
 1

Document Identifier: DSP0218 2

Date: 2024-06-21 3

Version: 1.2.0 4

Platform Level Data Model (PLDM) for Redfish 5

Device Enablement 6

Supersedes: 1.1.2 7

Document Class: Normative 8

Document Status: Published 9

Document Language: en-US 10

PLDM for Redfish Device Enablement DSP0218

2 Published Version 1.2.0

Copyright Notice 11

Copyright © 2019–2022, 2024 DMTF. All rights reserved. 12

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 13
management and interoperability. Members and non-members may reproduce DMTF specifications and 14
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 15
time, the particular version and release date should always be noted. 16

Implementation of certain elements of this standard or proposed standard may be subject to third-party 17
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations 18
to users of the standard as to the existence of such rights and is not responsible to recognize, disclose, or 19
identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate 20
identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party, 21
in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or 22
identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation 23
thereof in its products, protocols, or testing procedures. DMTF shall have no liability to any party 24
implementing such standards, whether such implementation is foreseeable or not, nor to any patent 25
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 26
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 27
implementing the standard from any and all claims of infringement by a patent owner for such 28
implementations. 29

For information about patents held by third-parties which have notified DMTF that, in their opinion, such 30
patents may relate to or impact implementations of DMTF standards, visit 31
https://www.dmtf.org/about/policies/disclosures. 32

This document’s normative language is English. Translation into other languages is permitted. 33

https://www.dmtf.org/about/policies/disclosures

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 3

CONTENTS 34

Foreword ... 9 35
Acknowledgments ... 9 36

Introduction.. 11 37
Document conventions .. 11 38

1 Scope .. 12 39
2 Normative references .. 12 40
3 Terms and definitions .. 14 41
4 Symbols and abbreviated terms .. 16 42
5 Conventions .. 17 43

5.1 Reserved and unassigned values ... 17 44
5.2 Byte ordering ... 17 45
5.3 PLDM for Redfish Device Enablement data types ... 17 46

5.3.1 varstring PLDM data type .. 18 47
5.3.2 schemaClass PLDM data type .. 18 48
5.3.3 nnint PLDM data type .. 19 49
5.3.4 bejEncoding PLDM data type .. 19 50
5.3.5 bejTuple PLDM data type .. 20 51
5.3.6 bejTupleS PLDM data type .. 20 52
5.3.7 bejTupleF PLDM data type .. 20 53
5.3.8 bejTupleL PLDM data type .. 21 54
5.3.9 bejTupleV PLDM data type .. 21 55
5.3.10 bejNull PLDM data type ... 22 56
5.3.11 bejInteger PLDM data type .. 22 57
5.3.12 bejEnum PLDM data type .. 23 58
5.3.13 bejString PLDM data type .. 23 59
5.3.14 bejReal PLDM data type .. 24 60
5.3.15 bejBoolean PLDM data type .. 24 61
5.3.16 bejBytestring PLDM data type ... 24 62
5.3.17 bejSet PLDM data type .. 25 63
5.3.18 bejArray PLDM data type ... 25 64
5.3.19 bejChoice data PLDM type .. 25 65
5.3.20 bejPropertyAnnotation PLDM data type .. 26 66
5.3.21 bejRegistryItem PLDM data type ... 27 67
5.3.22 bejResourceLink PLDM data type ... 27 68
5.3.23 bejResourceLinkExpansion PLDM data type .. 27 69
5.3.24 bejLocator PLDM data type ... 27 70
5.3.25 rdeOpID PLDM data type .. 28 71

6 PLDM for Redfish Device Enablement version ... 28 72
7.1 Redfish Provider architecture overview .. 29 73

7.1.1 Roles .. 29 74
7.2 Redfish Device Enablement concepts .. 30 75

7.2.1 RDE Device discovery and registration ... 30 76
7.2.2 Data instances of Redfish schemas: Resources ... 32 77
7.2.3 Dictionaries .. 36 78
7.2.4 PLDM RDE Events .. 54 79
7.2.5 Task support .. 55 80

7.3 Type code ... 56 81
7.4 Transport protocol type supported .. 56 82
7.5 Error completion codes ... 56 83
7.6 Timing specification .. 58 84

8 Binary Encoded JSON (BEJ) .. 59 85

PLDM for Redfish Device Enablement DSP0218

4 Published Version 1.2.0

8.1 BEJ design principles.. 59 86
8.2 SFLV tuples .. 60 87

8.2.1 Sequence number.. 60 88
8.2.2 Format .. 60 89
8.2.3 Length .. 60 90
8.2.4 Value .. 61 91

8.3 Deferred binding of data ... 61 92
8.4 BEJ encoding .. 63 93

8.4.1 Conversion of JSON data types to BEJ ... 64 94
8.4.2 Resource links ... 64 95
8.4.3 Registry items .. 65 96
8.4.4 Annotations .. 65 97
8.4.5 Choice encoding for properties that support multiple data types 66 98
8.4.6 Properties with invalid values .. 66 99

8.5 BEJ decoding .. 67 100
8.5.1 Conversion of BEJ data types to JSON ... 67 101
8.5.2 Annotations .. 68 102
8.5.3 Sequence numbers missing from dictionaries ... 69 103
8.5.4 Sequence numbers for read-only properties in modification Operations 69 104
8.5.5 Annotations for RDE Devices .. 69 105

8.6 Example encoding and decoding .. 70 106
8.6.1 Example dictionary... 70 107
8.6.2 Example encoding ... 73 108
8.6.3 Example decoding ... 76 109

8.7 BEJ locators .. 78 110
9 Operational behaviors ... 79 111

9.1 Initialization (MC perspective) ... 79 112
9.1.1 Sample initialization ladder diagram .. 79 113
9.1.2 Initialization workflow diagram ... 80 114

9.2 Operation/Task lifecycle.. 82 115
9.2.1 Example Operation command sequence diagrams ... 82 116
9.2.2 Operation/Task overview workflow diagrams (Operation perspective) 86 117
9.2.3 RDE Operation state machine (RDE Device perspective) .. 94 118

9.3 Event lifecycle ... 108 119
10 PLDM commands for Redfish Device Enablement ... 110 120
11 PLDM for Redfish Device Enablement – Discovery and schema commands 113 121

11.1 NegotiateRedfishParameters command (0x01) format .. 113 122
11.2 NegotiateMediumParameters command (0x02) format .. 115 123
11.3 GetSchemaDictionary command (0x03) format ... 116 124
11.4 GetSchemaURI command (0x04) format ... 117 125
11.5 GetResourceETag command (0x05) format ... 118 126
11.6 GetOEMCount command (0x06) format ... 119 127
11.7 GetOEMName command (0x07) format ... 120 128
11.8 GetRegistryCount command (0x08) format .. 120 129
11.9 GetRegistryDetails command (0x09) format... 121 130
11.10 SelectRegistryVersion command (0x0A) format ... 121 131
11.11 GetMessageRegistry command (0x0B) format .. 122 132
11.12 GetSchemaFile command (0x0C) format ... 123 133

12 PLDM for Redfish Device Enablement – RDE Operation and Task commands 124 134
12.1 RDEOperationInit command (0x10) format .. 124 135
12.2 SupplyCustomRequestParameters command (0x11) format ... 127 136
12.3 RetrieveCustomResponseParameters command (0x12) format .. 131 137
12.4 RDEOperationComplete command (0x13) format .. 132 138
12.5 RDEOperationStatus command (0x14) format ... 133 139
12.6 RDEOperationKill command (0x15) format .. 136 140

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 5

12.7 RDEOperationEnumerate command (0x16) format ... 137 141
13 PLDM for Redfish Device Enablement – Utility commands .. 138 142

13.1 RDEMultipartSend command (0x30) format ... 138 143
13.2 RDEMultipartReceive command (0x31) format .. 140 144

14 Additional Information .. 142 145
14.1 RDE Multipart transfers... 142 146

14.1.1 Flag usage for RDEMultipartSend ... 142 147
14.1.2 Flag usage for RDEMultipartReceive .. 143 148
14.1.3 RDE Multipart transfer examples ... 143 149

14.2 Implementation notes.. 145 150
14.2.1 Schema updates .. 145 151
14.2.2 Storage of dictionaries ... 145 152
14.2.3 Dictionaries for related schemas ... 145 153
14.2.4 [MC] HTTP/HTTPS POST Operations... 146 154
14.2.5 Consistency checking of read Operations ... 146 155
14.2.6 [MC] Placement of RDE Device resources in the outward-facing Redfish URI 156

hierarchy .. 147 157
14.2.7 LogEntry and LogEntryCollection resources ... 147 158
14.2.8 On-demand pagination .. 148 159
14.2.9 Considerations for Redfish clients ... 148 160
14.2.10 OriginOfCondition in Redfish events.. 148 161
14.2.11 [MC] Merging dictionaries with OEM extensions ... 148 162
14.2.12 PATCH on Array Properties ... 148 163

ANNEX A (normative) Change log ... 150 164
 165

PLDM for Redfish Device Enablement DSP0218

6 Published Version 1.2.0

Figures 166

Figure 1 – RDE Roles ... 30 167
Figure 2 – Example linking of Redfish Resource and Redfish Entity Association PDRs 34 168
Figure 3 – Schema linking without Redfish entity association PDRs ... 35 169
Figure 4 – Parallel Resource Linking for Metrics .. 36 170
Figure 5 – Dictionary binary format ... 40 171
Figure 6 – DummySimple schema .. 71 172
Figure 7 – DummySimple dictionary – binary form ... 73 173
Figure 8 – Example Initialization ladder diagram .. 80 174
Figure 9 – Typical RDE Device discovery and registration ... 82 175
Figure 10 – Simple read Operation ladder diagram .. 83 176
Figure 11 – Complex Read Operation ladder diagram ... 84 177
Figure 12 – Write Operation ladder diagram ... 85 178
Figure 13 – Write Operation with long-running Task ladder diagram ... 86 179
Figure 14 – RDE Operation lifecycle overview (holistic perspective) ... 90 180
Figure 15 – RDE Task lifecycle overview (holistic perspective) ... 93 181
Figure 16 – Operation lifecycle state machine (RDE Device perspective) ... 108 182
Figure 17 – Redfish event lifecycle overview .. 110 183
Figure 18 – RDEMultipartSend example .. 144 184
Figure 19 – RDEMultipartReceive example .. 145 185
 186

Tables 187

Table 1 – PLDM for Redfish Device Enablement data types and structures .. 17 188
Table 2 – varstring data structure ... 18 189
Table 3 – schemaClass enumeration ... 19 190
Table 4 – nnint encoding for BEJ .. 19 191
Table 5 – bejEncoding data structure ... 19 192
Table 6 – bejTuple encoding for BEJ .. 20 193
Table 7 – bejTupleS encoding for BEJ ... 20 194
Table 8 – bejTupleF encoding for BEJ .. 20 195
Table 9 – BEJ format codes (high nibble: data types) .. 21 196
Table 10 – bejTupleL encoding for BEJ .. 21 197
Table 11 – bejTupleV encoding for BEJ ... 22 198
Table 12 – bejNull value encoding for BEJ ... 22 199
Table 13 – bejInteger value encoding for BEJ .. 23 200
Table 14 – bejEnum value encoding for BEJ .. 23 201
Table 15 – bejString value encoding for BEJ .. 23 202
Table 16 – bejString special character escape sequences .. 23 203
Table 17 – bejReal value encoding for BEJ .. 24 204
Table 18 – bejReal value encoding example .. 24 205
Table 19 – bejBoolean value encoding for BEJ .. 24 206
Table 20 – bejBytestring value encoding for BEJ ... 25 207
Table 21 – bejSet value encoding for BEJ .. 25 208
Table 22 – bejArray value encoding for BEJ ... 25 209

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 7

Table 23 – bejChoice value encoding for BEJ .. 25 210
Table 24 – bejPropertyAnnotation value encoding for BEJ .. 26 211
Table 25 – bejPropertyAnnotation value encoding example .. 26 212
Table 26 – bejRegistryItem value encoding for BEJ ... 27 213
Table 27 – bejResourceLink value encoding for BEJ ... 27 214
Table 28 – bejResourceLinkExpansion value encoding for BEJ .. 27 215
Table 29 – bejLocator value encoding .. 27 216
Table 30 – rdeOpID data structure ... 28 217
Table 31 – Redfish dictionary binary format ... 38 218
Table 32 – Dictionary entry example for a property supporting multiple formats 41 219
Table 33 – Redfish Operations ... 43 220
Table 34 – Redfish operation headers .. 45 221
Table 35 – Redfish operation request query options .. 50 222
Table 36 – Query parameter support requirement ... 51 223
Table 37 – PLDM for Redfish Device Enablement completion codes .. 57 224
Table 38 – HTTP codes for standard PLDM completion codes.. 58 225
Table 39 – Timing specification... 59 226
Table 40 – Sequence number dictionary indication .. 60 227
Table 41 – JSON data types supported in BEJ .. 61 228
Table 42 – BEJ deferred binding substitution parameters .. 62 229
Table 43 – Message annotation related property BEJ locator encoding .. 66 230
Table 44 – Conditionally Required Annotations for RDE Devices .. 70 231
Table 45 – DummySimple dictionary (tabular form) ... 72 232
Table 46 – Initialization Workflow ... 81 233
Table 47 – Operation lifecycle overview ... 87 234
Table 48 – Task lifecycle overview ... 91 235
Table 49 – Task lifecycle state machine ... 95 236
Table 50 – Event lifecycle overview .. 108 237
Table 51 – PLDM for Redfish Device Enablement command codes .. 111 238
Table 52 – NegotiateRedfishParameters command format .. 114 239
Table 53 – NegotiateMediumParameters command format ... 116 240
Table 54 – GetSchemaDictionary command format ... 117 241
Table 55 – GetSchemaURI command format ... 118 242
Table 56 – GetResourceETag command format .. 119 243
Table 57 – GetOEMCount command format .. 119 244
Table 58 – GetOEMName command format .. 120 245
Table 59 – GetRegistryCount command format ... 120 246
Table 60 – GetRegistryDetails command format .. 121 247
Table 61 – SelectRegistryVersion command format .. 122 248
Table 62 – GetMessageRegistry command format .. 122 249
Table 63 – GetSchemaFile command format ... 123 250
Table 64 – RDEOperationInit command format .. 124 251
Table 65 – SupplyCustomRequestParameters command format .. 128 252
Table 66 – RetrieveCustomResponseParameters command format ... 132 253
Table 67 – RDEOperationComplete command format ... 133 254
Table 68 – RDEOperationStatus command format .. 133 255
Table 69 – RDEOperationKill command format .. 136 256
Table 70 – RDEOperationEnumerate command format ... 138 257

PLDM for Redfish Device Enablement DSP0218

8 Published Version 1.2.0

Table 71 – RDEMultipartSend command format .. 139 258
Table 72 – RDEMultipartReceive command format ... 141 259
 260

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 9

Foreword 261

The Platform Level Data Model (PLDM) for Redfish Device Enablement (DSP0218) was prepared by the 262
PMCI (Platform Management Communications Infrastructure) Working Group of DMTF. 263

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 264
management and interoperability. For information about DMTF, see https://www.dmtf.org. 265

Acknowledgments 266

DMTF acknowledges the following individuals for their contributions to this document: 267

Editors: 268

• Bill Scherer – Hewlett Packard Enterprise 269

• Harsha Sidramappa – Hewlett Packard Enterprise 270

• Balaji Natrajan – Microchip Technology Inc. 271

Contributors: 272

• Richelle Ahlvers – Broadcom Inc. 273

• Jeff Autor – Hewlett Packard Enterprise 274

• Patrick Caporale – Lenovo 275

• Mike Garrett – Hewlett Packard Enterprise 276

• Jeff Hilland – Hewlett Packard Enterprise 277

• Yuval Itkin – NVIDIA Corporation 278

• Ira Kalman – Intel 279

• Deepak Kodihalli – IBM 280

• Eliel Louzoun – Intel 281

• Ben Lytle – Hewlett Packard Enterprise 282

• Rob Mapes – Marvell 283

• Balaji Natrajan – Microchip Technology Inc. 284

• Edward Newman – Hewlett Packard Enterprise 285

• Zvika Perry Peleg – Cavium 286

• Scott Phuong – Cisco Systems, Inc. 287

• Jeffrey Plank – Microchip Technology Inc. 288

• Joey Rainville – Hewlett Packard Enterprise 289

• Patrick Schoeller – Hewlett Packard Enterprise 290

• Hemal Shah – Broadcom Inc. 291

• Bob Stevens – Dell Inc. 292

• Richard Thomaiyar – Intel 293

• Bill Vetter – Lenovo 294

https://www.dmtf.org/

PLDM for Redfish Device Enablement DSP0218

10 Published Version 1.2.0

• Ryan Weldon – Marvell 295

• Henry Yang – Marvell 296

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 11

Introduction 297

The Platform Level Data Model (PLDM) for Redfish Device Enablement Specification defines messages 298
and data structures used for enabling PLDM-capable devices to participate in Redfish-based 299
management without needing to support either JavaScript Object Notation (JSON, used for operation 300
data payloads) or [Secure] Hypertext Transfer Protocol (HTTP/HTTPS, used to transport and configure 301
operations). This document specifies how to convert Redfish operations into a compact binary-encoded 302
JSON (BEJ) format transported over PLDM, including the encoding and decoding of JSON and the 303
manner in which HTTP/HTTPS headers and query options may be supported under PLDM. In this 304
specification, Redfish management functionality is divided between the three roles: the client, which 305
initiates management operations; the RDE Device, which ultimately services requests; and the 306
management controller (MC), which translates requests and serves as an intermediary between the client 307
and the RDE Device. 308

Document conventions 309

Clause naming conventions 310

While all clauses of this specification are relevant from the perspective of both MCs and RDE Devices, a 311
few clauses are primarily targeted at one or the other. This document uses the following naming 312
conventions for clauses: 313

• The titles of clauses that are primarily of interest to MCs are prefixed with “[MC]”. 314

• The titles of clauses that are primarily of interest to RDE Devices are prefixed with “[Dev]” 315

• Unless explicitly marked, the subclauses of a clause marked as being primarily of interest to 316
one role are also primarily of interest to that same role 317

• Clauses that are of primary interest to more than one role are not prefixed 318
NOTE This specification is designed such that clients have no need to be aware whether the RDE Device whose 319
data they are interacting with is supporting Redfish directly or through an MC proxy. 320

Typographical conventions 321

The following typographical conventions are used in this document: 322

• Document titles are marked in italics. 323
 324

PLDM for Redfish Device Enablement DSP0218

12 Published Version 1.2.0

Platform Level Data Model (PLDM) for Redfish Device 325

Enablement 326

1 Scope 327

This specification defines messages and data structures used for enabling PLDM devices to participate in 328
Redfish-based management without needing to support either JavaScript Object Notation (JSON, used 329
for operation data payloads) or [Secure] Hypertext Transfer Protocol (HTTP/HTTPS, used to transport 330
and configure operations). This document specifies how to convert Redfish operations into a compact 331
binary-encoded JSON (BEJ) format transported over PLDM, including the encoding and decoding of 332
JSON and the manner in which HTTP/HTTPS headers and query options shall be supported under 333
PLDM. This document does not specify the resources (data models) for use with RDE Devices or any 334
details of handling the Redfish security model. Transferring firmware images is not intended to be within 335
the scope of this specification as this function is the primary scope of DSP0267, the PLDM for Firmware 336
Update specification. 337

In this specification, Redfish management functionality is divided between the three roles: the client, 338
which initiates management operations; the RDE Device, which ultimately services requests; and the 339
management controller (MC), which translates requests and serves as an intermediary between the client 340
and the RDE Device. Of these roles, the RDE Device and MC roles receive extensive treatment in this 341
specification; however, the client role is no different from standard Redfish. An implementer of this 342
specification is only required to support the features of one of the RDE Device or MC roles. In particular, 343
an RDE Device is not required to implement MC-specific features and vice versa. 344

This specification is not a system-level requirements document. The mandatory requirements stated in 345
this specification apply when a particular capability is implemented through PLDM messaging in a manner 346
that is conformant with this specification. This specification does not specify whether a given system is 347
required to implement that capability. For example, this specification does not specify whether a given 348
system shall support Redfish Device Enablement over PLDM. However, if a system does support Redfish 349
Device Enablement over PLDM or other functions described in this specification, the specification defines 350
the requirements to access and use those functions over PLDM. 351

Portions of this specification rely on information and definitions from other specifications, which are 352
identified in clause 2. Several of these references are particularly relevant: 353

• DMTF DSP0266, Redfish Scalable Platforms Management API Specification Redfish Scalable 354
Platforms Management API Specification, defines the main Redfish protocols. 355

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, provides definitions of 356
common terminology, conventions, and notations used across the different PLDM specifications 357
as well as the general operation of the PLDM messaging protocol and message format. 358

• DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification, defines the 359
values that are used to represent different type codes defined for PLDM messages. 360

• DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control 361
Specification, defines the event and Redfish PDR data structures referenced in this 362
specification. 363

2 Normative references 364

The following referenced documents are indispensable for the application of this document. For dated or 365
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 366
For references without a date or version, the latest published edition of the referenced document 367

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 13

(including any corrigenda or DMTF update versions) applies. Earlier versions may not provide sufficient 368
support for this specification. 369

DMTF DSP0222, Network Controller Sideband Interface (NC-SI) Specification 1.1, 370
https://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.pdf 371

DMTF DSP0236, MCTP Base Specification 1.2, 372
https://www.dmtf.org/sites/default/files/standards/documents/DSP0236_1.2.pdf 373

DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification 1.1, 374
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.1.pdf 375

DMTF DSP0241, Platform Level Data Model (PLDM) Over MCTP Binding Specification 1.0, 376
https://www.dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.pdf 377

DMTF DSP0245, Platform Level Data Model (PLDM) IDs and Codes Specification 1.3, 378
https://www.dmtf.org/sites/default/files/standards/documents/DSP0245_1.3.pdf 379

DMTF DSP0248, Platform Level Data Model (PLDM) for Platform Monitoring and Control Specification 380
1.1, https://www.dmtf.org/sites/default/files/standards/documents/DSP0248_1.1.pdf 381

DMTF DSP0266, Redfish Scalable Platforms Management API Specification 1.6, 382
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.pdf 383

DMTF DSP0267, PLDM for Firmware Update Specification 1.0, 384
https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.pdf 385

DMTF DSP4014, DMTF Process for Working Bodies 2.4, 386
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.4.pdf 387

ECMA International Standard ECMA-404, The JSON Data Interchange Syntax, https://www.ecma-388
international.org/publications/files/ECMA-ST/ECMA-404.pdf 389

IETF RFC 2781, UTF-16, an encoding of ISO 10646, February 2000, 390
https://www.ietf.org/rfc/rfc2781.txt 391

IETF STD63, UTF-8, a transformation format of ISO 10646 https://www.ietf.org/rfc/std/std63.txt 392

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005, 393
https://www.ietf.org/rfc/rfc4122.txt 394

IETF RFC 4646, Tags for Identifying Languages, September 2006, 395
https://www.ietf.org/rfc/rfc4646.txt 396

IETF RFC 7231, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, 397
https://tools.ietf.org/html/rfc7231 398

IETF RFC 7232, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, 399
https://www.ietf.org/rfc/rfc7232.txt 400

IETF RFC 7234, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Caching, 401
https://tools.ietf.org/rfc/rfc7234.txt 402

ISO 8859-1, Final Text of DIS 8859-1, 8-bit single-byte coded graphic character sets — Part 1: Latin 403
alphabet No.1, February 1998 404

ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents, 405
https://www.iso.org/sites/directives/current/part2/index.xhtml 406

https://www.dmtf.org/sites/default/files/standards/documents/DSP0222_1.1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0236_1.2.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0241_1.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0245_1.3.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0248_1.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.4.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ietf.org/rfc/rfc2781.txt
https://www.ietf.org/rfc/std/std63.txt
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4646.txt
https://tools.ietf.org/html/rfc7231
https://www.ietf.org/rfc/rfc7232.txt
https://tools.ietf.org/rfc/rfc7234.txt
https://www.iso.org/sites/directives/current/part2/index.xhtml

