extent possible, DSP0240

multipart transfers and existing PLDM capabilities including PLDM sensor-based event notifications are leveraged.

27 Both flat (no directories) and hierarchical directory-based file organization are supported.

28 The following are out of scope of this specification:

• Creation of files or directories by a device besides the File Host

• Direct writes to the File Host

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 7

29 4 Normative references

30 The following referenced documents are indispensable for the application of this document. For dated or versioned

references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

31 DMTF DSP0240 Platform Level Data Model (PLDM) Base Specification 1.2 https://www.dmtf.org/standards/

published_documents/DSP0240_1.2.pdf

32 DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes 1.4 https://www.dmtf.org/standards/

published_documents/DSP0245_1.4.pdf

33 DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification 1.3

https://dmtf.org/sites/default/files/standards/documents/DSP0248_1.3.pdf

34 DMTF DSP0249, Platform Level Data Model (PLDM) State Set Specification 1.2 https://dmtf.org/sites/default/files/

standards/documents/DSP0249_1.2.pdf

35 DMTF DSP1001, Management Profile Specification Usage Guide 1.1 https://www.dmtf.org/standards/

published_documents/DSP1001_1.1.pdf

36 DMTF DSP4014, DMTF Process for Working Bodies 2.13 https://www.dmtf.org/sites/default/files/standards/

documents/DSP4014_2.13.pdf

37 IETF RFC2781, UTF-16, an encoding of ISO 10646 February 2000 https://www.ietf.org/rfc/rfc2781.txt

38 IETF RFC3629, UTF-8, a transformation format of ISO 10646 November 2003 https://www.ietf.org/rfc/rfc3629.txt

39 ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents

https://www.iso.org/sites/directives/current/part2/index.xhtml

40 ISO/IEC 9899:2018, Information technology - Programming languages - C https://www.iso.org/standard/74528.html

PLDM for File Transfer Specification DSP0242

8 Published Version 1.0.0

https://www.dmtf.org/standards/published_documents/DSP0240_1.2.pdf
https://www.dmtf.org/standards/published_documents/DSP0240_1.2.pdf
https://www.dmtf.org/standards/published_documents/DSP0245_1.4.pdf
https://www.dmtf.org/standards/published_documents/DSP0245_1.4.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0248_1.3.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0249_1.2.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0249_1.2.pdf
https://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
https://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.13.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.13.pdf
https://www.ietf.org/rfc/rfc2781.txt
https://www.ietf.org/rfc/rfc3629.txt
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/standard/74528.html

41 5 Terms and definitions

42 In this document, some terms have a specific meaning beyond the normal English meaning. Those terms are defined

in this clause.

43 The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need

not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when

the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies

additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English

meaning.

44 The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

45 The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do not contain normative

content. Notes and examples are always informative elements.

46 Refer to DSP0240 for terms and definitions that are used across the PLDM specifications. For the purposes of this

document, the following additional terms and definitions apply.

47 Device File State Sensor PLDM State Set Sensor Device File (68) PDR DSP0249 PLDM State Set used to report

possible file states. See Device File State Sensor for requirements.

48 File Client A PLDM Terminus that can receive files from a File Host

49 File Host A PLDM Terminus that has a PLDM File Repository and enables a File Client to receive files from the File

Host.

50 File PDR File Descriptor Platform Descriptor Record (PDR) as defined in DSP0248 PLDM for Platform Monitoring

and Control Specification

51 File Size Number of bytes returned by the File Size Monitoring Sensor representing the current length of the

associated file or the File PDR FileMaximumSize if the associated File Size Monitoring Sensor does not exist.

52 File Size Monitoring Sensor A Compact or Numeric sensor PDR (see DSP0248 PLDM for Platform Monitoring and

Control) used to report the current file size in bytes returned by the PLDM GetSensorReading command (see

DSP0248). See File Size Monitoring Sensor for requirements.

53 NegotiatedInterval The maximum negotiated time interval in milliseconds to be used between commands issued by

the File Client. See DfHeartbeat for requirements.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 9

54 6 Symbols and abbreviated terms

55 Refer to DSP0240 for symbols and abbreviated terms that are used across the PLDM specifications. For the

purposes of this document, the following additional symbols and abbreviated terms apply.

56 EAR Entity Association PDR as defined in DSP0248 PLDM for Platform Monitoring and Control

57 FIFO First in, first out

58 IANA Internet Assigned Numbers Authority

59 OEM Original Equipment Manufacturer

60 PDR Platform Descriptor Record as defined in DSP0248 PLDM for Platform Monitoring and Control Specification

PLDM for File Transfer Specification DSP0242

10 Published Version 1.0.0

61 7 PLDM for File Transfer version

62 The version of this Platform Level Data Model (PLDM) for File Transfer Specification shall be 1.0.0 (major version

number 1, minor version number 0, update version number 0, and no alpha version).

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 11

63 8 PLDM for File Transfer Concepts

64 This section describes the key concepts of the File Transfer model and outlines expectations on PLDM termini that

implement this specification. This section also describes the multipart transfer partnership with the DSP0240 PLDM

Base Specification and DSP0248 PLDM for Platform Monitoring and Control specifications.

65 The PLDM for File Transfer specification is modeled after the ISO C Language FILE Library commands but adding

the prefix of “Df” (Device File) to the Open, Read, and Close commands. The DfRead command adds an optional

offset to implement a Seek and Read styled command.

66 This PLDM specification is part of the PLDM protocol suite and depends on the DSP0240 Discovery and Multiple

Part (Multipart) transfer commands, the DSP0248 Platform Descriptor Records (PDR) that includes File Descriptor,

Numeric Sensor, State Sensor, and Entity Association (EAR) PDRs. There are also DSP0248 commands to interact

with the Platform Descriptor Records.

67 The PLDM Initialization Agent discovers the PLDM for File Transfer support including supported specification version

and commands as defined in DSP0240. The data model definition for a file and an optional associated directory is

represented by the File PDR with hierarchy expressed with EARs. The data model provides static (meta) data in the

File PDR and dynamic data using numeric and state sensors.

68 📝 NOTE: The following list presents an example of a typical PLDM for File Transfer data flow:

• The File Client issues the NegotiateTransferParameters from DSP0240 with the File Host.

• The File Client retrieves the list of files, dynamic attributes (sensors), and optional directories from the File

Host DSP0248 specification defined PDR Repository.

• The File Host may generate events using the DSP0248 PlatformEventMessage command. The File Client

may choose to receive events using the DSP0248 specification SetEventReceiver command.

• The File Client issues the DfOpen command, using the FileIdentifier from a File PDR, to the File Host who

returns a session FileDescriptor used in applicable PLDM for File Transfer commands.

• The data transfer command from the File host is performed using a DfRead command, a logical

construction mapped to the DSP0240 MultipartReceive command.

• Upon completing the DfRead command, the File Client either issues a DfClose command or issues a

DfHeartbeat command.

69 8.1 File Metadata

70 The static file metadata can be obtained by retrieving the appropriate File PDR. Dynamic file metadata, such as File

Size, can be obtained by reading the File Size Monitoring Sensor. The methods of retrieving the File PDR and

reading the File Size Monitoring Sensor are defined in DSP0248.

PLDM for File Transfer Specification DSP0242

12 Published Version 1.0.0

71 8.2 File Transfer

72 A PLDM requester, typically a platform Baseboard Management Controller, is the originator of PLDM for File Transfer

initiated by the DfOpen command and performs the role of the File Client. A PLDM Terminus that responds to the

DfOpen command performs the role of the File Host. The characteristics of these roles are:

•73 File Host — A PLDM Terminus that:

◦ Creates, modifies, deletes files

◦ Presents a listing of files to a File Client using the DSP0248 PDR Repository

◦ Transfers files to a File Client using the mechanisms defined in this specification

•74 File Client — A PLDM Terminus that:

◦ Initiates a file transfer session to a File Host

◦ Receives files from a File Host using the mechanisms described in this specification

◦ Controls specific behavior such as preservation

75 8.3 File Discovery, Hierarchy and Identity Semantics

76 This section describes the terminology and semantics used by this specification as they relate to the ISO C

Language FILE library semantics.

77 8.3.1 Semantics

•78 File

◦ A file is an entity identified by a File PDR and has the EntityType set to Device File

◦ A file is a physical object that consumes storage space. The allocated storage may be volatile or non-

volatile

◦ The File PDR has a field, FileIdentifier, that is a single unique numeric value representing the file name

within the File Host hierarchy. The file name is a defined field in the File PDR.

◦ A file may be associated to a directory by the tuple: ContainerID, EntityType, EntityInstanceNumber. If the

File Host establishes a directory hierarchy, the directory association to its file (members) is constructed

using an EAR.

•79 Directory

◦ A directory is a logical object that associates files within its hierarchy

◦ A directory is an entity identified by a File PDR and has the EntityType set to Device File Directory

◦ The File PDR has a field, FileIdentifier, that is a single unique numeric value representing the directory

name within the File Host hierarchy. The directory name is a defined field in the File PDR.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 13

◦ The directory shall be a PLDM Container of a PLDM EAR that associates files into its hierarchy

•80 FileIdentifier

◦ A unique numeric value, obtained from the File PDR, that represents the file name or the directory name

within the File Host hierarchy

◦ The FileIdentifier and FileName fields are part of the same File PDR.

◦ The FileIdentifier is used (instead of the FileName (string) field) for specific FILE type commands such as

DfOpen, DfGetFileAttribute, and DfSetFileAttribute.

◦ When a Device File Directory FileIdentifier is a parameter to a DfOpen, DfGetFileAttribute, or

DfSetFileAttribute command, an INVALID_FILE_IDENTIFIER CompletionCode shall be returned.

•81 FileDescriptor

◦ The FileDescriptor is returned from the DfOpen command and represents a session to a specific file.

◦ Similar to the ISO C Language FILE Library functions, the FileDescriptor is the session identifier for DfRead,

DfHeartbeat, and DfClose commands defined in this specification, similar to the FILE object returned from

fopen().

◦ The FileDescriptor is the DfRead command (PLDM MultipartReceive command) TransferContext value to

identify the file and the session owning the data transfer.

82 8.3.2 File Types and Classification

83 Files are physical entities that have capabilities and classifications. There are also dynamic attributes that may be set

by the File Client executing the DfSetFileAttribute command if supported by the File Host. Examples of static file

capabilities that are normatively defined in the File PDR are: Exclusive Open, File Truncation / Wrapping, and File

Classification.

