
1 Document Identifier: DSP0240

2 Date: 2024-06-20

3 Version: 1.2.0

4 Platform Level Data Model (PLDM) Base
Specification

5 Supersedes: 1.1.0

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation

thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner

or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

12 This document’s normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2008, 2021, 2024 DMTF. All rights reserved.

PLDM Base Specification DSP0240

2 Published Version 1.2.0

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

13 CONTENTS

1 Foreword . 4

1.1 Acknowledgments . 5

2 Introduction . 6

2.1 Document conventions . 6

2.2 Notations . 6

2.3 Reserved and unassigned values . 7

2.4 Byte ordering . 7

2.5 PLDM data types . 7

2.6 UUID . 10

2.7 Ver32 encoding . 11

3 Scope. 13

4 Normative references. 14

5 Terms and definitions . 16

6 Symbols and abbreviated terms . 22

7 PLDM base version . 24

8 PLDM base protocol . 25

8.1 PLDM message fields . 25

8.2 Generic PLDM completion codes (PLDM_BASE_CODES) . 27

8.3 Concurrent PLDM command processing. 28

8.3.1 Requirements for responders . 28

8.3.2 Requirements for requesters. 29

9 PLDM messaging control and discovery commands . 32

9.1 PLDM Terminus . 32

9.1.1 SetTID command (0x01) . 33

9.1.2 GetTID command (0x02). 33

9.2 GetPLDMVersion (0x03) . 33

9.3 GetPLDMTypes (0x04) . 36

9.4 GetPLDMCommands (0x05) . 37

9.5 SelectPLDMVersion (0x06) . 37

9.6 Multipart transfer commands . 38

9.6.1 Semantics of a Multipart Transfer . 38

9.6.2 NegotiateTransferParameters (0x07) . 40

9.6.3 MultipartSend (0x08) . 42

9.6.4 Flag usage for MultipartSend . 42

9.6.5 MultipartReceive (0x09) . 47

9.6.6 Flag usage for MultipartReceive . 47

9.7 GetMultipartTransferSupport (0x0A) . 52

10 PLDM messaging control and discovery examples . 53

11 ANNEX A (informative) Example of initializing the PLDM protocol . 56

12 ANNEX B (informative) Change log. 59

DSP0240 PLDM Base Specification

Version 1.2.0 Published 3

14 1 Foreword

15 The Platform Level Data Model (PLDM) Base Specification (DSP0240) was prepared by the Platform Management

Communications Infrastructure (PMCI) Working Group.

16 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. For more information about DMTF, see https://www.dmtf.org.

PLDM Base Specification DSP0240

4 Published Version 1.2.0

https://www.dmtf.org/

17 1.1 Acknowledgments

18 DMTF acknowledges the following individuals for their contributions to this document:

19 Editor:

• Patrick Schoeller — Intel Corporation, Hewlett Packard Enterprise

20 Contributors:

• Hemal Shah — Broadcom, Inc.

• Bill Scherer — Hewlett Packard Enterprise

• Alan Berenbaum — SMSC

• Patrick Caporale — Lenovo

• Philip Chidester — Flex

• Andy Currid — NVIDIA Corporation

• Hoan Do — Broadcom Inc.

• Stephen Fong — Advanced Micro Devices

• Dov Goldstein — Intel Corporation

• Christoph Graham — Hewlett Packard Inc.

• Yuval Itkin — NVIDIA Corporation

• Jacek Janiszewski — Intel Corporation

• Ira Kalman — Intel Corporation

• Edward Klodnicki — Lenovo

• Deepak Kodihalli — IBM

• Eliel Louzoun — Intel Corporation

• Rob Mapes — Marvell International Ltd.

• Balaji Natrajan — Microchip Technology Inc.

• Edward Newman — Hewlett Packard Enterprise

• Tom Slaight — Intel Corporation

• Bob Stevens — Dell Inc.

• Abeye Teshome — Dell Inc.

• Richard Thomaiyar — Intel Corporation

• Paul Vancil — Advanced Micro Devices

• Supreeth Venkatesh — ARM, Advanced Micro Devices

DSP0240 PLDM Base Specification

Version 1.2.0 Published 5

21 2 Introduction

22 This document describes base protocol elements of the Platform Level Data Model (PLDM) for the purpose of

supporting platform-level data models and platform functions in a platform management subsystem. PLDM is

designed to be an effective interface and data model that provides efficient access to low-level platform inventory,

monitoring, control, event, and data/parameters transfer functions. For example, temperature, voltage, or fan sensors

can have a PLDM representation that can be used to monitor and control the platform using a set of PLDM

messages. PLDM defines data representations and commands that abstract the platform management hardware.

23 2.1 Document conventions

24 The conventions described in the following clauses apply to all of the PLDM specifications.

25 2.2 Notations

26 PLDM specifications use the following notations:

27 Table 1 — PLDM notations

Notation Interpretation

M:N

In field descriptions, this notation typically represents a range of byte offsets starting from byte M and continuing to and

including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the right.

[4]
Square brackets around a number typically indicate a bit offset.

Bit offsets are given as zero-based values (that is, the least significant bit (LSb) offset = 0).

[M:N]
A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant bit is on the right

1b
The suffix “b” after a number consisting of 0s and 1s indicates that the number is in binary format.

An underscore character (“_”) may be used to group digits. For example: 0010_1001b.

0x12A
The prefix “0x” before a number consisting of decimal digits and the letters A..F indicates that the number is in

hexadecimal format.

rsvd Abbreviation for Reserved. Case insensitive.

28 Numeric constants in specifications will generally be presented in decimal; however, two exceptions exist where non-

decimal presentations may be used in addition or instead of decimal presentations:

•29 Numeric constants for fields of size less than one byte should be represented in binary.

PLDM Base Specification DSP0240

6 Published Version 1.2.0

•30 Numeric constants that exceed 15 or in sets where at least one value exceeds 15 (such as the Generic PLDM

completion codes) should be presented in hexadecimal.

31 2.3 Reserved and unassigned values

32 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric

ranges are reserved for future definition by DMTF.

33 Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 (zero) and

ignored when read.

34 2.4 Byte ordering

35 Unless otherwise specified, for all PLDM specifications byte ordering of multibyte numeric fields or multibyte bit fields

is “Little Endian” (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

36 2.5 PLDM data types

37 Table 2 lists the abbreviations and descriptions for common data types that are used in PLDM message fields and

data structure definitions.

38 Table 2 — PLDM Data Types

Data Type Interpretation

uint8 Unsigned 8-bit binary integer

sint8 Signed 8-bit binary integer

uint16 Unsigned 16-bit binary integer

sint16 Signed 16-bit binary integer

uint32 Unsigned 32-bit binary integer

sint32 Signed 32-bit binary integer

uint40 Unsigned 40-bit binary integer

sint40 Signed 40-bit binary integer

uint64 Unsigned 64-bit binary integer

sint64 Signed 64-bit binary integer

string UCS-2 string as defined in ISO/IEC 10646

DSP0240 PLDM Base Specification

Version 1.2.0 Published 7

Data Type Interpretation

bool8
Boolean value represented using an unsigned 8-bit binary integer where 0x00 means False and any nonzero value

means True

real32

Four-byte floating-point format, also known as "single precision", where:

[31] — S (sign) bit (1 = negative, 0 = positive)

[30:23] — exponent as a binary integer (8 bits)

[22:0] — mantissa as a binary integer (23 bits)

Per ANSI/IEEE Standard 754 convention, the value represented is determined as follows:

If Exponent = 255 and Mantissa is nonzero, then Value = NaN ("Not a number").

If Exponent = 255 and Mantissa is zero and S is 1, then Value = -Infinity.

If Exponent = 255 and Mantissa is zero and S is 0, then Value = Infinity.

If 0<Exponent<255, then Value=(-1)**S * 2 ** (Exponent-127) * (1.Mantissa) where "1.Mantissa" is intended to

represent the binary number created by prefixing Mantissa with an implicit leading 1 and a binary point.

If Exponent = 0 and Mantissa is nonzero, then Value = (-1)**S * 2 ** (-126) * (0.Mantissa). These are "not

normalized" values.

If Exponent = 0 and Mantissa is zero and S is 1, then Value = -0.

If Exponent = 0 and Mantissa is zero and S is 0, then Value = 0.

real64

Eight-byte floating-point, also known as "double-precision", where:

[63] — S (sign) bit (1 = negative, 0 = positive)

[62:52] — exponent as a binary integer (11 bits)

[51:0] — mantissa as a binary integer (52 bits)

Per IEEE 754 convention, the value represented is determined as follows:

If Exponent = 2047 and Mantissa is nonzero, then Value = NaN ("Not a number").

If Exponent = 2047 and Mantissa is zero and S is 1, then Value = -Infinity.

If Exponent = 2047 and Mantissa is zero and S is 0, then Value = Infinity.

If 0<Exponent<2047, then Value = (-1)**S * 2 ** (Exponent-1023) * (1.Mantissa) where "1.Mantissa" is intended to

represent the binary number created by prefixing Mantissa with an implicit leading 1 and a binary point.

If Exponent = 0 and Mantissa is nonzero, then Value = (-1)**S * 2 ** (-1022) * (0.Mantissa). These are "not

normalized" values.

If Exponent = 0 and Mantissa is zero and S is 1, then Value = -0.

If Exponent = 0 and Mantissa is zero and S is 0, then Value = 0.

datetime String containing a datetime per DSP0004

char16 Sixteen-bit UCS-2 character as defined in ISO/IEC 10646

enum4

Sequential enumeration, starting from 0 as the default, with optional numeric declarator. The number 4 indicates that

the enum is encoded using an 4-bit binary number. Enum4 enumeration values shall be presented in decimal in PLDM

specifications.

enum8

Sequential enumeration, starting from 0 as the default, with optional numeric declarator. The number 8 indicates that

the enum is encoded using an 8-bit binary number. Enum8 enumeration values shall be presented primarily in decimal

in PLDM specifications

Example: enum8 { fred, mary, bob, george } has the value 0 correspond to fred, 1 for mary,

2 for bob, and 3 for george. A value may be explicitly declared such as:

enum { fred, mary=2, bob, george },

in which case 0 corresponds to fred, 2 corresponds to mary, and 4 corresponds to george.

PLDM Base Specification DSP0240

8 Published Version 1.2.0

Data Type Interpretation

timestamp104

Binary datetime type formatted as a series of 13 bytes, as follows:

(Generally, this format can be mapped to a CIM DateTime timestamp value.)

byte 12 UTC and Time resolution

The CIM DateTime format allows a variable number of significant digits to be represented for the date/time and UTC

fields using a '*' character in the string to indicate which contiguous digit positions should be ignored, starting from the

least significant position. PLDM generally supports this format by using this byte to present an enumeration for the

resolution.