PLDM for Redfish Device Enablement DSP0218

14 Published Version 1.2.0

ITU-T X.690 (08/2015), Information technology – ASN.1 encoding rules: Specification of Basic Encoding 407
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER), 408
https://handle.itu.int/11.1002/1000/12483 409

Open Data Protocol, https://www.oasis-open.org/standards#odatav4.0 410

3 Terms and definitions 411

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 412
are defined in this clause. 413

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 414
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 415
in ISO/IEC Directives, Part 2, Clause 7. The terms in parentheses are alternatives for the preceding term, 416
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that 417
ISO/IEC Directives, Part 2, Clause 7 specifies additional alternatives. Occurrences of such additional 418
alternatives shall be interpreted in their normal English meaning. 419

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 420
described in ISO/IEC Directives, Part 2, Clause 6. 421

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 422
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 423
not contain normative content. Notes and examples are always informative elements. 424

Refer to DSP0240 for terms and definitions that are used across the PLDM specifications, DSP0248 for 425
terms and definitions used specifically for PLDM Monitoring and Control, and to DSP0266 for terms and 426
definitions specific to Redfish. For the purposes of this document, the following additional terms and 427
definitions apply. 428

3.1 429
Action 430
Any standard Redfish action defined in a standard Redfish Schema or any custom OEM action defined in 431
an OEM schema extension 432

3.2 433
Annotation 434
Any of several pieces of metadata contained within BEJ or JSON data. Rather than being defined as part 435
of the major schema, annotations are defined in a separate, global annotation schema. 436

3.3 437
Client 438
Any agent that communicates with a management controller to enable a user to manage Redfish-439
compliant systems and RDE Devices 440

3.4 441
Collection 442
A Redfish container holding an array of independent Redfish resource Members that in turn are typically 443
represented by a schema external to the one that contains the collection itself. 444

3.5 445
Device Component 446
A top-level entry point into the schema hierarchy presented by an RDE Device 447

https://handle.itu.int/11.1002/1000/12483
https://www.oasis-open.org/standards%23odatav4.0

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 15

3.6 448
Dictionary 449
A binary lookup table containing translation information that allows conversion between BEJ and JSON 450
formats of data for a given resource 451

3.7 452
Discovery 453
The process by which an MC determines that an RDE Device supports PLDM for Redfish Device 454
Enablement 455

3.8 456
Major Schema 457
The primary schema defining the format of a collection of data, usually a published standard Redfish 458
schema. 459

3.9 460
Member 461
Any of the independent resources contained within a collection 462

3.10 463
Metadata 464
Information that describes data of interest, such as its type format, length in bytes, or encoding method 465

3.11 466
OData 467
The Open Data protocol, a source of annotations in Redfish, as defined by OASIS. 468

3.12 469
OEM Extension 470
Any manufacturer-specific addition to major schema 471

3.13 472
Property 473
An individual datum contained within a Resource 474

3.14 475
RDE Device 476
Any PLDM terminus containing an RDE Provider that requires the intervention of an MC to receive 477
Redfish communications 478

3.15 479
RDE Provider 480
Any RDE Device that responds to RDE Operations. See also Redfish Provider. 481

3.16 482
RDE Operation 483
The sequence of PLDM messages and operations that represent a Redfish Operation being executed by 484
an MC and/or an RDE Device on behalf of a client. See also Redfish Operation. 485

PLDM for Redfish Device Enablement DSP0218

16 Published Version 1.2.0

3.17 486
Redfish Operation 487
Any Redfish operation transmitted via HTTP or HTTPS from a client to an MC for execution. See also 488
RDE Operation. 489

3.18 490
Redfish Provider 491
Any entity that responds to Redfish Operations. See also RDE Provider. 492

3.19 493
Registration 494
The process of enabling a compliant RDE Device with an MC to be an RDE Provider 495

3.20 496
Resource 497
A hierarchical set of data organized in the format specified in a Redfish Schema. 498

3.21 499
Schema 500
Any regular structure for organizing one or more fields of data in a hierarchical format 501

3.22 502
Task 503
Any Operation for which an RDE Device cannot complete execution in the time allotted to respond to the 504
PLDM triggering command message sent from the MC and for which the MC creates standard Redfish 505
Task and TaskMonitor objects 506

3.23 507
Triggering Command 508
The PLDM command that supplies the last bit of data needed for an RDE Device to begin execution of an 509
RDE Operation 510

3.24 511
Truncated 512
When applied to a dictionary, one that is limited to containing conversion information for properties 513
supported by an RDE Device 514
 515

4 Symbols and abbreviated terms 516

Refer to DSP0240 for symbols and abbreviated terms that are used across the PLDM specifications. For 517
the purposes of this document, the following additional symbols and abbreviated terms apply. 518

4.1 519
BEJ 520
Binary Encoded JSON, a compressed binary format for encoding JSON data 521

4.2 522
JSON 523
JavaScript Object Notation 524

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 17

4.3 525
RDE 526
Redfish Device Enablement 527

5 Conventions 528

Refer to DSP0240 for conventions, notations, and data types that are used across the PLDM 529
specifications. 530

5.1 Reserved and unassigned values 531

Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other 532
numeric ranges are reserved for future definition by DMTF. 533

Unless otherwise specified, numeric or bit fields that are designated as reserved shall be written as 0 534
(zero) and ignored when read. 535

5.2 Byte ordering 536

As with all PLDM specifications, unless otherwise specified, the byte ordering of multibyte numeric fields 537
or multibyte bit fields in this specification shall be "Little Endian": The lowest byte offset holds the least 538
significant byte and higher offsets hold the more significant bytes. 539

5.3 PLDM for Redfish Device Enablement data types 540

Table 1 lists additional abbreviations and descriptions for data types that are used in message field and 541
data structure definitions in this specification. 542

Table 1 – PLDM for Redfish Device Enablement data types and structures 543

Data Type Interpretation

varstring A multiformat text string per clause 5.3.1

schemaClass An enumeration of the various schemas associated with a collection of data, encoded per
clause 5.3.2

nnint A nonnegative integer encoded for BEJ per clause 5.3.3

bejEncoding JSON data encoded for BEJ per clause 5.3.4

bejTuple A BEJ tuple, encoded per clause 5.3.5

bejTupleS A BEJ Sequence Number tuple element, encoded per clause 5.3.6

bejTupleF A BEJ Format tuple element, encoded per clause 5.3.7

bejTupleL A BEJ Length tuple element, encoded per clause 5.3.8

bejTupleV A BEJ Value tuple element, encoded per clause 5.3.9

bejNull Null data encoded for BEJ per clause 5.3.10

bejInteger Integer data encoded for BEJ per clause 5.3.11

bejEnum Enumeration data encoded for BEJ per clause 5.3.12

bejString String data encoded for BEJ per clause 5.3.13

bejReal Real data encoded for BEJ per clause 5.3.14

bejBoolean Boolean data encoded for BEJ per clause 5.3.15

PLDM for Redfish Device Enablement DSP0218

18 Published Version 1.2.0

Data Type Interpretation

bejBytestring Bytestring data encoded for BEJ per clause 5.3.16

bejSet Set data encoded for BEJ per clause 5.3.17

bejArray Array data encoded for BEJ per clause 5.3.18

bejChoice Choice data encoded for BEJ per clause 5.3.19

bejPropertyAnnotati
on

Property Annotation encoded for BEJ per clause 5.3.20

bejRegistryItem A Redfish Registry Message encoded for BEJ per clause 5.3.21

bejResourceLink Resource Link data encoded for BEJ per clause 5.3.22

bejResourceLinkEx
pansion

Resource Link data expanded to include schema data encoded for BEJ per clause 5.3.23

bejLocator An intra-schema locator for Operation targeting; formatted per clause 5.3.24

rdeOpID An Operation identifier used to link together the various command messages that comprise
a single RDE Operation; formatted per clause 5.3.25

5.3.1 varstring PLDM data type 544

The varstring PLDM data type encapsulates a PLDM string that can be encoded in of any of several 545
formats. 546

Table 2 – varstring data structure 547

Type Description

enum8 stringFormat
Values: { UNKNOWN = 0, ASCII = 1, UTF-8 = 2, UTF-16 = 3, UTF-16LE = 4, UTF-16BE =
5 }

uint8 stringLengthBytes
Including null terminator

variable stringData
Must be null terminated

5.3.2 schemaClass PLDM data type 548

The schemaClass PLDM data type enumerates the different categories of schemas used in Redfish. RDE 549
uses 5 main classes of schemas: 550

• MAJOR: the main schema containing the data for a Redfish resource. This class covers the 551
vast majority of schemas for Redfish resources. 552

• EVENT: the standard DMTF-published event schema, for occurrences that clients may wish to 553
be notified about. 554

• ANNOTATION: the standard DMTF-published annotation schema that captures metadata about 555
a major schema or payload. This schemaClass shall not be used as the primary schema for 556
BEJ encodings as annotations are specially encoded alongside the primary schema. 557

• COLLECTION_MEMBER_TYPE: for resources that correspond to Redfish collections, this 558
class enables access to the major schema for members of that collection from the context of the 559
collection resource. (Unlike regular resources, collections in Redfish are unversioned and 560
contain multiple members.) This schemaClass shall not be used for BEJ encodings. 561

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 19

• ERROR: the standard DMTF-published error schema that documents an extended error when a 562
Redfish operation cannot be completed. 563

• REGISTRY: A device-specific collection of Redfish registry messages used for errors and 564
events. This schemaClass shall not be used as the primary schema for BEJ encodings as 565
registry items are specially encoded alongside the primary schema via the bejRegistryItem type 566
(see 5.3.21). 567

Table 3 – schemaClass enumeration 568

Type Description

enum8 schemaType
Values: { MAJOR = 0, EVENT = 1, ANNOTATION = 2, COLLECTION_MEMBER_TYPE =
3, ERROR = 4, REGISTRY = 5 }

5.3.3 nnint PLDM data type 569

The nnint PLDM data type captures the BEJ encoding of nonnegative Integers via the following encoding: 570

The first byte shall consist of metadata for the number of bytes needed to encode the numeric value in 571
the remaining bytes. Subsequent bytes shall contain the encoded value in little-endian format. As 572
examples, the value 65 shall be encoded as 0x01 0x41; the value 130 shall be encoded as 0x01 0x82; 573
and the value 1337 shall be encoded as 0x02 0x39 0x05. 574

Table 4 – nnint encoding for BEJ 575

Type Description

uint8 Length (N) in bytes of data for the integer to be encoded

uint8 Integer data [0] (Least significant byte)

uint8 Integer data [1] (Second least significant byte)

… …

uint8 Integer data [N-1] (Most significant byte)

5.3.4 bejEncoding PLDM data type 576

The bejEncoding PLDM data type captures an overall hierarchical BEJ-encoded block of hierarchical 577
data. 578

Table 5 – bejEncoding data structure 579

Type Description

ver32 BEJ Version; shall be either 1.0.0 (0xF1F0F000) or 1.1.0 (0xF1F1F000) for this
specification. The actual version represented shall be at least as high as the minimum
version required to support any BEJ PLDM data types included in the encoding. All BEJ
PLDM data types are version 1.0 unless explicitly marked as requiring a higher version.
RDE devices shall not use a BEJ encoding version higher than that supported by the MC.
MCs shall not use a BEJ encoding version with an RDE Device higher than the version
supported by that device.

uint16 Reserved for BEJ flags

schemaClass Defines the primary schema type for the data encoded in bejTuple below. Shall be one of
MAJOR, EVENT, or ERROR.

PLDM for Redfish Device Enablement DSP0218

20 Published Version 1.2.0

Type Description

bejTuple The encoded tuple data, defined in clause 5.3.5

5.3.5 bejTuple PLDM data type 580

The bejTuple PLDM data type encapsulates all the data for a single piece of data encoded in BEJ format. 581

Table 6 – bejTuple encoding for BEJ 582

Type Description

bejTupleS Tuple element for the Sequence Number field, defined in clause 5.3.6 and described in
clause 8.2.1

bejTupleF Tuple element for the Format field, defined in clause 5.3.7 and described in clause 8.2.2

bejTupleL Tuple element for the Length field, defined in clause 5.3.8 and described in clause 8.2.3

bejTupleV Tuple element for the Value field, defined in clause 5.3.9 and described in clause 8.2.4

5.3.6 bejTupleS PLDM data type 583

The bejTupleS PLDM data type captures the Sequence Number BEJ tuple element described in clause 584
8.2.1. 585

Table 7 – bejTupleS encoding for BEJ 586

Type Description

nnint Sequence number indicating the specific data item contained within this tuple. The
sequence number is encoded as a nonnegative integer (nnint type) and is enhanced to
indicate the dictionary to which it refers. More specifically, the low-order bit of the encoded
integer is metadata used to select the dictionary within which the property encoded in the
tuple may be found, and shall be one of the following values:
 0b: Primary schema (including any OEM extensions) dictionary as was selected in the

outermost bejEncoding PLDM data type element containing this bejTupleS
 1b: Annotation schema dictionary
The remainder of the integer corresponds to the sequence number encoded in the
dictionary. Dictionary encodings do not include the dictionary selector flag bit.

5.3.7 bejTupleF PLDM data type 587

The bejTupleF PLDM data type captures the Format BEJ tuple element described in clause 8.2.2 588

Table 8 – bejTupleF encoding for BEJ 589

Type Description

bitfield8 Format code; the high nibble represents the data type and the low nibble represents a
series of flag bits

[7:4] - principal data type; see Table 9 below for values
[3] - reserved flag. 1b indicates the flag is set
[2] - nullable_property flag ***. 1b indicates the flag is set
[1] - read_only_property_and_top_level_annotation flag **. 1b indicates the flag is set
[0] - deferred_binding flag *. 1b indicates the flag is set

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 21

* The deferred_binding flag shall only be set in conjunction with BEJ String data and shall never be set 590
when encoding the format of a property inside a dictionary. See clause 8.3. 591

** The nullable property flag shall only be set when encoding the format of a property inside a dictionary. 592
See clause 7.2.3.2. 593

*** The read_only_property_and_top_level_annotation flag has distinct meanings when in or not in the 594
context of a dictionary. In a dictionary, it means that a property is read-only. See clause 7.2.3.2. In a BEJ 595
encoding, it marks a nested top-level annotation. See clause 8.4.4.1. Decoding context thus uniquely 596
determines the meaning of this flag bit. 597

Table 9 – BEJ format codes (high nibble: data types) 598

Code BEJ Type PLDM Type in Value Tuple Field *
0000b BEJ Set bejSet
0001b BEJ Array bejArray
0010b BEJ Null bejNull
0011b BEJ Integer bejInteger
0100b BEJ Enum bejEnum
0101b BEJ String bejString
0110b BEJ Real bejReal
0111b BEJ Boolean bejBoolean
1000b BEJ Bytestring bejBytestring
1001b BEJ Choice bejChoice
1010b BEJ Property Annotation bejPropertyAnnotation
1011b BEJ Registry Item bejRegistryItem
1100b –
1101b

Reserved n/a

1110b BEJ Resource Link bejResourceLink
1111b BEJ Resource Link Expansion bejResourceLinkExpansion

5.3.8 bejTupleL PLDM data type 599

The bejTupleL PLDM data type captures the Length BEJ tuple element described in clause 8.2.3. 600

Table 10 – bejTupleL encoding for BEJ 601

Type Description

nnint Length in bytes of value tuple field

5.3.9 bejTupleV PLDM data type 602

The bejTupleV PLDM data type captures the Value BEJ tuple element described in clause 8.2.4. 603

PLDM for Redfish Device Enablement DSP0218

22 Published Version 1.2.0

Table 11 – bejTupleV encoding for BEJ 604

Type Description

bejNull,
bejInteger,
bejEnum,
bejString,
bejReal,
bejBoolean,
bejBytestring,
bejSet,
bejArray,
bejChoice,
bejPropertyAnnotation,
bejResourceLink, or
bejResourceLinkExpansion

Value tuple element; exact type shall match that of the Format tuple
element contained within the same tuple per Table 9. For example, if a
tuple has 0011b (BEJ Integer) as the Format tuple element, then the data
encoded in the value tuple element will be of type bejInteger.

5.3.10 bejNull PLDM data type 605

The length tuple value for bejNull data shall be zero. 606

Table 12 – bejNull value encoding for BEJ 607

Type Description

(none) No fields

5.3.11 bejInteger PLDM data type 608

Integer data shall be encoded as the shortest sequence of bytes (little endian) that represent the value in 609
twos complement encoding. This implies that if the value is positive and the high bit (0x80) of the MSB in 610
an unsigned representation would be set, the unsigned value will be prefixed with a new null (0x00) MSB 611
to mark the value as explicitly positive. 612
 613

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 23

Table 13 – bejInteger value encoding for BEJ 614

Type Description

uint8 Data [0] (Least significant byte of twos complement encoding of integer)

uint8 Data [1] (Second least significant byte of twos complement encoding of integer)

… …

uint8 Data [N-1] (Most significant byte of twos complement encoding of integer)

5.3.12 bejEnum PLDM data type 615

Table 14 – bejEnum value encoding for BEJ 616

Type Description

nnint Integer value of the sequence number for the enumeration option selected

5.3.13 bejString PLDM data type 617

All BEJ strings shall be UTF-8 encoded and null-terminated. 618

Table 15 – bejString value encoding for BEJ 619

Type Description

uint8 Data [0] (First character of string data)

uint8 Data [1] (Second character of string data)

… …

uint8 Data [N-1] (Last character of string data)

uint8 Null terminator 0x00

The special characters that require escaping in JSON format shall also be escaped in bejString 620
encodings, using the backslash character (‘\’): 621

Table 16 – bejString special character escape sequences 622

Character Escape sequence

Double quote \”

Backslash \\

Forward slash \/

Backspace \b

Form feed \f

Line feed \n

Carriage return \r

NOTE Missing escape characters will likely cause JSON text to be malformed. RDE Devices and MCs should 623
validate correctness of BEJ String data to avoid this occurrence. 624

PLDM for Redfish Device Enablement DSP0218

24 Published Version 1.2.0

5.3.14 bejReal PLDM data type 625

BEJ encoding for whole, fract, and exp that represent the base 10 encoding whole.fract × 10exp. 626
NOTE There is no need to express special values (positive infinity, negative infinity, NaN, negative zero) because 627

these cannot be expressed in JSON. 628

Table 17 – bejReal value encoding for BEJ 629

Type Description

nnint Length of whole

bejInteger whole (includes sign for the overall real number)

nnint Leading zero count for fract

nnint fract

nnint Length of exp

bejInteger exp (includes sign for the exponent)

In order to distinguish between the cases where the exponent is zero and the exponent is omitted 630
entirely, an omitted exponent shall be encoded with a length of zero bytes; the exponent of zero shall be 631
encoded with a single byte (of value zero). (These cases are numerically identical but visually distinct in 632
standard text-based JSON encoding.) 633

As an example, Table 18 shows the encoding of the JSON number “1.0005e+10”: 634

Table 18 – bejReal value encoding example 635

Type Bytes Description

nnint 0x01 0x01 Length of whole (1 byte)

bejInteger 0x01 whole (1)

nnint 0x01 0x03 leading zero count for fract (3)

nnint 0x01 0x05 fract (5)

nnint 0x01 0x01 Length of exp (1)

bejInteger 0x0A Exp (10)

5.3.15 bejBoolean PLDM data type 636

The bejBoolean PLDM data type captures boolean data. 637

Table 19 – bejBoolean value encoding for BEJ 638

Type Description

uint8 Boolean value { 0x00 = logical false, all other = logical true }

5.3.16 bejBytestring PLDM data type 639

The bejBytestring PLDM data type captures a generic ordered sequence of bytes. As binary data and not 640
a true string type, no null terminator should be applied. 641

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 25

Table 20 – bejBytestring value encoding for BEJ 642

Type Description

uint8 Data [0] (First byte of string data)

uint8 Data [1] (Second byte of string data)

… …

uint8 Data [N-1] (Last byte of string data)

5.3.17 bejSet PLDM data type 643

The bejSet PLDM data type captures a JSON Object that in turn gathers a series of properties that may 644
be of disparate types. 645

Table 21 – bejSet value encoding for BEJ 646

Type Description

nnint Count of set elements

bejTuple First set element

bejTuple Second set element

… …

bejTuple Nth set element (N = Count)

5.3.18 bejArray PLDM data type 647

The bejArray PLDM data type captures a JSON Array that in turn gathers an ordered sequence of 648
properties all of a common type. 649

Table 22 – bejArray value encoding for BEJ 650

Type Description

nnint Count of array elements

bejTuple First array element

bejTuple Second array element

… …

bejTuple Nth array element (N = Count)

5.3.19 bejChoice data PLDM type 651

The bejChoice PLDM data type captures JSON data encoded when it can be of multiple formats. 652
Inserting the bejChoice PLDM type alerts a decoding process that multiformat data is coming up in the 653
BEJ datastream. 654

Table 23 – bejChoice value encoding for BEJ 655

Type Description

bejTuple Selected option

PLDM for Redfish Device Enablement DSP0218

26 Published Version 1.2.0

5.3.20 bejPropertyAnnotation PLDM data type 656

The bejPropertyAnnotation PLDM data type captures the encoding of a property annotation in the form 657
property@annotationtype.annotationname. When the bejTupleF format code is set to 658
bejPropertyAnnotation, the sequence number bejTupleS in the outer bejTuple shall be for the annotated 659
property. The value bejTupleV of the outer bejTuple shall be as follows: 660

Table 24 – bejPropertyAnnotation value encoding for BEJ 661

Type Description

bejTupleS Sequence number for annotation property name, including the schema selector bit to mark
this as being from the annotation dictionary, as defined in clause 5.3.6

bejTupleF Format for annotation data applying to the property indicated by the sequence number
above, as defined in clause 5.3.7. Implementers should be aware that this format need not
match the format for the annotated property.

bejTupleL Length in bytes of data in the bejTupleV field following, as defined in clause 5.3.8

bejTupleV Annotation data applying to the property indicated by the sequence number above, as
defined in clause 5.3.9

As an example, Table 25 shows the encoding of the annotation: 662

“Status@Redfish.RequiredOnCreate” : false 663

Table 25 – bejPropertyAnnotation value encoding example 664

Type Bytes Description

bejTupleS 0x01 0x12 Sequence number for “Status” in the current schema, The low-order bit
is clear to show that this sequence number is not from the annotation
dictionary.
Note The actual sequence number provided here is for illustrative

purposes only and may not reflect the current number for
“Status” in any particular dictionary

bejTupleF 0x0A BEJ Property Annotation

bejTupleL 0x01 0x06 Length of the annotation data. The remaining entries in this table
correspond to the bejTupleV entry, which in this case is the Boolean
RequiredOnCreate data.