84 This specification, in collaboration with the DSP0248 PLDM for Platform Monitoring and Control specification, is

recommending an industry-conventional file (data) classification to allow the File Client to understand the type of

contained file data.

85 📝 NOTE: Table 1 has some examples of file (data) classifications.

86 Table 1 — FileClassification Examples

FileClassification Definition

BootLog
Typically holds device initialization data (events) but has no additional entries after initialization

completes

SerialTxFIFO Typically removes the data after successful transfer to the receiver or if the FIFO overflows

DiagnosticLog Typically a variable length file where data can be appended until maximum storage limit is reached.

PLDM for File Transfer Specification DSP0242

14 Published Version 1.0.0

FileClassification Definition

CrashDumpFile
A fixed-length file (instance) after creation, written one time with no growth per crash event,

typically containing diagnostic data

FRUDataFile A fixed-length file that stores Field Replaceable Unit (FRU) data typically found on add-in adapters

OtherLog A file classification that implies growth (appends) for new event (data).

OtherFile A file classification that implies a “write data once” with no growth after event (data) written.

87

88 8.3.3 File and Directory Discovery

89 Files and Directories are discovered by collecting the File PDRs with EntityType set to Device File or Device File

Directory. The File PDR holds static (meta) data including the hierarchy, identity, and static maximum file size. When

a File Host creates or deletes a file, the GetPDRRepositoryInfo update time is modified, the

GetPDRRepositorySignature is different, and a PldmPDRRepositoryChgEvent may be signaled if PLDM Events are

enabled.

90 The expectation is that file creation and deletion activity is not frequent. The recommended use case is for the File

Host to create expected files (with PDR) but not write the data until required. The File Client may periodically poll the

File Size Monitoring Sensor for the current file size, or the File Client may enable PLDM Events for the Device File

State Sensor to be alerted when a file has changed. The file does not have to be open for this activity because this is

normative DSP0248 supporting functionality that is foundational to this specification.

91 8.3.4 File System Hierarchy Discovery

92 The file system hierarchy of a File Host is learned through the PDRs and EARs. If the File Host implements a

hierarchy of directories to contain files, then the File Host shall implement the directory structure using the EAR data

model. The ContainerEntityContainerID shall be the directory identifier and all PDRs whose ContainerID matches the

directory identifier value shall be contained within the specified directory.

93 This specification’s recommended implementation is to create the PDRs for known file types, which allows the File

Client to collect the hierarchical data during PLDM Device Initialization.

94 8.4 RequestMaxPoll Usage

95 The DfGetFileAttribute command RequestMaxPoll attribute is intended to be used when a File Client is interacting

with a File Host implementing a limited buffer SerialTxFIFO. The RequestMaxPoll represents the maximum time the

File Client may take between reading the PLDM File Size Monitoring Sensor and the DfRead command or between

two DfRead commands of this file before data is lost either to truncating or wrapping.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 15

96 8.5 RequestCI Usage

97 The DfGetFileAttribute command RequestCI attribute is intended to be used when a File Client is interacting with a

file that does not change in size when updated and the File Client needs to know if the file has changed since the last

time it was read.

98 To do this, the File Client would retain the previous ChangeIndicator value and compare it to the new

ChangeIndicator value where a difference would indicate the file has changed.

99 8.6 DfOpenExclusive Usage

100 The DfOpenAttribute DfOpenExclusive, when combined with DfOpenReadWrite set to zero (0) of the DfOpen

command, is used to enable the DfClose command ZeroLength option set to one (1) as described in DfClose. The

need for the exclusivity is so that the file is not modified by the File Host or by another File Client while current File

Client has an active file session. When used in conjunction with the ClientZeroLengthOnly attribute of the

DfSetFileAttribute command, it allows the File Client to control when a file is updated. See the NOTE in File Zero

Length.

101 8.7 File Zero Length

102 File zero length overview:

• The choice of allowing a File Size to be set to zero (0) by the File Client issuing a DfClose command ZeroLength

option set to one (1) is optional on a file by file basis by the File Host and indicated by the File PDR

FileCapabilities FcZeroLengthPermitted bit set to one (1).

• If the File Host allows the File Client to issue a DfClose Command ZeroLength option set to one (1) on a file, the

File Client may request that only the File Client may modify the file by setting the ClientZeroLengthOnly attribute

of the DfSetFileAttribute command to one (1) when there is no active file session established.

103 8.7.1 ClientZeroLengthOnly Usage

104 📝 NOTE

105 One use of the ClientZeroLengthOnly is to make sure a CrashDumpFile is not overwritten or deleted by the File

Host before the File Client has read the file. Ideally the CrashDumpFile is stored in non-volatile memory and is

preserved over resets and power cycles as described in Table 14.

106 In order to eliminate the race condition of a File Host CrashDumpFile generation, File Client reading, File Host

deleting and/or overwriting the file, the following example sequence is envisioned:

PLDM for File Transfer Specification DSP0242

16 Published Version 1.0.0

1.107 The File Host updates the File Size Monitoring Sensor representing the current file size to be

zero length and the FcZeroLengthPermitted File PDF FileCapabilities set to one (1).

2.108 Immediately after discovering that the File Size Monitoring Sensor representing the

CrashDumpFile PDR is zero (0) length, the File Client sets the ClientZeroLengthOnly attribute of

the DfSetFileAttribute command to one (1) without opening the file.

3.109 With the ClientZeroLengthOnly attribute set, the File Host is allowed to update the

CrashDumpFile one time to cause the size to go from zero (0) to the CrashDumpFile final size.

4.110 When the File Host generates a CrashDumpFile, it now:

i. Updates File Size with the current file size

ii. Updates the Device File State Sensor to File is Updated

iii. Makes no updates to the CrashDumpFile File PDR

5.111 The File Client can be notified that a CrashDumpFile has been populated in several different

ways:

i. Register for events from the File Size Monitoring Sensor

ii. Register for events from the Device File State Sensor

iii. Poll the File Size Monitoring Sensor looking for a nonzero File Size value

iv. Poll the Device File State Sensor looking for File is Updated

6.112 The File Client proceeds with a DfOpen with exclusivity and DfRead command sequence to

retrieve the CrashDumpFile.

7.113 Since the File Client has opened the file exclusively, it can now immediately issue a DfClose

command ZeroLength option set to one (1) to minimize the possibility of locking out the File Host

from generating a new CrashDumpFile if so needed.

8.114 At this point the File Client can go back to waiting on a CrashDumpFile notification and the File

Host may generate another CrashDumpFile if so needed.

115 8.8 DSP0248 PLDM for Platform Monitoring and Control Specification
Relationship

116 This section describes the Platform Level Data Model (PLDM) used within the context of this specification. The

specification declares normative usage of PLDM objects such as Platform Descriptor Records (PDRs) and specific

value assignments within the data model. The reader should refer to other PLDM specifications for objects and fields

not explicitly stated in this specification.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 17

117 8.8.1 The File Descriptor Data Model

118 File PDR requirements:

• Every File shall have a File PDR that provides static metadata such as the (file) object maximum size.

• Every File shall have an EntityType set to Device File.

119 8.8.2 Required File Sensors

120 Table 2 describes the different file characteristics.

121 Table 2 — File Characteristic Definitions

File Characteristic Definition

Static File

READ ONLY after creation; the contents do not change; no updates or appends; does not support

the DfClose command ZeroLength option; file size is equal to the value of the File PDR

FileMaximumSize field

Fixed Length File

READ and MODIFY after creation but no append; the size does not change but may be updated;

does not support the DfClose command ZeroLength option; file size is equal to the value of the File

PDR FileMaximumSize field

Regular File READ, MODIFY, or APPEND after creation, including the optional DfClose ZeroLength option

SerialTxFIFO A FIFO file whose file size may grow or shrink

122 📝 NOTE: Table 3 describes the sensor usage for different file characteristics.

123 Table 3 — Sensor Usage for Different File Characteristics

File Characteristic Usage

Static File

The file is always at maximum size, so having a Device File State Sensor File is at Maximum

Size State is meaningless.

File is a static size, so any File Size Monitoring Sensor thresholds are meaningless.

Fixed Length File The Device File State Sensor is used to indicate and/or notify of a file update.

Regular File

The FatalHigh threshold is used to allow overflow detection.

Device File State Sensor is used to indicate and/or notify of a file update.

PLDM for File Transfer Specification DSP0242

18 Published Version 1.0.0

File Characteristic Usage

SerialTxFIFO

The File Size Monitoring Sensor WarningHigh threshold allows the File Client to be notified it is

not retrieving / accepting data faster than the data being written to the FIFO.

The File Size Monitoring Sensor FatalHigh threshold allows the File Client to be notified that

data has overflowed.

The Device File State Sensor is used to indicate and/or notify of an overflow condition.

124 Table 4 describes the sensors and thresholds required for each file characteristic.

125 Table 4 — File Sensors and Thresholds Support

File Characteristic

File Size

Monitoring

Sensor

Support

File Size

thresholds

Support

Device File

State

Sensor

Support

Device File State Support

Static File Should Should not Should
Should not support File is at Maximum File

State

Fixed Length File Should Should not Shall
Should not support File is at Maximum File

State

Regular File Shall Should Shall Should support all defined states

SerialTxFIFO Shall Shall Shall
Should not support File is Updated or File is

not updated

126 8.8.3 File Size Monitoring Sensor

127 File Host File Size Monitoring Sensor requirements:

• The File Size Monitoring Sensor shall be implemented as a Compact or Numeric sensor PDR used to report the

current file size in bytes in the PresentReading field and monitor file size changes. Optionally, the File Size

Monitoring Sensor may be used to generate PLDM events (using threshold limits), either by the File Host as a

default or by an explicit DSP0248 SetNumericSensorEnable command. The File Client should also send a

DSP0248 SetEventReceiver command to enable reception of the event messages.

• The File Size Monitoring Sensor shall match the monitored File PDR EntityType, EntityInstance, and

ContainerID fields to establish its association to the monitored file.

• The File Size Monitoring Sensor BaseUnit shall be set to Bytes.

• The File Size Monitoring Sensor UnitModifier shall be set to zero (0).

• If the File Size Monitoring Sensor is a Numeric Sensor type, then:

◦ RateUnit shall be set to None.