Bits [7:4] UTC resolution = enum4 {UTCunspecified = 0, minute = 1, 10minute = 2, hour = 3 }

Bits [3:0] Time resolution = enum4 { microsecond = 0, 10microsecond = 1, 100microsecond = 2, millisecond = 3,

10millisecond = 4, 100millisecond = 5, second = 6, 10second = 7, minute = 8, 10minute = 9, hour = 10, day = 11, month

= 12, year = 13, null (see below) = 15 }

bytes 11:10 year as uint16

byte 9 month as uint8 (starting with 1)

byte 8 day within the month as uint8 (starting with 1)

byte 7 hour within the day as uint8 (24-hour representation starting with 0)

byte 6 minute within the hour as uint8 (starting with 0)

byte 5 seconds within the minute as uint8 (starting with 0)

byte 4:2 microsecond within the second as a 24-bit binary integer (starting with 0)

bytes 1:0 UTC offset in minutes as sint16

If the time resolution bits in byte 12 are set to enumeration value null (15), the timestamp value shall be interpreted as

an unknown time.

interval72

Binary datetime interval formatted as a series of 9 bytes, as follows:

(Generally, this format can be mapped to a CIM DateTime interval value.)

byte 8 Time resolution

Bits: [7:4] reserved

Bits: [3:0] enum4 { microsecond = 0, 10microsecond = 1, 100microsecond = 2, 1millisecond = 3, 10millisecond = 4,

100millisecond = 5, second = 6, 10second = 7, minute = 8, hour = 9, day = 10, 10day = 11, 100day = 12}

byte 7:6 number of days as uint16 (starting with 1)

NOTE: CIM DateTime specifies this as six-digit field.

byte 5 hour within the day as uint8 (24-hour representation starting with 0)

byte 4 minute within the hour as uint8 (starting with 0)

byte 3 seconds within the minute as uint8 (starting with 0)

bytes 2:0 microsecond within the second as a 24-bit binary integer (starting with 0)

ver32

Thirty-two-bit encoding of a version number. The encoding of the version number and alpha fields is defined in Ver32

encoding.

[31:24] = major version number

[23:16] = minor version number

[15:8] = update version number

[7:0] = "alpha" byte

UUID See Universally Unique Identifier in Terms and definitions.

bitfield8 Byte with 8 bit fields. Each of these bit fields can be defined separately.

bitfield16 Two-byte word with 16 bit fields. Each of these bit fields can be defined separately.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 9

Data Type Interpretation

strASCII

A null terminated 8-bit-per-character string. Unless otherwise specified, characters are encoded using the 8-bit ISO/IEC

8859-1 "ASCII + Latin1" character set encoding. All strASCII strings shall have a single null (0x00) character as the last

character in the string. Unless otherwise specified, strASCII strings are limited to a maximum of 256 bytes including the

null terminator.

strUTF-8

A null terminated UTF-8 encoded string per RFC3629. UTF-8 defines a variable length for Unicode-encoded characters

where each individual character may require one to four bytes. All strUTF-8 strings shall have a single null character as

the last character in the string with encoding of the null character per RFC3629. Unless otherwise specified, strUTF-8

strings are limited to a maximum of 256 bytes including the null terminator.

strUTF-16

A null terminated UTF-16 encoded string with Byte Order Mark (BOM) per RFC2781. All strUTF-16 strings shall have a

single null (0x0000) character as the last character in the string. An empty string shall be represented using two bytes

set to 0x0000, representing a single null (0x0000) character. Otherwise, the first two bytes shall be the BOM. Unless

otherwise specified, strUTF-16 strings are limited to a maximum of 256 bytes including the BOM and null terminator.

strUTF16LE

A null terminated UTF-16 "little endian" encoded string per RFC2781. All strUTF-16LE strings shall have a single null

(0x0000) character as the last character in the string. Unless otherwise specified, strUTF16LE strings are limited to a

maximum of 256 bytes including the null terminator.

strUTF-16BE

A null terminated UTF-16 "big-endian" encoded string per RFC2781. All strUTF-16BE strings shall have a single null

(0x0000) character as the last character in the string. Unless otherwise specified, strUTF16BE strings are limited to a

maximum of 256 bytes including the null terminator.

39 2.6 UUID

40 The format of the ID follows the byte (octet) format specified in RFC4122. RFC4122 specifies four different versions

of UUID formats and generation algorithms suitable for use with PLDM:

• version 1 (0001b) (“time based”)

• version 3 (0011b) “MD5 hash” (“name-based”)

• version 4 (0100b) “Pseudo-random” (“name-based”)

• version 5 “SHA1 hash” (“name-based”)

41 The version 1 format is recommended. A UUID value should never change over the lifetime of the device or software

version associated with the UUID.

42 For PLDM, the individual fields within the UUID are transferred in network byte order (most-significant byte first) per

the convention described in RFC4122. For example, Table 3 shows byte order for a UUID in version 1 format.

43 Table 3 — Example UUID Format

Field UUID Byte MSB

time low 1 MSB

2

3

PLDM Base Specification DSP0240

10 Published Version 1.2.0

Field UUID Byte MSB

4

time mid 5 MSB

6

time high and version 7 MSB

8

clock seq high and reserved 9

clock seq low 10

Node 11

12

13

14

15

16

44 2.7 Ver32 encoding

45 The version field is composed of four bytes referred to as the “major,” “minor,” “update,” and “alpha” bytes. These

bytes shall be encoded as follows:

•46 The “major,” “minor,” and “update” bytes are BCD-encoded, and each byte holds two BCD digits.

•47 The “alpha” byte holds an optional alphanumeric character extension that is encoded using the ISO/IEC 8859‑1
character set.

•48 The semantics of these fields follow those in DSP4014.

•49 The value 0x00 in the alpha field means that the alpha field is not used. Software or utilities that display the

version number should not display any characters for this field.

•50 The value 0xF in the most-significant nibble of a BCD-encoded value indicates that the most-significant nibble

should be ignored and the overall field treated as a single-digit value. Software or utilities that display the

number should display only a single digit and should not put in a leading “0” when displaying the number.

•51 A value of 0xFF in the “update” field indicates that the entire field is not present. 0xFF is not allowed as a value

DSP0240 PLDM Base Specification

Version 1.2.0 Published 11

for the “major” or “minor” fields. Software or utilities that display the version number should not display any

characters for this field.

•52 A value of 0xFFFFFFFF for a ver32 type field indicates that this (data model) object has no specific version.

53 EXAMPLE:

54 Version 3.7.10a → 0xF3F71061

55 Version 10.01.7 → 0x1001F700

56 Version 3.1 → 0xF3F1FF00

57 Version 1.0a → 0xF1F0FF61

PLDM Base Specification DSP0240

12 Published Version 1.2.0

58 3 Scope

59 This specification describes base protocol elements of the Platform Level Data Model (PLDM) for the purpose of

supporting platform-level data models and platform functions in a platform management subsystem. PLDM defines

data representations and commands that abstract the platform management hardware.

60 This specification defines the following elements:

•61 the base Platform Level Data Model (PLDM) for various platform functions

•62 a common PLDM message format to support platform functions using PLDM

•63 a common multiple message partial (multipart) transfer protocol for reliable large data transfers. This is a core

function used by DSP0242 PLDM for File Transfer but could be extended in other future PLDM Type

specifications.

64 The PLDM message common fields support the identification of payload type, message, PLDM Type, and PLDM

command/completion codes.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 13

65 4 Normative references

66 The following referenced documents are indispensable for the application of this document. For dated or versioned

references, only the edition cited (including any corrigenda or DMTF update versions) applies. For references without

a date or version, the latest published edition of the referenced document (including any corrigenda or DMTF update

versions) applies.

67 DMTF DSP0004, CIM Infrastructure Specification, 2.5

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.X.pdf

68 DMTF DSP0222, Network Controller Sideband Interface (NC-SI) Specification

http://www.dmtf.org/standards/published_documents/DSP0222_1.2.X.pdf

69 DMTF DSP0223, Generic Operations, 1.0

http://www.dmtf.org/standards/published_documents/DSP0223_1.0.X.pdf

70 DMTF DSP0241, Platform Level Data Model (PLDM) over MCTP Binding Specification

http://www.dmtf.org/standards/published_documents/DSP0241_1.0.X.pdf

71 DMTF DSP0242, Platform Level Data Model (PLDM) for File Transfer Specification

http://www.dmtf.org/standards/published_documents/DSP0242_1.0.X.pdf

72 DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes

http://www.dmtf.org/standards/published_documents/DSP0245_1.4.X.pdf

73 DMTF DSP1001, Management Profile Specification Usage Guide, 1.1

http://www.dmtf.org/standards/published_documents/DSP1001_1.1.X.pdf

74 DMTF DSP4014, DMTF Process for Working Bodies

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.13.X.pdf

75 ANSI/IEEE Standard 754, Standard for Floating-Point Arithmetic

https://ieeexplore.ieee.org/document/8766229

76 IETF RFC2781, UTF-16, an encoding of ISO 10646, February 2000

https://www.ietf.org/rfc/rfc2781.txt

77 IETF RFC3629, UTF-8, a transformation format of ISO 10646, November 2003

https://www.ietf.org/rfc/rfc3629.txt

78 IETF RFC4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005

https://www.ietf.org/rfc/rfc4122.txt

79 ISO/IEC 8859-1, Final Text of DIS 8859-1, 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet

No.1, February 1998

https://www.iso.org/standard/28245.html

80 ISO/IEC 10646:2020(E), Information technology — Universal coded character set (UCS)

https://standards.iso.org/ittf/PubliclyAvailableStandards/c076835_ISO_IEC_10646_2020(E).zip

PLDM Base Specification DSP0240

14 Published Version 1.2.0

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.2.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0241_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0242_1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0245_1.4.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.13.pdf
https://ieeexplore.ieee.org/document/8766229
https://www.ietf.org/rfc/rfc2781.txt
https://www.ietf.org/rfc/rfc3629.txt
https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/standard/28245.html
https://standards.iso.org/ittf/PubliclyAvailableStandards/c076835_ISO_IEC_10646_2020(E).zip

81 ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents

https://www.iso.org/sites/directives/current/part2/index.xhtml

82 Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba, Advanced Configuration and Power Interface Specification

3.0, ACPI, September 2, 2004

https://uefi.org/sites/default/files/resources/ACPI_3.pdf

83 Intel, Hewlett-Packard, NEC, and Dell, Intelligent Platform Management Interface Specification: Second Generation

2.0, IPMI, 2004

https://web.archive.org/web/20131213024533if_/http://www.intel.com/content/dam/www/public/us/en/documents/

product-briefs/second-gen-interface-spec-v2-rev1-4.pdf

84 OMG, Unified Modeling Language (UML) from the Open Management Group (OMG)

https://www.uml.org/

DSP0240 PLDM Base Specification

Version 1.2.0 Published 15

https://www.iso.org/sites/directives/current/part2/index.xhtml
https://uefi.org/sites/default/files/resources/ACPI_3.pdf
https://web.archive.org/web/20131213024533if_/http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2-rev1-4.pdf
https://web.archive.org/web/20131213024533if_/http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2-rev1-4.pdf
https://www.uml.org/

85 5 Terms and definitions

86 In this document, some terms have a specific meaning beyond the normal English meaning. Those terms are defined

in this clause.

87 The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need

not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when

the preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies

additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English

meaning.

88 The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in

ISO/IEC Directives, Part 2, Clause 6.

89 The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled “(informative)” do not contain normative

content. Notes and examples are always informative elements.

90 The terms defined in DSP0004, DSP0223, and DSP1001 apply to this document. The following additional terms are

used in this document.

91 For the purposes of this document, the following terms and definitions apply:

92 baseboard management controller (BMC)

93 A term coined by the IPMI specifications for the main management controller in an IPMI-based platform management

subsystem. Also sometimes used as a generic name for a motherboard-resident management controller that

provides motherboard-specific hardware monitoring and control functions for the platform management subsystem.

94 binary-coded decimal (BCD)

95 Indicates a particular binary encoding for decimal numbers where each four bits (nibble) in a binary number is used

to represent a single decimal digit, and with the least significant four bits of the binary number corresponding to the

least significant decimal digit

96 The binary values 0000b through 1001b represent decimal values 0 through 9, respectively. For example, with BCD

encoding a byte can represent a two-digit decimal number where the most significant nibble (bits 7:4) of the byte

contains the encoding for the most significant decimal digit and the least significant nibble (bits 3:0) contains the

encoding for the least significant decimal digit (for example, 0010_1001b (0x29) in BCD encoding corresponds to the

decimal number 29).