Note; The remaining rows shown in this example are collectively the bejTupleV field for the first tuple above.

bejTupleS 0x01 0x27 Sequence number for “Redfish.RequiredOnCreate”, The low-order bit
is set to mark this sequence number as being from the annotation
dictionary.
Note The actual sequence number provided here is for illustrative

purposes only and may not reflect the current number for
“Redfish.RequiredOnCreate”

bejTupleF 0x01 BEJ boolean

bejTupleL 0x01 0x01 Length of the annotation value: one byte

bejTupleV 0x00 False

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 27

5.3.21 bejRegistryItem PLDM data type 665

The bejRegistryItem PLDM data type represents a registry message item, referenced in another schema 666
such as event, error, or message. The bejRegistryItem PLDM data type requires BEJ version 1.1.0 (see 667
clause 5.3.4). 668

Table 26 – bejRegistryItem value encoding for BEJ 669

Type Description

bejTupleS The sequence number for a message item from the registry dictionary.
This sequence number shall be interpreted as from the registry dictionary, NOT from the
primary schema for the enclosing bejEncoding

5.3.22 bejResourceLink PLDM data type 670

The bejResourceLink PLDM data type represents the URI that links to another Redfish Resource, 671
specified via a resource ID for the target Redfish Resource PDR. When the bejTupleF format code is set 672
to BEJ Resource Link in BEJ-encoded data, the four bejTupleF flag bits shall each be 0b. 673

Table 27 – bejResourceLink value encoding for BEJ 674

Type Description

nnint ResourceID of Redfish Resource PDR for linked schema

5.3.23 bejResourceLinkExpansion PLDM data type 675

The bejResourceLinkExpansion PLDM data type captures a link to another Redfish Resource, such as a 676
related Redfish resource, that is expanded inline in response to a $expand Redfish request query 677
parameter (see clause 7.2.3.11.3). When the bejTupleF format code is set to BEJ Resource Link 678
Expansion in BEJ-encoded data, the bejTupleF flag bits must not be set. 679

Table 28 – bejResourceLinkExpansion value encoding for BEJ 680

Type Description

nnint ResourceID of Redfish Resource PDR for linked schema

bejEncoding BEJ data for expanded resource

5.3.24 bejLocator PLDM data type 681

The use of BEJ locators is detailed in clause 8.7. All sequence numbers within a BEJ locator shall 682
reference the same schema dictionary. As each of the sequence numbers is of potentially different length, 683
reading a sequence number in a BEJ locator must be done by first reading all previous sequence 684
numbers in the locator. As is standard for BEJ sequence number assignment, if sequence number M 685
corresponds to an array, sequence number M + 1 (if present) will correspond to a zero-based index within 686
the array. 687

Table 29 – bejLocator value encoding 688

Type Description

nnint LengthBytes
Total length in bytes of the N sequence numbers comprising this locator

PLDM for Redfish Device Enablement DSP0218

28 Published Version 1.2.0

Type Description

bejTupleS Sequence number [0]

bejTupleS Sequence number [1]

bejTupleS Sequence number [2]

… …

bejTupleS Sequence number [N - 1]

5.3.25 rdeOpID PLDM data type 689

The rdeOpID PLDM data type is an Operation identifier that can is used to link together the various 690
command messages that comprise a single RDE Operation. 691

Table 30 – rdeOpID data structure 692

Type Description

uint16 OperationIdentifier
Numeric identifier for the Operation. Operation identifiers with the most significant bit set
(1b) are reserved for use by the MC when it instantiates Operations. Operation identifiers
with the most significant bit clear (0b) are reserved for use by the RDE Device when it
instantiates Operations in response to commands from other protocols that it chooses to
make visible via RDE. The value 0x0000 is reserved to indicate no Operation.

6 PLDM for Redfish Device Enablement version 693

The version of this Platform Level Data Model (PLDM) for Redfish Device Enablement Specification shall 694
be 1.2.0 (major version number 1, minor version number 2, update version number 0, and no alpha 695
version). 696

In response to the GetPLDMVersion command described in DSP0240, the reported version for Type 6 697
(PLDM for Redfish Device Enablement, this specification) shall be encoded as 0xF1F2F000. 698

7 PLDM for Redfish Device Enablement overview 699

This specification describes the operation and format of request messages (also referred to as 700
commands) and response messages for performing Redfish management of RDE Devices contained 701
within a platform management subsystem. These messages are designed to be delivered using PLDM 702
messaging. 703

Traditionally, management has been affected via myriad proprietary approaches for limited classes of 704
devices. These disparate solutions differ in feature sets and APIs, creating implementation and 705
integration issues for the management controller, which ends up needing custom code to support each 706
one separately. This consumes resources both for development of the custom code and for memory in 707
the management controller to support it. Redfish simplifies matters by enabling a single approach to 708
management for all RDE Devices. 709

Implementing the Redfish protocol as defined by DSP0266 is a big challenge when passing requests to 710
and from devices such as network adapters that have highly limited processing capabilities and memory 711
space. Redfish’s messages are prohibitively large because they are encoded for human readability in 712
HTTP/HTTPS using JavaScript Object Notation (JSON). This specification details a compressed 713
encoding of Redfish payloads that is suitable for such devices. It further identifies a common method to 714
use PLDM to communicate these messages between a management controller and the devices that host 715

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 29

the data the operations target. The functionality of providing a complete Redfish service is distributed 716
across components that function in different roles; this is discussed in more detail in clause 7.1.1. 717

The basic format for PLDM messages is defined in DSP0240. The specific format for carrying PLDM 718
messages over a particular transport or medium is given in companion documents to the base 719
specification. For example, DSP0241 defines how PLDM messages are formatted and sent using MCTP 720
as the transport. Similarly, DSP0222 defines how PLDM messages are formatted and sent using NC-SI 721
and RBT as the transport. The payloads for PLDM messages are application specific. The Platform Level 722
Data Model (PLDM) for Redfish Device Enablement specification defines PLDM message payloads that 723
support the following items and capabilities: 724

• Binary Encoded JSON (BEJ) 725

– Simplified compact binary format for communicating Redfish JSON data payloads 726

– Captures essential schema information into a compact binary dictionary so that it does not need 727
to be transferred as part of message payloads 728

– Defined locators allow for selection of a specific object or property inside the schema’s data 729
hierarchy to perform an operation 730

– Encoders and decoders account for the unordered nature of BEJ and JSON properties 731

• RDE Device Registration for Redfish 732

– A mechanism to determine the schemas the RDE Device supports, including OEM custom 733
extensions 734

– A mechanism to determine parameters for limitations on the types of communication the RDE 735
Device can perform, the number of outstanding operations it can support, and other 736
management parameters 737

• Messaging Support for Redfish Operations via BEJ 738

– Read, Update, Post, Create, Delete Operations 739

– Asynchrony support for Operations that spawn long-running Tasks 740

– Notification Events for completion of long-running Tasks and for other RDE Device-specific 741
happenings1 742

– Advanced operations such as pagination and ETag support 743

7.1 Redfish Provider architecture overview 744

In PLDM for Redfish Device Enablement, standard Redfish messages are generated by a Redfish client 745
through interactions with a user or a script, and communicated via JavaScript Object Notation (JSON) 746
over HTTP or HTTPS to a management controller (MC). The MC encodes the message into a binary 747
format (BEJ) and sends it over PLDM to an appropriate RDE Device for servicing. The RDE Device 748
processes the message and returns the response back over PLDM to the MC, again in binary format. 749
Next, the MC decodes the response and constructs a standard Redfish response in JSON over HTTP or 750
HTTPS for delivery back to the client. 751

7.1.1 Roles 752

RDE divides the processing of Redfish Operations into three roles as depicted in Figure 1. 753

1 The format for the data contained within Events is defined in DSP0248. The way that events are used is
defined in this specification.

PLDM for Redfish Device Enablement DSP0218

30 Published Version 1.2.0

Client

Server

Management
Controller (MC)

Redfish over HTTP/HTTPS

RDE Device

PLDM
for RDE

 754

Figure 1 – RDE Roles 755

The Client is a standard Redfish client, and needs no modifications to support operations on the data for 756
a device using the messages defined in this specification. 757

The MC functions as a proxy Redfish Provider for the RDE Device. In order to perform this role, the MC 758
discovers and registers the RDE Device by interrogating its schema support and building a representation 759
of the RDE Device’s management topology. After this is done, the MC is responsible for receiving Redfish 760
messages from the client, identifying the RDE Device that supplies the data relevant to the request, 761
encoding any payloads into the binary BEJ format, and delivering them to the RDE Device via PLDM. 762
Finally, the MC is responsible for interacting with the RDE Device as needed to get the response to the 763
Redfish message, translating any relevant bits from BEJ back to the JSON format used by Redfish, and 764
returning the result back to the client. The MC may also act as a client to manage RDE Devices; for this 765
purpose, the MC may communicate directly with the RDE Device using BEJ payloads and the PLDM for 766
Redfish Device Enablement commands detailed in this specification. 767

The RDE Device is an RDE Provider. To perform this role, the RDE Device must define a management 768
topology for the resources that organize the data it provides and communicate it to the MC during the 769
discovery and registration process. The RDE Device is also responsible for receiving Redfish messages 770
encoded in the binary BEJ format over PLDM and sending appropriate responses back to the MC; these 771
messages can correspond to a variety of operations including reads, writes, and schema-defined actions. 772

7.2 Redfish Device Enablement concepts 773

This specification relies on several key concepts, detailed in the subsequent clauses. 774

7.2.1 RDE Device discovery and registration 775

The processes by which an RDE Device becomes known to the MC and thus visible to clients are known 776
as Discovery and Registration. Discovery consists of the MC becoming aware of an RDE Device and 777
recognizing that it supports Redfish management. Registration consists of the MC interrogating specific 778
details of the RDE Device’s Redfish capabilities and then making it visible to external clients. An example 779
ladder diagram and a typical workflow for the discovery and registration process may be found in clause 780
9.1. 781

7.2.1.1 RDE Device discovery 782

The first step of the discovery process begins when the MC detects the presence of a PLDM capable 783
device on a particular medium. The technique by which the MC determines that a device supports PLDM 784

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 31

is outside the scope of this specification; details of this process may be found in the PLDM base 785
specification (DSP0240). Similarly, the technique by which the MC may determine that a device found on 786
one medium is the same device it has previously found on another medium is outside the scope of this 787
specification. 788

After the MC knows that a device supports PLDM, the next step is to determine whether the device 789
supports appropriate versions of required PLDM Types. For this purpose, the MC should use the base 790
PLDM GetPLDMTypes command. In order to advertise support for PLDM for Redfish Device Enablement, 791
a device shall respond to the GetPLDMTypes request with a response indicating that it supports both 792
PLDM for Platform Monitoring and Control (type 2, DSP0248) and PLDM for Redfish Device Enablement 793
(type 6, this specification). If it does, the MC will recognize the device as an RDE Device. 794

Next, the MC may use the base PLDM GetPLDMCommands command once for each of the Monitoring 795
and Control and Redfish Device Enablement PLDM Types to verify that the RDE Device supports the 796
required commands. The required commands for each PLDM Type are listed in Table 51. As with the 797
GetPLDMTypes command, use of this command is optional if the MC has some other technique to 798
understand which commands the RDE Device supports. At this point, RDE Device discovery at the PLDM 799
level is complete. 800

Once the MC has discovered the RDE Device, it invokes the NegotiateRedfishParameters command 801
(clause 11.1) to negotiate baseline details for the RDE Device. This step is mandatory unless the MC has 802
previously issued the NegotiateRedfishParameters command to the RDE Device on a different medium. 803
Baseline Redfish parameters include the following: 804

• The RDE Device’s RDE Provider name 805

• The RDE Device’s support for concurrency. This is the number of Operations the RDE Device 806
can support simultaneously 807

• RDE feature support 808

The final step in discovery is for the MC to invoke the NegotiateMediumParameters command (clause 809
11.2) in order to negotiate communication details for the RDE Device. The MC invokes this command on 810
each medium it plans to communicate with the RDE Device on as it discovers the RDE Device on that 811
medium. Medium details include the following: 812

The size of data that can be sent in a single message on the medium 813

7.2.1.2 RDE Device registration 814

In the registration process, the MC interrogates the RDE Device about the hierarchy of Redfish resources 815
it supports in order to act as a proxy, transparently mirroring them to external clients. The MC may skip 816
registration of the RDE Device if the PDR/Dictionary signature retrieved via the 817
NegotiateRedfishParameters command matches one previously retrieved and the MC still has the PDRs 818
and dictionaries cached. 819

In PLDM for Redfish Device Enablement, each2 Redfish resource is uniquely identified by a Resource 820
Identifier that maps from the identifier to a collection of schemas that define the data for it. The identifiers 821
in turn are collected together into Redfish Resource PDRs; resources that share a common set of 822
schemas and are linked to from a common parent (such as sibling collections members) are enumerated 823
within the same PDR. Data for secondary schemas such as annotations or the message registry is linked 824
together with the major schema in the PDR structure. The resources link together to form a management 825
topology of one or more trees called device components; each resource corresponds to a node in one (or 826
more) of these trees. 827

2 The LogEntryCollection and LogEntry resources are an exception to this; see clause 14.2.7 for a description of
special handling for them.

PLDM for Redfish Device Enablement DSP0218

32 Published Version 1.2.0

The first step in performing the registration is for the MC to collect an inventory of the PDRs supported by 828
the RDE Device. There are three main PDRs of potential interest here: Redfish Resource PDRs, that 829
represent an instance of data provided by the RDE Device; Redfish Entity Association PDRs, that 830
represent the logical linking of data; and Redfish Action PDRs that represent special functions the RDE 831
Device supports. While every RDE Device must support at least one resource and thus at least one 832
Redfish Resource PDR, Redfish Action PDRs are only required if the device supports schema-defined 833
actions and Redfish Entity Association PDRs are only required under limited circumstances detailed in 834
clause 7.2.2. The MC shall collect this information by first calling the PLDM Monitoring and Control 835
GetPDRRepositoryInfo command to determine the total number of PDRs the RDE Device supports. It 836
shall then use the PLDM Monitoring and Control GetPDR command to retrieve details for each PDR from 837
the RDE Device. 838

As it retrieves the PDR information, the MC should build an internal representation of the data hierarchy 839
for the RDE Device, using parent links from the Redfish Resource PDRs and association links from the 840
Redfish Entity Association PDRs to define the management topology trees for the RDE Device. 841

After the MC has built up a representation of the RDE Device’s management topology, the next step is to 842
understand the organization of data for each of the tree nodes in this topology. To this end, the MC 843
should first check the schema name and version indicated in each Redfish Resource PDR to understand 844
what the RDE Device supports. For any of these schemas, the MC may optionally retrieve a binary 845
dictionary containing information that will allow it to translate back and forth between BEJ and JSON 846
formats. It may do this by invoking the GetSchemaDictionary (clause 11.2) command with the ResourceID 847
contained in the corresponding Redfish Resource PDR. 848
NOTE While the MC may typically be expected to retrieve Redfish PDRs and dictionaries when it first registers an 849
RDE Device, there is no requirement that implementations do so. In particular, some implementations may determine 850
that one or more dictionaries supported by an RDE Device are already supported by other dictionaries the MC has 851
stored. In such a case, downloading them anew would be an unnecessary expenditure of resources. 852

After the MC has all the schema information it needs to support the RDE Device’s management topology, 853
it can then offer (by proxy) the RDE Device’s data up to external clients. These clients will not know that 854
the MC is interpreting on behalf of an RDE Device; from the client perspective, it will appear that the client 855
is accessing the RDE Device’s data directly. 856

7.2.2 Data instances of Redfish schemas: Resources 857

In the Redfish model, data is collected together into logical groupings, called resources, via formal 858
schemas. One RDE Device might support multiple such collections, and for each schema, might have 859
multiple instances of the resource. For example, a RAID disk controller could have an instance of a disk 860
resource (containing the data corresponding to the Redfish disk schema) for each of the disks in its RAID 861
set. 862

Each resource is represented in this specification by a resource identifier contained within a Redfish 863
Resource PDR (defined in DSP0248). OEM extensions to Redfish resources are considered to be part of 864
the same resource (despite being based on a different schema) and thus do not require distinct Redfish 865
Resource PDRs. 866

Each RDE Device is responsible for identifying a management topology for the resources it supports and 867
reflecting these topology links in the Redfish Resource and Redfish Entity Association PDRs presented to 868
the MC. This topology takes the form of a directed graph rooted at one or more nodes called device 869
components. Each device component shall proffer a single Redfish Resource PDR as the logical root of 870
its own portion of the management topology within the RDE Device. 871

Links between resources can be modeled in three different ways. Direct subordinate linkage, such as 872
physical enclosure or being a component in a ComputerSystem, may be represented by setting the 873
ContainingResourceID field of the Redfish Resource PDR to the Resource ID for the parent resource. In 874
Redfish terminology, this relation is used to show subordinate resources. The parent field for the logical 875
root of a device component is set to EXTERNAL, 0x0000. 876

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 33

Logical links between resources can also be modeled. In cases where a resource and the resource to 877
which it is related are both contained within an RDE Device, these links are handled implicitly by filling in 878
the Links section of the Redfish resource when data for the resource is retrieved from the RDE Device. 879

Alternatively, logical links between resources may be represented by creating instances of Redfish Entity 880
Association PDRs (defined in DSP0248) to capture these links. In Redfish terminology, this relation is 881
used to show related resources. For example, as shown in Figure 2, the drives in a RAID subsystem are 882
subordinate to the storage controller that manages them, but are also linked to the standard Chassis 883
object. A Redfish Entity Association PDR shall only be used when a resource meets all three of the 884
following criteria: 885

1) The resource is contained within the RDE Device. If it is not, it does not need to be part of the 886
RDE Device’s management topology model. 887

2) The resource is subordinate to another resource contained within the RDE Device. If it is not, 888
the resource can be linked directly to the resource outside the RDE Device by setting its parent 889
field to EXTERNAL. 890

3) The resource needs to be linked to another resource outside the RDE Device. 891

7.2.2.1 Alignment of resources 892

While determining how to lay out the Redfish Resource PDRs for an RDE Device may seem to be a 893
daunting task at first glance, it is actually relatively straightforward. By examining the Links section of the 894
various schemas that the RDE Device needs to support, one will see that the tree hierarchy for them is 895
already defined. Simply put, then, the RDE Device manufacturer will set up one PDR per resource or 896
group of sibling resources that share the same schema definitions and reflect the same parentage trees 897
for the PDRs as is already present for the resources in their corresponding Redfish schema definitions. 898
NOTE For collections, the RDE Device shall offer one PDR for the collection as a whole and one PDR for each set of 899
sibling entries within the collection. This is necessary to enable the MC to use the correct dictionary when encoding 900
data for a Create operation applied to an empty collection. 901

7.2.2.2 Example linking of PDRs within RDE Devices 902

This clause presents examples of the way an RDE Device can link Redfish Resource PDRs together to 903
present its data for management. 904

The example in Figure 2 models a simple rack-mounted server with local RAID storage. In this example, 905
we see a Redfish Resource PDR offering an instance of the standard Redfish Storage resource, with 906
ResourceID 123. This PDR has ContainingResourceID (abbreviated ContainingRID in the figure) set to 907
EXTERNAL as the RDE Device should be subordinate to the Storage Collection under ComputerSystem. 908
NOTE It is up to the MC to make final determinations as to where resources should be added within the Redfish 909
hierarchy. While general guidance may be found in clause 14.2.6, the technique by which MCs may ultimately make 910
such decisions is out of scope for this specification. 911

The StorageController has two Redfish Resource PDRs that list it as their container: one that offers data 912
in the VolumeCollection resource and one that offer data for four Disk resources. Finally, the PDR that 913
offers VolumeCollection resource is marked as the container for a Redfish Resource PDR that offers data 914
for the Volume resource. 915

The connections discussed so far are all direct parent linkages in the Redfish Resource PDRs because 916
the links they represent are the direct subordinate resource links from the standard Redfish storage 917
model. However, the Redfish storage model also includes notations that drives are related to (contained 918
within) a volume and that drives are related to (present inside) a chassis. These resource relations can be 919
modeled using Redfish Entity Association PDRs if the MC is managing the links. Alternatively, they can 920
be implicitly managed by the RDE Device. In this case, the RDE Device will expose the links itself by 921
filling in a Links section of the relevant resource data with references to the linked resources. While the 922

PLDM for Redfish Device Enablement DSP0218

34 Published Version 1.2.0

RDE Device could in theory provide a Redfish Entity Association PDR for this case, it serves no purpose 923
for the MC. 924

In general, a Redfish Entity association PDR should be used when a resource is subordinate to another 925
resource within the RDE Device but must also be linked to from another resource external to the RDE 926
Device. 927

In the example in Figure 2, the relation between the drives and the outside Chassis resource is 928
promulgated with a Redfish Entity Association PDR. This PDR lists the four drives as the four 929
ContainingResourceIDs for the association, marking them to be contained within the chassis. The 930
ContainingResourceID for this relation contains the value EXTERNAL, to show that the drives are visible 931
outside the resource hierarchy maintained by the RDE Device. By contrast, the linkage between the 932
drives and the Volume resource is implicitly maintained by the RDE Device. This is shown in the figure via 933
the dashed arrows. 934

Finally, each of the drives supports a Sanitize operation. This is shown by instantiating a Redfish Action 935
PDR naming the Sanitize action and linking it to each of the drives. 936

As an alternative to the PDR layout of Figure 2, in Figure 3 the RDE Device exposes its own chassis 937
resource (labeled as Resource ID 890) rather than having the drives be part of an external chassis. The 938
PDR for this chassis resource shows ContainingResourceID EXTERNAL to demonstrate that it belongs in 939
the system chassis collection resource. With this modification, the links between the chassis resource and 940
the drives can be managed internally by the RDE Device and hence no Redfish Entity Association PDR is 941
necessary. 942

ContainingRID = 345

MajorSchemaName =
Volume

ResourceID = 567

ContainingRID = 123

MajorSchemaName =
VolumeCollection

ResourceID = 345

ContainingRID = EXTERNAL

MajorSchemaName =
Storage

ResourceID = 123

External Storage Collection

Redfish Entity Association PDR

ContainingRID = EXTERNAL

ContainedRID = 600

ContainedRID = 601

ContainedRID = 602

ContainedRID = 603

External Chassis Resource Redfish Action PDR

ActionName = “Sanitize”

RelatedResourceID = 600

RelatedResourceID = 601

RelatedResourceID = 602

RelatedResourceID = 603

ContainingRID = 123

MajorSchemaName =
Drive

ResourceID = 600

AdditionalResourceID = 601

AdditionalResourceID = 602

AdditionalResourceID = 603

 943

Figure 2 – Example linking of Redfish Resource and Redfish Entity Association PDRs 944

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 35

External Chassis Collection

ContainingRID = 345

MajorSchemaName =
Volume

ResourceID = 567

ContainingRID = 123

MajorSchemaName =
VolumeCollection

ResourceID = 345

ContainingRID = EXTERNAL

MajorSchemaName =
Storage

ResourceID = 123

External Storage Collection

ContainingRID = EXTERNAL

ResourceID = 890

MajorSchemaName = Chassis

Redfish Action PDR

ActionName = “Sanitize”

RelatedResourceID = 600

RelatedResourceID = 601

RelatedResourceID = 602

RelatedResourceID = 603

ContainingRID = 123

MajorSchemaName =
Drive

ResourceID = 600

AdditionalResourceID = 601

AdditionalResourceID = 602

AdditionalResourceID = 603

 945

 Figure 3 – Schema linking without Redfish entity association PDRs 946

7.2.2.3 Parallel resource relationships 947

A special case occurs when each member of a collection contains a subordinate resource of a common 948
resource type (such as Metrics resources subordinate to Port resources). In this case, the Redfish 949
Parallel Resource PDR (defined in DSP0248) enables each of the subordinate resources to be linked to 950
its corresponding parent resource. This PDR shall only be used if all of the subordinate resources share 951
in common the same major schema and the same list of OEM extension schemas. To use this PDR, each 952
of the subordinate resources should be linked to its corresponding parent resource via the 953
AdditionalResourceID and AdditionalContainingResourceID fields in the PDR. 954

For example, consider a series of PortMetric resources corresponding to a collection of four Ports for a 955
NetworkAdapter resource. As shown in Figure 4 below, a typical implementation would consist of a total 956
of at least ten Redfish resources: one NetworkAdapter, one PortCollection, four Port and four PortMetrics. 957
As explained in the previous clause, the four Port resources can be collapsed into a single Redfish 958
Resource PDR using the AdditionalResourceID fields to duplicate resource information from the first port 959
to the remaining three. This is shown in orange in the figure. 960