◦ Offset shall be set to zero (0).

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 19

◦ Resolution shall be set to 1.00 (real32 data type; for this, see DSP0240).

• If the File Size Monitoring Sensor is a Compact Numeric Sensor type, then OccurrenceRate shall be set to No

Occurrence Rate.

128 File Client File Size requirements:

• If the File PDR does not have an associated File Size Monitoring Sensor, then the File Size is the number of

bytes indicated by the File PDR FileMaximumSize field; otherwise the File Size is the value returned by the

GetSensorReading command of the associated File Size Monitoring Sensor.

129 8.8.4 File Size Monitoring Sensor Thresholds

•130 If a File Size Monitoring Sensor supports thresholds, then:

◦ The File Host should set WarningHigh and/or CriticalHigh thresholds based on the file type and the growth

rate.

◦ The File Host should set the FatalHigh threshold equal to the File PDR FileMaximumSize field.

◦ The File Host should support the DSP0248 SetSensorThresholds command for the WarningHigh and

CriticalHigh thresholds to allow the File Client to adjust priority and buffering; this is critical for SerialTxFIFO

FileClassification files.

◦ The File Client shall not adjust the FatalHigh threshold greater than the File PDR FileMaximumSize. If the

File Client attempts to adjust the FatalHigh threshold greater the File PDR FileMaximumSize, the File Host

shall return an ERROR_INVALID_DATA CompletionCode as described in DSP0240.

131 8.8.5 Device File State Sensor

132 Device File State Sensor requirements:

•133 The Device File State Sensor shall be implemented as a PLDM State Sensor PDR to report specific file states

including file updates without a file size change (such as an inner record modification). The Device File State

Sensor may be used to generate PLDM events or an explicit DSP0248 SetStateSensorEnables command.

•134 The Device File State Sensor shall match the monitored File PDR EntityType, EntityInstance, and ContainerID

fields to establish its association to the monitored file.

•135 The Device File State Sensor shall implement the DSP0249 PLDM State Set Specification State Set Device File

(68).

•136 For SerialTxFIFO FileClassification files:

◦ If using the Polled access method, the File Client should prioritize reading the File Size Monitoring Sensor

based on the value from the DfGetFileAttribute command RequestMaxPoll.

•137 For all other FileClassification files:

PLDM for File Transfer Specification DSP0242

20 Published Version 1.0.0

◦138 The File Host should only set the Device File State Sensor to File is Updated when the following Device File

States are not valid or not supported:

▪ File is at Maximum State

▪ File Data has Truncated

▪ File Data has Wrapped

139 8.8.6 Sensor and File Transfer command interaction

140 Table 5 lists the interactions between the File Size Monitoring Sensor, Device File State Sensor, and File Transfer

(PLDMType seven (7)) commands.

141 Table 5 — Sensor File Transfer Command Interactions

FileClassification File Transfer Command Sensor Interaction

SerialTxFIFO

DfOpen

DfClose

DfGetFileAttribute

DfSetFileAttribute

DfHeartbeat

DfProperties

none

SerialTxFIFO DfRead

File Host shall update the File Size

Monitoring Sensor and the Device File

State Sensor.

BootLog

DiagnosticLog

CrashDumpFile

SecurityLog

FRUDataFile

OtherLog

OtherFile

DfClose ZeroLength=1

If implemented, the File Host shall update

the File Size Monitoring Sensor and the

Device File State Sensor.

BootLog

DiagnosticLog

CrashDumpFile

SecurityLog

FRUDataFile

OtherLog

OtherFile

All commands except DfClose ZeroLength=1 none

OEM All commands OEM specific

142 8.8.7 The Directory Descriptor Data Model

143 Requirements for Directory File PDR:

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 21

• The directory shall have a File PDR.

• The File PDR field EntityType shall be set to Device File Directory.

• The File PDR field FileCapabilities shall be set to zero (0).

• The File PDR field FileVersion shall be set to unversioned (0xFFFFFFFF).

• The File PDR field FileMaximumSize shall be set to the special value 0xFFFFFFFF.

144 A directory shall be represented as an EAR, such that the directory File PDR ContainerID shall be the directory EAR

ContainerID.

145 Requirements for EAR representation of the Directory:

• The EAR AssociationType shall always be set to LogicalContainment.

• The EAR fields: ContainerEntityType and ContainerEntityInstanceNumber shall match the associated directory

File PDR EntityType and EntityInstance values.

• The EAR field ContainerEntityContainerID is recommended to be set to the special value System or to the

ContainerID of a superior directory.

• All files subordinate to a directory shall have their File PDR EntityType, EntityInstance, and ContainerID fields

listed in the directory’s EAR Contained Entity Identification Information section.

146 See Figure 1 for an example of the implicit association of a file object with its associated sensors, using the PDR

association fields EntityType, EntityInstance, and ContainerID.

PLDM for File Transfer Specification DSP0242

22 Published Version 1.0.0

147 8.8.8 File Data Model

148 In Figure 1 the numeric and state sensors associated with the file match the EntityType, EntityInstance, and

ContainerID fields of the File PDR.

149
File Object

File Device File PDR

recordHandle = 2045
File Descriptor = 100
File Name = Device Crash Log
entityType = Physical | Device File
entityInstanceNumber = 1
containerID = 1000

File Numeric Sensor

recordHandle = 3485
SensorID = 18
BaseUnit = Bytes (File Size)
entityType = Physical | Device File
entityInstanceNumber = 1
containerID = 1000

File State Sensor

recordHandle = 3481
SensorID = 14
Device File State
entityType = Physical | Device File
entityInstanceNumber = 1
containerID = 1000

150 Figure 1 — PLDM for File Transfer File Data Model Implicit Association Example

151 Figure 2 shows a flat file sensor usage example.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 23

152
FILE1

File1 State Sensor

RecordHandle = 3481
SensorID = 14
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = SYSTEM

File1 Numeric Sensor

RecordHandle = 3485
SensorID = 18
BaseUnit = Bytes (File Size)
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = SYSTEM

File1 Device File PDR

recordHandle = 2045
FileIdentifier = 100
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = SYSTEM

FILE2

File2 State Sensor

RecordHandle = 6481
SensorID = 24
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = SYSTEM

File2 Numeric Sensor

RecordHandle = 6485
SensorID = 28
BaseUnit = Bytes (File Size)
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = SYSTEM

File2 Device File PDR

RecordHandle = 2046
FileIdentifier = 200
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = SYSTEM

153 Figure 2 — PLDM for File Transfer Flat File Sensor Usage Example

PLDM for File Transfer Specification DSP0242

24 Published Version 1.0.0

154 Figure 3 shows a Directory EAR sensor usage example

155 FILE1

File1 State Sensor

RecordHandle = 3481
SensorID = 14
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

File1 Numeric Sensor

RecordHandle = 3485
SensorID = 18
FileSize
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

File1 Device File PDR

RecordHandle = 2045
FileIdentifier = 100
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

FILE2

File2 State Sensor

RecordHandle = 6481
SensorID = 24
Device File State
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

File2 Numeric Sensor

recordHandle = 6485
SensorID = 28
File Size
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

File2 Device File PDR

RecordHandle = 2046
FileIdentifier = 200
FileName = Device Crash Log
EntityType = Physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

DIR1

Dir1 State Sensor

RecordHandle = 4481
SensorID = 24
Device File State
EntityType = Physical | Device File Dir
EntityInstanceNumber = 1
ContainerID = 828

Dir1 Device File PDR

RecordHandle = 2047
FileIdentifier = 300
FileName = Directory 1
EntityType = Physical | Device File Dir
EntityInstanceNumber = 1
ContainerID = 828

Entity Association PDR

RecordHandle 2257
ContainerID 828
associationType = logical containment

Container Entity

EntityType = logical | Device File Dir
EntityInstanceNumber = 1
ContainerEntityContainerID = 000

Contained Entity 1

EntityType = physical | Device File
EntityInstanceNumber = 1
ContainerID = 828

Contained Entity 2

EntityType = physical | Device File
EntityInstanceNumber = 2
ContainerID = 828

156 Figure 3 — PLDM for File Transfer Directory EAR Sensor Usage Example

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 25

157 9 PLDM for File Transfer Commands

158 This section describes the commands that shall be used for File Transfer. Table 6 consists of the codes assigned to

commands. These commands have their own PLDM message type that is defined in DSP0245.

159 Table 6 — PLDM for File Transfer Command Codes

Command Code Value File Host support3 File Client support4

DfOpen 0x01 Required Required

DfClose 0x02 Required Optional

DfHeartbeat 0x03 Optional Conditional

Reserved 0x04-0x0F

DfProperties 0x10 Required Optional

DfGetFileAttribute 0x11 Optional Optional

DfSetFileAttribute 0x12 Optional Optional

Reserved 0x13-0x1F

DfRead

MultipartReceive
0x201 Required Required

DfFIFOSend

MultipartSend
0x211 Conditional2 Optional

Reserved 0x22-0xFF

160 1 This command value is only to support the DSP0240 GetPLDMCommands command for discovery and is mapped

to DSP0240 PLDM Multipart Transfer.
2 If File PDR has both FileCapabilities DataType set to one (1) (Streaming FIFO) and Pushed set to one (1), then the

File Host shall support the DfFIFOSend command.
3 The File Host is the responder except for the DfFIFOSend command where it is the requester.
4 The File Client is the requester except for the DfFIFOSend command where it is the responder.

161 For Optional or Conditional command requirements, see the individual command descriptions.

PLDM for File Transfer Specification DSP0242

26 Published Version 1.0.0

162 9.1 DfProperties Command

163 The File Client issues a DfProperties command, as described in Table 7 to list the File Transfer specific capabilities of

the File Host.

164 If more than one bit is set in DfPropertyAttribute, or a specified DfPropertyAttribute is not supported, then the File

Host shall return an INVALID_DF_ATTRIBUTE CompletionCode.

165 Table 7 — DfProperties Command Format

Byte Type Request Data

0:3 bitfield32

DfPropertyAttribute

1b = Request the specified DfPropertyAttribute

0b = DfPropertyAttribute not requested

[0] — MaxConcurrentMedium

[1] — MaxFileDescriptors

[2:31] — Reserved

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, INVALID_DF_ATTRIBUTE }

See Table 16 for values.

1:4 uint32
DfPropertyAttributeValue

See Table 8.