97 bridge

98 Generically, the circuitry and logic that connect one computer bus or interconnect to another, allowing an agent on

one to access the other

99 bus

PLDM Base Specification DSP0240

16 Published Version 1.2.0

100 A physical addressing domain shared between one or more platform components that share a common physical

layer address space

101 byte

102 An 8-bit quantity. Also referred to as an octet.

103 PLDM specifications shall use the term byte, not octet.

104 Common Information Model (CIM)

105 The schema of the overall managed environment

106 It is divided into a core, model, common model, and extended schemas. For more information, see DSP0004.

107 endpoint

108 See MCTP endpoint

109 endpoint ID (EID)

110 See MCTP endpoint

111 Globally Unique Identifier (GUID)

112 See UUID

113 Initialization Agent function

114 A software or firmware component that configures PLDM and assigns Terminus IDs; typically a management

controller

115 Inter-Integrated Circuit (I2C)

116 A multiple-master, two-wire, serial bus originally developed by Philips Semiconductor

117 idempotent command

118 A command that has the same effect for repeated applications of the same command

119 intelligent management device (IMD)

120 A management device that is typically implemented using a microcontroller and accessed through a messaging

protocol

121 Management parameter access provided by an IMD is typically accomplished using an abstracted interface and data

model rather than through direct “register-level” access.

122 Intelligent Platform Management Interface (IPMI)

123 A set of specifications defining interfaces and protocols originally developed for server platform management by the

IPMI Promoters Group: Intel, Dell, HP, and NEC

124 Manageability Access Point (MAP)

125 A collection of services of a system that provides management in accordance with CIM profiles and management

protocol specifications published by DMTF

DSP0240 PLDM Base Specification

Version 1.2.0 Published 17

126 managed entity

127 The physical or logical entity that is being managed through management parameters. Examples of physical entities

include fans, processors, power supplies, circuit cards, chassis, and so on. Examples of logical entities include virtual

processors, cooling domains, system security states, and so on.

128 Management Component Transport Protocol (MCTP)

129 A media-independent transport protocol that was designed for intercommunication of low-level management

messages within a platform management subsystem

130 management controller

131 A microcontroller or processor that aggregates management parameters from one or more management devices and

makes access to those parameters available to local or remote software, or to other management controllers,

through one or more management data models

132 Management controllers may also interpret and process management-related data, and initiate management-related

actions on management devices. The microcontroller or processor that serves as a management controller can also

incorporate the functions of a management device.

133 management device

134 Any physical device that provides a protocol terminus for accessing one or more management parameters

135 A management device responds to management requests, but it does not initiate or aggregate management

operations except in conjunction with a management controller (that is, it is a satellite device that is subsidiary to one

or more management controllers). An example of a simple management device would be a temperature sensor chip.

Another example would be a management controller that has I/O pins or built-in analog-to-digital converters that

monitor state and voltages for a managed entity.

136 management parameter

137 A particular datum representing a characteristic, capability, status, or control point associated with a managed entity.

Example management parameters include temperature, speed, voltage, on/off, link state, uncorrectable error count,

device power state, and so on.

138 MCTP bridge

139 An MCTP endpoint that can route MCTP messages (that are not destined for itself) that it receives on one

interconnect to another without interpreting them

140 The ingress and egress media at the bridge may be either homogeneous or heterogeneous. Also referred to in this

document as a “bridge”.

141 MCTP bus owner

142 The entity that is responsible for MCTP EID assignment or translation on the buses of which it is a master

143 The MCTP bus owner may also be responsible for physical address assignment. For example, for SMBus bus

segments, the MCTP bus owner is also the ARP master. This means the bus owner assigns dynamic SMBus

addresses to devices that require it.

144 MCTP endpoint

PLDM Base Specification DSP0240

18 Published Version 1.2.0

145 A terminus or origin of an MCTP packet or message

146 The MCTP endpoint is identified by a value called the MCTP endpoint ID, or EID.

147 message

148 See PLDM message

149 message body

150 The portion of a PLDM message that carries the PLDM Type-specific data associated with the message

151 message originator

152 The original transmitter (source) of a message targeted to a particular PLDM terminus

153 most significant byte (MSB)

154 The highest order byte in a number consisting of multiple bytes

155 Negotiated Transfer Part Size

156 The result of a successful completion of the NegotiateTransferParameters command, such that the requester and

responder shall use the lesser of the RequesterPartSize and ResponderPartSize. See NegotiateTransferParameters

command.

157 nibble

158 A 4-bit quantity, or half of a byte

159 non-idempotent command

160 A command that is not an idempotent command

161 payload

162 The information-bearing fields of a message

163 These fields are separate from the fields and elements (such as address fields, framing bits, checksums, and so on)

that are used to transport the message from one point to another. In some instances, a given field may be both a

payload field and a transport field.

164 physical transport binding

165 Refers to specifications that define how a base messaging protocol is implemented on a particular physical transport

type and medium, such as SMBus/I2C, PCI Express™ Vendor Defined Messaging, and so on

166 Platform Level Data Model (PLDM)

167 An internal-facing low-level data model that is designed to be an effective data/control source for mapping under the

Common Information Model (CIM)

168 PLDM defines data structures and commands that abstract platform management subsystem components. PLDM

supports a Type field to distinguish various types of messages and group them together based on the functions.

169 PLDM Command

DSP0240 PLDM Base Specification

Version 1.2.0 Published 19

170 A command defined under the PLDM Type that is used for PLDM communications (for example, commands to

control BIOS configuration and attributes transfer, perform SMBIOS data transfer, and monitor and control sensors)

171 PLDM message

172 A unit of communication based on the PLDM Type that is used for PLDM communications

173 PLDM message payload

174 A portion of the message body of a PLDM message

175 This portion of the message is separate from those fields and elements that are used to identify the payload type,

message, PLDM Type, and PLDM command/completion codes.

176 PLDM request

177 Same as PLDM command.

178 PLDM request message

179 A message that is sent to a PLDM terminus to request a specific PLDM operation

180 A PLDM request message is acknowledged with a corresponding response message.

181 PLDM response

182 A response to a specific PLDM request

183 PLDM response message

184 A message that is sent in response to a specific PLDM request message

185 This message includes a “Completion Code” field that indicates whether the response completed normally.

186 PLDM subsystem

187 The collection of devices that are enumerated by the same PLDM initialization agent

188 PLDM terminus

189 Identifies a set of resources within the recipient endpoint that is handling a particular PLDM message

190 Platform Management Communications Infrastructure (PMCI)

191 The name of a working group at DMTF that is chartered to define standardized communication protocols, low-level

data models, and transport definitions that support communications with and between management controllers and

management devices that form a platform management subsystem within a managed computer system

192 point-to-point

193 Refers to the case where only two physical communication devices are interconnected through a physical

communication medium

194 The devices may be in a master and slave relationship, or the devices could be peers.

195 Universally Unique Identifier (UUID)

196 An identifier originally standardized by the Open Software Foundation (OSF) as part of the Distributed Computing

PLDM Base Specification DSP0240

20 Published Version 1.2.0

Environment (DCE). UUIDs are created using a set of algorithms that enables them to be independently generated

by different parties without requiring that the parties coordinate to ensure that generated IDs do not overlap

197 In this specification, RFC4122 is used as the base specification for describing the format and generation of UUIDs.

This identifier is also sometimes referred to as a globally unique identifier (GUID).

DSP0240 PLDM Base Specification

Version 1.2.0 Published 21

198 6 Symbols and abbreviated terms

199 The abbreviations defined in DSP0004, DSP0223, and DSP1001 apply to this document. The following additional

abbreviations are used in this document.

200 ACPI

201 Advanced Configuration and Power Interface

202 ARP

203 Address Resolution Protocol

204 CIM

205 Common Information Model

206 DCE

207 Distributed Computing Environment

208 GUID

209 Globally Unique Identifier

210 IMD

211 Intelligent management device

212 IPMI

213 Intelligent Platform Management Interface

214 ISO/IEC

215 International Organization for Standardization/International Electrotechnical Commission

216 MC

217 Management Controller

218 MCTP

219 Management Component Transport Protocol

220 MSB

221 Most significant byte

222 OSF

223 Open Software Foundation

224 PLDM

225 Platform Level Data Model

PLDM Base Specification DSP0240

22 Published Version 1.2.0

226 PMCI

227 Platform Management Component Intercommunications

228 TID

229 Terminus ID

230 UUID

231 Universally Unique Identifier

232 WBEM

233 Web-Based Enterprise Management

DSP0240 PLDM Base Specification

Version 1.2.0 Published 23

234 7 PLDM base version

235 The version of this Platform Level Data Model (PLDM) Base Specification shall be 1.2.0 (major version number 1,

minor version number 2, update version number 0, and no alpha version).

236 In response to the GetPLDMVersion command, the reported version for Type 0 (PLDM base, this specification) shall

be encoded as 0xF1F2F000.

PLDM Base Specification DSP0240

24 Published Version 1.2.0

237 8 PLDM base protocol

238 The PLDM base protocol defines the common fields for PLDM messages and their usage.

239 Though there are command-specific PLDM header fields and trailer fields, the fields for the base protocol are

common for all PLDM messages. These common fields support the identification of payload type, message, PLDM

Type, and PLDM command/completion codes. The base protocol’s common fields include a PLDM Type field that

identifies the particular class of PLDM messages.

240 8.1 PLDM message fields

241 Figure 1 shows the fields that constitute a generic PLDM message. The fields within PLDM messages are transferred

from the lowest offset first.

242

243 Figure 1 — Generic PLDM message fields

244 *The PLDM Completion Code is present only in PLDM response messages.

245 Table 4 defines the common fields for PLDM messages.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 25

246 Table 4 — PLDM Message Common Fields

Field Name Field Size Description

Rq 1 bit

Request bit, used to help differentiate between PLDM request messages and other

PLDM messages.

This field is set to 1b for PLDM request messages and unacknowledged datagram

request messages.

This field is set to 0b for PLDM response messages. See the following row of this

table for valid combinations of Rq and D bits.

D 1 bit

Datagram bit, used to indicate whether the Instance ID field is being used for

tracking and matching requests and responses, or just being used for

asynchronous notifications.

This field is set to 1b for asynchronous notifications.

This field is set to 0b to indicate that the Instance ID field is being used for tracking

and matching requests and responses.

Rq and D bit combinations:

Rq D Meaning

0b 0b For PLDM response messages

0b 1b Reserved

1b 0b For PLDM request messages

1b 1b
For unacknowledged PLDM request messages or asynchronous

notifications

rsvd 1 bit Reserved

Instance ID 5 bits

The Instance ID (Instance Identifier) field is used to identify a new instance of a

PLDM request to differentiate new PLDM requests that are sent to the same PLDM

terminus. The Instance ID field is used to match up a particular instance of a PLDM

response message with the corresponding instance of a PLDM request message.

If the requester issued a non-idempotent command, it shall complete any retries for

that command before issuing a command with a new Instance ID.

Hdr Ver 2 bits

The Hdr Ver (Header Version) field identifies the header format. For this version of

the specification, the value is set to 00b. This version applies to the PLDM

message format.