For the PortMetrics resources, they cannot be collapsed into a single Redfish Resource PDR because 961
each instance of the PortMetrics resource has a different parent to which it is subordinate: its 962
corresponding Port resource. This is what the Redfish Parallel Resource PDR enables. As shown in 963
green in the figure, we assign the ResourceID field in the Redfish Parallel Resource PDR to the 964
ResourceID for the PortMetrics resource subordinate to port 1. The AdditionalResourceIDCount would be 965
three (since the port 1 is already covered). Each of the three additional ports is now detailed in the 966
Redfish Parallel Resource PDR, with an AdditionalResourceID for the PortMetrics resource and an 967
AdditionalContainingResourceID for the Port resource to which it is subordinate. All remaining fields in the 968
Redfish Parallel Resource PDR are the same as in the Redfish Resource PDR and are filled out in the 969
same manner, completing this example. 970

PLDM for Redfish Device Enablement DSP0218

36 Published Version 1.2.0

Equivalent resources

ContainingRID = 345

SupportedSchemaName =
Port

ResourceID = 561

ContainingRID = 123

SupportedSchemaName =
PortCollection

ResourceID = 345

ContainingRID = EXTERNAL

SupportedSchemaName =
NetworkAdapter

ResourceID = 123

External NetworkAdapter Collection

ContainingRID = 345

SupportedSchemaName =
Port

ResourceID = 562

ContainingRID = 345

SupportedSchemaName =
Port

ResourceID = 563

ContainingRID = 345

SupportedSchemaName =
Port

ResourceID = 564

ContainingRID = 561

SupportedSchemaName =
PortMetrics

ResourceID = 661

ContainingRID = 562

SupportedSchemaName =
PortMetrics

ResourceID = 662

ContainingRID = 563

SupportedSchemaName =
PortMetrics

ResourceID = 663

ContainingRID = 564

SupportedSchemaName =
PortMetrics

ResourceID = 664

ContainingRID = 561

MajorSchemaName = PortMetrics

ResourceID = 661

AdditionalResourceID = 662

AdditionalContainingRID = 562

AdditionalResourceID = 663

AdditionalContainingRID = 563

AdditionalResourceID = 664

AdditionalContainingRID = 564

AdditionalResourceCount = 3

Ports Collection
Redfish Resource PDR

Ports
Redfish Resource PDR

PortMetrics
Parallel Resource PDR

NetworkAdapter
Redfish Resource PDR

ContainingRID = 123

MajorSchemaName = Port

ResourceID = 561

AdditionalResourceID = 562

AdditionalResourceID = 563

AdditionalResourceID = 564

 971

Figure 4 – Parallel Resource Linking for Metrics 972

7.2.3 Dictionaries 973

In standard Redfish, data is encoded in JSON. In this specification, data is encoded in Binary Encoded 974
JSON (BEJ) as defined in clause 8. In order to translate between the two encodings, the MC uses a 975
schema lookup table that captures key metadata for fields contained within the schema. The dictionary is 976
necessary because some of the JSON tokens are omitted from the BEJ encoding in order to achieve a 977
level of compactness necessary for efficient processing by RDE Devices with limited memory and 978
computational resources. In particular, the names of properties and the string values of enumerations are 979
skipped in the BEJ encoding. 980

Each Redfish resource PDR can reference up to four classes of dictionaries for the schemas it can use3: 981

• Standard Redfish data schema (aka the major schema) 982

• Standard Redfish Event schema 983

• Standard Redfish Annotation schema 984

• Standard Redfish Error schema 985

Major and Event Dictionaries may be augmented to contain OEM extension data as defined in the 986
Redfish base specification, DSP0266. 987

Event, Error, and Annotation Dictionaries shall be common to all resources that an RDE Device provides. 988

3 The COLLECTION_MEMBER_TYPE schema class from clause 5.3.2 is not represented in the PDR. It can be
retrieved on demand by the MC from the RDE Device via the GetSchemaDictionary command of clause 11.3.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 37

Dictionaries for standard Redfish schemas are published on the DMTF Redfish website at 989
http://redfish.dmtf.org/dictionaries. Naturally, these dictionaries do not include OEM extensions. RDE 990
Devices may support their resources either with 991

the standard dictionaries or with custom dictionaries that may include OEM extensions, and that may also 992
be truncated to contain only entries for properties supported by the RDE Device. 993

7.2.3.1 Canonizing a schema into a dictionary 994

In Redfish schemas, the order of properties is indeterminate and properties are identified by name 995
identifiers that are of unbounded length. While this is beneficial from a human readability perspective, 996
from a strict information-theoretical point of view, using long strings for this purpose is grossly inefficient: a 997
numeric value of Log2(nChildren) bits ought to be sufficient. To make this work in practice, we impose a 998
canonical ordering that assigns each property or enumeration value a numeric sequence number. 999
Sequence numbers shall be assigned according to the following rules: 1000

1) The children properties (properties immediately contained within other properties such as sets 1001
or arrays) shall collectively receive an independent set of sequence numbers ranging from zero 1002
to N – 1, where N is the number of children. Sequence numbers for properties that do not share 1003
a common parent are not related in any way. 1004

2) For the initial revision of a Redfish schema (usually v1.0), sequence numbers shall be assigned 1005
according to a strict alphabetical ordering of the property names from the schema. 1006

3) In order to preserve backward compatibility with earlier versions of schemas, for subsequent 1007
revisions of Redfish schemas, the sequence numbers for child properties added in that revision 1008
shall be assigned sequence numbers N to N + A – 1, where N is the number of sequence 1009
numbers assigned in the previous revision and A is the number of properties added in the 1010
present revision. (In other words, we append to the existing set and use sequence numbers 1011
beginning with the next one available.) The new sequence numbers shall be assigned 1012
according to a strict alphabetical ordering of their names from the schema. 1013

4) In the event that a property is deleted from a schema, its sequence number shall not be reused; 1014
the sequence number for the deleted property shall forever remain allocated to that property. 1015

5) As with properties, the values of an enumeration shall collectively receive an independent set of 1016
sequence numbers ranging from zero to N – 1, where N is the number of enumeration values. 1017
Sequence numbers for enumeration values not belonging to the same enumeration are not 1018
related in any way. 1019

6) For the initial version of a Redfish schema, sequence numbers for enumeration values shall be 1020
assigned according to a strict alphabetical ordering of the enumeration values from the schema. 1021

7) In order to preserve backward compatibility with earlier versions of schemas, for subsequent 1022
revisions of Redfish schemas, the sequence numbers for enumeration values added in that 1023
revision shall be assigned sequence numbers N to N + A – 1, where N is the number of 1024
sequence numbers assigned in the previous revision and A is the number of enumeration 1025
values added in the present revision. The new sequence numbers shall be assigned according 1026
to a strict alphabetical ordering of their value strings from the schema. 1027

8) In the event that an enumeration value is deleted from a schema, its sequence number shall not 1028
be reused; the sequence number for the deleted enumeration value shall forever remain 1029
allocated to that enumeration value. 1030

After the sequence numbers for properties and enumeration values are assigned, they shall be 1031
collected together with other information from the Redfish and OEMs schema to build a dictionary in 1032
the format detailed in clause 7.2.3.2. For every Redfish Resource PDR the RDE Device offers, it shall 1033
maintain a dictionary that it can send to the MC on demand in response to a GetSchemaDictionary 1034
command (clause 11.2). 1035

http://redfish.dmtf.org/dictionaries

PLDM for Redfish Device Enablement DSP0218

38 Published Version 1.2.0

NOTE Rules 2 and 3 above imply that schema child properties may not be in strict alphabetical order. For example, 1036
suppose a property node in a schema started with child fields “red”, “orange”, and “yellow” in version 1.0. Because 1037
this is the initial version, the fields would be alphabetized: “orange” would get sequence number 0; “red”, 1; and 1038
“yellow” would get 2. If version 1.1 of the schema were to add “blue” and “green”, they would be assigned sequence 1039
numbers 3 and 4 respectively (because that is the alphabetical ordering of the new properties). The initial three 1040
properties retain their original sequence numbers. 1041

For all custom dictionaries, including all truncated dictionaries, the sequence numbers listed for 1042
standard Redfish schema properties supported by the RDE Device shall match the sequence 1043
numbers for those same properties from the standard dictionary. This allows MCs to potentially 1044
merge related dictionaries from RDE Devices that share a common class. 1045

Sequence numbers for array elements shall be assigned to match the zero-based index of the array 1046
element. 1047

NOTE The ordering rules provided in this clause apply to dictionaries only. In particular, data encoded in either JSON 1048
or BEJ format is by definition unordered. 1049

7.2.3.2 Dictionary binary format 1050

The binary format of dictionaries shall be as follows. All integer fields are stored little endian: 1051

Table 31 – Redfish dictionary binary format 1052

Type Dictionary Data

uint8 VersionTag
Dictionary format version tag: 0x00 for DSP0218 v1.0.0, v1.1.0, v1.1.1

bitfield8 DictionaryFlags
Flags for this dictionary:
[7:1] - reserved for future use
[0] - truncation_flag; if 1b, the dictionary is truncated and provides entries for a subset of the
 full Redfish schema

uint16 EntryCount
Number N of entries contained in this dictionary

uint32 SchemaVersion
Version of the Redfish schema encapsulated in this dictionary, in standard PLDM format.
0xFFFFFFFF for an unversioned schema. The version of the schema may be read from the
filename of the schema file.

uint32 DictionarySize
Size in bytes of the dictionary binary file. This value can be used as a safeguard to compare the
various offsets given in subsequent fields against: buffer overruns can be avoided by validating
that the offsets remain within the binary dictionary space.

bejTupleF Format [0]
Entry 0 property format. The read_only_property_and_top_level_annotation flag in the bejTupleF
structure shall be set if the property is annotated as read only in the Redfish schema. The
nullable_property in the bejTupleF structure shall be set if the property is annotated as nullable in
the Redfish schema.

uint16 SequenceNumber [0]
Entry 0 property sequence number

uint16 ChildPointerOffset [0]
Entry 0 property child pointer offset in bytes from the beginning of the dictionary. Shall be 0x0000 if
Format [0] is not one of {BEJ Set, BEJ Array, BEJ Enum and BEJ Choice} or in cases where a set
or array contains no children elements.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 39

Type Dictionary Data

uint16 ChildCount [0]
Entry 0 child count; shall be 0x0000 if Format [0] is not one of {BEJ Set, BEJ Array, BEJ Enum}.
For a BEJ Array, the child count shall be expressed as 1.

uint8 NameLength [0]
Entry 0 property/enumeration value name string length. Name length, including null terminator,
shall be a maximum of 255 characters. Shall be 0x00 for an anonymous format option of a BEJ
Choice-formatted property or for anonymous array entries.

uint16 NameOffset [0]
Entry 0 property name string offset in bytes from the beginning of the dictionary. Shall be 0x0000
for an anonymous format option of a BEJ Choice-formatted property or for anonymous array
entries.

… …

bejTupleF Format [N – 1]
Entry (N – 1) property format. The read_only_property_and_top_level_annotation flag in the
bejTupleF structure shall be set if the property is annotated as read only in the Redfish schema.
The nullable_property in the bejTupleF structure shall be set if the property is annotated as nullable
in the Redfish schema.

uint16 SequenceNumber [N – 1]
Entry (N – 1) property sequence number

uint16 ChildPointerOffset [N – 1]
Entry (N – 1) property child pointer offset in bytes from the beginning of the dictionary. Shall be
0x0000 if Format [N – 1] is not one of {BEJ Set, BEJ Array, BEJ Enum and BEJ Choice}.

uint16 ChildCount [N – 1]
Entry (N – 1) child count; shall be 0x0000 if Format [N] is not one of {BEJ Set, BEJ Array, BEJ
Enum}. For a BEJ Array, the child count shall be expressed as 1.

uint8 NameLength [N – 1]
Entry (N – 1) property/enumeration value name string length. Name length, including null
terminator, shall be a maximum of 255 characters. Shall be 0x00 for an anonymous format option
of a BEJ Choice-formatted property or for anonymous array entries.

uint16 NameOffset [N – 1]
Entry (N – 1) property name string offset in bytes from the beginning of the dictionary. Shall be
0x0000 for an anonymous format option of a BEJ Choice-formatted property or for anonymous
array entries.

strUTF-8 Name [0]
Entry 0 property name string (not present for children nodes of BEJ Choice format properties or
anonymous array entries)

…

strUTF-8 Name [N – 1]
Entry (N – 1) property name string (not present for children nodes of BEJ Choice format properties
or anonymous array entries)

uint8 CopyrightLength
Dictionary copyright statement string length. Copyright, including null terminator, shall be a
maximum of 255 characters. May be 0x00 in which case the Copyright field below shall be
omitted.

strUTF-8 Copyright
Copyright statement for the dictionary. Shall be omitted if CopyrightLength is 0.

PLDM for Redfish Device Enablement DSP0218

40 Published Version 1.2.0

Intuitively, the dictionary binary format may be thought of as a header (orange) followed by an array of 1053
entry data (blue) followed by a table of the strings (green) naming the properties and enumeration values 1054
for the entries. Figure 5 displays this data in graphical format: 1055

 1056

 Byte offset

DWORD +0 +1 +2 +3

00 VersionTag 0x00 DictionaryFlags EntryCount2 EntryCount1

01 SchemaVersion4 SchemaVersion3 SchemaVersion2 SchemaVersion1

02 DictionarySize4 DictionarySize3 DictionarySize2 DictionarySize1

03 Format[0] SequenceNumber[0]2 SequenceNumber[
0]1

ChildPointerOffset[0]2

04 ChildPointerOffset
[0]1

ChildCount[0]2 ChildCount[0]1 NameLength[0]

05 NameOffset[0]2 NameOffset[0]1 … …

06 … … … …

… Format[N-1] SequenceNumber[N-1]2 SequenceNumber[
N-1]1

ChildPointerOffset[N-1]2

… ChildPointerOffset
[N-1]1

ChildCount[N-1]2 ChildCount[N-1]1 NameLength[N-1]

… NameOffset[N-1]2 NameOffset[N-1]1 Name[0]1 * Name[0]2 *

… Name[0]3 * … Name[0]terminator * …

… … … … …

… Name[N-1]1 * Name[N-1]2 * Name[N-1]3 * …

… Name[N-1]terminator * CopyrightLength Copyright1 …

… Copyrightterminator

Figure 5 – Dictionary binary format 1057

* Name strings will not be present in the dictionary for anonymous format options of BEJ Choice-1058
formatted properties or for anonymous array entries. 1059

7.2.3.2.1 Hierarchical organization of entries 1060

Within this binary format, the entries shall be sorted into clusters representing a breadth-first traversal of 1061
the hierarchy presented by a schema. Each cluster shall in turn consist of all the sibling nodes contained 1062
within a common parent, sorted by sequence number per the rules defined in clause 7.2.2.3 above. An 1063
example of this organization may be found in clause 8.6.1. 1064
NOTE While not mandatory, it is acceptable that multiple dictionary entries may point to a common complex subtype 1065
to allow reuse of that information and reduce the overall size of the dictionary. For example, Resource.status is 1066
commonly used multiple times within the same schema, so having a single offset for it can trim some length from the 1067
dictionary. 1068

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 41

7.2.3.3 Properties that support multiple formats 1069

For properties that support multiple formats, the dictionary shall contain an entry linking the property 1070
name string to the BEJ Choice format. This choice entry shall in turn link to a series of anonymous child 1071
entries (name offset = 0x0000) that are of the various data formats supported by the property. For 1072
example, if a TCP/IP hostname property supports both string (“www.dmtf.org”) and numeric (the 32-bit 1073
equivalent of 72.47.235.184) values, the dictionary might contain rows such as the following: 1074

Table 32 – Dictionary entry example for a property supporting multiple formats 1075

Row Sequence
Number

Format Name Child
Pointer

… … … … …

15 0 choice “hostname” 18

… … … … …

18 0 string null null

19 1 integer null null

… … … … …

NOTE Following the rules for sequence number assignment (see clause 7.2.3.1), each cluster of properties 1076
contained within a given set and each cluster of enumeration values are numbered separately. Hence sequence 1077
numbers may be repeated within a dictionary. 1078

An exception to this rule is that properties that support null and exactly one other data format shall be 1079
collapsed into a single entry in the dictionary listing only the non-null data format. The nullable_property 1080
bit in the bejTupleF value of the format entry in the dictionary shall be set to 1b in this case. This case is 1081
common in the standard Redfish schemas, where most properties are nullable. This is flagged with the 1082
“nullable” keyword in the CSDL schemas, but in the JSON schemas, it manifests as the supported type 1083
list for the property consisting of NULL and either a solitary second type or a collection of strings that form 1084
an enumeration. 1085

7.2.3.4 Annotation dictionary format 1086

Standard Redfish annotations are derived from three sources: the Redfish, odata, and message 1087
schemas. The annotations that can be part of a JSON payload are collected together into the redfish-1088
payload-annotations.vX.Y.Z.json schema file. This clause details special notes that apply to building the 1089
annotation dictionary: 1090

• The dictionary entries for properties in the annotation dictionary shall include the entire name of 1091
the annotation, beginning with the ‘@’ sign and including both the annotation source (one of 1092
redfish, message, or odata) and the annotation’s name itself. For example, the dictionary Name 1093
field for the @odata.id property shall be an offset to the string “@odata.id”. 1094

• The dictionary entries for patternProperties in the annotation dictionary shall be stripped of the 1095
wildcard patterns before the ‘@’ sign and of the trailing ‘$’ sign but shall otherwise be treated 1096
identically to standard properties. For example, the dictionary Name field for the "^([a-zA-Z_][a-1097
zA-Z0-9_]*)?@Message.ExtendedInfo$" patternProperty shall be an offset to the string 1098
“@Message.ExtendedInfo”. 1099

• In accordance with the rules presented in clause 7.2.2.3, the top-level entries for annotations 1100
(those containing the names of the annotations themselves) shall be sorted alphabetically 1101
together for the initial version of the schema’s dictionary, and shall be appended to the list with 1102
each schema revision. Stated explicitly, the annotations from the properties and 1103

PLDM for Redfish Device Enablement DSP0218

42 Published Version 1.2.0

patternProperties shall be comingled together within the entries for each revision of the 1104
dictionary. 1105

• Dictionary entries for children properties of annotations, such as the anonymous string value 1106
array entries for @Redfish.AllowableValues shall be structured and formatted per the rules 1107
presented in clause 7.2.2.3. 1108

7.2.3.5 Registry dictionary format 1109

Redfish messages are used in multiple places, including annotations, events, and errors. The actual 1110
message data may be retrieved from any of the various message registries including standard Redfish 1111
and OEM registries. These messages are referred to by name as the value of a string field in hosting 1112
schemas, so names such as “NetworkDevice.1.0.LinkFlapDetected” appear in BEJ-encoded JSON data 1113
for previous versions of this specification. To reduce the size of such encodings, RDE version 1.1 1114
introduces the notion of a Registry dictionary that can be referenced via the bejRegistryItem encoding 1115
format. Replacing the message name with a sequence number in the Registry dictionary achieves a 1116
reduction in encoded data for messages. This clause details special notes that apply to building the 1117
registry dictionary: 1118

• The registry dictionary shall consist of a top-layer set named “registry” 1119

– Entries within the set shall be named for each of the registry items supported by the RDE 1120
Device. The full odata name for these entries shall be incorporated in the dictionary, and 1121
they shall be sorted lexicographically. 1122

– The type of the registry items shall be bejString, and they shall be flagged as read-only. 1123

• Both full and truncated registry dictionaries are permitted. 1124

• MCs shall not attempt to merge registry dictionaries from different devices or dictionaries 1125
retrieved from the same device at different times. 1126

• If using the DMTF dictionary builder tool (see clause 7.2.3.7), see the tool documentation for 1127
information on how to build the registry dictionary for a device. 1128

• Schema entries that correspond to registry items shall be encoded in dictionaries as being of 1129
type bejString, not bejRegistryItem. This ensures backward compatibility with earlier versions of 1130
the RDE specification 1131

7.2.3.6 Links between schemas 1132

Links in Redfish schemas, identifiable as entries with Odata type odata.id, shall be represented in 1133
dictionaries as entries with format = bejString. As described in clause 8.4.2, runtime encoding of Odata 1134
links may be performed via any of bejString (with deferred bindings), bejResourceLink, or (for expansion) 1135
bejResourceLinkExpansion. This is a special case wherein a valid encoding may differ from the type 1136
specified in the dictionary. 1137

7.2.3.7 Actions in dictionaries 1138

Actions in Redfish schemas are detailed in a manner prescribed by OData that differs from how regular 1139
resource properties are presented. In contrast to the iterms under Redfish objects, which are written as 1140
named Property elements in CSDL, the items under actions are written as either a named Parmeter or an 1141
anonymous ReturnType element. 1142

When encoding actions in RDE dictionaries, the action itself shall be encoded as an object (BEJ Set). 1143
Action parameters shall be encoded in the manner described Section 7.2.3.2, as if they were properties 1144
within the set represented by the action. The flags in the bejTupleF tuple member for action parameters 1145
shall have the following interpretation: 1146

• Bit 0, the deferred binding flag, shall be set to 0b for all parameters. 1147

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 43

• Bit 1, the read only flag, shall be set to 0b for all parameters. 1148
• Bit 2, the nullable property flag, shall be set to 0b for a mandatory parameter and 1b for an 1149

optional parameter. In Redfish CSDL schema, a parameter is mandatory if it is flagged with the 1150
following annotation: Nullable="false". 1151

• All other bits shall be set to 0b. 1152

If the action does not support any parameters, the set for the action shall be empty (have zero children) 1153
within the dictionary encoding. 1154

The action’s ReturnType, if present, shall be encoded in the dictionary as an element of the type 1155
matching the specified Redfish ReturnType and named “ReturnType”. The flags in the bejTupleF tuple 1156
member for the ReturnType element shall be set as follows: 1157

• Bit 0, the deferred binding flag, shall be set to 0b. 1158
• Bit 1, the read only flag, shall be set to 1b. 1159
• Bit 2, the nullable property flag, shall be set to 0b. 1160
• All other bits shall be set to 0b. 1161

If an action does not contain a ReturnType, the named ReturnType element shall not be encoded into the 1162
dictionary for that action. 1163

7.2.3.8 Building dictionaries 1164

Available online at https://github.com/DMTF/RDE-Dictionary, the RDE dictionary builder automates the 1165
process of building an RDE dictionary from CSDL formatted schemas. 1166

It supports standard Redfish schemas, standalone OEM schemas, and OEM extensions to standard 1167
Redfish schemas and can build full or truncated dictionaries. For more information about installation, 1168
usage and examples of using the dictionary builder, refer to the README.md file at the above 1169
URL.Redfish Operation support. 1170

Redfish Operations are sent from a client to a Redfish Provider that is able to process them and respond 1171
appropriately. These operations are encoded in JSON and transported via either the HTTP or the HTTPS 1172
protocol. 1173

In this specification, the MC is the Redfish Provider to which the client sends operations. However, rather 1174
than responding directly, the MC is a proxy that conveys these operations to the RDE Devices that 1175
maintain the data and can provide responses to client requests. The proxied operations (that are 1176
transmitted to the RDE Device as RDE Operations) are encoded in BEJ (clause 8) and transported via 1177
PLDM. The MC, in its role as proxy Redfish Provider for the RDE Devices, translates the JSON/HTTP(S) 1178
requests from the client into BEJ/PLDM for the RDE Device, and then translates the BEJ/PLDM response 1179
from the RDE Device into a JSON/HTTP(S) response for the client. 1180

7.2.3.9 Primary Operations 1181

There are seven primary Redfish Operations. These are summarized in Table 33. 1182

Table 33 – Redfish Operations 1183

Operation Verb Description

Read GET Retrieve data values for all properties contained within a resource.

Update PATCH Write updates to properties within a resource. May be to the entire
resource, to a subtree rooted at any point within the resource, or to a
leaf node.