166 Table 8 — DfPropertyAttributeValue Definition

DfPropertyAttributeValue Definition

MaxConcurrentMedium

The maximum number of mediums the

File Host support. The returned

MaxConcurrentMedium shall be one (1)

for this specification.

MaxFileDescriptors
The total number of File Descriptors the

File Host supports.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 27

167 9.2 DfOpen Command

168 The File Client issues a DfOpen command to establish a file session between the File Client and a specific file. The

DfOpen command, as described in Table 9, uses a File PDR FileIdentifier field to access the specific file.

169 The FileDescriptor shall be unique to the File Host and may be used by the File Host to track how many File Clients

have a file open.

170 The returned FileDescriptor is used by the File Client for subsequent DfRead, DfHeartbeat, and DfClose commands.

171 The DfOpen command only supports the File PDR with the entity type set to Device File. If the File Host receives a

DfOpen command with a FileIdentifier associated to a File PDR with the entity type set to Device File Directory, then

the File Host shall return a DFOPEN_DIR_NOT_ALLOWED CompletionCode.

172 If the file specified by the File PDR FileIdentifier does not exist, the File Host shall return an

INVALID_FILE_IDENTIFIER CompletionCode.

173 If the file specified by the File PDR FileIdentifier exists, but the File Host temporarily cannot return a FileDescriptor,

then the File Host shall return an UNABLE_TO_OPEN_FILE CompletionCode.

174 9.2.1 DfOpen File Host Pushed requirements

175 DfOpenPolledPushed set to one (1) (Pushed) is only supported if DfOpenRegFIFO is set to one (1) (FIFO).

176 If the File Client sets DfOpenPolledPushed attribute to one (1) (Pushed) in the DfOpen command and the DfOpen

command is successfully completed, the File Client shall be able to immediately receive the start of a DfFIFOSend

command and no DfRead command is required or allowed.

177 9.2.2 DfOpen DfOpenAttribute requirements

178 File Client / File Host DfOpenAttribute requirements:

•179 If the File Client issues a DfOpen command with an invalid combination of DfOpenAttribute or unsupported

DfOpenAttribute for the requested FileIdentifier, then the File Host shall return the INVALID_DF_ATTRIBUTE

CompletionCode.

•180 If the File Host is temporarily unable to establish exclusive ownership of the requested FileIdentifier with the

DfOpenAttribute DfOpenReadWrite set to zero (0) and DfOpenAttribute DfOpenExclusive set to one (1)

(Exclusive), and if exclusive ownership is allowed (that is, if File PDR FileCapabilities ExReadOpen is set to one

(1)), then the File Host shall return the EXCLUSIVE_OWNERSHIP_NOT_AVAILABLE CompletionCode.

•181 If the File Client successfully completes a DfOpen command with DfOpenAttribute DfOpenReadWrite set to zero

(0) and DfOpenAttribute DfOpenExclusive set to one (1) (Exclusive), the File Host shall not make any updates,

including changing the length of the file represented by the requested FileDescriptor.

◦ If the File Host cannot support this requirement for this file, then it shall set the File PDR FileCapabilities

PLDM for File Transfer Specification DSP0242

28 Published Version 1.0.0

ExReadOpen to zero (0) for this file.

•182 See DfOpen SerialTxFIFO requirements for additional DfOpenAttribute requirements when File PDR

FileClassification equals DfOpen SerialTxFIFO.

183 9.2.3 DfOpen SerialTxFIFO requirements

184 Requirements when File PDR FileClassification equals DfOpen SerialTxFIFO:

185 By definition of FIFO (first in, first out), the DfOpen of a SerialTxFIFO file does not support multiple simultaneous file

sessions:

• Setting the DfOpen command DfOpenAttribute DfOpenExclusive to one (1) (Exclusive) is not supported, and the

File Host shall return the INVALID_DF_ATTRIBUTE CompletionCode.

• The File PDR FileMaximumFileDescriptorCount shall be set to one (1).

• The File PDR FileCapabilities ExReadOpen shall be set to zero (0).

186 9.2.4 DfOpen FileDescriptors count requirements

187 If the number of open FileDescriptors for a specified FileIdentifier would exceed the File PDR

FileMaximumFileDescriptorCount (see DSP0248), then the File Host shall return the MAX_NUM_FDS_EXCEEDED

CompletionCode.

188 If the number of open FileDescriptors for the File Host would exceed the DfProperties command MaxFileDescriptors,

then the File Host shall return the MAX_NUM_FDS_EXCEEDED CompletionCode.

189 9.2.5 File Client file exclusivity usage

190 The File Client should only open a file exclusively for the following reasons:

• The File Client would like to issue a DfClose command ZeroLength option set to one (1) on this file.

• The ClientZeroLengthOnly FileCapabilities is set to one (1) for the requested FileIdentifier.

191 Due to the restrictions placed on the File Host with the DfOpen command DfOpenAttribute DfOpenReadWrite set to

zero (0) and DfOpenAttribute DfOpenExclusive set to one (1) (Exclusive), the File Client should minimize the time the

file is opened with the DfOpenAttribute DfOpenExclusive set to one (1) (Exclusive).

192 If the File Host cannot update a file because the File Client has the file opened exclusively and the data is lost, then

the File Host should set the Device File State Sensor to “File Data has Truncated”.

193 Table 9 — DfOpen Command Format

Byte Type Request Data

0:1 uint16 FileIdentifier

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 29

Byte Type Request Data

2:3 bitfield16

DfOpenAttribute

[0] — DfOpenReadWrite, 1b = Write (not supported), 0b = Read

[1] — DfOpenExclusive, 1b = Exclusive, 0b = Non-exclusive

[2] — DfOpenRegFIFO, 1b = Streaming FIFO (Serial FIFO), 0b = Regular

[3] — DfOpenPolledPushed, 1b = Pushed, 0b = Polled

[4:15] Reserved (0)

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, UNABLE_TO_OPEN_FILE,

INVALID_FILE_IDENTIFIER, INVALID_DF_ATTRIBUTE,

EXCLUSIVE_OWNERSHIP_NOT_ALLOWED,

EXCLUSIVE_OWNERSHIP_NOT_AVAILABLE, DFOPEN_DIR_NOT_ALLOWED,

MAX_NUM_FDS_EXCEEDED }

See Table 16 for values.

1:2 uint16 FileDescriptor

PLDM for File Transfer Specification DSP0242

30 Published Version 1.0.0

194 9.3 DfClose Command

195 The DfClose command, as described in Table 10, is used by the File Client to tell the File Host the File Client no

longer needs access to a file. After the File Client has successfully completed a DfClose, the File Client no longer

needs to issue DfHeartbeat commands for that file.

196 If the File Host returns CompletionCode equal to SUCCESS for a DfClose command ZeroLength option set to zero

(0), then the File Host shall:

1. Close the active open file session

2. Invalidate the FileDescriptor

197 If the File Host returns CompletionCode equal to SUCCESS for a DfClose command ZeroLength option set to one

(1), then the File Host shall:

1. Set the File Size to zero (0)

2. Close the active open file session

3. Invalidate the FileDescriptor

198 If the File Client issues a DfClose command with an invalid or no longer valid FileDescriptor, then the File Host shall

return an INVALID_FILE_DESCRIPTOR CompletionCode.

199 Requirements for DfClose command ZeroLength option set to one (1):

• A File Client shall successfully establish read exclusivity by completing a DfOpen command with

DfOpenReadWrite set to zero (0) and DfOpenExclusive set to one (1) (Exclusive).

• If the File Client has not established read exclusivity, then the File Host shall return an

EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED CompletionCode to the requested DfClose command.

200 If a File Host supports the DfClose command ZeroLength set to one (1), then:

• if the FileDescriptor represents a file that has the FileCapabilities FcZeroLengthPermitted bit set to zero (0), then

the File Host shall return the CompletionCode ZEROLENGTH_NOT_ALLOWED.

• if the FileDescriptor represents a file that has the FileCapabilities FcZeroLengthPermitted bit set to one (1) and

the File Host cannot change the file’s length to zero (0) at the time of the request, then the File Host shall return

the PLDM_BASE_CODE CompletionCode ERROR_NOT_READY.

201 If the CompletionCode is not equal to SUCCESS, then the open file session remains active and the FileDescriptor

remains valid and retains the same value.

202 See Implicit File Close under the DfHeartbeat command for information on implicitly closing a file.

203 Table 10 — DfClose Command Format

Byte Type Request Data

0:1 uint16 FileDescriptor

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 31

Byte Type Request Data

2:3 bitfield16

DfCloseOptions

1b = Closing option requested

0b = Closing option not requested

[0] — ZeroLength, 1b = Request the File Host set the File Length to

zero (0), 0b = No request

[1:15] Reserved (0)

Byte Type Response Data

0 enum8

CompletionCode

Possible values: {PLDM_BASE_CODES,

INVALID_FILE_DESCRIPTOR, ZEROLENGTH_NOT_ALLOWED,

EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED}

See Table 16 for values.

PLDM for File Transfer Specification DSP0242

32 Published Version 1.0.0

204 9.4 DfGetFileAttribute Command

205 The DfGetFileAttribute command, as described in Table 11, is used by the File Client to get specific dynamic

attributes of a file.

206 If the FileIdentifier requested by the File Client is invalid, the File Host shall return an INVALID_FILE_IDENTIFIER

CompletionCode.

207 If the requested FileIdentifier AttributeReq is not supported by the File Host, then it shall return an

INVALID_DF_ATTRIBUTE CompletionCode.

208 If more than one bit is set in AttributeReq, then the File Host shall return an INVALID_DF_ATTRIBUTE

CompletionCode.

209 Table 11 — DfGetFileAttribute Command Format

Byte Type Request Data

0:1 uint16

FileIdentifier

This is the FileIdentifier returned in the File PDR for this file

(directory).

2:5 bitfield32

FileAttributeReq

1b = Request the specified current attribute status

0b = Attribute status not requested

[0] — ClientZeroLengthOnly

[1:15] Reserved (0)

[16] — RequestCI

[17] — ReqMaxPoll

[18:31] Reserved (0)

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES,

INVALID_DF_ATTRIBUTE, INVALID_FILE_IDENTIFIER }

See Table 16 for values.

1:4 uint32

FileAttributeValue

This is a fixed-length return value.