PLDM Type 6 bits

The PLDM Type field identifies the type of PLDM that is being used in the control or

data transfer carried out using this PLDM message. The PLDM Type field allows

PLDM messages to be grouped together based on functions. See DSP0245 for the

definitions of PLDM Type values.

PLDM Command Code 8 bits

For PLDM request messages, the PLDM Command Code field identifies the type of

operation the message is requesting. The PLDM command code values are

defined per PLDM Type. The PLDM Command Code that is sent in a PLDM

request message shall be returned in the corresponding PLDM response message.

PLDM Base Specification DSP0240

26 Published Version 1.2.0

Field Name Field Size Description

PLDM Message Payload Variable

The PLDM message payload is zero or more bytes that are specific to a particular

PLDM Message. By convention, the PLDM Message formats are described using

tables with the first byte of the payload identified as byte 0.

NOTE: The baseline PLDM message payload size is PLDM Type-specific.

PLDM Completion Code 8 bits

The PLDM Completion Code field provides the status of the operation. This field is

the first byte of the PLDM Message Payload for PLDM response messages and is

not present in PLDM request messages. This field indicates whether the PLDM

command completed normally. If the command did not complete normally, then the

completion code provides additional information regarding the error condition. The

PLDM Completion Code can be generic or PLDM Type-specific.

247 8.2 Generic PLDM completion codes (PLDM_BASE_CODES)

248 The command completion code fields are used to return PLDM operation results in the PLDM response messages.

On a successful completion of a PLDM operation, the specified response parameters (if any) shall also be returned in

the response message. For a PLDM operation resulting in an error, unless otherwise specified, the responder shall

not return any additional parameter data and the requester shall ignore any additional parameter data provided in the

response.

249 Table 5 defines the generic completion codes for the PLDM commands. PLDM Type-specific command completion

codes are defined in the respective PLDM specification. Unless otherwise specified in a PLDM specification, specific

error completion codes are optional. If a PLDM command completes with an error, the generic failure message

(ERROR), an appropriate generic error completion code from Table 5, or a PLDM Type-specific error completion

code shall be returned. For an unsupported PLDM command, the ERROR_UNSUPPORTED_PLDM_CMD

completion code shall be returned unless the responder is in a transient state (not ready), in which it cannot process

the PLDM command. If the responder is in a transient state, it may return the ERROR_NOT_READY completion

code.

250 Table 5 — Generic PLDM Completion Codes (PLDM_BASE_CODES)

Value Name Description

0 (0x00) SUCCESS The PLDM command was accepted and completed normally.

1 (0x01) ERROR

This is a generic failure message to indicate an error processing

the corresponding request message. It should not be used when

a more specific error code applies.

2 (0x02) ERROR_INVALID_DATA
The PLDM request message payload contained invalid data or

an illegal parameter value.

3 (0x03) ERROR_INVALID_LENGTH

The PLDM request message length was invalid. (The PLDM

request message body was larger or smaller than expected for

the particular PLDM command.)

DSP0240 PLDM Base Specification

Version 1.2.0 Published 27

Value Name Description

4 (0x04) ERROR_NOT_READY
The Receiver is in a transient state where it is not ready to

process the corresponding PLDM command.

5 (0x05) ERROR_UNSUPPORTED_PLDM_CMD

The command field in the PLDM request message is unspecified

or not supported for this PLDM Type. This completion code shall

be returned for any unsupported command values received.

32 (0x20) ERROR_INVALID_PLDM_TYPE
The PLDM Type field value in the PLDM request message is

invalid or unsupported.

33 (0x21) ERROR_INVALID_TRANSFER_CONTEXT
The TransferContext field is not valid for this Multipart Transfer

Operation.

34 (0x22) ERROR_INVALID_DATA_TRANSFER_HANDLE
A Transfer Handle field is not valid for this Multipart Transfer

Operation.

35 (0x23) ERROR_UNEXPECTED_TRANSFER_FLAG_OPERATION

The TransferFlag or TransferOperation value is not valid or

expected in the current Multipart Transfer Operation state. An

example would be setting XFER_NEXT_PART before starting

the operation with XFER_FIRST_PART.

36 (0x24) ERROR_INVALID_REQUESTED_SECTION_OFFSET The RequestedSectionOffset request parameter is out of range.

128-255

(0x80-0xFF)
COMMAND_SPECIFIC

This range of completion code values is reserved for values that

are specific to a particular PLDM request message. The

particular values (if any) and their definition are provided in the

specification for the particular PLDM command.

All other Reserved Reserved

251 8.3 Concurrent PLDM command processing

252 This section describes the specifications and requirements for handling concurrent / overlapping PLDM requests.

253 8.3.1 Requirements for responders

254 A PLDM terminus is not required to process more than one request at a time (that is, it can be “single threaded” and

does not have to accept and act on new requests until it has finished responding to any previous request).

255 A responder that is not ready to accept a new request can either silently discard the request, or it can respond with

an ERROR_NOT_READY message completion code (preferred).

256 To support retried requests or in case a transmitted response is not received by the requester, a responder shall track

the last command received using the following match values:

• The transport address of the requester. (This is transport-binding specific: for example, the EID for MCTP

transport.)

• PLDM Type

PLDM Base Specification DSP0240

28 Published Version 1.2.0

• PLDM Command Code

• Instance ID of the PLDM request

257 When the responder detects a retried request by comparing the current request match values to the prior request

match values, and if the prior request was successfully acted upon, the responder shall assume that the response

was not received by the requester and shall return a completion code equal to SUCCESS.

258 The PLDM does not restrict any specific model regarding the number of requesters or responders that can

communicate simultaneously. The PLDM specification allows an implementation to have a responder that handles

one request at a time and to not maintain contexts for multiple requests or multiple requesters.

259 If a PLDM terminus is working on a request from a requester, then the PLDM terminus shall be able to process (or

queue up processing) and send the response independently from sending its own request.

260 When a responder allows simultaneous communications with multiple requesters, the requirements on the responder

are as follows:

•261 The responder shall use the following fields to track a PLDM request: the transport address of the requester

(which is transport-binding specific: for example, the EID for MCTP transport), PLDM Type, PLDM Command

Code, and Instance ID of the PLDM request.

•262 If the responder runs out of internal resources, it may fail PLDM requests.

263 8.3.2 Requirements for requesters

264 A PLDM terminus that issues PLDM requests to another PLDM terminus shall wait until one of the following occurs

before issuing a new PLDM request: it gets the response to a particular request, it times out waiting for the response,

or it receives an indication that transmission of the particular request failed.

265 A PLDM terminus that issues PLDM requests is allowed to have multiple simultaneous requests outstanding to

different responders.

266 A PLDM terminus that issues PLDM requests should be prepared to handle the order of responses that may not

match the order in which the requests were sent (that is, it should not automatically assume that a response that it

receives is in the order in which the request was sent). It should check to see that the PLDM Type, PLDM Command

Code, and Instance ID values in the response match up with a corresponding outstanding command before acting on

any parameters returned in the response.

267 The timing specifications shown in Table 6 are specific to PLDM request messages. PLDM responses are not retried.

A “try” or “retry” of a request is defined as a complete transmission of the PLDM request message.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 29

268 Table 6 — Timing Specifications for PLDM Messages

Timing Specification Symbol Min Max Description

Number of request retries PN1 2
See

"Description"

The number of times a requester is required to retry a

request.

Total of three tries, minimum: the original try plus two

retries. The maximum number of retries for a given

request is limited by the requirement that all retries

shall occur within PT3Max of the initial request.

Request-to-response time PT1 — 100 ms

The amount of time a responder has to begin

transmission of a response message.

This interval is measured at the responder from the

end of the reception of the PLDM request to the

beginning of the transmission of the response. This

requirement is tested under the condition where the

responder can successfully transmit the response on

the first try.

Time-out waiting for a response PT2
PT1Max+

2*PT4Max

PT3Min —

2*PT4Max

The amount of time a requester has to wait for a

response message.

This interval is measured at the requester from the end

of the successful transmission of the PLDM request to

the beginning of the reception of the corresponding

PLDM response. This interval at the requester sets the

minimum amount of time that a requester should wait

before retrying a PLDM request.

Note: This specification does not preclude an

implementation from adjusting the minimum time-out

waiting for a response to a smaller number than PT2

based on measured response times from responders.

The mechanism for doing so is outside the scope of

this specification.

Instance ID expiration interval PT3 5 sec [1] 6 sec

This is the interval after which the Instance ID for a

given response will expire and become reusable if a

response has not been received for the request. This is

also the maximum time that a responder tracks an

Instance ID for a given request from a given requester.

Transmission Delay PT4 — 100 ms

Time to take into account transmission delay of a

PLDM Message.

Measured as the time between the end of the

transmission of a PLDM message at the transmitter to

the beginning of the reception of the PLDM message at

the receiver.

PLDM Base Specification DSP0240

30 Published Version 1.2.0

Timing Specification Symbol Min Max Description

Not ready retry delay PT5 250 ms —

The amount of time a requester must wait before

retrying a command when receiving completion code

ERROR_NOT_READY. This interval is measured as

the time between when the requester finishes receiving

a response containing the ERROR_NOT_READY

completion code and when the requester begins

retransmitting a retry.

NOTE: There are no requirements for a retry delay

when a request receives a response other than

ERROR_NOT_READY, or when a request does not

receive a response at all.

NOTE: [1] If a requester is reset, it may produce the same Instance ID for a request as one that was previously issued. To guard against

this, it is recommended that Instance ID expiration be implemented. Any request from a given requester that is received more than PT3

seconds after a previous, matching request should be treated as a new request, not a retry.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 31

269 9 PLDM messaging control and discovery commands

270 The PLDM base definition supports a PLDM Type field that allows the commands to be grouped using a PLDM Type.

This section contains detailed descriptions for PLDM messages that are used for control and discovery operations.

The PLDM commands for PLDM messaging control and discovery are also defined in this section.

271 Table 7 defines the PLDM command codes for PLDM messaging control and discovery.

272 Table 7 — PLDM Messaging Control and Discovery Command Codes

Command Code Value Requirement

SetTID 0x01 Optional

GetTID 0x02 Mandatory

GetPLDMVersion 0x03 Mandatory

GetPLDMTypes 0x04 Mandatory

GetPLDMCommands 0x05 Mandatory

SelectPLDMVersion 0x06 Conditional 1

NegotiateTransferParameters 0x07 Conditional 2

MultipartSend 0x08 Optional

MultipartReceive 0x09 Optional

GetMultipartTransferSupport 0x0A Conditional 2

273 Conditional requirements:

274 1 Implementing SelectPLDMVersion is mandatory only if a terminus advertises support for multiple versions of any

given PLDM Type.

275 2 Implementing NegotiateTransferParameters and GetMultipartTransferSupport is mandatory for PLDM Termini that

support MultipartSend or MultipartReceive for any version of any PLDM Type.

276 9.1 PLDM Terminus

277 A PLDM Terminus is defined as the point of communication termination for PLDM messages and the PLDM functions

associated with those messages. Given a PLDM terminus, a mechanism is required that can uniquely identify each

terminus so that the semantic information can be bound to that identification. The Terminus ID (TID) is a value that

identifies a PLDM terminus. TIDs are used in PLDM messages when it is necessary to identify the PLDM terminus

that is the source of the PLDM Message. TIDs are defined within the scope of PLDM Messaging.

PLDM Base Specification DSP0240

32 Published Version 1.2.0

278 9.1.1 SetTID command (0x01)

279 The SetTID command is used to set the Terminus ID (TID) for a PLDM Terminus. This command is typically only

used by the PLDM Initialization Agent function. The command format is shown in Table 8.