Replace PUT Write replacements for all properties within a resource.

https://github.com/DMTF/RDE-Dictionary

PLDM for Redfish Device Enablement DSP0218

44 Published Version 1.2.0

Create POST Append a new set of child data to a collection (array).

Delete DELETE Remove a set of child data from a collection.

Action POST Invoke a schema-defined Redfish action.

Head HEAD Retrieve just headers for the data contained in a schema.

The only Redfish Operation that is required to be supported in RDE is Read; however, it is expected that 1184
implementations will support Update as well. Create and Delete are conditionally required for RDE 1185
Devices that contain collections; Action is conditionally required for RDE Devices that support Redfish 1186
schema-defined actions. The Head and Replace Redfish Operations are strictly optional. 1187

7.2.3.9.1 HTTP/HTTPS and Redfish 1188

A full discussion of the HTTP/HTTPS protocol is beyond the scope of this specification; however, a 1189
minimalist overview of key concepts relevant to Redfish Device Enablement follows. Readers are directed 1190
to DSP0266 for more detailed information on the usage of HTTP and HTTPS with Redfish and to 1191
standard documentation for more general information on the HTTP/HTTPS protocols themselves. 1192

7.2.3.9.1.1 Redfish Operation requests 1193

Every Redfish request has a target URI to which it should be applied; this URI is the target of the 1194
HTTP/HTTPS verb listed in Table 33. The URI may consist of several parts of interest for purposes of this 1195
specification: a prefix that points to the RDE Device being managed, a subpath within the RDE Device 1196
management topology, a specific resource selection preceded by an octothorp character (#), and one or 1197
more query options preceded by a question mark (?) character. 1198

Many, but not all, Redfish requests have a JSON payload associated with them. For example, a POST 1199
operation to create a new child element in a collection would normally contain a JSON payload for the 1200
data being supplied for that new child element. 1201

Finally, every Redfish HTTP/HTTPS request will contain a series of headers, each of which modifies it in 1202
some fashion. 1203

7.2.3.9.1.2 Redfish Operation responses 1204

The response to a Redfish HTTP/HTTPS request will also contain several elements. First, the response 1205
will contain a status code that represents the result of the operation. Like for requests, DSP0266 defines 1206
several response headers that may need to be supplied in conjunction with a Redfish response. Finally, a 1207
JSON payload may be present such as in the case of a read operation. 1208

7.2.3.9.1.3 Generic handling of Redfish Operations 1209

Generically, to handle processing of a Redfish HTTP/HTTPS request, the MC will typically implement the 1210
following steps. This overview ignores error conditions, timeouts, and long-lived Tasks. A much more 1211
detailed treatment may be found in clause 9. 1212

1) Parse the prefix of the supplied URI to pinpoint the RDE Device that the operation targets. 1213

2) Parse the RDE Device portion of the URI to identify the specific place in the RDE Device’s 1214
management topology targeted by the operation. 1215

3) Identify the Redfish Resource PDR that represents that portion of the data. 1216

4) Using the HTTP/HTTPS verb and other request information, determine the type of Redfish 1217
operation that the client is trying to perform. 1218

5) Translate any request headers (clause 7.2.3.10) and query options (clause 7.2.3.11) into 1219
parameters to the corresponding PLDM request message(s). 1220

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 45

6) Translate the JSON payload, if present, into a corresponding BEJ (clause 8) payload for the 1221
request, using a dictionary appropriate for the target Redfish Resource PDR. 1222

7) Send the PLDM for Redfish Device Enablement RDEOperationInit command (clause 12.1) to 1223
begin the Operation. 1224

8) Send any BEJ payload to the RDE Device via one or more PLDM for Redfish Device 1225
Enablement RDEMultipartSend commands (clause 13.1) unless it was small enough to be 1226
inlined in the RDEOperationInit command. 1227

9) Send any request parameters to the RDE Device via the PLDM for Redfish Device Enablement 1228
SupplyCustomRequestParameters command (clause 12.2). 1229

10) If there was a payload but no request parameters, send the RDEOperationStatus command 1230
(clause 12.5). 1231

11) Retrieve and decode any BEJ-encoded JSON data for any Operation response payloads via 1232
one or more PLDM for Redfish Device Enablement RDEMultipartReceive commands (clause 1233
13.2). 1234

12) Retrieve any response parameters via the PLDM for Redfish Device Enablement 1235
RetrieveCustomResponseHeaders command (clause 12.3). 1236

13) Send the PLDM for Redfish Device Enablement RDEOperationComplete command (clause 1237
12.4) to inform the RDE Device that it may discard any data structures associated with the 1238
Task. 1239

14) Translate the BEJ response payload, if present, into JSON format for return to the client, using 1240
an appropriate dictionary. 1241

15) Prepare and send the final response to the client, adding the various HTTP/HTTPS response 1242
headers (clause 7.2.3.10) appropriate to the type of Redfish operation that was just performed. 1243

7.2.3.10 Redfish operation headers 1244

Several HTTP/HTTPS transport layer headers modify Redfish operations when translated in the context 1245
of RDE Operations. These are summarized in Table 34. Implementation notes for how the MC and RDE 1246
Device shall support some of these modifiers – when attached to Redfish operations – may be found in 1247
the indicated subsections. For headers not listed here, the implementation is outside the scope of this 1248
specification; implementers shall refer to DSP0266 and standard HTTP/HTTPS documentation for more 1249
information on processing these headers. 1250

Table 34 – Redfish operation headers 1251

Header Clause Where Used Description

 Request Headers

If-Match 7.2.3.10.
1

Request If-Match shall be supported on PUT and PATCH requests for
resources for which the RDE Device returns ETags, to ensure
clients are updating the resource from a known state.

If-None-Match 7.2.3.10.
2

Request If this HTTP header is present, the RDE Device will only return
the requested resource if the current ETag of that resource
does not match the ETag sent in this header. If the ETag
specified in this header matches the resource’s current ETag,
the status code returned from the GET will be 304.

Custom HTTP/
HTTPS Headers

7.2.3.10.
3

Request and
Response

Non-standard headers used for custom purposes.

Response Headers

PLDM for Redfish Device Enablement DSP0218

46 Published Version 1.2.0

Header Clause Where Used Description

ETag 7.2.3.10.
4

Response An identifier for a specific version of a resource, often a
message digest.

Link 7.2.3.10.
5

Response Link headers shall be returned as described in the clause on
Link Headers in DSP0266.

Location 7.2.3.10.
6

Response Indicates a URI that can be used to request a representation
of the resource. Shall be returned if a new resource was
created.

Cache-Control 7.2.3.10.
7

Response This header shall be supported and is meant to indicate
whether a response can be cached or not

Allow 7.2.3.10.
8

Response Shall be returned with a 405 (Method Not Allowed) response
to indicate the valid methods for the specified Request URI.
Should be returned with any GET or HEAD operation to
indicate the other allowable operations for this resource.

Retry-After 7.2.3.10.
9

Response Used to inform a client how long to wait before requesting the
Task information again.

7.2.3.10.1 If-Match request header 1252

The MC shall support the If-Match header when applied to Redfish HTTP/HTTPS PUT and PATCH 1253
operations; support for other Redfish operations is optional. 1254

The parameter for this header is an ETag. 1255

In order to support this header, the MC shall convey the supplied ETag to the RDE Device via the 1256
ETag[0] field of the PLDM SupplyCustomRequestParameters command (clause 12.2) request message 1257
and supply the value ETAG_IF_MATCH for the ETagOperation field of the same message. For this 1258
header, the MC shall supply the value 1 for the ETagCount field of the request message. 1259

When the RDE Device receives an ETAG_IF_MATCH within the ETagOperation field in the 1260
SupplyCustomRequestParameters command, it shall verify that the ETag matches the current state of the 1261
targeted schema data instance before proceeding with the RDE Operation. In the event of a mismatch, it 1262
shall respond to the SupplyCustomRequestParameters command with completion code 1263
ERROR_ETAG_MATCH. 1264

In the event that both an If-Match and If-None-Match request header are supplied by the client, the MC 1265
shall respond with HTTP status code 400 – Bad Request – to the client and stop processing the request. 1266
The MC shall not send such a malformed request to the RDE Device. 1267

7.2.3.10.2 If-None-Match request header 1268

The MC may optionally support the If-None-Match header when applied to Redfish HTTP/HTTPS GET 1269
and HEAD operations. 1270

The parameter for this header is a comma-separated list of ETags. 1271

In order to support this header, the MC shall convey the supplied ETag(s) to the RDE Device via the 1272
ETag[i] fields of the PLDM SupplyCustomRequestParameters command (clause 12.2) request message 1273
and supply the value ETAG_IF_NONE_MATCH for the ETagOperation field of the same message. For 1274
this header, the MC shall supply the value N for the ETagCount field of the request message where N is 1275
the number of entries in the comma-separated list. 1276

When the RDE Device receives an ETAG_IF_NONE_MATCH within the ETagOperation field in the 1277
SupplyCustomRequestParameters command, it shall verify that none of the supplied ETags matches the 1278
current state of the targeted schema data instance before proceeding with the RDE Operation. In the 1279

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 47

event of a match, it shall respond to the SupplyCustomRequestParameters command with completion 1280
code ERROR_ETAG_MATCH. 1281

In the event that both an If-Match and If-None-Match request header are supplied by the client, the MC 1282
shall respond with HTTP status code 400 – Bad Request – to the client and stop processing the request. 1283
The MC shall not send such a malformed request to the RDE Device. 1284

7.2.3.10.3 Custom HTTP headers 1285

The MC shall support custom headers when applied to any Redfish HTTP/HTTPS operation. For 1286
purposes of this specification, an RDE custom header shall be considered as one with a prefix “PLDM-1287
RDE-“. Unless explicitly specified in this specification, no standard handling is described for RDE custom 1288
headers either in this specification or in DSP0266. All discussion of custom headers in this specification 1289
shall be restricted to HTTP/HTTPS custom headers of this form. 1290

The parameters for custom headers will vary by actual header type. 1291

In order to support RDE custom headers, the MC shall bundle them (including the PLDM-RDE prefix) into 1292
the request message for an invocation of the SupplyCustomRequestParameters command (clause 12.2). 1293
To do so, the MC shall set the HeaderCount request parameter to the number of custom request 1294
parameters. For each RDE custom request parameter n, the MC shall set HeaderName[n] and 1295
HeaderParameter[n] to the name and value of the request parameter, respectively. Custom headers other 1296
than those prefixed “PLDM-RDE-“ shall not be supplied to RDE Devices in this manner. 1297

When the RDE Device receives RDE custom request parameters, it may perform any custom handling for 1298
the parameter. If it does not support a specific RDE custom request parameter received, the RDE Device 1299
shall respond with the ERROR_UNRECOGNIZED_CUSTOM_HEADER completion code. 1300

Similarly, when the RDE Device has custom response parameters to send back to a client, it shall set the 1301
HaveCustomResponseParameters flag in the OperationExecutionFlags response field of the 1302
RDEOperationInit, SupplyCustomRequestParameters, or RDEOperationStatus command to ask the MC 1303
to retrieve these parameters. Then, in response to the RetrieveCustomResponseParameters command 1304
(clause 12.3), the RDE Device shall set the ResponseHeaderCount field to the number of custom 1305
response headers it wants to send back to the client. For each custom response parameter n, the RDE 1306
Device shall set HeaderName[n] and HeaderParameter[n] to the name and value of the response 1307
parameter, respectively. 1308

Following completion of the main Operation, the MC shall check the HaveCustomResponseParameters 1309
flag in the OperationExecutionFlags response field to see if the RDE Device is supplying custom 1310
response headers (which should have a PLDM-RDE prefix). If the flag is set (with value 1b), the MC shall 1311
use the RetrieveCustomResponseParameters command (clause 12.3) to recover them from the RDE 1312
Device. The MC shall then append the recovered headers to the Redfish Operation response. 1313

7.2.3.10.3.1 PLDM-RDE-Expand-Type 1314

The MC may optionally support use of the PLDM-RDE-Expand-Type header when it receives a Redfish 1315
HTTP/HTTPS GET operation with the $expand query option (see clause 7.2.3.11.3) to convey the 1316
expansion type parameter to the RDE Device. 1317

The parameter for this header is the type of expansion to be used in the expansion, one of 1318
EXPAND_DOT (“.”), EXPAND_TILDE (“~”), or EXPAND_STAR (“*”) and shall match the parameter given 1319
as the value of the $expand query option. If this header is not supplied to the RDE Device, expansion 1320
shall default to type EXPAND_DOT. If no expansion type is supplied to the $expand query option, the MC 1321
may either send this header with the default type (EXPAND_DOT) or omit it. 1322

PLDM for Redfish Device Enablement DSP0218

48 Published Version 1.2.0

7.2.3.10.4 ETag response header 1323

The MC shall provide an ETag header in response to every Redfish HTTP/HTTPS GET or HEAD 1324
operation. 1325

The parameter for this header is an ETag. 1326

In order to support this header, the RDE Device shall generate a digest of the schema data instance after 1327
each modification to the data in accordance with RFC 7232. When the MC begins a GET or HEAD 1328
operation to the RDE Device via a PLDM RDEOperationInit command (clause 12.1), the RDE Device 1329
shall populate the ETag field in the response message to the command where the RDE Operation has 1330
completed (one of RDEOperationInit, SupplyCustomRequestParameters, or RDEOperationStatus) with 1331
this digest. 1332

When it receives an ETag field in the response message for a completed RDE Operation, the MC shall 1333
then populate this header with the digest it receives. 1334

7.2.3.10.5 Link response header 1335

The MC shall provide one or more Link headers in response to every Redfish HTTP/HTTPS GET and 1336
HEAD operation as described in DSP0266. 1337

The parameter for this header is a URI. 1338

This header has three forms as described in DSP0266; all three shall be supported by MCs. The handling 1339
for these three forms is detailed in the next three clauses. 1340

No special action is needed on the part of an RDE Device to support any form of the link response 1341
header. 1342

7.2.3.10.5.1 Schema form 1343

The MC shall provide a link header with “rel=describedby” to provide a schema link for the data that is or 1344
would be returned in response to a Redfish HTTP/HTTPS GET or HEAD operation. The MC may obtain 1345
this link in any of several manners: 1346

• An @odata.context annotation in read data may contain the schema reference. 1347

• The MC may have the schema reference cached. 1348

• The MC may retrieve the schema reference directly from the PDR encapsulating the instance of 1349
the schema data by invoking the PLDM GetSchemaURI command (clause 11.4). 1350

An example of a schema form link header is as follows; readers are referred to DSP0266 for more detail: 1351

Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby 1352

7.2.3.10.5.2 Annotation form 1353
The MC should provide a link header to provide an annotation link for the data that is or would be 1354
returned in response to a Redfish HTTP/HTTPS GET or HEAD operation. The MC may obtain this link in 1355
any of several manners: 1356

• The MC may inspect annotations to determine whether @odata or @Redfish annotations are 1357
used. 1358

• The MC may retrieve the schema reference directly from the PDR encapsulating the instance of 1359
the schema data by invoking the PLDM GetSchemaURI command (clause 11.4) 1360

An example of an annotation form link header is as follows; readers are referred to DSP0266 for more 1361
detail: 1362

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 49

 Link: <http://redfish.dmtf.org/schemas/Settings.json> 1363

7.2.3.10.5.3 Passthrough form 1364

The MC shall translate link annotations returned from the RDE Device in response to a Redfish 1365
HTTP/HTTPS GET operation into link headers. In this form, the MC shall also include the schema path to 1366
the link. 1367

An example of a passthrough form link header is as follows; readers are referred to DSP0266 for more 1368
detail: 1369

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role 1370

7.2.3.10.6 Location response header 1371

The MC shall provide a Location header in response to every Redfish HTTP/HTTPS POST that effects a 1372
successful create operation. The MC shall also provide a Location header in response to every Redfish 1373
Operation that spawns a long-running Task when executed as an RDE Operation. 1374

The parameter for this header is a URI. 1375

In order to support this header for completed create operations, the RDE Device shall populate the 1376
NewResourceID response parameter in the response message for the 1377
RetrieveCustomResponseParameters command (clause 12.3) with the Resource ID of the newly created 1378
collection element. Upon receipt, the MC shall combine this resource ID with the topology information 1379
contained in the Redfish Resource PDRs for the targeted PDR up through the device component root to 1380
create a local URI portion that it shall then combine with its external management URI for the RDE Device 1381
to build a complete URI for the newly added collection element. The MC shall then populate this header 1382
with the resulting URI. 1383

In order to support this header for Redfish Operations that spawn long-running Tasks when executed as 1384
RDE Operations, the MC shall generate a TaskMonitor URL for the Operation and populate the Location 1385
header with the generated URL. See clause 7.2.5 for more details. 1386

7.2.3.10.7 Cache-Control response header 1387

The MC shall provide a Cache-Control header in response to every Redfish HTTP/HTTPS GET or HEAD 1388
operation. 1389

In order to support this header for HTTP/HTTPS GET operations, the RDE Device shall mark the 1390
CacheAllowed flag in the OperationExecutionFlags field of the response message for the triggering 1391
command for the read or head Operation with an indication of the caching status of data read. 1392

When the MC reads the CacheAllowed flag in the OperationExecutionFlags field of the response 1393
message for a completed RDE Operation, it shall populate the Cache-Control response header with an 1394
appropriate value. Specifically, if the RDE Device indicates that the data is cacheable, the MC shall 1395
interpret this as equivalent to the value “public” as defined in RFC 7234; otherwise, the MC shall interpret 1396
this as equivalent to the value “no-store” as defined in RFC 7234. 1397

7.2.3.10.8 Allow response header 1398

The MC shall provide an Allow header in response to every Redfish HTTP/HTTPS operation that is 1399
rejected by the RDE Device specifically for the reason of being a disallowed operation, giving the 1400
ERROR_NOT_ALLOWED completion code (clause 7.5). The MC shall additionally provide an Allow 1401
response header in response to every GET (or HEAD, if supported) Redfish operation. 1402

PLDM for Redfish Device Enablement DSP0218

50 Published Version 1.2.0

In order to support this header, when the RDE Device responds to an RDE command with 1403
ERROR_NOT_ALLOWED, or in response to a GET or HEAD Redfish operation, it shall populate the 1404
PermissionFlags field of its response message with an indication of the operations that are permitted. 1405

When the MC reads the PermissionFlags field of the response message for a completed RDE Operation, 1406
the MC shall populate this header with the supplied information. 1407

7.2.3.10.9 Retry-After response header 1408

The MC shall provide a Retry-After header in response to every non-HEAD Redfish Operation that when 1409
conveyed to the RDE Device results in any transient failure (ERROR_NOT_READY; see clause 7.5). 1410

The parameter for this header is the length of time in seconds the client should wait before retrying the 1411
request. 1412

When the RDE Device needs to defer an RDE Operation, it shall return ERROR_NOT_READY in 1413
response to the RDEOperationInit command that begins the Operation. The RDE Device must now 1414
choose whether to supply a specific deferral timeframe or to use the default deferral timeframe. To specify 1415
a specific deferral timeframe, the RDE Device shall also set the HaveCustomResponseParameters flag in 1416
the OperationExecutionFlags response field of the RDEOperationInit command to inform the MC that it 1417
should retrieve deferral information. Then, if it did set the HaveCustomResponseParameters flag, in 1418
response to the RetrieveCustomResponseParameters command (clause 12.3), the RDE Device shall set 1419
the DeferralTimeframe and DeferralUnits parameters appropriately to indicate how long it is requesting 1420
the client to wait before resubmitting the request. 1421

As an alternative to specifying a deferral timeframe via the response message for 1422
RetrieveCustomResponseParameters, the RDE Device may skip setting the 1423
HaveCustomResponseParameters flag in the OperationExecutionFlags response field of the 1424
RDEOperationInit command to request that the MC supply a default deferral timeframe on its behalf. 1425

When it receives the response to the RDEOperationInit command, the MC shall check the 1426
HaveCustomResponseParameters flag in the OperationExecutionFlags response field to see if the RDE 1427
Device has an extended response. If the flag is set (with value 1b), the MC shall use the 1428
RetrieveCustomResponseParameters command (clause 12.3) to recover the deferral timeframe from the 1429
DeferralTimeframe and DeferralUnits fields of the response message. If the flag was not set, or if the RDE 1430
Device supplied an unknown deferral timeframe (0xFF), the MC shall use a default value of 5 seconds. It 1431
shall then populate this header with the deferral value. 1432

Both the MC and RDE Device shall be prepared for possibility that the client may retry the operation 1433
before this deferral timeframe elapses: Operations can be re-initiated by impatient end users. 1434

7.2.3.11 Redfish Operation request query options 1435

In addition to HTTP/HTTPS headers, the standard Redfish management protocol defines several query 1436
options that a client may specify in a URI to narrow the request in Redfish GET Operations. For any query 1437
option not listed here, the MC may support it in a fashion as described in DSP0266. 1438

Table 35 – Redfish operation request query options 1439

Query
Option

Clause Description Example

$skip 7.2.3.11.
1

Integer indicating the number of Members in
the Resource Collection to skip before
retrieving the first resource.

http://resourcecollection?$sk
ip=5

$top 7.2.3.11.
2

Integer indicating the number of Members to
include in the response.

http://resourcecollection?$to
p=30

http://resourcecollection/?$skip=5
http://resourcecollection/?$skip=5
http://resourcecollection/?$top=30
http://resourcecollection/?$top=30

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 51

$expand 7.2.3.11.
3

Expand schema links, gluing data together
into a single response.
Collection:
 Collection by name
 * = all links
 . = all but those in Links

http://resourcecollection?$ex
pand=collection($levels=4)

$levels 7.2.3.11.
4

Qualifier on $expand; number of links to
expand out

http://resourcecollection?$ex
pand=collection($levels=4)

$select 7.2.3.11.
5

Top-level or a qualifier on $expand; says to
return just the specified properties

http://resourcecollection?
$select=FirstName,LastName
http://resourcecollection$exp
and=collection($select=FirstN
ame,LastName;$levels=4)

excerpt 7.2.3.11.
6

Returns a subset of the resource's properties
that match the defined Excerpt schema
annotation.

http://resource?excerpt

$filter n/a Limit results of a READ operation to a subset
of the resource collection's members based on
a $filter expression that follows the OData-
Protocol Specification.

n/a: $filter is not supported in this
specification

only n/a Applies to resource collections. If the target
resource collection contains exactly one
member, clients can use this query parameter
to return that member's resource.

n/a: only is not supported in this
specification

Support requirements for query parameters are described in Table 36. 1440

Table 36 – Query parameter support requirement 1441

Query Option RDE Device MC

$skip Optional Should support

$top Optional Should support

$expand Optional Should support

$levels Optional May support

$select Optional May support

$filter Should not support May support

7.2.3.11.1 $skip query option 1442

The MC should support $skip query options when provided as part of a target URI for a Redfish 1443
HTTP/HTTPS GET operation. 1444

The parameter for this query option is an integer representing the number of members of a resource 1445
collection to skip over. See DSP0266 for more details on the usage of $skip. 1446

To support this query option, the MC shall supply the $skip parameter in the CollectionSkip field of the 1447
SupplyCustomRequestParameters (clause 12.2) request message. In the event that this query option is 1448
not supplied as part of the target URI for an HTTP/HTTPS GET operation, the MC shall supply a value of 1449
zero in this field if it otherwise needs to supply extended request parameters; it shall not send the 1450
SupplyCustomRequestParameters just to supply a value of zero for the CollectionSkip field. 1451

http://resourcecollection/?$expand=collection($levels=4)
http://resourcecollection/?$expand=collection($levels=4)
http://resourcecollection$expand=collection($select=firstname,lastname;$levels=4)/
http://resourcecollection$expand=collection($select=firstname,lastname;$levels=4)/
http://resourcecollection$expand=collection($select=firstname,lastname;$levels=4)/