See Table 12.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 33

210 Table 12 — DfGetFileAttribute Returned Value Definition

FileAttributeName Definition

ClientZeroLengthOnly

If the FileAttributeReq ClientZeroLengthOnly is

set to one (1), then the returned

ClientZeroLengthOnly indicates, if set to one

(1), this file has been designated by the File

Client to be preserved until the File Client

explicitly sets the ClientZeroLengthOnly to zero

(0). The file shall be opened exclusively if this

attribute is set to one (1).

ChangeIndicator

If the FileAttributeReq RequestCI is set to one

(1), the returned ChangeIndicator is generated

by the File Host either at the time of the

reception of the DfGetFileAttribute or at the time

when the file was last changed. The File Client

may compare the current value to a previously

saved value to indicate if the file has changed

since the last time the File Client read the file.

The ChangeIndicator should be a 32-bit CRC.

RequestMaxPoll

If the FileAttributeReq ReqMaxPoll is set to one

(1), the returned RequestMaxPoll is the

maximum time, in milliseconds, allowed

between reading the File Size Monitoring

Sensor or DfRead command before the data

may either truncate or wrap, depending on the

File PDR FileCapabilities settings.

PLDM for File Transfer Specification DSP0242

34 Published Version 1.0.0

211 9.5 DfSetFileAttribute Command

212 The DfSetFileAttribute command, as described in Table 13, is used by the File Client to set specific dynamic file

attributes such as file preservation.

213 If the FileIdentifier requested by the File Client is invalid, the File Host shall return an INVALID_FILE_IDENTIFIER

CompletionCode.

214 If the requested FileIdentifier AttributeReq is not supported by the File Host, then it shall return an

INVALID_DF_ATTRIBUTE CompletionCode.

215 If more than one bit is set in AttributeReq, then the File Host shall return an INVALID_DF_ATTRIBUTE

CompletionCode.

216 If the file specified by the FileIdentifier has a valid FileDescriptor by any File Client, then the File Host shall return the

FILE_OPEN CompletionCode.

217 If the SUCCESS CompletionCode is not returned, then no change is made to the DfSetFileAttribute.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 35

218 Table 13 — DfSetFileAttribute Command Format

Byte Type Request Data

0:1 uint16

FileIdentifier

This is the FileIdentifier returned in the File PDR for this file

(directory).

2:3 bitfield16

FileAttributeSet

1b = Request setting specified attribute

0b = setting of attribute not requested

[0] ClientZeroLengthOnly

[1:15] Reserved (0)

4:7 uint32
FileAttributeValue

This is a fixed-length value. See Table 14.

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES,

INVALID_DF_ATTRIBUTE, INVALID_FILE_IDENTIFIER,

FILE_OPEN }

See Table 16 for values.

PLDM for File Transfer Specification DSP0242

36 Published Version 1.0.0

219 Table 14 — DfSetFileAttribute SUCCESS Value Definition

FileAttributeName Definition

ClientZeroLengthOnly

If ClientZeroLengthOnly FileAttributeValue is set

to one (1), then the file has been designated by

the File Client to be preserved until explicitly

released by the File Client. Setting the

ClientZeroLengthOnly FileAttributeValue to zero

(0) allows the file to be deleted or updated by

the File Host.

The file shall be subsequently opened

exclusively if this attribute is set to one.

If the ClientZeroLengthOnly FileAttributeValue

bit is set to (1), the File Host shall not update or

add to the file after initial creation.

The File Client is only allowed to change the

ClientZeroLengthOnly FileAttributeValue if the

file is not currently open.

If the file is currently open, the File Host and the

File Client shall not change the

ClientZeroLengthOnly state and the File Host

shall return the FILE_OPEN CompletionCode.

The ClientZeroLengthOnly state shall be

preserved across resets and power cycles for

non-volatile files File PDR FileCapabilities

DataVolatility. The ClientZeroLengthOnly state

for volatile files should be preserved across

resets.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 37

220 9.6 DfHeartbeat Command

221 The DfHeartbeat command is a multiple function command, providing both an initialization / negotiation function and

a simple flow control function for SerialTxFIFO type files.

222 The DfHeartbeat command, as described in Table 15, enables:

• initialization to negotiate the maximum time interval allowed between the last DfOpen, DfRead, or DfHeartbeat

command and when the File Host may optionally close the FileDescriptor,

• an indication to the File Host that the current FileDescriptor is still active (also known as keep alive), even with

no periodic DfRead activity,

• the File Client or the File Host to request a shorter or longer maximum time interval as a flow control function.

223 The maximum time interval may be negotiated during any DfHeartbeat command invocation. The File Host is

permitted to request a different ResponderMaxInterval when the file data is not retrieved at a rate to avoid an

overflow or truncation condition. This method typically is used to inform the File Client when a SerialTxFIFO file is

approaching capacity and needs a faster polling DfRead to avoid dropping data. The File Client may also request a

different RequesterMaxInterval, but this is not the usual expected use case (flow) since the File Client can control the

polling rate for the DfRead command with the invocation frequency and, for the DfFIFOSend command, the File

Client can increase / decrease the DfFIFOSend response rate.

224 Upon successful completion of each invocation of this command, the lesser value of RequesterMaxInterval and

ResponderMaxInterval is defined as the current NegotiatedInterval. The File Client shall issue DfHeartbeat or

DfRead commands using the current NegotiatedInterval as the maximum period between DfOpen, DfRead, and

DfHeartbeat commands.

225 If the FileDescriptor requested by the File Client is not valid or is no longer valid, the File Host shall return an

INVALID_FILE_DESCRIPTOR CompletionCode.

226 9.6.1 Implicit File Close

227 If the File Host has not received a DfHeartbeat or a DfRead command within the current NegotiatedInterval, it may

optionally do an implicit file close of the FileDescriptor. If the File Host has closed the FileDescriptor, then it shall

return an INVALID_FILE_DESCRIPTOR CompletionCode on any uses of that FileDescriptor by the File Client.

228 If there is no current valid NegotiatedInterval and if the DfHeartbeat command is not sent within an implementation-

specific amount of time, then the File Host may do an implicit file close.

PLDM for File Transfer Specification DSP0242

38 Published Version 1.0.0

229 Table 15 — DfHeartbeat Command Format

Byte Type Request Data

0:1 uint16 FileDescriptor

2:5 uint32
RequesterMaxInterval

The requested maximum supported NegotiatedInterval in milliseconds

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, INVALID_FILE_DESCRIPTOR }

See Table 16 for values.

1:4 uint32
ResponderMaxInterval

The maximum supported NegotiatedInterval in milliseconds from the responder

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 39

230 9.7 Error Completion Codes

231 PLDM completion codes for file transfer that are beyond the scope of PLDM_BASE_CODES in DSP0240 are defined

in Table 16. The contexts in which these codes are used are also described in the table below.

232 Table 16 — PLDM File Transfer Completion Codes

Value Name Returned By Usage Description

Various PLDM_BASE_CODES
File Host & File

Client
See the DSP0240 PLDM Base Specification.

0x80 INVALID_FILE_DESCRIPTOR
File Host & File

Client

Invalid FileDescriptor was provided to one of the

following commands: DfRead, DfClose, DfHeartbeat.

0x81 INVALID_DF_ATTRIBUTE File Host

Invalid attribute or combinations of attributes was

provided to one of the following commands: DfOpen,

DfGetFileAttribute, DfSetFileAttribute.

0x82 ZEROLENGTH_NOT_ALLOWED File Host
DfClose command ZeroLength option set to one (1) of

this file is not allowed. See DfClose.

0x83 EXCLUSIVE_OWNERSHIP_NOT_ESTABLISHED File Host
Attempted to use DfClose command ZeroLength option

set to one (1) without proper ownership. See DfClose.

0x84 EXCLUSIVE_OWNERSHIP_NOT_ALLOWED File Host
Requested file is not allowed to be opened exclusively.

See DfOpen.

0x85 EXCLUSIVE_OWNERSHIP_NOT_AVAILABLE File Host
Requested file temporarily cannot be opened

exclusively.

0x86 INVALID_FILE_IDENTIFIER File Host

Invalid FileIdentifier was provided to one of the

following commands: DfOpen, DfGetFileAttribute,

DfSetFileAttribute.

0x87 DFOPEN_DIR_NOT_ALLOWED File Host Opening a directory is not allowed. See DfOpen.

0x88 MAX_NUM_FDS_EXCEEDED File Host
A File Host has run out of FileDescriptors either for this

file or overall. See DfOpen.

0x89 FILE_OPEN File Host
Attempted to change a file attribute on a currently

opened file. See DfSetFileAttribute.

0x8A UNABLE_TO_OPEN_FILE File Host
The File Host is temporarily unable to open a file. See

DfOpen.

0x8B-0xFF Reserved Reserved

PLDM for File Transfer Specification DSP0242

40 Published Version 1.0.0

233 9.8 DfRead (DSP0240 MultipartReceive)

234 The DfRead command is a PLDM for File Transfer (type) specific implementation of the DSP0240 PLDM Base

Specification Multipart Transfer Commands, and specifically the MultipartReceive command. The DSP0240

MultipartReceive command allows the File Client to initiate a data transfer command (e.g., DfRead) from the File

Host. The Multipart Transfer Commands allow a PLDM specification to define specific context to the command

parameters, which allows this definition of the DfRead command to map values to the Multipart Transfer Commands.

235 A DfRead command is used to read one (1) multipart section using the MultipartReceive command. The size of the

DfRead command (multipart section size) is determined by the File Client and is based on how much of the file the

File Client wants to read and the maximum amount of data it wants to re-receive in case of an error and subsequent

retransmission by the File Host.

236 To read a file sequentially using multiple DfRead commands, the File Client computes the FileOffset for the next

DfRead command by using the previous FileOffset and adding the previous returned DataLengthBytes.

237 For this specification, the maximum Multipart Transfer Commands Transfer Block size is the current File Size value.

The File Client may read all or part of the file represented by the File Size using the appropriate number of DfRead

commands with appropriate FileOffset. The Transfer Block is only known and used by the File Client to know how

many DfRead commands (multipart sections) it needs to issue.

238 The File Host shall not invalidate the FileDescriptor or close the file if an error completion code is sent or if the File

Client sets the TransferOperation parameter to XFER_ABORT. The File Client and File Host shall use the

MultipartReceive command as specified in DSP0240 with the mappings defined in Table 19.