280 Table 8 — SetTID Request and Response Message Format

Byte Type Request Data

0 uint8

TID

Special values:

0x00 = reserved

0xFF = reserved

Byte Type Response Data

0 enum8
CompletionCode

Possible values: { PLDM_BASE_CODES }

281 9.1.2 GetTID command (0x02)

282 The GetTID command is used to retrieve the present Terminus ID (TID) setting for a PLDM Terminus. The command

format is shown in Table 9.

283 Table 9 — GetTID Request and Response Message Format

Byte Type Request Data

0 — No request data

Byte Type Response Data

0 enum8
CompletionCode

Possible values: { PLDM_BASE_CODES }

1 uint8

TID

Special values:

0x00 = Unassigned TID

0xFF = reserved

284 9.2 GetPLDMVersion (0x03)

285 The GetPLDMVersion command can be used to retrieve the PLDM base specification versions that the PLDM

terminus supports, as well as the PLDM Type specification versions supported for each PLDM Type. The format of

the request and response message parameters for this command is shown in Table 10.

286 More than one version number can be returned for a given PLDM Type by the GetPLDMVersion command. This

DSP0240 PLDM Base Specification

Version 1.2.0 Published 33

enables the command to be used for reporting different levels of compatibility and for backward compatibility with

different specification versions. The individual specifications for the given PLDM Type define the requirements for

which version number values should be used for that PLDM Type. Those documents define which earlier version

numbers, if any, shall also be listed.

287 Generally, implementations that do not support SelectPLDMVersion should only report a single version for a PLDM

Type as there is no way without this command to target a particular version of the Type. When interacting with a

terminus that advertises support for more than one version of a PLDM Type but does not support the

SelectPLDMVersion command, the requester should assume that commands sent will be responded to following the

highest version advertised as supported. Likewise, responders that advertise support for more than one version of a

PLDM Type and do not implement the SelectPLDMVersion command should respond according to the highest

version of the PLDM Type that they support.

288 The command returns a completion code that indicates whether the PLDM Type number passed in the request is

supported. This enables the command to also be used to query the endpoint whether it supports a given PLDM Type.

PLDM Base Specification DSP0240

34 Published Version 1.2.0

289 Table 10 — GetPLDMVersion Request and Response Message Format

Byte Type Request Data

0:3 uint32

DataTransferHandle

This field is a handle that is used to identify PLDM version data transfer.

This handle is ignored by the responder when the TransferOperationFlag is set to GetFirstPart.

4 enum8

TransferOperationFlag

This field is an operation flag that indicates whether this is the start of the transfer.

Value: { GetNextPart=0, GetFirstPart=1 }

5 uint8

PLDMType

This field identifies the PLDM Type whose version information is being requested.

See DSP0245 for valid PLDMType values.

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, INVALID_DATA_TRANSFER_HANDLE=128 (0x80),

INVALID_TRANSFER_OPERATION_FLAG=129 (0x81),

INVALID_PLDM_TYPE_IN_REQUEST_DATA=131(0x83) }

1:4 uint32
NextDataTransferHandle

This field is a handle that is used to identify the next portion of PLDM version data transfer.

5 enum8

TransferFlag

This field is the transfer flag that indicates what part of the transfer this response represents.

Value: { Start=1, Middle=2, End=4, StartAndEnd=5 }

Variable — Portion of PLDMVersionData (contains one or more version fields as described in Table 11.)

290

291 Table 11 illustrates the PLDMVersionData structure returned in the GetPLDMVersion response message. When

PLDM is transported over MCTP using the MCTP version 1.x Base Transmission Unit message packet size, twelve

(12) PLDMVersionData structure (fields) may be returned in a single GetPLDMVersion response message.

292

293
294 Table 11 — PLDM Representation of PLDMVersionData

Byte Type Field

0:3 ver32
Version[0]

This field is the first entry of the version supported for the specified PLDM Type.

… … …

4*(N-1):4*N-1 ver32
Version[N-1]

This field is the Nth entry of the version supported for the specified PLDM Type.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 35

Byte Type Field

4*N:4*N+3 uint32

PLDMVersionDataIntegrityChecksum

Integrity checksum on the PLDM version data. It is calculated starting at the first byte of the PLDM

representation of PLDMVersionData.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 +

x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the integrity

checksum computation. The CRC computation involves processing a byte at a time with the least

significant bit first.

295 This command is defined in such a manner that it allows the PLDM version data to be transferred using a sequence

of one or more command or response messages. When more than one command is used to transfer the PLDM

version data, the response messages contain the non-overlapping contiguous portions of PLDM version data as

defined in Table 11. By combining the portions of PLDM version data from the response messages, the entire PLDM

version data can be reconstructed.

296 9.3 GetPLDMTypes (0x04)

297 The GetPLDMTypes command can be used to discover the PLDM Type capabilities supported by a PLDM terminus

and to get a list of the PLDM Types that are supported. The request and response parameters for this message are

listed in Table 12.

298 The response to this command may be specific to the transport over which the request was received (that is, a PLDM

terminus that supports a given PLDM Type on a transport may not support that PLDM Type equally across all the

transports that connect to the PLDM terminus).

299 Table 12 — GetPLDMTypes Request and Response Message Format

Byte Type Request Data

- - None

Byte Type Response Data

0 enum8
CompletionCode

Values: { PLDM_BASE_CODES }

1:8 bitfield8[8]

PLDMTypes

Each bit represents whether a given PLDM Type is supported:

1b = PLDM Type is supported.

0b = PLDM Type is not supported.

For bitfield8[N], where N = 0 to 7:

[7] — PLDM Type N*8+7 Supported

[..] — …

[1] — PLDM Type N*8+1 Supported

[0] — PLDM Type N*8+0 Supported

PLDM Base Specification DSP0240

36 Published Version 1.2.0

300 9.4 GetPLDMCommands (0x05)

301 The GetPLDMCommands command can be used to discover the PLDM command capabilities supported by a PLDM

terminus for a specific PLDM Type and version as a responder. The request and response parameters for this

message are listed in Table 13.

302 The response to this command may be specific to the transport over which the request was received (that is, a PLDM

terminus that supports a given PLDM Type on a transport may not support that PLDM Type equally across all the

transports that connect to the PLDM terminus).

303 Table 13 — GetPLDMCommands Request and Response Message Format

Byte Type Request Data

0 uint8

PLDMType

This field identifies the PLDM Type for which command support information is being requested.

See DSP0245 for valid PLDMType values.

1:4 ver32
Version

This field identifies the version for the specified PLDM Type.

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, INVALID_PLDM_TYPE_IN_REQUEST_DATA=131(0x83),

INVALID_PLDM_VERSION_IN_REQUEST_DATA=132(0x84) }

1:32 bitfield8[32]

PLDMCommands (up to 256 commands supported for the specified PLDM Type)

Each bit represents whether a given PLDM command is supported:

1b = PLDM command is supported.

0b = PLDM command is not supported.

For bitfield8[N], where N = 0 to 31:

[7] — PLDM Command N*8+7 Supported

[..] — …

[1] — PLDM Command N*8+1 Supported

[0] — PLDM Command N*8 Supported

304 9.5 SelectPLDMVersion (0x06)

305 The SelectPLDMVersion command can be used to specify the version of a PLDM Type that a PLDM endpoint shall

use when interpreting request messages and providing response messages for PLDM commands. The request and

response parameters for this message are listed in Table 14.

306 A PLDM endpoint that supports multiple versions of a PLDM Type but has not received a SelectPLDMVersion

command for that Type shall interpret request messages and provide response messages according to the highest

version of the Type it supports. Similarly, any time PLDM is reset for a terminus, it shall revert to the highest version

of each Type it supports.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 37

307 PLDM termini are not responsible for ensuring compatibility among the versions of PLDM Types that they are asked

to use via this command. Even if version selection results in mutually incompatible Types, it is the responsibility of the

requester to manage the resultant behavior. Termini are not obligated to track compatibility between different

versions of PLDM Types.

308 Table 14 — SelectPLDMVersion Request and Response Message Format

Byte Type Request Data

0 uint8

PLDMType

This field identifies the PLDM Type for which version selection is being performed. This command may not be

used to select a version for PLDM Type 0.

See DSP0245 for valid PLDM Type values.

1:4 ver32

Version

This field identifies the version for the specified PLDM Type that the endpoint shall use for interpreting request

messages and providing response messages.

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, INVALID_PLDM_TYPE_IN_REQUEST_DATA=131 (0x83),

INVALID_PLDM_VERSION_IN_REQUEST_DATA=132 (0x84) }

Response codes INVALID_PLDM_TYPE_IN_REQUEST_DATA and

INVALID_PLDM_VERSION_IN_REQUEST_DATA shall additionally be used to indicate that a particular PLDM

Type or version for that Type is not supported.

309 9.6 Multipart transfer commands

310 The various commands defined in this clause support bulk transfers via the MultipartSend and MultipartReceive

commands. The MultipartSend and MultipartReceive commands use flags and data transfer handles to perform

multipart transfers of data. The transfer can be contiguous (one section) or composed of multiple sections sent

separately. Each section of a larger transfer (block) of data that is transferred is identified by its section offset within

the larger block so that both sender and receiver know what is being transferred and how to process it. Each section

in turn may comprise multiple parts of data (the amount that is negotiated to be sent in a single message). In

multipart transfers, a data transfer handle identifies each part of the transfer. Data transfer handle usage is

documented in the relevant specification for the PLDM Type used in the transfer. Recipients shall make no inferences

about the numeric values of a valid DataTransferHandle beyond what is in the relevant PLDM Type specification.

311 9.6.1 Semantics of a Multipart Transfer

312 Figure 2 illustrates the transfer components that transport the data through the Multipart State Machines for receiving

and sending blocks of data. A larger transfer (block) of data is transported in sections which may be restarted from

the start of the section in case of error. A section is subsequently split into Transfer Parts of a Negotiated Transfer

Part Size. A Transfer Part is a complete PLDM Message and, in the case of an error, may also be retransmitted at

the moment of reception.

PLDM Base Specification DSP0240

38 Published Version 1.2.0

313

314
Transfer (Block) Data

(Full / Complete Data Transfer)

Section 0
Size Determined by Requester

Transfer Part 0

Size = Negotiated

Transfer Part 1

Size = Negotiated

Transfer Part N

Size <= Negotiated

Section 1
Size Determined by Requester

Transfer Part 0

Size = Negotiated

Transfer Part 1

Size = Negotiated

Transfer Part N

Size <= Negotiated

Section S
Size Determined by Requester

Transfer Part 0

Size = Negotiated

Transfer Part 1

Size = Negotiated

Transfer Part N

Size <= Negotiated

315 Figure 2 — Multipart Transfer Overview

• Transfer (Block) Data

◦ The entirety of the data to be transferred

◦ The Transfer (Block) Data is transferred utilizing one or more Sections.

◦ A Section is transferred in one or more parts.

• Section

◦ A Section is a complete unit of data transfer of the larger Transfer (Block) data.

◦ The requester maintains the section offset within the larger Transfer (Block) data.

◦ A Section should be available from its start to transfer again before the start of the next Section transfer

operation.

◦ The requester chooses the number of bytes to be transferred as a Section (unit) for both MultipartSend and

MultipartReceive commands.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 39

◦ Each Section should be the same size (bytes) except for the final transferred Section, whose size should be

less than or equal to the size of the previously transferred sections.

◦ A Section is transferred in one or more Negotiated Transfer Part Size transmission units (parts).

◦ The DataTransferHandle and NextDataTransferHandle are the regulating variables to transfer all the parts of

a Section.