PLDM for Redfish Device Enablement DSP0218

52 Published Version 1.2.0

When processing an RDE read Operation for a resource collection, the RDE Device shall check the 1452
CollectionSkip parameter from the SupplyCustomRequestParameters request message to determine the 1453
number of members to skip over in its response, per DSP0266. In the event that the MC did not indicate 1454
the presence of extended request parameters, the RDE Device shall interpret this as a CollectionSkip 1455
value of zero. If the parameter for $skip equals the number of elements in the collection, the RDE Device 1456
shall return an empty list. If the parameter for $skip exceeds the number of elements in the collection, the 1457
RDE Device shall return ERROR_OPERATION_FAILED and, in accordance with the Redfish standard 1458
DSP0266 respond with an annotation specifying that the value is invalid (see 1459
QueryParameterOutOfRange in the Redfish base message registry). 1460

7.2.3.11.2 $top query option 1461

The MC should support $top query options when provided as part of the target URI for a Redfish 1462
HTTP/HTTPS GET operation. 1463

The parameter for this query option is an integer representing the number of members of a resource 1464
collection to return. See DSP0266 for more details on the usage of $top. If the parameter for $top 1465
exceeds the remaining number of members in a resource collection, the number returned shall be 1466
truncated to those remaining. For a $top value of zero, the response shall consist of an empty list. 1467

To support this query option, the MC shall supply the $top parameter in the CollectionTop field of the 1468
SupplyCustomRequestParameters (clause 12.2) request message. In the event that this query option is 1469
not supplied as part of the target URI for an HTTP/HTTPS GET operation, the MC shall supply a value of 1470
0xFFFF in this field; it shall not send the SupplyCustomRequestParameters just to supply a value of 1471
unlimited for the CollectionTop field. 1472

When processing an RDE read Operation for a resource collection, the RDE Device shall check the 1473
CollectionTop parameter from the SupplyCustomRequestParameters request message to determine the 1474
number of members to respond with, per DSP0266. The RDE Device shall interpret a value of 0xFFFF as 1475
indicating that there is no limit to the number of members it should return for the referenced resource 1476
collection. In the event that the MC did not indicate the presence of extended request parameters, the 1477
RDE Device shall interpret this as a CollectionTop value of unlimited. 1478

7.2.3.11.3 $expand query option 1479

The MC should support $expand query options when provided as part of the target URI for a Redfish 1480
HTTP/HTTPS GET operation. 1481

The parameter for this query option is a string representing the links (Navigation properties) to expand in 1482
place, “gluing together” the results of multiple reads into a single JSON response payload. This parameter 1483
may be an absolute string specifying the exact link to be expanded, or it may be any of three wildcards. 1484
The first wildcard, an asterisk (*), means that all links should be expanded. The second wildcard, a dot (.), 1485
means that subordinate links (those that are directly referenced i.e., not in the Links Property section of 1486
the resource) should be expanded. The third wildcard, a tilde (~), means that dependent links (those that 1487
are not directly referenced i.e., in the Links Property section of the resource) should be expanded. See 1488
DSP0266 for more details on the usage of $expand. 1489

To support an expansion type wildcard received from the Redfish Client, the MC should send the PLDM-1490
RDE-Expand-Type custom header described in clause 7.2.3.10.3.1 to the RDE Device via the 1491
SupplyCustomRequestParameters command of clause 12.2. 1492

If the $levels query option qualifier is not present in conjunction with the $expand query option, the MC 1493
shall treat this as equivalent to $levels=1. 1494

To support the $expand query option, the RDE Device should concatenate linked resource data into the 1495
BEJ data it returns for an RDE read Operation, using the bejResourceLinkExpansion PLDM data type 1496
described in Clause 5.3.23. 1497

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 53

7.2.3.11.4 $levels query option qualifier 1498

The MC should support the $levels qualifier to the $expand query option when provided as part of the 1499
target URI for a Redfish HTTP/HTTPS GET operation or when provided implicitly by having $expand 1500
provided as part of a Redfish HTTP/HTTPS GET operation without having the $levels query option 1501
qualifier supplied. 1502

The parameter for this query option is an integer representing the number of schema links to expand into. 1503
If no $level qualifier is present, the MC shall interpret this as equivalent to $levels=1. 1504

To support this parameter, the MC can select between two choices: passing it on to the RDE Device or 1505
supporting it itself. The method by which this choice is made is implementation-specific and out of scope 1506
for this specification. If the RDE Device indicates that it cannot support $levels expansion by setting the 1507
expand_support bit to zero in the DeviceCapabilitiesFlags in the response message to the 1508
NegotiateRedfishParameters command (clause 11.1), or if the expansion type is not “All Links” (see 1509
clause 7.2.3.11.3), the MC shall not select passing it to the RDE Device. 1510

If the MC chooses to pass this query option to the RDE Device, it shall transmit the supplied value to the 1511
RDE Device via the SupplyCustomRequestParameters command in the LinkExpand parameter. 1512

If the MC chooses to handle this query option itself, it shall recursively issue reads to “expand out” data 1513
for links embedded in data it reads. Such links may be identified during the BEJ decode process as tuples 1514
with a format of bejResourceLink (clause 5.3.21). The corresponding value of the node represents the 1515
Resource ID for the Redfish Resource PDR representing the data to embed within the structure of data 1516
already read. The $levels qualifier dictates the depth of recursion for this process. 1517

When the RDE Device receives a LinkExpand value of greater than zero in extended request parameters 1518
as part of an RDE read operation, it shall “expand out” all resource links (as defined in DSP0266) to the 1519
indicated depth by encoding them as bejResourceLinkExpansions in the response BEJ data for the 1520
command. If the RDE Device previously did not set the expand_support flag in the 1521
DeviceCapabilitiesFlags field of the NegotiateRedfishParameters command, it may instead ignore the 1522
value (treating it as zero). 1523

Implementers should refer to DSP0266 for more details and caveats to be applied when expanding links 1524
with $levels > 1. 1525

7.2.3.11.5 $select query option qualifier 1526

The MC may support $select as a qualifier to the $expand query option or as a standalone query option, 1527
provided in either case as part of the target URI for a Redfish HTTP/HTTPS GET operation. 1528

The parameter for this query option is a string containing a comma-separated list of properties to be 1529
retrieved from the GET operation; the caller is asking that all other properties be suppressed. See 1530
DSP0266 for more details on the usage of $select. 1531

If it supports this parameter, the MC should perform the GET operation normally up to the point of 1532
retrieving BEJ-formatted data from the RDE Device. When decoding the BEJ data, however, the MC 1533
should silently discard any property not part of the $select list. 1534

No action is needed on the part of an RDE Device to support this query option. 1535

7.2.3.11.6 Excerpt query option 1536

The MC may support the excerpt query option when provided as part of a target URI for a Redfish 1537
HTTP/HTTPS GET operation. There is no parameter for this command. 1538

To support this parameter, the MC shall set the excerpt_flag in the OperationFlags field of the 1539
RDEOperationInit request command. Thereafter, no special treatment is required on the part of the MC. 1540

PLDM for Redfish Device Enablement DSP0218

54 Published Version 1.2.0

When the RDE Device is flagged that the client requested an excerpt, it may support the request by 1541
restricting properties returned in the read to those flagged with the excerpt schema annotation. If the 1542
schema does not contain any such flagged properties, or if the RDE Device does not support the excerpt 1543
query option, it shall return the complete resource. 1544

Further details of the excerpt query option may be found in DSP0266. 1545

7.2.3.12 HTTP/HTTPS status codes 1546

The MC shall comply with DSP0266 in all matters pertaining to the HTTP/HTTPS status codes returned 1547
for Redfish GET, PATCH, PUT, POST, DELETE, and HEAD operations. Typical status codes for 1548
operational errors may be found in clause 7.5. 1549

7.2.3.13 Multihosting and Operations 1550

A single RDE Device may find that it is attached to multiple MCs. This can introduce complications from 1551
concurrency if conflicting Operations are issued and requires an RDE Device to decide whether an 1552
Operation should be visible to an MC other than the one that issued it. Support for multiple MCs is out of 1553
scope for this specification. In particular, the behavior of the RDE Device in the face of concurrent 1554
commands from multiple MCs is undefined. 1555

7.2.4 PLDM RDE Events 1556

An Event is an abstract representation of any happening that transpires in the context of the RDE Device, 1557
particularly one that is outside of the normal command request/response sequence. A Redfish Message 1558
Event consists of JSON data that includes elements such as the index of a standardized text string and a 1559
collection of parameters that provide clarification of the specifics of the Event that has transpired. The full 1560
schema for Events may be found in the standard Redfish Message schema; additionally, OEM extensions 1561
to this schema are possible. 1562

In this specification, a second class of events, Task Executed Events, allow RDE Devices to report that a 1563
Task has finished executing and that the MC should retrieve Operation results. The data for these events 1564
includes elements such as the Operation identifier and the resource with which the Operation is 1565
associated. 1566

As with any other PLDM eventing, the RDE Device advertises that it supports Events by listing support for 1567
the PLDM for Platform Monitoring and Control SetEventReceiver command (see DSP0248). The MC, for 1568
its part, may then select between two methods by which it will know that Events are available. If the MC 1569
configured the RDE Device to use asynchronous events through the SetEventReceiver command, the 1570
RDE Device shall use the PLDM for Platform Monitoring and Control PlatformEventMessage command 1571
(see DSP0248) to inform the MC by sending the Event directly. Otherwise, the RDE Device can be 1572
configured to polling mode using the same SetEventReceiver command. The MC uses the PLDM for 1573
Platform Monitoring and Control PollForPlatformEventMessage command (see DSP0248) for this 1574
purpose. The selection of any polling interval is determined by the MC and is outside the scope of this 1575
specification. 1576

Whether retrieved synchronously or asynchronously, once the MC gets the Event, it may process it. 1577
Redfish Message Events are packaged using the redfishMessageEvent eventClass; Task Executed 1578
Events are packaged using the redfishTaskExecutedEvent eventClass (see DSP0248 for both 1579
eventClasses). 1580

A PLDM Event Receiver may receive RDE events from the device before the RDE device registration and 1581
it can cache them or discard them based on Event Receiver capability. The PLDM Event Receiver (e.g. 1582
MC) can process the cached events after RDE Device registration is complete. The number of RDE 1583
events cached by the PLDM Event Receiver is outside the scope of this specification. If the MC wishes to 1584
guarantee processing of RDE events, it should defer the PLDM for Platform Monitoring and Control 1585
SetEventReceiver command until after the RDE device registration. 1586

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 55

Handling of Task Executed Events is described with Tasks in clause 7.2.5. For Redfish Message Events, 1587
the MC may decode the BEJ-formatted payload of Event data using the appropriate Event schema 1588
dictionary specific to the PDR from which the message was sent. 1589

For a more detailed view of the Event lifecycle, see clause 9.3. 1590
NOTE Events are optional in standard Redfish; however, support for Task Executed Events is mandatory in this 1591
specification if the RDE Device supports asynchronous execution for long-running Operations. 1592

7.2.4.1 [MC] Event subscriptions 1593

In Redfish, a client may request to be notified whenever a Redfish Event occurs. Per DSP0266, to do so, 1594
the client uses a Redfish CREATE operation to add a record to the EventSubscription collection. This 1595
record in turn contains information on the various Event types that the client wishes to receive Events for. 1596
To unsubscribe, the client uses a Redfish DELETE operation to remove its record. Among other 1597
properties, the EventSubscription record contains a URI to which the Event should be forwarded. MCs 1598
that support Events shall support at least one Redfish event subscription. 1599

Event types are global across all schemas; there is no provision at this time (DSP0266 v1.6) in Redfish 1600
for a client to subscribe to just one schema at a time. Further, there is generally no capacity for an RDE 1601
Device to send an HTTP/HTTPS record directly to an external recipient. Events are optional in Redfish; 1602
however, if the MC chooses to provide Event subscription support, it must comply with the following 1603
requirements: 1604

• The MC shall provide full support for the EventSubscription collection as a Redfish Provider per 1605
DSP0266. 1606

• When it receives an Event subscription request (in the form of a Redfish CREATE operation on 1607
the EventSubscription collection), the MC shall parse the EventTypes array property of the 1608
request to identify the type or types of Events the client is interested in receiving 1609

• When the MC receives a Redfish Message Event from an RDE Device, it shall check the 1610
EventType of the Event received against the desired EventTypes for each active client. For 1611
each match, the MC shall forward the Event (translating any @Message.ExtendedInfo 1612
annotations, of course, from BEJ to JSON) to the client as a standard Redfish Provider for the 1613
Event service. 1614

7.2.5 Task support 1615

In PLDM for Redfish Device Enablement, every Redfish HTTP/HTTPS operation is effected as an RDE 1616
Operation. Most Operations, once sent to the RDE Device for execution, may be executed quickly and 1617
the results sent directly in the response message to the request message that triggered them. 1618

It may however transpire that in order for an RDE Device to complete an Operation, it requires more time 1619
than the available window within which the RDE Device is required to send a response. In this case, the 1620
RDE Device has two possible paths to follow. If the current number of extant Tasks is less than the RDE 1621
Device/MC capability intersection (as determined from the call to NegotiateRedfishParameters; see 1622
clause 11.1), the RDE Device shall mark the Operation as a long-running Task and execute it 1623
asynchronously. Otherwise, the RDE Device shall return ERROR_CANNOT_CREATE_OPERATION in 1624
its response message to indicate that no new Task slots are available (see clause 7.5). 1625

While the internal data structures used by an RDE Device to manage an Operation are outside the scope 1626
of this specification, they should include at a minimum the rdeOpID assigned (usually by the MC) when 1627
the Operation was first created. This allows the MC to reference the Task in subsequent commands to kill 1628
it (RDEOperationKill, clause 12.6) or query its status (RDEOperationStatus, clause 12.5). 1629

For its part, the MC shall provide full support for the Task collection as a Redfish Provider per DSP0266. 1630
When the MC finds that an Operation has spawned a Task, it shall perform the following steps in order to 1631
comply with the requirements of DSP0266: 1632

PLDM for Redfish Device Enablement DSP0218

56 Published Version 1.2.0

2) The MC shall instantiate a new TaskMonitor URL and a new member of the Task collection. The 1633
TaskMonitor URL should incorporate or reference (such as via a lookup table) the following data so 1634
that it can map from the TaskMonitor URL back to the correct Redfish resource – and thus the 1635
correct dictionary – for providing status query updates: 1636

a) The ResourceID for the resource to which the RDE Operation was targeted 1637

b) The rdeOpID for the Operation itself 1638

2) The MC shall return response code 202, Accepted, to the client and include the Location response 1639
header populated with the TaskMonitor URL. 1640

3) In response to a subsequent Redfish GET Operation applied to the TaskMonitor URL or to the Task 1641
collection member, the MC shall invoke the RDEOperationStatus (see clause 12.5) command to 1642
obtain the latest status for the Operation and communicate it to the client in accordance with 1643
DSP0266. If the GET was applied to a TaskMonitor URL and the Operation has been completed, the 1644
MC shall supply the completed results to the client. 1645

a) If the result of the RDEOperationStatus command was that the Operation has finished 1646
execution, the MC shall delete both the TaskMonitor URL and the Task collection member 1647
associated with the Operation. 1648

4) In response to a Redfish DELETE Operation applied to the TaskMonitor URL or to the Task 1649
collection member, the MC shall attempt to abort the associated Operation via the RDEOperationKill 1650
(see clause 12.6) command. It shall then remove both the TaskMonitor URL and the Task collection 1651
member. 1652

5) If the RDE Operation finishes before the client polls the TaskMonitor URL, the MC may collect and 1653
store the results of the Operation. 1654

a) In accordance with DSP0266, the MC should retain Operation results until the client retrieves 1655
them. It may refuse to accept further Operations until previous results have been claimed. 1656

b) If the client attempts to collect Operation results after the MC has discarded them, the MC shall 1657
respond with an error HTTP status code as defined in DSP0266. 1658

When the RDE Device finishes execution of a Task, it generates a Task Executed Event to inform the MC 1659
of this status change. The MC can then retrieve the results (via RDEOperationStatus) and eventually 1660
forward them to the client. To mark the Task as complete and allow the RDE Device to discard any 1661
internal data structures used to manage the Task, the MC shall call RDEOperationComplete (clause 1662
12.4). 1663

For a more detailed overview of the Operation/Task lifecycle from the MC’s perspective, see clause 1664
7.2.3.9.1.3. A detailed flowchart of the Operation/Task lifecycle may be found in clause 9.2.2, and a finite 1665
state machine for the Task lifecycle (from the RDE Device’s perspective) may be found in clause 9.2.3. 1666

7.3 Type code 1667

Refer to DSP0245 for a list of PLDM Type Codes in use. This specification uses the PLDM Type Code 1668
000110b as defined in DSP0245. 1669

7.4 Transport protocol type supported 1670

PLDM can support bindings over multiple interfaces; refer to DSP0245 for the complete list. All transport 1671
protocol types can be supported for the commands defined in Table 51. 1672

7.5 Error completion codes 1673

Table 37 lists PLDM completion codes for Redfish Device Enablement. The usage of individual error 1674
completion codes is defined within each of the PLDM command clauses. When communicating results 1675
back to the client, implementations should provide HTTP error codes as described below. 1676

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 57

Table 37 – PLDM for Redfish Device Enablement completion codes 1677

Value Name Description HTTP Error
Code

Various PLDM_BASE_CODES Refer to DSP0240 for a full list of
PLDM Base Code Completion
values that are supported.

See below.

128 (0x80) ERROR_BAD_CHECKSUM A transfer failed due to a bad
checksum and should be restarted.

MC should retry
transfer. If retry
fails, 500 Internal
Server Error

129 (0x81) ERROR_CANNOT_CREATE_OPERATI
ON

An Operation-based command
failed because the RDE Device
could not instantiate another
Operation at this time.

503 Service
Unavailable

130 (0x82) ERROR_NOT_ALLOWED The client and/or MC is not allowed
to perform the requested Operation.

405 Method Not
Allowed

131 (0x83) ERROR_WRONG_LOCATION_TYPE A Create, Delete, or Action
Operation attempted against a
location that does not correspond to
the right type.

405 Method Not
Allowed

132 (0x84) ERROR_OPERATION_ABANDONED An Operation-based command
other than completion was
attempted with an Operation that
has timed out waiting for the MC to
progress it in the Operation
lifecycle.

410 Gone

133 (0x85) ERROR_OPERATION_UNKILLABLE An attempt was made to kill an
Operation that has already finished
execution or that cannot be aborted.

409 Conflict

134 (0x86) ERROR_OPERATION_EXISTS An Operation initialization was
attempted with an rdeOpID that is
currently active.

N/A – MC retries
with a new
rdeOpID

135 (0x87) ERROR_OPERATION_FAILED An Operation-based command
other than completion was
attempted with an Operation that
has encountered an error in the
Operation lifecycle.

400 Bad
Request

136 (0x88) ERROR_UNEXPECTED A command was sent out of
context, such as sending
SupplyCustomRequestParameters
when Operation initialization flags
did not indicate that the Operation
requires them.

500 Internal
Server Error

138 (0x89) ERROR_UNSUPPORTED An attempt was made to initialize an
operation not supported by the RDE
Device, to write to a property that
the RDE Device does not support,
or a command was issued
containing a text string in a format
that the recipient cannot interpret.

400 Bad
Request

144 (0x90) ERROR_UNRECOGNIZED_CUSTOM_
HEADER

The RDE Device received a custom
PLDM-RDE header (via
SupplyCustomRequestParameters)
that it does not support.

412 Precondition
Failed

PLDM for Redfish Device Enablement DSP0218

58 Published Version 1.2.0

Value Name Description HTTP Error
Code

145 (0x91) ERROR_ETAG_MATCH The RDE Device received one or
more ETags that did not match an
If-Match or If-None-Match request
header.

412,
Precondition
Failed (If-Match)
or 304, not
modified (If-
None-Match)

146 (0x92) ERROR_NO_SUCH_RESOURCE An Operation command was
invoked with a resource ID that
does not exist.

404, Not Found

147 (0x93) ETAG_CALCULATION_ONGOING Calculating the ETag in response to
the GetResourceETag command is
taking too long to provide an
immediate response.

N/A – MC retries
with the same
command later

148 (0x94) ERROR_INSUFFICIENT_STORAGE The RDE Device lacks storage to
process the request, such as being
unable to return a payload due to its
size.

507 Insufficient
Storage

HTTP Error codes returned when Operations complete with standard PLDM completion codes should be 1678
as follows: 1679

Table 38 – HTTP codes for standard PLDM completion codes 1680

Name Description HTTP Error
Code

SUCCESS Normal success 200 Success,
202 Accepted
for an
Operation that
spawned a
Task, or 204
No Content for
an Action that
has no
response

ERROR
Generic error

400 Bad
Request

ERROR_INVALID_DATA Invalid data or a bad parameter value 500 Internal
Server Error

ERROR_INVALID_LENGTH Incorrectly formatted request method 500 Internal
Server Error

ERROR_NOT_READY Device transiently busy 503 Service
Unavailable

ERROR_UNSUPPORTED_PLDM_CMD Command not supported 501 Not
Implemented

ERROR_INVALID_PLDM_TYPE Not a supported PLDM type 501 Not
Implemented

7.6 Timing specification 1681

Table 39 below defines timing values that are specific to this document. The table below defines the 1682
timing parameters defined for the PLDM Redfish Specification. In addition, all timing parameters listed in 1683
DSP0240 for command timeouts, command response times, and number of retries shall also be followed. 1684

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 59

Table 39 – Timing specification 1685

Timing
specification

Symbol Min Max Description

PLDM Base Timing PNx
PTx
(see
DSP0240)

(See
DSP0240)

(See
DSP0240)

Refer to DSP0240 for the details
on these timing values.

Operation/Transfer
abandonment

Tabandon 120
seconds

none Time between when the RDE
Device is ready to advance an
Operation through the Operation
lifecycle and when the MC must
have initiated the next step. If the
MC fails to do so, the RDE Device
may consider the Operation as
abandoned.
Also used in follow up to a
GetSchemaDictionary command to
mark the time between when the
MC receives one chunk of
dictionary data and when it must
request the next chunk. If the MC
fails to do so, the RDE Device may
consider the transfer as
abandoned.