239 The File Host, as the MultipartReceive command responder, shall respond with a CompletionCode set to

ERROR_INVALID_TRANSFER_CONTEXT if the File Client MultipartReceive command request provides an invalid

FileDescriptor.

240 There is no defined behavior for the File Client after it issues the XFER_ABORT, and is out of scope of this

specification.

241 This specification requires that PLDM for File Transfer PLDMType seven (7) is specified in the

NegotiateTransferParameters command fields RequesterProtocolSupport and ResponderProtocolSupport.

242 A DfRead command within the NegotiatedInterval is equivalent to executing the DfHeartbeat command.

243 9.8.1 Serial FIFO type file characteristics

244 Files classified as a SerialTxFIFO have specific characteristics, similar to an endpoint streaming data of a Universal

Asynchronous Receiver-Transmitter (UART) device. The following requirements apply:

• Seeking is not supported (MultipartReceive Requested SectionOffset shall be set to zero).

• Single part per section (TransferOperation shall not be set to XFER_NEXT_PART)

• Single section (no piggybacking multiple sections as the offset is always zero)

• The File Host shall move the SerialTxFIFO read pointer when the File Client sets the MultipartReceive

TransferOperation field to XFER_COMPLETE.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 41

• The File Client shall issue the MultipartReceive to read a SerialTxFIFO type file until the data length is less than

the negotiated part size, indicating that all the available data has been transferred.

• See DfOpen SerialTxFIFO requirements for additional DfOpenAttribute requirements.

245 The DfRead command is implemented using the Multipart Transfer Commands, as Table 6 describes.

246 9.8.2 DfRead command details

247 The DfRead command maps to the MultipartReceive command as described in Table 19. The DfRead command

Request Data fields not specified in this table or by the following requirements are set to the MultipartReceive

command defaults.

248 DfRead File Client request requirements are detailed in Table 17:

249 Table 17 — DfRead File Client Request Requirements

MultipartReceive

TransferOperation
All File Types

Additional Requirements when

DfOpenRegFIFO is set to one

(1).

XFER_FIRST_PART

The FileOffset may be zero (0) (beginning of file)

or a nonzero value representing the file offset.

The initial DataTransferHandle shall be zero (0).

The FileOffset shall be set to zero

(0).

The

RequestedSectionLengthBytes

shall be equal to or less than the

Negotiated Transfer Part Size

from the most recent successfully

completed

NegotiateTransferParameters

command.

XFER_NEXT_PART Not supported

XFER_COMPLETE
RequestedSectionOffset shall be

zero (0).

PLDM for File Transfer Specification DSP0242

42 Published Version 1.0.0

250 DfRead File Host response requirements are detailed in Table 18:

251 Table 18 — DfRead File Host Response Requirements

MultipartReceive

TransferOperation
All File Types

Additional SerialTxFIFO File

Type Requirements

XFER_FIRST_PART

The File Host shall respond with a

TransferFlag equal to

START_AND_END, as required

by DSP0240 when

DataLengthBytes is less than or

equal to the Negotiated Transfer

Part Size.

XFER_COMPLETE

The File Host shall move the read

pointer ahead by the number of

bytes successfully transferred.

The data is not retained by the

File Host.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 43

252 Table 19 — DfRead Command to MultipartReceive Command Mapping Format

Byte Type DfRead Request Data MultipartReceive Request Data

0 uint8 0x07 PLDMType

1 enum8 TransferOperation

2:5 uint32 FileDescriptor TransferContext

6:9 uint32 Initially 0 DataTransferHandle

10:13 uint32 FileOffset RequestedSectionOffset

14:17 uint32 RequestedSectionLengthBytes

Byte Type DfRead Response Data MultipartReceive Response Data

0 enum8 CompletionCode (MultipartReceive command)

1 enum8 TransferFlag

2:5 uint32 NextDataTransferHandle

6:9 uint32 DataLengthBytes

10:N+9 uint8[N] Data

N+10:N+13 uint32 DataIntegrityChecksum

PLDM for File Transfer Specification DSP0242

44 Published Version 1.0.0

253 9.9 DfFIFOSend (DSP0240 MultipartSend)

254 The DfFIFOSend command is used exclusively for a File PDR with FileCapabilities DataType set to one (1)

(Streaming FIFO) and Pushed set to one (1) and is opened by the File Client with the following DfOpen command

DfOpenAttribute set:

• DfOpenRegFIFO — Streaming FIFO (serial FIFO) (1)

• DfOpenPolledPushed — Pushed (1)

255 The DfFIFOSend command is equated to a PLDM for File Transfer (PLDMType seven (7)) specific implementation of

the DSP0240 PLDM Base Specification Multipart Transfer Commands, and specifically the MultipartSend command.

The MultipartSend command allows the File Host to initiate a data transfer (e.g., DfFIFOSend) to the File Client. The

Multipart Transfer Commands allow a PLDM specification to define specific context to the command parameters,

which allows this definition of the DfFIFOSend command to map values to the MultipartSend command.

256 The File Client shall be prepared to respond successfully to a DfFIFOSend command request after the File Host has

successfully responded to a DfOpen command.

257 The File Host asynchronously, without prompting, when file data is placed in the SerialTxFIFO file, initiate a data

transfer from the File Host to the File Client. The File Host then waits for the reception acknowledgment to be

received. The transfer semantics are defined in DSP0240 PLDM Base Specification MultipartSend command but

using the PLDM for File Transfer field mappings in Table 20.

258 Similar to the DfRead command, upon receiving the multipart XFER_ABORT operation from a File Client in response

to MultipartSend command, a File Host shall discard the entire transfer and the DataTransferHandle is invalidated.

The file shall not be closed and the FileDescriptor shall remain valid.

259 There is no defined behavior for the File Client after the issuance of the XFER_ABORT TransferFlag, and is out of

scope for this specification.

260 The File Host shall make SectionLengthBytes equal to DataLengthBytes and equal to or less than the Negotiated

Transfer Part Size from the most recent successfully completed NegotiateTransferParameters command. Upon

reception of the NextTransferOperation with XFER_COMPLETE, the read pointer shall be moved ahead by the

number of bytes successfully transferred and this data section is no longer re-transmittable.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 45

261 Table 20 — DfFIFOSend to MultipartSend Command Mapping Format

Byte Type DfFIFOSend Request Data MultipartSend Data

0 uint8 0x07 PLDMType

1 enum8 START_AND_END TransferFlag

2:5 uint32 FileDescriptor TransferContext

6:9 uint32 0 DataTransferHandle

10:13 uint32 0 (DSP0240) NextDataTransferHandle

14:17 uint32 0 (DSP0242) SectionOffset

18:21 uint32 SectionLengthBytes

22:25 uint32 DataLengthBytes

26:N+25 uint8[N] Data

N+26:N+29 uint32 DataIntegrityChecksum

Byte Type DfFIFOSend Response Data MultipartSend Response Data

0 enum8 CompletionCode (MultipartSend command)

PLDM for File Transfer Specification DSP0242

46 Published Version 1.0.0

262 10 ANNEX A (informative) Change Log

Version Date Description

1.0.0 2024-07-29 Initial Release

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 47

263 11 ANNEX B (informative) Sensor Threshold Event
Examples

264 Table 21 lists examples of:

• File Size Monitoring Sensor thresholds, and

• possible events from both the File Size Monitoring Sensor and Device File State Sensor.

265 All File Size Monitoring Sensor Low thresholds are zero (0).

266 Table 21 — Sensor Thresholds and Event Examples

FileClassification FMS
PFS

CFS
WH CH FH DFSS

FSMS

Event
Note

SerialTxFIFO 256
0

1
128 230 256 FiU

SerialTxFIFO 256
1

1
128 230 256 FhNC

SerialTxFIFO 256
1

1
128 230 256 FhNC

SerialTxFIFO 256
1

200
128 230 256 FhNC WH

SerialTxFIFO 256
256

256
128 230 256 FdwH FH

CrashDumpFile
none

1024
PDR RU

Very

expensive

CrashDumpFile 1024
0

1024
512 920 1024 FiaMS CH

CrashDumpFile 1024
1024

0
512 920 1024 FiU

DfClose

ZeroLength=1

FRUDataFile

OtherFile
1024

1024

1024

existing Static

File

FRUDataFile

OtherFile
1024

1024

1024
FiU

existing Fixed

Length File

with update

BootLog

DiagnosticLog

SecurityLog

OtherLog

1024
100

101
512 920 1024 FiU Crossed WH

PLDM for File Transfer Specification DSP0242

48 Published Version 1.0.0

FileClassification FMS
PFS

CFS
WH CH FH DFSS

FSMS

Event
Note

BootLog

DiagnosticLog

SecurityLog

OtherLog

1024
101

513
512 920 1024 FiU WH

FileClassification FMS
PFS

CFS
WH CH FH DFSS

FSMS

Event
Note

Blank Row 1111
2222

3333
5555 7777 9999 DFSS FSMS Note

267 FMS = FileMaximumSize, PFS = Prior File Size, CFS = Current File Size, WH = WarningHigh, WL = WarningLow,

CH = CriticalHigh, CL = CriticalLow, FH = FatalHigh, FL = FatalLow,

268 DFSS = Device File State Sensor, FiU = File is Updated, FDhW = File Data has Wrapped, FDhT = File Data has

Truncated, FiaMS = File is at Maximum Size, FhNC = File has Not Changed

269 FSMS Event = File Size Monitoring Sensor Event

270 PDR RU = PLDM PDR Repository Update to show a new file

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 49

271 12 ANNEX C (informative) File PDR FileClassification
FileCapabilities Examples

272 Table 22 lists examples of FileClassification and FileCapabilities from the File PDR, with a compatible set of DfOpen

command attributes and description of the commands that are used to access that file.

PLDM for File Transfer Specification DSP0242

50 Published Version 1.0.0

273 Table 22 — FileClassification FileCapabilities DfOpen command attributes examples

FileClassification FileCapabilities DfOpen Attributes Description

SerialTxFIFO

ExReadOpen=0

FileTrunc=1 (Truncate)

DataType=1 (FIFO)

Polled=1 (Polled)

Pushed=1 (Pushed)

DataVolatility=0 (Volatile)

FileModify=0 (Append)

FcZeroLengthPermitted=0

FcWritesPermitted=0

DfOpenReadWrite=Read

DfOpenRegFIFO=FIFO

DfOpenPolledPushed=Polled

File supports polled or

pushed read

SerialTxFIFO access.