• Transfer Part

◦ A Transfer Part is the maximum unit of data transfer within a Section.

◦ A Transfer Part Size is negotiated with the NegotiateTransferParameters command.

◦ A Transfer Part is a complete PLDM Message.

◦ A Transfer Part should be available from its start to transfer again before the start of the next Transfer Part,

but this behavior is defined by the specific PLDM Type specification.

◦ A Negotiated Transfer Part Size value represents the size of the PLDM header and PLDM payload.

◦ Unless the transfer is contained in a single Transfer Part, all Transfer Parts for a given Section shall be

equal in size to the Negotiated Transfer Part Size except the final transferred Transfer Part, whose size shall

be less than or equal to the Negotiated Transfer Part Size.

316 Each multipart transfer is flagged with an indication of the PLDM Type on whose behalf the transfer is occurring as

well as a Type-specific context field that differentiates different types of transfers within the Type.

317 9.6.2 NegotiateTransferParameters (0x07)

318 The NegotiateTransferParameters command is used to establish transfer parameters and support for multipart

transfers. In the event that a MultipartSend or MultipartReceive command is issued before this negotiation completes

for a PLDM Type, the command shall be rejected by the receiving terminus. An endpoint that does not support the

NegotiateTransferParameters command shall be considered as not supporting the MultipartSend and

MultipartReceive commands, even if it reflects support for them in the response to the GetPLDMCommands

command.

319 This command is typically only used by the PLDM Initialization Agent function. Because the responder support for

Multipart transfers for a PLDM Type may be limited to some versions of that Type, Initialization Agent functions shall

invoke this command after using any SelectPLDMVersion commands to determine whether MultipartSend and

MultipartReceive are to be used with that PLDM Type.

320 The PLDM Initialization Agent function may invoke this command multiple times in order to establish different part

sizes with different PLDM Types. The Transfer Part Size established with each such invocation only applies to the

PLDM Types selected by the Initialization Agent function in RequesterProtocolSupport. The Transfer Part Size value

represents the size of the PLDM header and PLDM payload; transport protocol fields, medium-specific headers, and

related binding fields shall not be included in or counted against this size.

321 The command format is shown in Table 15.

322 Table 15 — NegotiateTransferParameters Request and Response Message Format

PLDM Base Specification DSP0240

40 Published Version 1.2.0

Byte Type Request Data

0:1 uint16

RequesterPartSize

The maximum transfer part size for a Requester single message in a multipart transfer.

The RequesterPartSize value represents the size of the PLDM header and PLDM payload; transport protocol

fields, medium-specific headers, and related binding fields shall not be included in or counted against this size.

Upon successful completion of this command, the requester and responder shall use the lesser of

RequesterPartSize and ResponderPartSize as the part size for messages sent via the MultipartSend and

MultipartReceive commands.

The minimum part size is 256 bytes and shall be a power of two (2); a value of less than 256 bytes shall be

interpreted as a lack of support for the MultipartSend and MultipartReceive commands with all PLDM Types on

the part of the requester.

Implementations that support multipart transfers are strongly recommended to support at least 512 bytes for the

part size.

2:9 bitfield8[8]

RequesterProtocolSupport

Each bit represents whether multipart transfer with a given PLDM Type is supported by the requester and

therefore negotiation of transfer part size for that Type should proceed:

1b = multipart transfer is supported, and negotiation of transfer part size should proceed.

0b = multipart transfer is not supported, or negotiation of transfer part size should not proceed with this invocation

of the NegotiateTransferParameters command.

For bitfield8[N], where N = 0 to 7:

[7] — Multipart transfer with PLDM Type N*8+7 supported, and negotiation should proceed.

[..] — …

[1] — Multipart transfer with PLDM Type N*8+1 supported, and negotiation should proceed.

[0] — Multipart transfer with PLDM Type N*8+0 supported, and negotiation should proceed.

Upon successful completion of this command, the requester and responder shall use the PLDM base

MultipartSend and MultipartReceive commands with PLDM Types for which both the requester and the responder

have indicated support and negotiated a part size.

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, ERROR_INVALID_DATA }

ERROR_INVALID_DATA: RequesterPartSize in the request message was less than 256 bytes or was not a

power of two (2).

DSP0240 PLDM Base Specification

Version 1.2.0 Published 41

Byte Type Response Data

1:2 uint16

ResponderPartSize

Responder maximum transfer part size for a single message in a multipart transfer.

The ResponderPartSize value represents the size of the PLDM header and PLDM payload; transport protocol

fields, medium-specific headers, and related binding fields shall not be included in or counted against this size.

Upon successful completion of this command, the requester and responder shall use the lesser of

RequesterPartSize and ResponderPartSize as the part size for messages sent via the MultipartSend and

MultipartReceive commands.

The minimum part size is 256 bytes and shall be a power of two (2); a value of less than 256 bytes shall be

interpreted as a lack of support for the MultipartSend and MultipartReceive commands with all PLDM Types on

the part of the responder. This indication may also be expressed by denying support for the

NegotiateTransferParameters command.

In the event that a requester queries support for multiple PLDM Types and the responder supports different

maximum transfer part sizes for those Types, it shall respond with the minimum transfer part size it supports

across the supported Types.

Implementations that support multipart transfers are strongly recommended to support at least 512 bytes for the

part size.

3:10 bitfield8[8]

ResponderProtocolSupport

Each bit represents whether multipart transfer with a given PLDM Type queried by the requester is supported by

the responder:

1b = multipart transfer is supported.

0b = multipart transfer is not supported or the requester did not query support for this Type.

For bitfield8[N], where N = 0 to 7:

[7] — Multipart transfer with PLDM Type N*8+7 is supported.

[..] — …

[1] — Multipart transfer with PLDM Type N*8+1 is supported.

[0] — Multipart transfer with PLDM Type N*8+0 is supported.

Upon successful completion of this command, the requester and responder shall use the PLDM base

MultipartSend and MultipartReceive commands with PLDM Types for which both the requester and the responder

have indicated support. The manner in which these commands are to be used for a given PLDM Type is

documented in the relevant specification for that Type.

323 9.6.3 MultipartSend (0x08)

324 This command enables a requester to transmit a large volume of data to a responder in one or more sections, each

of which is broken into a series of single-message parts. In the event of a data checksum error, the responder may

ask the requester to resend the current part or restart the transfer. Responders may also abort transmissions or

restart them entirely; motivations for and expected behavior with such actions are protocol-specific and should be

documented in the relevant PLDM Type specification.

325 9.6.4 Flag usage for MultipartSend

326 The following list shows some requirements for using NextTransferOperation, TransferFlag, TransferContext, and

DataTransferHandle fields in MultipartSend data transfers:

•327 Defining the initial DataTransferHandle and TransferContext for a multipart transfer is out of scope for this

specification. These fields are PLDM Type specific and should be documented in the relevant specification for

PLDM Base Specification DSP0240

42 Published Version 1.2.0

the PLDM Type used in the transfer. (Similarly, definitions of section offsets and byte counts are out of scope for

this specification.)

•328 The DataTransferHandle is an opaque handle that is specific to each PLDM Type and the TransferContext. The

DataTransferHandle and TransferContext are documented in the relevant specification for the PLDM Type used

in the transfer. Recipients shall make no inferences about the numeric values of a valid DataTransferHandle

beyond what is in the relevant PLDM Type specification.

•329 When sending the first part of data in the current section, the sender shall set the TransferFlag in the request

message to START (for a multipart section) or START_AND_END (for a single-part section).

•330 To request the next part in the current section, the responder shall set NextTransferOperation to

XFER_NEXT_PART in the response message. This may be done only if the TransferFlag in the request

message was set to START or MIDDLE.

•331 To request a restart of the transfer of the current section of data with a MultipartSend command, the responder

shall set NextTransferOperation to XFER_FIRST_PART in the response message.

NOTE: The ability of the responder to request that the transmission of a section be restarted at any time means

that the requester must retain data for the section until the transfer is complete.

•332 To request retransmission of a part of data, such as upon detection of a checksum error, the responder shall set

NextTransferOperation to XFER_CURRENT_PART in the response message.

•333 To convey that a part being sent is the last part of the current section, the requester shall set the TransferFlag to

END (for a multipart section) or START_AND_END (for a single-part section).

•334 To acknowledge successful transfer of a section of data, the responder shall set NextTransferOperation to

XFER_COMPLETE. The transfer of the current section is complete when the requester receives a response

message with a success CompletionCode and NextTransferOperation set to XFER_COMPLETE.

•335 To abandon the MultipartSend transfer, the responder shall set NextTransferOperation to XFER_ABORT. The

MultipartSend transfer is complete when the requester receives a response message with a success

CompletionCode and NextTransferOperation set to XFER_ABORT. Handling of aborted transfers is specific to

each PLDM Type; see the relevant documentation for the PLDM Type.

•336 The TransferFlag specified in the request for a MultipartSend command request message has the following

meanings:

◦ START, which is the first part of the data transfer for the current section

◦ MIDDLE, which is neither the first nor the last part of the data transfer for the current section

◦ END, which is the last part of the data transfer for the current section

◦ START_AND_END, which is the first and the last part of the data transfer. In this case, the transfer for the

current section consists of a single part.

337

DSP0240 PLDM Base Specification

Version 1.2.0 Published 43

338 Figure 3 provides a pictorial view of the MultipartSend State Machine with more details provided in the Table 16 field

definitions. This picture represents the transfer of one section of a multiple part transfer or a single section, one part

transfer using the Negotiated Transfer Part Size.

PLDM Base Specification DSP0240

44 Published Version 1.2.0

339

340 Figure 3 — MultipartSend State Machine

DSP0240 PLDM Base Specification

Version 1.2.0 Published 45

341 Table 16 — MultipartSend Request and Response Message Format

Byte Type Request Data

0 uint8
PLDMType

The PLDM Type for the protocol by which this transfer is being performed.

1 enum8

TransferFlag

An indication of current progress within the transfer. The value START_AND_END indicates that the entire

transfer consists of a single part.

Value: { START=1, MIDDLE=2, END=4, START_AND_END=5 }

2:5 uint32

TransferContext

A protocol-specific indication of the context in which this transfer is being performed. See the relevant

documentation for the PLDM Type for details of the way in which this field is used.

6:9 uint32

DataTransferHandle

A handle to uniquely identify the part of data to be sent.

The DataTransferHandle supplied shall be one of: the initial handle, to begin or restart a transfer; the most

recently sent handle, to resend the previous part; or the NextDataTransferHandle as specified in the previous

part.

10:13 uint32

NextDataTransferHandle

The handle for the next part of data for this transfer.

Special value: zero (0x00000000) if no further data remains to be transferred in the current section

14:17 uint32

SectionOffset

The start offset when initiating transfer of a new section.

Special value: Zero (0x00000000) if TransferFlag is not one of START or START_AND_END.

18:21 uint32

SectionLengthBytes

The size in bytes of data to be supplied when initiating transfer of a new section.

Special value: Zero (0x00000000) if data size is unavailable or if TransferFlag is not one of START or

START_AND_END.

22:25 uint32

DataLengthBytes

The length in bytes N of data being sent in this part in the Data field. This value and the data bytes associated

with it shall not cause this request message to exceed the negotiated maximum transfer part size (see

NegotiateTransferParameters).

26:N+26 uint8[N]
Data

The current part of data.

N+27:N+30 uint32

DataIntegrityChecksum

32-bit cumulative CRC for the entirety of data received so far for this section (all parts concatenated together,

excluding checksums). Shall be included with all part transfers.