8 Binary Encoded JSON (BEJ) 1686

This clause defines a binary encoding of Redfish JSON data that will be used for communicating with 1687
RDE Devices. At its core, BEJ is a self-describing binary format for hierarchical data that is designed to 1688
be straightforward for both encoding and decoding. Unlike in ASN.1, BEJ uses no contextual encodings; 1689
everything is explicit and direct. While this requires the insertion of a bit more metadata into BEJ encoded 1690
data, the tradeoff benefit is that no lookahead is required in the decoding process. The result is a 1691
significantly streamlined representation that fits in a very small memory footprint suitable for modern 1692
embedded processors. 1693

8.1 BEJ design principles 1694

The core design principles for BEJ are focused around it being a compact binary representation of JSON 1695
that is easy for low-power embedded processors to encode, decode, and manipulate. This is important 1696
because these ASICs typically have highly limited memory and power budgets; they must be able to 1697
process data quickly and efficiently. Naturally, it must be possible to fully reconstruct a textual JSON 1698
message from its BEJ encoding. 1699

The following design principles guided the development of BEJ: 1700

1) It must be possible to support full expressive range of JSON. 1701

2) The encoding should be binary and compact, with as much of the encoding as possible 1702
dedicated to the JSON data elements. The amount of space afforded to metadata that conveys 1703
elements such as type format and hierarchy information should be carefully limited. 1704

2) There is no need to support multiple encoding techniques for one type of data; there is therefore 1705
no need to distinguish which encoding technique is in use. 1706

3) Schema information – such as the names of data items – does not need to be encoded into BEJ 1707
because the recipient can use a prior knowledge of the data organization to determine semantic 1708

PLDM for Redfish Device Enablement DSP0218

60 Published Version 1.2.0

information about the encoded data. In contrast to JSON, which is unordered, BEJ must adopt 1709
an explicit ordering for its data to support this goal. 1710

4) The need for contextual awareness should be minimized in the encoding and decoding process. 1711
Supporting context requires extra lookup tables (read: more memory) and delays processing 1712
time. Everything should be immediately present and directly decodable. Giving up a few bytes 1713
of compactness in support of this goal is a worthwhile tradeoff. 1714

8.2 SFLV tuples 1715

Each piece of JSON data is encoded as a tuple of PLDM type bejTuple and consists of the following: 1716

1) Sequence number: the index within the canonical schema at the current hierarchy level for the 1717
datum. For collections and arrays, the sequence number is the 0-based array index of the 1718
current element. 1719

2) Format: the type of data that is encoded. 1720

3) Length: the length in bytes of the data. 1721

4) Value: the actual data, encoded in a format-specific manner. 1722

These tuple elements collectively describe a single piece of JSON data; each piece of JSON data is 1723
described by a separate tuple. Requirements for each tuple element are detailed in the following clauses. 1724

SFLV tuples are represented by elements of the bejTuple PLDM type defined in clause 5.3.5. 1725

8.2.1 Sequence number 1726

The Sequence Number tuple field serves as a stand-in for the JSON property name assigned to the data 1727
element the tuple encodes. Sequence numbers align to name strings contained within the dictionary for a 1728
given schema. Sequence numbers are represented by elements of the bejTupleS PLDM type defined in 1729
clause 5.3.6. 1730

The low-order bit of a sequence number shall indicate the dictionary to which it belongs according to the 1731
following table: 1732

Table 40 – Sequence number dictionary indication 1733

Bit Pattern Dictionary

0b Main Schema Dictionary (as was defined in the
bejEncoding PLDM object for this tuple)

1b Annotation Dictionary

8.2.2 Format 1734

The Format tuple field specifies the kind of data element that the tuple is representing. 1735

Formats are represented by elements of the bejTupleF PLDM type defined in clause 5.3.7. 1736

8.2.3 Length 1737

The Length tuple field details the length in bytes of the contents of the Value tuple field. 1738

Lengths are represented by elements of the bejTupleL PLDM type defined in clause 5.3.8. 1739

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 61

8.2.4 Value 1740

The Value tuple field contains an encoding of the actual data value for the JSON element described by 1741
this tuple. The format of the value tuple field is variable but follows directly from the format code in the 1742
Format tuple field. 1743

The following JSON data types are supported in BEJ: 1744

Table 41 – JSON data types supported in BEJ 1745

BEJ Type JSON Type Description

Null null An empty data type

Integer number A whole number: any element of JSON type number that contains neither a
decimal point nor an exponent

Enum enum An enumeration of permissible values in string format

String string A null-terminated UTF-8 text string

Real number A non-whole number: any element of JSON type number that contains at
least one of a decimal point or an exponent

Boolean boolean Logical true/false

Bytestring string (of base-
64 encoded
data)

Binary data

Set No named
type; data
enclosed in { }

A named collection of data elements that may have differing types

Array No named
type; data
enclosed in []

A named collection of zero or more copies of data elements of a common
type

Choice special The ability of a named data element to be of multiple types

Property
Annotation

special An annotation targeted to a specific property, in the format
property@annotation

Unrecognized special Used to perform a pass-through encoding of a data element for which the
name cannot be found in a dictionary for the corresponding schema

Schema Link special Used to capture JSON references to external schemas

Expanded
Schema Link

special Used to expand data from a linked external schema

If the deferred_binding flag (see the bejTupleF PLDM type definition in clause 5.3.7) is set, the string 1746
encoded in the value tuple element contains substitution macros that the MC is to supply on behalf of the 1747
RDE Device when populating a message to send back to the client. See clause 8.3 for more details. 1748

Values are represented by elements of the bejTupleV PLDM type defined in clause 5.3.9. 1749

8.3 Deferred binding of data 1750

The data returned to a client from a Redfish operation typically contains annotation metadata that specify 1751
URIs and other bits of information that are assigned by the MC when it performs RDE Device discovery 1752
and registration. In practice, the only way for an RDE Device to know the values for these annotations 1753
would be for it to somehow query the MC about them. Instead, we define substitution macros that the 1754

PLDM for Redfish Device Enablement DSP0218

62 Published Version 1.2.0

RDE Device may use to ask the MC to supply these bits of information on its behalf. RDE Devices shall 1755
not invoke substitution macros for information that they know and can provide themselves. 1756

All substitution macros are bracketed with the percent sign (%) character. While it would in theory be 1757
possible for the MC to check every string it decodes for the presence of this escape character, in practice 1758
that would be an inefficient waste of MC processing time. Instead, the RDE Device shall flag any string 1759
containing substitution macros with the deferred binding bit set to inform the MC of their presence; the 1760
MC shall only perform macro substitution if the deferred binding bit is set. The MC shall support the 1761
deferred bindings listed in Table 42. 1762

Table 42 – BEJ deferred binding substitution parameters 1763

Macro Data to be substituted Example substitutions

%% A single % character %

%L<resource-ID> The MC-assigned URI of an RDE
Provider defined resource (specified by a
resource ID within the target PDR), or
/invalid.PDR<resource-ID> if
unrecognized resource ID

/invalid.PDR123

%P<resource-
ID>.PAGE<pagination-offset>

The MC-assigned URI of an RDE
Provider defined resource (specified by a
resource ID within the target PDR) with a
given numerical pagination offset, or
/invalid.PDR<resource-
ID>.PAGE<pagination-offset> if
unrecognized resource ID or pagination
offset < 1

/invalid.PDR101.PAGE-1

%PD The MC-assigned URI for an MC-
managed PCIeDevice.PCIeDevice
correlating to this RDE Device, or
/invalid.PCIeDevice if one cannot be
identified.
If the RDE Device manages its own
PCIeDevice.PCIeDevice resource, it shall
use the %L binding when referring to it,

/invalid.PCIeDevice

%PF<function-info> The MC-assigned URI for an MC-
managed PCIeFunction.PCIeFunction
correlating to the RDE Device’s function
matching function-info, or
/invalid.PCIeFunction.<function-info> if
one cannot be identified.
Function-info shall be a string of lower-
case hexadecimal digits corresponding to
the PCIe function number for the function.
If the RDE Device manages its own
PCIeFunction.PCIeFunction resource, it
shall use the %L binding when referring
to it,

/invalid.PCIeFunction.nonhexdigits
/redfish/v1/chassis/1/PCIeDevices/
NIC/PCIeFunctions/1

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 63

Macro Data to be substituted Example substitutions

%PI The MC-assigned URI for an MC-
managed PCIeDevice.PCIeInterface
correlating to this RDE Device, or
/invalid.PCIeInterface if one cannot be
identified.
If the RDE Device manages its own
PCIeDevice.PCIeInterface resource, it
shall use the %L binding when referring
to it

/invalid.PCIeInterface

%S The MC-assigned link to the
ComputerSystem resource within which
the RDE Device is located

/redfish/v1/Systems/437XR1138R2

%C The MC-assigned link to the Chassis
resource within which the RDE Device is
located

/redfish/v1/Chassis/1U

%M The metadata URL for the service /redfish/v1/$metadata

%T<resource-ID>.<n> The MC-assigned target URI for the nth
Action from the Redfish Action PDR or
PDRs linked to a resource within a
Redfish Resource PDR, or
“/invalid.<resource-ID>.<n>” if no such
action exists

/redfish/v1/Systems/437XR1138R2/
Storage/1/Actions/Storage.SetEncr
yptionKey
/invalid.123.6

%I<resource-ID> The MC-assigned instance identifier for
the collection element representing an
RDE Device (specified by the resource ID
of the target PDR), or “invalid” if the PDR
does not correspond to a resource
immediately contained within a collection
managed by the MC

437XR1138R2
invalid

%U The UEFI Device Path assigned to the
RDE Device by the MC and/or BIOS

PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,
0x0)/Scsi(0xA, 0x0)

%. Terminates a previous substitution. Shall
be used only in the event that numeric
data immediately follows a %T, %P, or
%L macro

n/a

%B The MC-assigned URI for an MC-
managed Battery.Battery correlating to
the RDE Device or /invalid.Battery if one
cannot be identified.
If the RDE Device manages its own
Battery resource, it shall use the %L
binding when referring to it,

/invalid.Battery.nonhexdigits
/redfish/v1/chassis/1/PowerSubsyst
em/Batteries/1

Any other character preceded
by a % character

None – the MC shall pass the sequence
exactly as found

%p
%X

8.4 BEJ encoding 1764

This clause presents implementation considerations for the BEJ encoding process. For standard resource 1765
encoding (as opposed to annotations), the BEJ conversion dictionary is built to encode the same 1766
hierarchical data format as the schema itself. Implementations should therefore track their context inside 1767
the dictionary in parallel with tracking their location in the data to be encoded. While not mandatory, a 1768
recursive implementation will prove in most cases to be the easiest approach to realize this tracking. 1769

PLDM for Redfish Device Enablement DSP0218

64 Published Version 1.2.0

Like with JSON encodings of data, there is no defined ordering for properties in BEJ data; encoders are 1770
therefore free to encode properties in any order. 1771

8.4.1 Conversion of JSON data types to BEJ 1772

Recognition of JSON data types enables them to be encoded properly. In Redfish, every property is 1773
encoded in the format “property_name” : property_value. Whitespace between syntactic elements is 1774
ignored in JSON encodings. 1775

8.4.1.1 JSON objects 1776

A JSON object consists of an opening curly brace (‘{‘), zero or more comma-separated properties, and 1777
then a closing curly brace (‘}’). JSON objects shall be encoded as BEJ sets with the properties inside the 1778
curly braces encoded recursively as the value tuple contents of the BEJ set. Following the precedent 1779
established in JSON, the properties contained within a JSON object may be encoded in BEJ in any order. 1780
In particular, the encoding order for a collection of properties is not required to match their respective 1781
sequence numbers. 1782

8.4.1.2 JSON arrays 1783

A JSON array consists of an opening square brace (‘[‘), zero or more comma-separated JSON values all 1784
of a common data type (typically objects in Redfish), and then a closing square brace. JSON arrays shall 1785
be encoded as BEJ arrays with the data inside the square braces encoded recursively as instances of the 1786
value tuple contents of the BEJ array. The immediate contents of a JSON array shall be encoded in order 1787
corresponding to their array indices. 1788

The sequence numbers for BEJ array immediate child elements shall match the zero-based array index 1789
of the children. These sequence numbers are not represented in the dictionary; it is the responsibility of a 1790
BEJ encoder/decoder to understand that this is how array data instances are handled. 1791

8.4.1.3 JSON numbers 1792

In JSON, there is no distinction between integer and real data; both are collected together as the number 1793
type. For BEJ, numeric data shall be encoded as a BEJ integer if it contains neither a decimal point nor 1794
an exponentiation marker (‘e’ or ‘E’) and as a BEJ real otherwise. 1795

8.4.1.4 JSON strings 1796

When converting JSON strings to BEJ format, a null terminator shall be appended to the string. 1797

8.4.1.5 JSON Boolean 1798

In JSON, Boolean data consists of one of the two sentinels “true” or “false”. These sentinels shall be 1799
encoded as BEJ Boolean data with an appropriate value field. 1800

8.4.1.6 JSON null 1801

In JSON, null data consists of the sentinel “null”. This sentinel shall be encoded as BEJ Null data only if 1802
the datatype for the property in the schema is null. For a nullable property (identified via the third tag bit 1803
from the dictionary entry or by the schema), null data shall be encoded as its standard type (from the 1804
dictionary) with length zero and no value tuple element. 1805

8.4.2 Resource links 1806

Most Redfish schemas contain links to other schemas within their properties, formatted as @odata.id 1807
annotations. When encoding these links in BEJ, the URI may be encoded as any of bejString, 1808

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 65

bejResourceLink, or bejResourceLinkExpansion. If encoded as a bejString, deferred binding substitutions 1809
may be employed as needed to complete the reference. 1810

When encoding a BEJ payload as part of an RDE create, update or action operation, the MC should use 1811
the following criteria when encoding resource links: 1812

1. If the resource link can be mapped to a Redfish resource PDR, the MC should encode the link 1813
using the bejResourceLink data type. 1814

2. If the resource link cannot be mapped to a Redfish resource PDR, and is a well-formed link, the 1815
MC should use a deferred binding bejString to encode the link. 1816

3. For a malformed link, the MC should reject the operation using a HTTP status code of 400 Bad 1817
Request. 1818

8.4.3 Registry items 1819

Redfish messages contain items from collated collections called registries. When encoding Redfish 1820
message registries in BEJ, the string may be encoded as either bejString or bejRegistryItem. 1821

8.4.4 Annotations 1822

Redfish annotations may be recognized as properties with a name string containing the “at” sign (‘@’). 1823
Several annotations are defined in Redfish, including some that are mandatory for inclusion with any 1824
Redfish GET Operation. The RDE Device is responsible for ensuring that these mandatory annotations 1825
are included in the results of an RDE read Operation. 1826

Annotations in Redfish have two forms: 1827

• Standalone form annotations have the form “@annotation_class.annotation_name” : 1828
annotation_value. 1829

– Example: “@odata.id”: “/redfish/v1/Systems/1/” 1830

– Standalone annotations shall be encoded with the BEJ data type listed in the annotation 1831
dictionary in the row matching the annotation name string 1832

• Property annotation form annotations have the form 1833
“property@annotation_class.annotation_name” : annotation_value. 1834

– Example: “ResetType@Redfish.AllowableValues” : [“On”, “PushPowerButton”] 1835

– Property annotation form annotations shall be encoded with the BEJ Property Annotation 1836
data type; the annotation value shall be encoded as a dependent child of the annotation 1837
entry. See clause 5.3.20. 1838

NOTE Unlike major schema resource properties, annotations have a flat namespace from which sequence numbers 1839
are drawn. To identify the sequence number for an annotation, an encoder should start at the root of the annotation 1840
dictionary and then find the string matching the annotation name (including the ‘@’ sign and the annotation source) 1841
within this set. In particular, the sequence number for an annotation is independent of the current encoding context. 1842

Special handling is required when the RDE Device sends a message annotation to the MC. The related 1843
properties property inside the annotation’s data structure is formatted as an array of strings, but the RDE 1844
Device has only sequence numbers to work with: the RDE Device may not be able to supply the property 1845
name for the sequence number. If the RDE Device knows the name of the related property that is 1846
relevant for the message annotation, it may supply the name directly as an array element. Otherwise, it 1847
shall encode into the array element a BEJ locator by concatenating the following string components: 1848

PLDM for Redfish Device Enablement DSP0218

66 Published Version 1.2.0

Table 43 – Message annotation related property BEJ locator encoding 1849
Description

Delimiter
Shall be ‘:’

ComponentCount
The number N of sequence numbers in the fields below, stringified

Delimiter
Shall be ‘:’

Locator Component [0]
Sequence number [0], stringified

Delimiter
Shall be ‘:’

Locator Component [1]
Sequence number [1], stringified

Delimiter
Shall be ‘:’

Locator Component [2]
Sequence number [2], stringified

Delimiter
Shall be ‘:’

…

Delimiter
Shall be ‘:’

Locator Component [N – 1]
Sequence number [N – 1], stringified

8.4.4.1 Nested Annotations 1850

The data format for an annotation may be a simple property such as a string or an integer, but it may also 1851
be a compound property such as a set. In this latter case it is further possible that the set can itself 1852
contain an annotation. To distinguish the case where the sequence number for annotation data refers 1853
anew to a top-level annotation instead of to a property within the set for an annotation, the format byte of 1854
the BEJ tuple for that annotation shall have the read_only_property_and_top_level_annotation bit set to 1855
1b. When encoding nested annotations, the BEJ encoding version shall be set to 1.1.0 (0xF1F1F000). 1856

8.4.5 Choice encoding for properties that support multiple data types 1857

If the encoder finds a property that is listed in the dictionary as being of type BEJ choice, it shall encode 1858
the property with type bejChoice in the BEJ format tuple element. The actual value and selected data type 1859
shall be encoded as a dependent child of the tuple containing the bejChoice element. See clauses 5.3.19 1860
and 7.2.3.3. 1861

8.4.6 Properties with invalid values 1862

If the MC is encoding an update request from a client that includes a property value that does not match a 1863
required data type according to the dictionary it is translating from, the MC shall in accordance with the 1864
Redfish standard DSP0266 respond to the client with HTTP status code 400 and a 1865
@Message.ExtendedInfo annotation specifying the property with the value format error (see 1866

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 67

PropertyValueFormatError, PropertyValueTypeError in the Redfish base message registry). Similarly, if 1867
the value supplied for a property such as an enumeration does not match any required values, the MC 1868
shall in accordance with the Redfish standard DSP0266 respond to the client with HTTP status code 400 1869
and a @Message.ExtendedInfo annotation specifying the property with a value not in the accepted list 1870
(see PropertyValueNotInList in the Redfish base message registry). In either case, the MC shall not 1871
initiate an RDE Operation corresponding to the client request.Properties missing from dictionaries 1872

When encoding JSON data, an encoder may find that the name of a property does not correspond to a 1873
string found in the dictionary. If the encoder is the RDE Device, this should never happen as the RDE 1874
Device is responsible for the dictionary. This situation therefore represents a non-compliant RDE 1875
implementation. 1876

If the MC finds that a property does not correspond to a string found in the dictionary from an RDE 1877
Device, it should in accordance with the Redfish standard DSP0266 respond to the client with HTTP 1878
status code 200 or 400 and an annotation specifying the property as unsupported (see PropertyUnknown 1879
in the Redfish base message registry). The MC may continue to process the client request, omitting the 1880
unrecognized property or properties. 1881

Any attempt to write to an action, or to the parameters or return type within an action set, shall be 1882
processed by the MC in the same manner as described in this clause for missing properties for write or 1883
update operations; naturally, this does not apply to supplying parameters for action operations. 1884

Any attempt to write to an action parameter outside of an Action RDE Operation shall be processed as 1885
described in this clause, as if the parameter were not present in the dictionary. 1886

8.5 BEJ decoding 1887

This clause presents implementation considerations for the BEJ decoding process. 1888

Properties in BEJ data may be encoded in any order. Decoders must therefore be prepared to accept 1889
data in whatever order it was encoded. 1890

8.5.1 Conversion of BEJ data types to JSON 1891

When decoding from BEJ to JSON, the following rules shall be followed. In each of the following, 1892
“property_name” shall be taken to mean the name of the property or annotation as decoded from the 1893
relevant dictionary. For all data types, if the length tuple field is zero, the data shall be decoded as 1894
follows: 1895

 “property_name” : null 1896

When multiple properties appear sequentially within a set, they shall be delimited with commas. 1897

8.5.1.1 BEJ Set 1898

A BEJ Set shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) replaced as 1899
indicated: 1900

“property_name” : { ‹set dependent children decoded individually as a comma-separated list› } 1901

8.5.1.2 BEJ Array 1902

A BEJ Array shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) replaced 1903
as indicated: 1904

“property_name” : [‹array dependent children decoded individually as a comma-separated list›] 1905

PLDM for Redfish Device Enablement DSP0218

68 Published Version 1.2.0

8.5.1.3 BEJ Integer and BEJ Real 1906

BEJ Integers and BEJ Reals shall be decoded to the following format, with the text inside angle brackets 1907
(‘‹’, ’›’) replaced as indicated: 1908

“property_name” : “‹decoded numeric value›” 1909

8.5.1.4 BEJ String 1910

BEJ Strings shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) replaced 1911
as indicated. When converting BEJ strings to JSON format, the null terminator shall be dropped as JSON 1912
string encodings do not include null terminators. 1913

“property_name” : “‹decoded string value›” 1914

8.5.1.5 BEJ Boolean 1915

BEJ Booleans shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) 1916
replaced as indicated (note that the “true” and “false” sentinels are not encased in quote marks): 1917

“property_name” : ‹true or false, depending on the decoded value› 1918

8.5.1.6 BEJ Null 1919

BEJ Null shall be decoded to the following format: 1920

“property_name” : null 1921

8.5.1.7 BEJ Resource Link 1922

A BEJ Resource Link shall be decoded to the following format, with the text inside angle brackets (‘‹’, ’›’) 1923
replaced as indicated. 1924

“property_name” : “‹URI for the resource corresponding the Redfish Resource PDR with the 1925
supplied ResourceID›” 1926

MCs shall be aware that either a BEJ Resource Link or a BEJ Resource Link Expansion may be encoded 1927
for a dictionary entry that lists its type as BEJ Resource Link. 1928

8.5.1.8 BEJ Resource Link expansion 1929

A BEJ Resource Link Expansion shall be decoded to the following format, with the text inside angle 1930
brackets (‘‹’, ’›’) replaced as indicated. 1931

‹full resource data for the Redfish Resource PDR corresponding to the supplied ResourceID› 1932

NOTE property_name is not included in the decoded JSON output in this case. 1933

If the supplied ResourceID is zero and the parent resource is a collection, the MC shall use the 1934
COLLECTION_MEMBER_TYPE schema dictionary obtained from the collection resource (rather than 1935
trying to use a dictionary from the members) to decode resource data. 1936

MCs shall be aware that either a BEJ Resource Link or a BEJ Resource Link Expansion may be encoded 1937
for a dictionary entry that lists its type as BEJ Resource Link. 1938

8.5.2 Annotations 1939

This clause documents the approach for decoding the two types of Redfish annotations to JSON text. 1940

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 69

8.5.2.1 Standalone annotations 1941

Standalone annotations (data from decoded from the annotation dictionary) shall be decoded to the 1942
following format, with the bit inside angle brackets (‘‹’, ’›’) replaced as indicated: 1943

“@annotation_class.annotation_name” : “‹decoded annotation value›” 1944

8.5.2.2 BEJ property annotations 1945

BEJ Property Annotations shall be decoded to the following format, with the bit inside angle brackets (‘‹’, 1946
’›’) replaced as indicated: 1947

“property_name@annotation_class.annotation_name” : “‹decoded annotation value from the 1948
annotation’s dependent child node›” 1949

8.5.2.3 [MC] Related Properties in message annotations 1950

When a message annotation is sent from the RDE Device to the MC, the related properties field of 1951
message annotations requires special handling in RDE. Specifically, the array element string values are 1952
BEJ locators to individual properties, may be encoded as a colon-delimited string (see clause 8.4.3). 1953
When decoding, the MC shall check the first character of the supplied string. If it is a colon (:), the MC 1954
shall extract the individual sequence numbers for the BEJ locator, and then use them to identify the 1955
property name to send back to the client for the annotation. If the first character of the supplied string is 1956
not a colon, the MC shall return the supplied string unmodified. 1957

8.5.3 Sequence numbers missing from dictionaries 1958

It may transpire that when decoding BEJ data, a decoder finds a sequence number not in its dictionary. 1959
The handling of this case differs between the RDE Device and the MC. 1960

If the RDE Device finds an unrecognized sequence number as part of the payload for a put, patch, or 1961
create operation, the RDE Device shall in accordance with the Redfish standard DSP0266 respond with 1962
an annotation specifying the sequence number as an unsupported property (see PropertyUnknown in the 1963
Redfish base message registry). The RDE Device may continue to decode the remainder of the payload 1964
and perform the requested Operation upon the portion it understands. 1965

If the MC finds an unrecognized sequence number as part of the response payload for a get or action 1966
Operation, or as part of a @Message.ExtendedInfo annotation response for any other Operation, it shall 1967
treat this as a failure on the part of the RDE Device and respond to the client with HTTP status code 500, 1968
Internal Server Error. 1969

8.5.4 Sequence numbers for read-only properties in modification Operations 1970

If the RDE Device is performing a modification operation (create, put, patch, or some actions), and it finds 1971
a sequence number corresponding to a property that is read-only, the RDE Device should in accordance 1972
with the Redfish standard DSP0266 respond with an annotation specifying the sequence number as a 1973
non-updateable property (see PropertyNotWritable in the Redfish base message registry). The RDE 1974
Device may continue to decode and update with the remainder of the payload. 1975

8.5.5 Annotations for RDE Devices 1976

RDE Devices shall conditionally implement support for the following standard Redfish annotations 1977
according to the following table: 1978

PLDM for Redfish Device Enablement DSP0218

70 Published Version 1.2.0

Table 44 – Conditionally Required Annotations for RDE Devices 1979
Annotation Condition when required

PropertyNotWritable RDE Device supports RDE Write Operations and Write Operation
attempts to modify a read-only property.