The DfOpen command

is for Polled streaming

read of the

SerialTxFIFO using

the DfRead / Multipart

Receive command.

SerialTxFIFO

ExReadOpen=0

FileTrunc=1 (Truncate)

DataType=1 (FIFO)

Polled=1 (Polled)

Pushed=1 (Pushed)

DataVolatility=0 (Volatile)

FileModify=0 (Append)

FcZeroLengthPermitted=0

FcWritesPermitted=0

DfOpenReadWrite=Read

DfOpenRegFIFO=FIFO

DfOpenPolledPushed=Pushed

File supports polled or

pushed read

SerialTxFIFO access.

The DfOpen command

is for pushed

streaming reads of the

SerialTxFIFO using

the DfFIFOSend /

Multipart Send

command.

CrashDumpFile

ExReadOpen=1

FileTrunc=1 (Truncate)

DataType=0 (Regular)

Polled=1 (Polled)

Pushed=0

DataVolatility=1 (Non-volatile)

FileModify=0 (Append)

FcZeroLengthPermitted=1

FcWritesPermitted=0

DfOpenReadWrite=Read

DfOpenExclusive=Non-exclusive

DfOpenRegFIFO=Regular

DfOpenPolledPushed=Polled

File supports Exclusive

or Non-exclusive read

access.

The DfOpen command

is for Regular Non-

exclusive reads using

the DfRead / Multipart

Receive command.

CrashDumpFile

ExReadOpen=1

FileTrunc=1 (Truncate)

DataType=0 (Regular)

Polled=1 (Polled)

Pushed=0

DataVolatility=1 (Non-Volatile)

FileModify=0 (Append)

FcZeroLengthPermitted=1

FcWritesPermitted=0

DfOpenReadWrite=Read

DfOpenExclusive=Exclusive

DfOpenRegFIFO=Regular

DfOpenPolledPushed=Polled

File supports Exclusive

or Non-exclusive read

access.

The DfOpen command

is for exclusive reads

using the DfRead /

Multipart Receive

command with the

option to use DfClose

command with the

ZeroLength=1 option.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 51

FileClassification FileCapabilities DfOpen Attributes Description

BootLog

DiagnosticLog

SecurityLog

FRUDataFile

OtherLog

OtherFile

ExReadOpen=0

FileTrunc=0 (Truncate)

DataType=0 (Regular)

Polled=1 (Polled)

Pushed=0

DataVolatility=1 (Non-volatile)

FileModify=0 (Append)

FcZeroLengthPermitted=0

FcWritesPermitted=0

DfOpenReadWrite=Read

DfOpenExclusive=Non-exclusive

DfOpenRegFIFO=Regular

DfOpenPolledPushed=Polled

File supports only non-

exclusive read access.

The DfOpen command

is for non-exclusive

reads using the

DfRead / Multipart

Receive command

with no option to use

DfClose command

with the ZeroLength=1

option.

PLDM for File Transfer Specification DSP0242

52 Published Version 1.0.0

274 13 ANNEX D (informative) PLDM for File Transfer
Examples

275 This informative section describes typical flows involving File Transfer commands.

1. Initialization example

2. Regular log file read

3. Polled Serial log read

4. Pushed Serial log read

276 13.1 PLDM for File Transfer initialization example

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 53

277 Figure 4 shows an example of the PLDM for File Transfer initialization sequence.

PLDM for File Transfer Specification DSP0242

54 Published Version 1.0.0

278
Example PLDM for File Transfer Initialization

File Client

File Client

File Host

File Host

1
GetPLDMVersion

TBD

2
GetPLDMVersion response

Version=1.1.0

3
PLDM GetPLDMTypes (DSP0240 0x04)

TBD

4
PLDM GetPLDMTypes response

PLDMTypes=10000101b

Type 0 is base
Type 2 is required for File IO
sensors
Type 7 is required for File IO

5 PLDM GetPLDMCommands (DSP0240 0x05)

6 PLDM GetPLDMCommands response

DSP0240
FileIO - makes MultipartReceive
(0x09) (Req)
FileIO - makes MultipartSend
(0x08) (Req if AsyncIO is
supported)
Note: expected only done once on
reset / enumeration
NegotiateTransferParameters
(0x07) (Req)

7
NegotiateTransferParameters Request DSP0240

RequesterPartSize=0x200
RequesterProtocolSupport=Multipart transfer[PLDM for File IO]

8
NegotiateTransferParameters response

ResponderPartSize=0x100
ResponderProtocolSupport=Multipart transfer[PLDM for File IO]

Size is MCTP bus specific

9
GetPLDMCommands (0x05)

PLDMType=0x07

10
GetPLDMCommands response

PLDMCommands=0x999

11 GetPDR (DSP0248)

12
Return the applicable FileIdentifier, entityType, containerID,

entityInstanceNumber, FileClassification, OemFileClassification,
FileCapabilities

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 55

279 Figure 4 — PLDM for File Transfer Initialization Example

PLDM for File Transfer Specification DSP0242

56 Published Version 1.0.0

280 13.2 Regular log file read

281 Figures 5, 6, 7, and 8 show an example of a Regular log file read. The part size of 0x100 (256) bytes is a result of a

previously executed NegotiateTransferParameters command. As defined in the DSP0240 PLDM Base Specification,

the NextDataTransferHandle returned from the FileHost and required to be provided by the File Client on subsequent

Parts is totally defined by the File Host and the values are opaque to the File Client.

• Figure 5 shows an example of a logical block incrementing NextDataTransferHandle.

• Figure 6 shows an example of a sequential incrementing NextDataTransferHandle.

• Figure 7 shows an example of Multipart transfer with a TransferFlag = Middle.

• Figure 8 shows an example of reading a file at the end of file mark.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 57

282
File Client

File Client

File Host

File Host

1
DfOpen (DSP0242)
FileIdentifier from PDR repository
FileCapabilities

DfOpen

2 Return FileDescriptor

3
DfHeartbeat
 RequesterMaxInterval
 FileDescriptor

DfHeartbeat

4
DfHeartbeat response
 ResponderMaxInterval

CompletionCode=SUCCESS

5
GetSensorReading

SensorID=File Numeric Sensor

6
GetSensorReading Response
 PresentReading=0x280 (FileSize)

7

MultipartReceive Request (DSP0240)
TransferOperation= XFER_FIRST_PART
TransferContext= FileDescriptor (from DfOpen)
DataTransferHandle= 0x00000000 (DSP0242 Req)
RequestSectionOffset= 0 (Start of File)
RequestedSectionLengthBytes= 0x200 (Section size)

DfRead Section 0, Part 0

8

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START
NextDataTransferHandle= 0x000000100
DataLengthBytes= 0x100

9

MultipartReceive Request
TransferOperation= XFER_NEXT_PART
TransferContext=FileDescriptor
DataTransferHandle= 0x000000100
RequestSectionOffset= 0 (DSP0240 Req)
RequestedSectionLengthBytes= 0 (DSP0240 Req)

Section 0, Part 1

10

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= END
NextDataTransferHandle= 0x00000000
DataLengthBytes= 0x100

Section 0, Part 1
(last part)

283 Figure 5 — Regular Log File Read Example - Page 1

PLDM for File Transfer Specification DSP0242

58 Published Version 1.0.0

284
File Client

File Client

File Host

File Host

11

MultipartReceive Request
TransferOperation= XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x00000000
RequestSectionOffset= 0x200 (client calculated)
RequestedSectionLengthBytes= 0x80 (remaining bytes)

Section 0, Part 1
(finish the section)

12

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x00000200

13

MultipartReceive Request (DSP0240)
TransferOperation= XFER_FIRST_PART
TransferContext= FileDescriptor (from DfOpen)
DataTransferHandle= 0x00000200
RequestSectionOffset= 0x200 (FileOffset)
RequestedSectionLengthBytes= 0x80 (Section size)

DfRead Section 1, Part 0

14

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START_AND_END (only 1 part)
NextDataTransferHandle= 0x00000000 (end of section)
DataLengthBytes= 0x80

15

MultipartReceive Request
TransferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x00000000
RequestSectionOffset= 0 (no further requests)

Section 1, Part 0
(end of section)

16

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x00000000

File Client retains
file offset it wants to
later read from end
of file

File Host:
1) Adds 0x300 bytes
to the file,
2) updates the
Device File Numeric
Sensor / Nominal
Value
3) sets the Device
State Sensor Update
bit to cause an event
to be generated to
the previously
registered FileClient.

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 59

285 Figure 6 — Regular Log File Read Example - Page 2

PLDM for File Transfer Specification DSP0242

60 Published Version 1.0.0

286
File Client

File Client

File Host

File Host

17
DfHeartbeat
 RequesterMaxInterval

FileDescriptor
DfHeartbeat

18
DfHeartbeat response
 ResponderMaxInterval

CompletionCode=SUCCESS

19

MultipartReceive Request (DSP0240)
TransferOperation= XFER_FIRST_PART
TransferContext= FileDescriptor (from DfOpen)
DataTransferHandle= 0x00000000 (DSP0242 Req)
RequestSectionOffset= 0x280 (FileOffset)
RequestedSectionLengthBytes= 0x300 (Section size)

DfRead
Section 2, Part 0
(Previous End of
File)

20

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START
NextDataTransferHandle= 0x000000001
DataLengthBytes= 0x100

21

MultipartReceive Request
TransferOperation= XFER_NEXT_PART
TransferContext=FileDescriptor
DataTransferHandle= 0x000000001
RequestSectionOffset= 0 (DSP0240 Req)
RequestedSectionLengthBytes= 0 (DSP0240 Req)

Section 2, Part 1

22

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= MIDDLE
NextDataTransferHandle= 0x00000002
DataLengthBytes= 0x100

23

MultipartReceive Request
TransferOperation= XFER_NEXT_PART
TransferContext=FileDescriptor
DataTransferHandle= 0x0000000002
RequestSectionOffset= 0 (DSP0240 Req)
RequestedSectionLengthBytes= 0 (DSP0240 Req)

Section 2, Part 2

24

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= END
NextDataTransferHandle= 0x00000000
DataLengthBytes= 0x100

Section 2, Part 2
(Last)