When beginning a transfer of a new section of data within a single MultipartSend sequence, the data integrity

checksum for the previous section is not included in the calculation.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 +

x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the integrity checksum

computation. The CRC computation involves processing a byte at a time with the least significant bit first.

PLDM Base Specification DSP0240

46 Published Version 1.2.0

Byte Type Response Data

0 enum8
CompletionCode

Possible values: { PLDM_BASE_CODES, NEGOTIATION_INCOMPLETE=131 (0x83) }

1 enum8

NextTransferOperation

The follow-up action that the responder is requesting of the requester. NextTransferOperation flags are

described in more detail in Flag usage for MultipartSend.

• XFER_FIRST_PART: resend the initial part (restarting transmission of the section, such as if the receiver

had to reallocate a larger receive buffer and restart the transfer)

• XFER_NEXT_PART: send the next part of data for the current section

• XFER_ABORT: stop the transmission and do not retry. The expected behavior for an aborted transmission

is specific to each PLDM Type.

• XFER_COMPLETE: transmission of the section completed normally. If there is another section to transmit,

the sender may begin sending it at this time.

• XFER_CURRENT_PART: resend the last part, such as if the checksum of data cumulatively received did

not match the DataIntegrityChecksum in the current part

Value: { XFER_FIRST_PART=0, XFER_NEXT_PART=1, XFER_ABORT=2, XFER_COMPLETE=3,

XFER_CURRENT_PART=4 }

342 9.6.5 MultipartReceive (0x09)

343 This command enables the requester to receive a large volume of data from a responder in one or more sections,

each of which is broken into a series of single-message parts. In the event of a data checksum error, the requester

may ask the responder to resend the current part or restart the transfer. Responders may also abort transmissions or

restart them entirely; motivations for and expected behavior with such actions are protocol-specific and should be

documented in the relevant PLDM Type specification.

344 9.6.6 Flag usage for MultipartReceive

345 The following list shows some requirements for using TransferOperationFlag, TransferFlag, and DataTransferHandle

in MultipartReceive data transfers:

•346 Defining the initial DataTransferHandle and TransferContext for a multipart transfer is out of scope for this

specification. These fields are PLDM Type specific and should be documented in the relevant specification for

the PLDM Type used in the transfer. (Similarly, definitions of section offsets and byte counts are out of scope for

this specification.)

•347 The DataTransferHandle is an opaque handle that is specific to each PLDM Type and the TransferContext. The

DataTransferHandle and TransferContext are documented in the relevant specification for the PLDM Type used

in the transfer. Recipients shall make no inferences about the numeric values of a valid DataTransferHandle

beyond what is in the relevant PLDM Type specification.

•348 To initiate transfer of a section of data with a MultipartReceive command, the requester shall set

TransferOperation to XFER_FIRST_PART in the request message. This flag may also be used to request restart

of the transfer for the current section. NOTE: The ability of the requester to request that the transmission of a

DSP0240 PLDM Base Specification

Version 1.2.0 Published 47

section be restarted at any time means that the responder must retain data for the section until the transfer is

complete.

•349 To request retransmission of the current part of data (such as upon detection of a checksum error), the requester

shall set TransferOperation to XFER_CURRENT_PART in the request message and shall set

DataTransferHandle to the handle that was previously used with this part.

•350 To request the next part of data, the requester shall set TransferOperation to XFER_NEXT_PART and shall set

DataTransferHandle to the NextDataTransferHandle that was obtained in the response to the previous

MultipartReceive command for this data transfer. This may be done only if TransferFlag in the previous response

message was set to START or MIDDLE.

•351 To acknowledge successful transfer of the current section of data, the requester shall set TransferOperation to

XFER_COMPLETE. The requester may initiate transfer of another section at the same time by specifying

RequestedSectionLengthBytes and RequestedSectionOffset for the new section In this case, the

NextDataTransferHandle in the response message becomes the initial handle for the new section. The transfer

of the current section is complete when the requester receives an ACKNOWLEDGE_COMPLETION response to

a message in which TransferOperation is set to XFER_COMPLETE.

•352 To abandon the MultipartReceive transfer, the requester shall set TransferOperation to XFER_ABORT. The

MultipartReceive transfer of the current section is complete when the requester receives an

ACKNOWLEDGE_COMPLETION response to a message in which TransferOperation is set to XFER_ABORT.

Handling of aborted transfers is specific to each PLDM Type; see the relevant documentation for the PLDM

Type.

•353 The TransferFlag specified in the response of a MultipartReceive command has the following meanings:

◦ START, which is the first part of the data transfer for the current section

◦ MIDDLE, which is neither the first nor the last part of the data transfer for the current section

◦ END, which is the last part of the data transfer for the current section

◦ START_AND_END, which is the first and the last part of the data transfer for the current section

◦ ACKNOWLEDGE_COMPLETION, which is the normal response to XFER_COMPLETE or XFER_ABORT.

354 The TransferOperationFlag, TransferFlag, and DataTransferHandle enable a synchronized state machine between

the Requester and Responder as shown in Figure 4.

355 Figure 4 provides a pictorial view of the MultipartReceive State Machine with more details provided in the Table 17

field definitions. This picture represents the transfer of one section of a multiple part transfer or a single section, one

part transfer using the Negotiated Transfer Part Size.

PLDM Base Specification DSP0240

48 Published Version 1.2.0

356

357 Figure 4 — MultipartReceive State Machine

DSP0240 PLDM Base Specification

Version 1.2.0 Published 49

358 Table 17 — MultipartReceive Request and Response Message Format

Byte Type Request Data

0 uint8
PLDMType

The PLDM Type for the protocol by which this transfer is being performed.

1 enum8

TransferOperation

The section of data requested for the transfer.

TransferOperation flags are described in more detail in Flag usage for MultipartReceive.

• XFER_FIRST_PART: The requester is asking that the section transfer begin or restart from the beginning.

• XFER_NEXT_PART: The requester is asking for the next part of the current section.

• XFER_ABORT: The requester is requesting that the transfer be discarded. Handling of aborted transfers is

specific to each PLDM Type; see the relevant documentation for the PLDM Type.

• XFER_COMPLETE: The requester is acknowledging completion of the transfer for the current section of data

and may be requesting another section of data.

• XFER_CURRENT_PART: The requester is asking for the part just sent to be retransmitted, such as if the

checksum of data cumulatively received did not match the DataIntegrityChecksum in the current part.

Value: { XFER_FIRST_PART=0, XFER_NEXT_PART=1, XFER_ABORT=2, XFER_COMPLETE=3,

XFER_CURRENT_PART=4 }

2:5 uint32

TransferContext

A protocol-specific indication of the context in which this transfer is being performed. See the relevant

documentation for the PLDM Type for details of the way in which this field is used.

6:9 uint32

DataTransferHandle

A handle to uniquely identify the part of data to be received.

The DataTransferHandle supplied shall be one of:

• the initial handle, to begin or restart a transfer for a section of data

• the previous handle, when requesting retransmission with the XFER_CURRENT flag

• the NextDataTransferHandle as specified in the previous part, to obtain the next part

Special value: Zero (0x00000000) when acknowledging completion of a section transfer with the

XFER_COMPLETE or XFER_ABORT flag

10:13 uint32

RequestedSectionOffset

The requested start offset for a new section.

Special value: Zero (0x00000000) for any of these situations:

• If TransferOperation is not one of XFER_FIRST_PART or XFER_COMPLETE.

• If TransferOperation is XFER_COMPLETE, the last part was successfully received, and no further sections are

to be transferred.

14:17 uint32

RequestedSectionLengthBytes

The size in bytes of data requested for a new section.

Special value: Zero (0x00000000) for any of these situations:

• If data size is unavailable.

• If TransferOperation is not one of XFER_FIRST_PART or XFER_COMPLETE.

• If TransferOperation is XFER_COMPLETE, the last part was successfully received, and no further sections are

to be transferred.

PLDM Base Specification DSP0240

50 Published Version 1.2.0

Byte Type Response Data

0 enum8
CompletionCode

Possible values: { PLDM_BASE_CODES, NEGOTIATION_INCOMPLETE=131 (0x83) }

1 enum8
TransferFlag

Value: { START=1, MIDDLE=2, END=4, START_AND_END=5, ACKNOWLEDGE_COMPLETION=8 }

2:5 uint32

NextDataTransferHandle

The handle for the next part of data for this section transfer.

Special value: Zero (0x00000000) if no further data remains for the transfer of this section.

In response to a request message where TransferOperation was set to XFER_COMPLETE that requested

transfer of another section of data, this shall be the initial DataTransferHandle for that section.

6:9 uint32

DataLengthBytes

The length in bytes N of data being sent in this part in the Data field. This value and the data bytes associated

with it shall not cause this response message to exceed the negotiated maximum transfer part size (see

NegotiateTransferParameters).

This value shall be zero in response to a request message where TransferOperation was set to

XFER_COMPLETE or XFER_ABORT.

10:10+(N-1) uint8[N]

Data

The current part of data. This field shall be omitted in response to a request message where TransferOperation

was set to XFER_COMPLETE or XFER_ABORT.

N+11:N+14 uint32

DataIntegrityChecksum

32-bit cumulative CRC for the entirety of data received so far for this section (all parts concatenated together,

excluding checksums). Shall be included with all part transfers.

When beginning a transfer of a new section of data within a single MultipartReceive sequence, the data integrity

checksum for the previous section is not included in the calculation.

For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8

+ x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the integrity checksum

computation. The CRC computation involves processing a byte at a time with the least significant bit first.

This field shall be omitted in response to a request message where TransferOperation was set to

XFER_COMPLETE or XFER_ABORT.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 51

359 9.7 GetMultipartTransferSupport (0x0A)

360 The GetMultipartTransferSupport command can be used to discover whether the MultipartReceive and MultipartSend

commands will be accepted by a PLDM terminus (as a responder) for a specific PLDM Type and version. The

request and response parameters for this message are listed in Table 18.

361 The response to this command may take into account the transport endpoint over which the request was received

(that is, a device that supports a given PLDM Type on a transport endpoint may not support that PLDM Type equally

across all the transport endpoints that connect to the device).

362 Table 18 — GetMultipartTransferSupport Request and Response Message Format

Byte Type Request Data

0 uint8

PLDMType

This field identifies the PLDM Type for which command support information is being requested.

See DSP0245 for valid PLDMType values.

1:4 ver32
Version

This field identifies the version for the specified PLDM Type.

Byte Type Response Data

0 enum8

CompletionCode

Possible values: { PLDM_BASE_CODES, INVALID_PLDM_TYPE_IN_REQUEST_DATA=131(0x83),

INVALID_PLDM_VERSION_IN_REQUEST_DATA=132(0x84) }

1 bitfield8

PLDMTypeAccepts

This field indicates which Multipart Transfer commands the specified PLDM Type at the specified version a

PLDM terminus will accept (as a PLDM responder)

[7:3] — Reserved

[2] — MultipartReceive is Accepted.

[1] — MultipartSend is Accepted.

[0] — NegotiateTransferParameters is Accepted.

2 bitfield8

PLDMTypeGenerates

This field indicates which Multipart Transfer commands the specified PLDM Type at the specified version a

PLDM terminus will generate (as a PLDM requester)

[7:3] — Reserved

[2] — MultipartReceive is Generated.

[1] — MultipartSend is Generated.

[0] — NegotiateTransferParameters is Generated.