287 Figure 7 — Regular Log File Read Example - Page 3

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 61

288
File Client

File Client

File Host

File Host

25

MultipartReceive Request
TransferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x00000000
RequestSectionOffset= 0 (no further requests)

26

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x00000000

27
DfHeartbeat
 RequesterMaxInterval

FileDescriptor
DfHeartbeat

28
DfHeartbeat response
 ResponderMaxInterval

CompletionCode=SUCCESS

29

MultipartReceive Request
TransferOperation=XFER_FIRST_PART
TransferContext= FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset= 0x00000580 (client computed)
RequestedSectionLengthBytes=0x100

DfRead
Section 3, Part 0
No Data, still at End
Of File

30

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START_AND_END
NextDataTransferHandle= 0x000000000 (DSP0240 Req)
DataLengthBytes= 0 (No data, read from end of file)

31

MultipartReceive Request
TransferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x00000000 (DSP0240 Req)
RequestSectionOffset= 0 (no further requests)

32

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x00000000

33
DfClose

FileDescriptorDfClose

34
DfClose response

CompletionCode=SUCCESS

289 Figure 8 — Regular Log File Read Example - Page 4

PLDM for File Transfer Specification DSP0242

62 Published Version 1.0.0

290 13.3 Polled Serial Log Read

291 Figures 9, 10, and 11 show an example of a SerialTxFIFO log read.

292
Polled Serial Read Pg 1

File Client

File Client

File Host

File Host

1
DfOpen (DSP0242)
FileIdentifier from PDR repository
FileCapabilities

DfOpen

2
DfOpen Response

FileDescriptor

3

MultipartReceive Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext= FileDescriptor (from DfOpen),
DataTransferHandle=0x00000000
RequestSectionOffset=0
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 0 Part 0
DfRead

Read the first 0x100 bytes

4

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START_AND_END
NextDataTransferHandle= 0x0
DataLengthBytes=0x100

Section 0 Part 0

5

MultipartReceive Request
TransferOperation= XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x0
RequestSectionOffset= 0x0
RequestedSectionLengthBytes= 0x0

Section 0 Part 0

6

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x0

Section 0 Part 0File Host moves read pointer

7

MultipartReceive Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext= FileDescriptor (from DfOpen),
DataTransferHandle=0x00000000
RequestSectionOffset=0
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 1 Part 0
DfRead

Read the 2nd 0x100 bytes

8

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START_AND_END
NextDataTransferHandle= 0x0
DataLengthBytes=0x100

Section 1 Part 0

9

MultipartReceive Request
TransferOperation= XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x0
RequestSectionOffset= 0x0
RequestedSectionLengthBytes= 0x0

Section 1 Part 0

10

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x0

Section 1 Part 0File Host moves read pointer

293 Figure 9 — Polled Serial Read Example - Page 1

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 63

294 File Client

File Client

File Host

File Host

11

MultipartReceive Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext= FileDescriptor (from DfOpen),
DataTransferHandle=0x00000000
RequestSectionOffset=0
RequestedSectionLengthBytes= 0x100 (from negotiated value)

Section 2 Part 0
DfRead

No data in FIFO

12

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START_AND_END
NextDataTransferHandle= 0x0
DataLengthBytes= 0x0

Section 2 Part 0

13

MultipartReceive Request
TransferOperation= XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x00000000
RequestSectionOffset= 0x0
RequestedSectionLengthBytes= 0x0

Section 2 Part 0

14

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x0

Section 2 Part 0File Host does NOT move read pointer

15
DfHeartbeat

RequesterMaxInterval
FileDescriptor

DfHeartbeat

16
DfHeartbeat response

ResponderMaxInterval
CompletionCode=SUCCESS

File Host:
1) adds to the file,
2) updates the Device File Numeric Sensor / Nominal Value
3) sets the Device State Sensor Update bit to cause an event to
be generated to the previously registered FileClient.

295 Figure 10 — Polled Serial Read Example - Page 2

PLDM for File Transfer Specification DSP0242

64 Published Version 1.0.0

296 File Client

File Client

File Host

File Host

17

MultipartReceive Request (DSP0240)
TransferOperation=XFER_FIRST_PART
TransferContext= FileDescriptor
DataTransferHandle=0x00000000
RequestSectionOffset=0x
RequestedSectionLengthBytes=0x100 (from negotiated value)

Section 3 Part 0
DfRead

Last 64 bytes

18

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= START_AND_END
NextDataTransferHandle= 0x0
DataLengthBytes= 0x40

Section 3 Part 0

19

MultipartReceive Request
TransferOperation=XFER_COMPLETE
TransferContext=FileDescriptor
DataTransferHandle= 0x0
RequestSectionOffset= 0x0

Section 3 Part 0

20

MultipartReceive Response
CompletionCode=SUCCESS
TransferFlag= ACKNOWLEDGE_COMPLETION
NextDataTransferHandle= 0x0

Section 3 Part 0File Host moves read pointer

21
DfClose

FileDescriptorDfClose

22
DfClose response

CompletionCode=SUCCESS

File Client will need to do an additional DfOpen if it wants to
read additional data later, but no longer needs to generate
DfHeartbeat commands

297 Figure 11 — Polled Serial Read Example - Page 3

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 65

298 13.4 Pushed Serial Log Read

299 Figures 12 and 13 show an example of a Pushed SerialTxFIFO log read.

300
Pushed Serial Read

File Client

File Client

File Host

File Host

1
DfOpen (DSP0242)
FileIdentifier from PDR repository
FileCapabilities - Pushed Serial

DfOpen

2
DfOpen Response

FileDescriptor
File Client must be ready for the File Host to immediately start a
MultipartSend after it returns the FileDescriptor

3

MultipartSend Request (DSP0240)
TransferOperation= START_AND_END
TransferContext= FileDescriptor
DataTransferHandle=0x00000000
NextDataTransferHandle= 0x0
SectionOffset=0 (DSP0242)
SectionLengthBytes=0 (DSP0242)
DataLengthBytes= 0x00000100

DfFIFOSend
File Host sends 1st 256 bytes
Section 0 Part 0

4
MultipartSend Response

TransferOperation=XFER_COMPLETE
File Host moves read pointer
Section 0 Part 0

5

MultipartSend Request (DSP0240)
TransferOperation= START_AND_END
TransferContext= FileDescriptor
DataTransferHandle=0x00000000
NextDataTransferHandle= 0x0
SectionOffset=0 (DSP0242)
SectionLengthBytes=0 (DSP0242)
DataLengthBytes= 0x00000080

DfFIFOSend
File Host sends last 128 bytes
Section 1 Part 0

6
MultipartSend Response

TransferOperation=XFER_COMPLETE
File Host moves read pointer
Section 1 Part 0

File Client needs to continue to show activity

7
DfHeartbeat

RequesterMaxInterval
FileDescriptor

DfHeartbeat

8
DfHeartbeat response

ResponderMaxInterval
CompletionCode=SUCCESS

301 Figure 12 — Pushed SerialTxFIFO Log Read Example - Page 1

PLDM for File Transfer Specification DSP0242

66 Published Version 1.0.0

302
File Client

File Client

File Host

File Host

File Host has more data (64 bytes) to send

9

MultipartSend Request)
TransferOperation= START_AND_END
TransferContext= FileDescriptor
DataTransferHandle=0x00000000
NextDataTransferHandle= 0x0
SectionOffset=0
SectionLengthBytes=0
DataLengthBytes= 0x00000040

DfFIFOSend
File Host sends new 64 bytes
Section 2 Part 0

10
MultipartSend Response

TransferOperation=XFER_COMPLETE
File Host moves the read pointer
Section 2 Part 0

File Client no longer wants to receive async serial data

Until the File Client receives the DfClose response it must be
prepared to respond to a MultipartSend

11
DfClose

FileDescriptorDfClose

12
DfClose response

CompletionCode=SUCCESS

303 Figure 13 — Pushed SerialTxFIFO Log Read Example - Page 2

DSP0242 PLDM for File Transfer Specification

Version 1.0.0 Published 67

	Platform Level Data Model (PLDM) for File Transfer Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Document conventions
	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 PLDM for File Transfer version
	8 PLDM for File Transfer Concepts
	8.1 File Metadata
	8.2 File Transfer
	8.3 File Discovery, Hierarchy and Identity Semantics
	8.3.1 Semantics
	8.3.2 File Types and Classification
	8.3.3 File and Directory Discovery
	8.3.4 File System Hierarchy Discovery

	8.4 RequestMaxPoll Usage
	8.5 RequestCI Usage
	8.6 DfOpenExclusive Usage
	8.7 File Zero Length
	8.7.1 ClientZeroLengthOnly Usage

	8.8 DSP0248 PLDM for Platform Monitoring and Control Specification Relationship
	8.8.1 The File Descriptor Data Model
	8.8.2 Required File Sensors
	8.8.3 File Size Monitoring Sensor
	8.8.4 File Size Monitoring Sensor Thresholds
	8.8.5 Device File State Sensor
	8.8.6 Sensor and File Transfer command interaction
	8.8.7 The Directory Descriptor Data Model
	8.8.8 File Data Model

	9 PLDM for File Transfer Commands
	9.1 DfProperties Command
	9.2 DfOpen Command
	9.2.1 DfOpen File Host Pushed requirements
	9.2.2 DfOpen DfOpenAttribute requirements
	9.2.3 DfOpen SerialTxFIFO requirements
	9.2.4 DfOpen FileDescriptors count requirements
	9.2.5 File Client file exclusivity usage

	9.3 DfClose Command
	9.4 DfGetFileAttribute Command
	9.5 DfSetFileAttribute Command
	9.6 DfHeartbeat Command
	9.6.1 Implicit File Close

	9.7 Error Completion Codes
	9.8 DfRead (DSP0240 MultipartReceive)
	9.8.1 Serial FIFO type file characteristics
	9.8.2 DfRead command details

	9.9 DfFIFOSend (DSP0240 MultipartSend)
	10 ANNEX A (informative) Change Log
	11 ANNEX B (informative) Sensor Threshold Event Examples
	12 ANNEX C (informative) File PDR FileClassification FileCapabilities Examples
	13 ANNEX D (informative) PLDM for File Transfer Examples
	13.1 PLDM for File Transfer initialization example
	13.2 Regular log file read
	13.3 Polled Serial Log Read
	13.4 Pushed Serial Log Read