PLDM Base Specification DSP0240

52 Published Version 1.2.0

363 10 PLDM messaging control and discovery examples

364 The GetPLDMVersion command for transferring PLDM version data supports multipart transfers. The

GetPLDMVersion command uses flags and data transfer handles to perform multipart transfers. The following

requirements apply to the usage of TransferOperationFlag, TransferFlag, and DataTransferHandle for a given data

transfer:

365 1) For initiating a data transfer (or getting the first part of data) by using a Get* command, the TransferOperationFlag

shall be set to GetFirstPart in the request of the Get* command.

•366 For transferring any part of the data other than the first part by using a Get* command, the

TransferOperationFlag shall be set to GetNextPart, and the DataTransferHandle shall be set to the

NextDataTransferHandle that was obtained in the response of the previous Get* command for this data transfer.

•367 The TransferFlag specified in the response of a Get* command has the following meanings:

◦ Start, which is the first part of the data transfer.

◦ Middle, which is neither the first nor the last part of the data transfer.

◦ End, which is the last part of the data transfer.

◦ StartAndEnd, which is the first and the last part of the data transfer.

•368 The requester shall consider a data transfer complete when the TransferFlag in the response of a Get*

command is set to End or StartAndEnd.

369 EXAMPLE 1: The example in Figure 5 shows how multipart transfers can be performed using the generic mechanism

defined in the GetPLDMVersion command. In Figure 5, the PLDM version data is transferred in three parts. Figure 5

shows the flow of the data transfer.

DSP0240 PLDM Base Specification

Version 1.2.0 Published 53

370
Requester Responder

GetPLDMVersion Response
(CompletionCode = SUCCESS, NextDataTransferHandle= 0x00000005, TransferFlag = Start,

1st Part of PLDMVersionData)

GetPLDMVersion Response
(CompletionCode = SUCCESS, NextDataTransferHandle= 0x00000001, TransferFlag = Middle,

2nd Part of PLDMVersionData)

GetPLDMVersion Response
(CompletionCode = SUCCESS, NextDataTransferHandle= 0x00000002, TransferFlag = End,

3rd Part of PLDMVersionData)

371 Figure 5 — Example of multipart PLDM version data transfer using the GetPLDMVersion command

372 EXAMPLE 2: Figure 6 shows an example sequence of steps performed by a requester to discover the PLDM

versions and Types supported by the responder as well as the commands supported for each PLDM Type.

373 In the example, the following steps are performed by the requester:

374 1) The requester first uses the GetTID command to get the PLDM Terminus ID of the responder.

375 2) The requester then uses GetPLDMTypes to discover the PLDM Types supported by the responder. (In the

example shown in Figure 6, the responder supports two PLDM Types, PLDM Type 0 and PLDM Type 1.)

376 3) For each PLDM Type that is supported by the responder, the requester uses GetPLDMVersion and

GetPLDMCommands to discover the supported versions of the specifications for the PLDM Type and the supported

PLDM commands for the specific PLDM version and Type. In this example, the responder supports only one version

of the specification (1.0.0) for each PLDM Type.

PLDM Base Specification DSP0240

54 Published Version 1.2.0

377
Requester Responder

GetTID Request

GetTID Response

GetPLDMTypes Request

GetPLDMVersion Request (for PLDM Type 0)

GetPLDMVersion Response (indicates that one version 1.0.0 is supported for the PLDM Type 0)

GetPLDMCommands Request (for PLDM Type 0 version 1.0.0)

GetPLDMVersion Request (for PLDM Type 1)

GetPLDMVersion Response (indicates that one version 1.0.0 is supported for the PLDM Type 1)

GetPLDMCommands Request (for PLDM Type 1 version 1.0.0)

GetPLDMCommands Response

GetPLDMCommands Response

GetPLDMTypes Response (indicates PLDM Type 0 and 1 are supported)

378 Figure 6 — PLDM discovery command example

DSP0240 PLDM Base Specification

Version 1.2.0 Published 55

379 11 ANNEX A (informative) Example of initializing the
PLDM protocol

380 The Platform Level Data Model (PLDM) is a layered transactional protocol that provides methods for the requester to

discover the endpoint supported PLDM (Message) Types and the commands within the supported PLDM Type.

381 Figure 7 and Figure 8 provide an example initialization flow for assigning a terminus identifier and for the PLDM

Initialization Agent Function, typically the management controller, to discover the provided PLDM functionality. Each

supported PLDM (message) Type will also have an initialization and discovery method for the subordinate data

model and supporting functions.

382 This self-describing feature allows a device with a well-defined data model to be discovered and interacted by a

management controller with no prior knowledge of the device. This feature is also known as “Plug and Play”.

383 The example shown in Figure 7 assumes the PLDM terminus supports all three major versions of this specification

but the PLDM terminus could return just the current version. The recommended PLDM support model is current

published specification and the previous specification.

384 This example also assumes that the PLDM Initialization Agent Function (Requester) is supporting DSP0240 PLDM

Base Specification, version 1.2.0 and has support for the SelectPLDMVersion command

385 As shown in Figure 7, the PLDM Initialization Agent Function first performs discovery of this specification (DSP0240)

to identify the supported specification versions and commands. The PLDM Initialization Agent Function explicitly

selects the DSP0240 specification version (SelectPLDMVersion) for this session. The PLDM Initialization Agent

Function then obtains the supported PLDM (message) Types.

386 Figure 8 illustrates that for each declared PLDM Type (in response to the GetPLDMTypes command), the PLDM

Initialization Agent Function requests the PLDM Type supported versions and PLDM Type commands for the specific

version. The PLDM Initialization Agent Function explicitly selects the PLDM Type specification version

(SelectPLDMVersion) for this session.

387 Subsequent PLDM Type discovery is defined in the specific PLDM Type specification such as DSP0248 PLDM for

Monitor and Control.

388

PLDM Base Specification DSP0240

56 Published Version 1.2.0

389
Requester

Requester

Responder

Responder

PLDM DSP0240 (Type 0x00) Initialization

GetTID (0x02) Request

GetTID (0x02) Response
CompletionCode=SUCCESS
TID=0x00 (Unassigned)

SetTID (0x01) Request
TID=0x01 (Permitted Range [01:FE])

SetTID (0x01) Response
CompletionCode=SUCCESS

GetPLDMVersion (0x03) Request
PLDMType = DSP0240 (0x00)

GetPLDMVersion (0x03) Response
CompletionCode=SUCCESS
Version[0]=0xF1F2F000
Version[1]=0xF1F1F000
Version[2]=0xF1F0F000

GetPLDMCommands (0x05) Request
PLDMType = DSP0240 (0x00)
Version=0xF1F2F000

GetPLDMCommands (0x05) Response
CompletionCode=SUCCESS
PLDMCommands[0]=0xFF (Commands: 1,2,3,4,5,6,7)
PLDMCommands[1]=0x03 (Commands: 8,9)
{PLDMTypes[2]=0x00 -- PLDMTypes[7]=0x00}

SelectPLDMVersion (0x06) Request
PLDMType = DSP0240 (0x00)
Version=0xF1F2F000

The SelectPLDMVersion command
is not required if only 1 version

SelectPLDMVersion (0x06) Response
CompletionCode=SUCCESS

GetPLDMTypes (0x04) Request

GetPLDMTypes (0x04) Response
CompletionCode=SUCCESS
PLDMTypes[0]=0xE5 (0,2,5,6,7)
{PLDMTypes[1]=0x00 -- PLDMTypes[7]=0x00}

390 Figure 7 — PLDM DSP0240 Initialization Example

391

DSP0240 PLDM Base Specification

Version 1.2.0 Published 57

392
Requester

Requester

Responder

Responder

PLDM Type Specific Discovery

loop [For PLDMType 0xNN in GetPLDMTypes Response]

GetPLDMVersion (0x03) Request

PLDMType=0xNN

GetPLDMVersion (0x03) Response
CompletionCode=SUCCESS
Version[0]=Ver32 encoding
Version[1]=Ver32 encoding
Version[n]=Ver32 encoding

SelectPLDMVersion (0x06) Request
PLDMType = 0xNN
Version=Ver32 encoding

The
SelectPLDMVersion
command
is not required if only
1 version

SelectPLDMVersion (0x06) Response
CompletionCode=SUCCESS

GetPLDMCommands (0x05) Request

PLDMType = 0xNN
Version=Ver32 encoding

GetPLDMCommands (0x05) Response
CompletionCode=SUCCESS
PLDMCommands[0]=0xFF (Commands: 1,2,3,4,5,6,7)
PLDMCommands[1]=0x03 (Commands: 8,9)
{PLDMTypes[2]=0x00 -- PLDMTypes[7]=0x00}

GetMultipartTransferSupport (0x0A) Request

PLDMType = 0xNN
Version=Ver32 encoding

GetMultipartTransferSupport (0x0A) Response
CompletionCode=SUCCESS
PLDMTypeAccepts = (see definition)
PLDMTypeGenerates = (see definition)

393 Figure 8 — PLDM Type Specific Discovery Example

PLDM Base Specification DSP0240

58 Published Version 1.2.0

394 12 ANNEX B (informative) Change log

Version Date Description

1.0.0 2008-04-23

1.1.0 2021-02-11

• Add standard string types to baseline list of PLDM data types

• Add enum4 to baseline list of PLDM data types

• Add contributors list

• Add support for unknown timestamp value

• Clarify use of D/Rq bits in PLDM message headers

• Add timing parameter PT5 for time delay between retries

• Add common multipart transfer commands

• Add *SelectPLDMVersion* command to enable concurrent support of multiple versions of a

PLDM Type

1.2.0 2024-07-30

• Added new command, GetMultipartTransferSupport (0x0A), to allow discovery of PLDM
Types that enable Multipart Transfers

• Defined Special Value 0xFFFFFFFF for data type ver32 as "no version"

• Corrected webpage link for IEEE 754

• Added additional Completion Codes to support PLDM Multipart Transfer Operations defined
in this specification

• Removed ambiguity around MultipartSend and MultipartReceive command parameters such

as TransferContext and DataTransferHandle, pushing the definition to the specific PLDM

Type (specification)

• Provided informative section with an example of how PLDM should be initialized

DSP0240 PLDM Base Specification

Version 1.2.0 Published 59

	Platform Level Data Model (PLDM) Base Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Document conventions
	2.2 Notations
	2.3 Reserved and unassigned values
	2.4 Byte ordering
	2.5 PLDM data types
	2.6 UUID
	2.7 Ver32 encoding
	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 PLDM base version
	8 PLDM base protocol
	8.1 PLDM message fields
	8.2 Generic PLDM completion codes (PLDM_BASE_CODES)
	8.3 Concurrent PLDM command processing
	8.3.1 Requirements for responders
	8.3.2 Requirements for requesters

	9 PLDM messaging control and discovery commands
	9.1 PLDM Terminus
	9.1.1 SetTID command (0x01)
	9.1.2 GetTID command (0x02)

	9.2 GetPLDMVersion (0x03)
	9.3 GetPLDMTypes (0x04)
	9.4 GetPLDMCommands (0x05)
	9.5 SelectPLDMVersion (0x06)
	9.6 Multipart transfer commands
	9.6.1 Semantics of a Multipart Transfer
	9.6.2 NegotiateTransferParameters (0x07)
	9.6.3 MultipartSend (0x08)
	9.6.4 Flag usage for MultipartSend
	9.6.5 MultipartReceive (0x09)
	9.6.6 Flag usage for MultipartReceive

	9.7 GetMultipartTransferSupport (0x0A)
	10 PLDM messaging control and discovery examples
	11 ANNEX A (informative) Example of initializing the PLDM protocol
	12 ANNEX B (informative) Change log