PropertyUnknown Operation contains a sequence number that is unrecognized or
unsupported.

PropertyValueError RDE Device supports RDE Write Operations and Write Operation
attempts to modify a read/write property to an illegal or unsupported
value.

ActionParameterValueError RDE Device supports RDE Action Operations and RDE Action
Operation contains a parameter with an illegal or unsupported value.

QueryParameterValueError RDE Device supports read queries, but Head or Read Operation
contains a query parameter with an illegal or unsupported value.

QueryNotSupported RDE Device supports read queries, but does not support a query
operation contained in the requested Head or Read Operation.

8.6 Example encoding and decoding 1980

The following examples demonstrate the BEJ encoding and decoding processes. For illustrative 1981
purposes, we show the data collected in an XML form that happens to align with the schema; however, 1982
there is no requirement that data be stored in this form. Indeed, it is very unlikely that any RDE Device 1983
would do so. 1984

The examples in this clause use the example dictionary from clause 8.6.1. 1985

8.6.1 Example dictionary 1986

The example dictionary is based on the DummySimple JSON schema presented in Figure 6: 1987
{ 1988
 "$ref": "#/definitions/DummySimple", 1989
 "$schema": "http://json-schema.org/draft-04/schema#", 1990
 "copyright": "Copyright 2018 DMTF. For 1991
 the full DMTF copyright policy, see http://www.dmtf.org/about/policies/copyright", 1992
 "definitions": { 1993
 "LinkStatus": { 1994
 "enum": [1995
 "NoLink", 1996
 "LinkDown", 1997
 "LinkUp" 1998
], 1999
 "type": "string" 2000
 }, 2001
 "DummySimple" : { 2002
 "additionalProperties": false, 2003
 "description": "The DummySimple schema represents a very simple schema used to 2004
 demonstrate the BEJ dictionary format.", 2005
 "longDescription": "This resource shall not be used except for illustrative 2006
 purposes. It does not correspond to any real hardware or software.", 2007
 "patternProperties": { 2008
 "^([a-zA-Z_][a-zA-Z0-9_]*)?@(odata|Redfish|Message|Privileges)\\.[a-zA-Z_][a-zA-2009
Z0-9_.]+$": { 2010
 "description": "This property shall specify a valid odata or Redfish 2011
 property.", 2012
 "type": [2013
 "array", 2014
 "boolean", 2015
 "number", 2016
 "null", 2017

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 71

 "object", 2018
 "string" 2019
] 2020
 } 2021
 }, 2022
 "properties": { 2023
 "@odata.context": { 2024
 "$ref": 2025
 "http://redfish.dmtf.org/schemas/v1/odata.v4_0_1.json#/definitions/context" 2026
 }, 2027
 "@odata.id": { 2028
 "$ref": 2029
 "http://redfish.dmtf.org/schemas/v1/odata.v4_0_1.json#/definitions/id" 2030
 }, 2031
 "@odata.type": { 2032
 "$ref": 2033
 "http://redfish.dmtf.org/schemas/v1/odata.v4_0_1.json#/definitions/type" 2034
 }, 2035
 "ChildArrayProperty": { 2036
 "items": { 2037
 "additionalProperties": false, 2038
 "type": "object", 2039
 "properties": { 2040
 "LinkStatus": { 2041
 "anyOf": [2042
 { 2043
 "$ref": "#/definitions/LinkStatus" 2044
 }, 2045
 { 2046
 "type": "null" 2047
 } 2048
], 2049
 "readOnly": true 2050
 }, 2051
 "AnotherBoolean": { 2052
 "type": "boolean" 2053
 } 2054
 } 2055
 }, 2056
 "type": "array" 2057
 } 2058
 }, 2059
 "SampleIntegerProperty": { 2060
 "type": "integer" 2061
 }, 2062
 "Id": { 2063
 "type": "string", 2064
 "readOnly": true 2065
 }, 2066
 "SampleEnabledProperty": { 2067
 "type": "boolean" 2068
 } 2069
 } 2070
 }, 2071
 "title": "#DummySimple.v1_0_0.DummySimple" 2072
} 2073

Figure 6 – DummySimple schema 2074

NOTE This is not a published DMTF Redfish schema. 2075

In tabular form, the dictionary for DummySimple appears as shown in Table 45: 2076

PLDM for Redfish Device Enablement DSP0218

72 Published Version 1.2.0

Table 45 – DummySimple dictionary (tabular form) 2077

Row Sequence
Number

Format Name Child
Pointer

Child
Count

0 0 set DummySimple 1 4

1 0 array ChildArrayProperty 5 1

2 1 string Id null 0

3 2 boolean SampleEnabledProperty null 0

4 3 integer SampleIntegerProperty null 0

5 0 set null (anonymous array
elements)

6 2

6 0 boolean AnotherBoolean null 0

7 1 enum LinkStatus 8 3

8 0 string LinkDown null 0

9 1 string LinkUp null 0

10 2 string NoLink null 0

Finally, in binary form, the dictionary appears as shown in Figure 7. (Colors in this example match those used in 2078
Figure 5.) 2079
0x00 0x00 0x0B 0x00 0x00 0xF0 0xF0 0xF1 2080
0x12 0x01 0x00 0x00 0x00 0x00 0x00 0x16 2081
0x00 0x04 0x00 0x0C 0x7A 0x00 0x14 0x00 2082
0x00 0x3E 0x00 0x01 0x00 0x13 0x86 0x00 2083
0x56 0x01 0x00 0x00 0x00 0x00 0x00 0x03 2084
0x99 0x00 0x74 0x02 0x00 0x00 0x00 0x00 2085
0x00 0x16 0x9C 0x00 0x34 0x03 0x00 0x00 2086
0x00 0x00 0x00 0x16 0xB2 0x00 0x00 0x00 2087
0x00 0x48 0x00 0x02 0x00 0x00 0x00 0x00 2088
0x74 0x00 0x00 0x00 0x00 0x00 0x00 0x0F 2089
0xC8 0x00 0x46 0x01 0x00 0x5C 0x00 0x03 2090
0x00 0x0B 0xD7 0x00 0x50 0x00 0x00 0x00 2091
0x00 0x00 0x00 0x09 0xE2 0x00 0x50 0x01 2092
0x00 0x00 0x00 0x00 0x00 0x07 0xEB 0x00 2093
0x50 0x02 0x00 0x00 0x00 0x00 0x00 0x07 2094
0xF2 0x00 0x44 0x75 0x6D 0x6D 0x79 0x53 2095
0x69 0x6D 0x70 0x6C 0x65 0x00 0x43 0x68 2096
0x69 0x6C 0x64 0x41 0x72 0x72 0x61 0x79 2097
0x50 0x72 0x6F 0x70 0x65 0x72 0x74 0x79 2098
0x00 0x49 0x64 0x00 0x53 0x61 0x6D 0x70 2099
0x6C 0x65 0x45 0x6E 0x61 0x62 0x6C 0x65 2100
0x64 0x50 0x72 0x6F 0x70 0x65 0x72 0x74 2101
0x79 0x00 0x53 0x61 0x6D 0x70 0x6C 0x65 2102
0x49 0x6E 0x74 0x65 0x67 0x65 0x72 0x50 2103
0x72 0x6F 0x70 0x65 0x72 0x74 0x79 0x00 2104
0x41 0x6E 0x6F 0x74 0x68 0x65 0x72 0x42 2105
0x6F 0x6F 0x6C 0x65 0x61 0x6E 0x00 0x4C 2106
0x69 0x6E 0x6B 0x53 0x74 0x61 0x74 0x75 2107
0x73 0x00 0x4C 0x69 0x6E 0x6B 0x44 0x6F 2108
0x77 0x6E 0x00 0x4C 0x69 0x6E 0x6B 0x55 2109
0x70 0x00 0x4E 0x6F 0x4C 0x69 0x6E 0x6B 2110

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 73

0x00 0x18 0x43 0x6F 0x70 0x79 0x72 0x69 2111
0x67 0x68 0x74 0x20 0x28 0x63 0x29 0x20 2112
0x32 0x30 0x31 0x38 0x20 0x44 0x4D 0x54 2113
0x46 0x00 2114

Figure 7 – DummySimple dictionary – binary form 2115

8.6.2 Example encoding 2116

For this example, we start with the following data (shown here in an XML representation). 2117
NOTE The names assigned to array elements are fictitious and inserted for illustrative purposes only. Also, the 2118
encoding sequence presented here is only one possible approach; any sequence that generates the same result is 2119
acceptable. The value of the @odata.id annotation shown here is a deferred binding (see clause 8.3) that assumes 2120
the DummySimple resource corresponds to a Redfish Resource PDR with resource ID 10. Finally, for illustrative 2121
purposes we omit here the header bytes contained within the bejEncoding type that are not part of the bejTuple 2122
PLDM type. 2123
 2124

<Item name=”DummySimple” type=”set”> 2125
 <Item name=”@odata.id” type=”string” value=”%L10”> 2126
 <Item name=”ChildArrayProperty” type=”array”> 2127
 <Item name=”array element 0”> 2128
 <Item name=”AnotherBoolean” type=”boolean” value=”true”/> 2129
 <Item name=”LinkStatus” type=”enum” enumtype=”String”> 2130
 <Enumeration value=”NoLink”/> 2131
 </Item> 2132
 </Item> 2133
 <Item name=”array element 1”> 2134
 <Item name=”LinkStatus” type=”enum” enumtype=”String”> 2135
 <Enumeration value=”LinkDown”/> 2136
 </Item> 2137
 </Item> 2138
 </Item> 2139
 <Item name=”Id” type=”string” value=”Dummy ID”/> 2140
 <Item name=”SampleIntegerProperty” type=”number” value=”12”/> 2141
</Item> 2142

The first step of the encoding process is to insert sequence numbers, which can be retrieved from the 2143
relevant dictionary. (For purposes of this example, we are assuming that the @odata.id annotation is 2144
sequence number 16 in the annotation dictionary.) Sequence numbers for array elements correspond to 2145
their zero-based index within the array. 2146

<Item name=”DummySimple” type=”set” seqno=”major/0”> 2147
 <Item name=”@odata.id” type=”string” value=”%L10” seqno=”annotation/16”> 2148
 <Item name=”ChildArrayProperty” type=”array” seqno=”major/0”> 2149
 <Item name=”array element 0” seqno=”major/0”> 2150
 <Item name=”AnotherBoolean” type=”boolean” value=”true” seqno=”major/0”/> 2151
 <Item name=”LinkStatus” type=”enum” enumtype=”String” seqno=”major/1”> 2152
 <Enumeration value=”NoLink” seqno=”major/2”/> 2153
 </Item> 2154
 </Item> 2155
 <Item name=”array element 1” seqno=”major/1”> 2156
 <Item name=”LinkStatus” type=”enum” enumtype=”String” seqno=”major/1”> 2157
 <Enumeration value=”LinkDown” seqno=”major/0”/> 2158
 </Item> 2159
 </Item> 2160
 </Item> 2161
 <Item name=”Id” type=”string” value=”Dummy ID” seqno=”major/1”/> 2162
 <Item name=”SampleIntegerProperty” type=”integer” value=”12” seqno=”major/3”/> 2163
</Item> 2164

After the sequence numbers are fully characterized, they can be encoded. We encode which dictionary 2165
these sequence numbers came by shifting them left one bit to insert 0b (major dictionary) or 1b 2166
(annotation dictionary) as the low order bit per clause 8.2.1. As the sequence numbers are now assigned, 2167

PLDM for Redfish Device Enablement DSP0218

74 Published Version 1.2.0

names of properties and enumeration values are no longer needed: 2168
 2169

<Item type=”set” seqno=”0”> 2170
 <Item seqno=”33” type=”string” value=”%L10” seqno=”annotation/16”> 2171
 <Item type=”array” seqno=”0”> 2172
 <Item seqno=”0”> 2173
 <Item type=”boolean” value=”true” seqno=”0”/> 2174
 <Item type=”enum” enumtype=”String” seqno=”2”> 2175
 <Enumeration seqno=”4”/> 2176
 </Item> 2177
 </Item> 2178
 <Item seqno=”2”> 2179
 <Item type=”enum” enumtype=”String” seqno=”2”> 2180
 <Enumeration seqno=”0”/> 2181
 </Item> 2182
 </Item> 2183
 </Item> 2184
 <Item type=”string” value=”Dummy ID” seqno=”2”/> 2185
 <Item type=”integer” value=”12” seqno=”6”/> 2186
</Item> 2187

The next step is to convert everything into BEJ SFLV Tuples. Per clause 5.3.12, the value of an 2188
enumeration is the sequence number for the selected option. 2189
 2190

{0x01 0x00, set, [length placeholder], value={count=3, 2191
 {0x01 0x21, string, [length placeholder], value=”%L10”} 2192
 {0x01 0x00, array, [length placeholder], value={count=2, 2193
 {0x01 0x00, set, [length placeholder], value={count=2, 2194
 {0x01 0x00, boolean, [length placeholder], value=true} 2195
 {0x01 0x02, enum, [length placeholder], value=2} 2196
 }} 2197
 {0x01 0x02, set, [length placeholder], value={count=1, 2198
 {0x01 0x02, enum, [length placeholder], value=0} 2199
 }} 2200
 }} 2201
 {0x01 0x02, string, [length placeholder], value=”Dummy ID”} 2202
 {0x01 0x06, integer, [length placeholder], value=12} 2203
}} 2204

We now encode the formats and the leaf nodes, following Table 9. For sets and arrays, the value 2205
encoding count prefix is a nonnegative Integer; we can encode that now as well per Table 4. Note the null 2206
terminator for the string. The encoded sequence numbers for enumeration values do not need a 2207
dictionary selector inserted as the LSB as the dictionary was already indicated with the sequence number 2208
for the enumeration itself in the format tuple field. The @odata.id annotation string value contains a 2209
deferred binding, so we set that bit in the format tuple field. 2210
 2211

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2212
 {0x01 0x21, 0x51, [length placeholder], 0x25 0x4C 0x31 0x30} 2213
 {0x01 0x00, 0x10, [length placeholder], {0x01 0x02, 2214
 {0x01 0x00, 0x00, [length placeholder], {0x01 0x02, 2215
 {0x01 0x00, 0x70, [length placeholder], 0xFF} 2216
 {0x01 0x02, 0x40, [length placeholder], 0x01 0x02} 2217
 }} 2218
 {0x01 0x02, 0x00, [length placeholder], {0x01 0x01, 2219
 {0x01 0x02, 0x40, [length placeholder], 0x01 0x00} 2220
 }} 2221
 }} 2222
 {0x01 0x02, 0x50, [length placeholder], 2223
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2224
 {0x01 0x06, 0x30, [length placeholder], 0x0C} 2225
}} 2226

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 75

All that remains is to fill in the length values. We begin at the leaves: 2227
 2228

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2229
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2230
 {0x01 0x00, 0x10, [length placeholder], {0x01 0x02, 2231
 {0x01 0x00, 0x00, [length placeholder], {0x01 0x02, 2232
 {0x01 0x00, 0x70, 0x01 0x01, 0xFF} 2233
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x02} 2234
 }} 2235
 {0x01 0x02, 0x00, [length placeholder], {0x01 0x01, 2236
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2237
 }} 2238
 }} 2239
 {0x01 0x02, 0x50, 0x01 0x09, 2240
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2241
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2242
}} 2243

We then work our way from the leaves towards the outermost enclosing tuples. First, the array element 2244
sets: 2245
 2246

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2247
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2248
 {0x01 0x00, 0x10, [length placeholder], {0x01 0x02, 2249
 {0x00, 0x00, 0x01 0x0F, {0x01 0x02, 2250
 {0x01 0x00, 0x07, 0x01 0x01, 0xFF} 2251
 {0x01 0x20, 0x04, 0x01 0x02, 0x01 0x02} 2252
 }} 2253
 {0x01 0x02, 0x00, 0x01 0x09, {0x01 0x01, 2254
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2255
 }} 2256
 }} 2257
 {0x01 0x02, 0x50, 0x01 0x09, 2258
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2259
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2260
}} 2261

Next, the array itself: 2262
 2263

{0x01 0x00, 0x00, [length placeholder], {0x01 0x04, 2264
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2265
 {0x01 0x00, 0x10, 0x01 0x24, {0x01 0x02, 2266
 {0x01 0x00, 0x00, 0x01 0x0F, {0x01 0x02, 2267
 {0x01 0x00, 0x70, 0x01 0x01, 0xFF} 2268
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x02} 2269
 }} 2270
 {0x01 0x02, 0x00, 0x01 0x09, {0x01 0x01, 2271
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2272
 }} 2273
 }} 2274
 {0x01 0x02, 0x50, 0x01 0x09, 2275
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2276
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2277
}} 2278

PLDM for Redfish Device Enablement DSP0218

76 Published Version 1.2.0

Finally, the outermost set: 2279
 2280

{0x01 0x00, 0x00, 0x01 0x48, {0x01 0x04, 2281
 {0x01 0x21, 0x51, 0x01 0x04, 0x25 0x4C 0x31 0x30} 2282
 {0x01 0x00, 0x10, 0x01 0x24, {0x01 0x02, 2283
 {0x01 0x00, 0x00, 0x01 0x0F, {0x01 0x02, 2284
 {0x01 0x00, 0x70, 0x01 0x01, 0xFF} 2285
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x02} 2286
 }} 2287
 {0x01 0x02, 0x00, 0x01 0x09, {0x01 0x01, 2288
 {0x01 0x02, 0x40, 0x01 0x02, 0x01 0x00} 2289
 }} 2290
 }} 2291
 {0x01 0x02, 0x50, 0x01 0x09, 2292
 0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2293
 {0x01 0x06, 0x30, 0x01 0x01, 0x0C} 2294
}} 2295

The encoded bytes may now be read off, and the inner encoding is complete: 2296
 2297

0x01 0x00 0x00 0x01 : 0x48 0x01 0x04 0x01 2298
0x21 0x51 0x01 0x04 : 0x25 0x4C 0x31 0x30 2299
0x01 0x00 0x10 0x01 : 0x24 0x01 0x02 0x01 2300
0x00 0x00 0x01 0x0F : 0x01 0x02 0x01 0x00 2301
0x70 0x01 0x01 0xFF : 0x01 0x02 0x40 0x01 2302
0x02 0x01 0x02 0x01 : 0x02 0x00 0x01 0x09 2303
0x01 0x01 0x01 0x02 : 0x40 0x01 0x02 0x01 2304
0x00 0x01 0x02 0x50 : 0x01 0x09 0x44 0x75 2305
0x6D 0x6D 0x79 0x20 : 0x49 0x44 0x00 0x01 2306
0x06 0x30 0x01 0x01 : 0x0C 2307

8.6.3 Example decoding 2308

The decoding process is largely the inverse of the encoding process. For this example, we start with the 2309
final encoded data from clause 8.6.1: 2310
 2311

0x01 0x00 0x00 0x01 : 0x48 0x01 0x04 0x01 2312
0x21 0x51 0x01 0x04 : 0x25 0x4C 0x31 0x30 2313
0x01 0x00 0x10 0x01 : 0x24 0x01 0x02 0x01 2314
0x00 0x00 0x01 0x0F : 0x01 0x02 0x01 0x00 2315
0x70 0x01 0x01 0xFF : 0x01 0x02 0x40 0x01 2316
0x02 0x01 0x02 0x01 : 0x02 0x00 0x01 0x09 2317
0x01 0x01 0x01 0x02 : 0x40 0x01 0x02 0x01 2318
0x00 0x01 0x02 0x50 : 0x01 0x09 0x44 0x75 2319
0x6D 0x6D 0x79 0x20 : 0x49 0x44 0x00 0x01 2320
0x06 0x30 0x01 0x01 : 0x0C 2321

The first step of the decoding process is to map the byte data to {SFLV} tuples, using the length bytes and 2322
set/array counts to identify tuple boundaries: 2323
 2324

{S=0x01 0x00, F=0x00, L=0x01 0x3F, V={0x01 0x04, 2325
 {S=0x01 0x21, F=0x51, L=0x01 0x04, V=0x25 0x4C 0x31 0x30} 2326
 {S=0x01 0x00, F=0x10, L=0x01 0x24, V={0x01 0x02, 2327
 {S=0x01 0x00, F=0x00, L=0x01 0x0F, V={0x01 0x02, 2328
 {S=0x01 0x00, F=0x70, L=0x01 0x01, V=0xFF} 2329
 {S=0x01 0x02, F=0x40, L=0x01 0x02, V=0x01 0x02} 2330
 }} 2331
 {S=0x01 0x02, F=0x00, L=0x01 0x09, V={0x01 0x01, 2332
 {S=0x01 0x02, F=0x40, L=0x01 0x02, V=0x01 0x00} 2333
 }} 2334
 }} 2335

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 77

 {S=0x01 0x02, F=0x50, L=0x01 0x09, 2336
 V=0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2337
 {0x01 S=0x06, F=0x30, L=0x01 0x01, V=0x0C} 2338
}} 2339

After the tuple boundaries are understood, the length and count data are no longer needed: 2340
 2341

{S=0x01 0x00, F=0x00, V={ 2342
 {S=0x01 0x21, F=0x51, V=0x25 0x4C 0x31 0x30} 2343
 {S=0x01 0x00, F=0x10, V={ 2344
 {S=0x01 0x00, F=0x00, V={ 2345
 {S=0x01 0x00, F=0x70, V=0xFF} 2346
 {S=0x01 0x02, F=0x40, V=0x01 0x02} 2347
 }} 2348
 {S=0x01 0x02, F=0x00, V={ 2349
 {S=0x01 0x02, F=0x40, V=0x01 0x00} 2350
 }} 2351
 }} 2352
 {S=0x01 0x02, F=0x50, V=0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2353
 {S=0x01 0x06, F=0x30, V=0x0C} 2354
}} 2355

The next step is to decode format tuple bytes using Table 9. This will tell us how to decode the value 2356
data: 2357
 2358

{S=0x01 0x00, set, V={ 2359
 {S=0x01 0x21, string with deferred binding, V=0x25 0x4C 0x31 0x30} 2360
 {S=0x01 0x00, array, V={ 2361
 {S=0x01 0x00, set, V={ 2362
 {S=0x01 0x00, boolean, V=0xFF} 2363
 {S=0x01 0x02, enum, V=0x01 0x02} 2364
 }} 2365
 {S=0x01 0x02, set, V={ 2366
 {S=0x01 0x02, enum, V=0x01 0x00} 2367
 }} 2368
 }} 2369
 {S=0x01 0x02, string, V=0x44 0x75 0x6D 0x6D 0x79 0x20 0x49 0x44 0x00} 2370
 {S=0x01 0x06, integer, V=0x0C} 2371
}} 2372

We now decode value data. The deferred binding for the @odata.id property can now be processed, 2373
translating from “%L10” to “/redfish/v1/systems/1/DummySimples/1”, an instance in a collection of 2374
resources of type DummySimple: 2375
 2376

{S=0x01 0x00, set, { 2377
 {S=0x01 0x21, string, “/redfish/v1/systems/1/DummySimples/1”} 2378
 {S=0x01 0x00, array, { 2379
 {S=0x01 0x00, set, { 2380
 {S=0x01 0x00, boolean, true} 2381
 {S=0x01 0x02, enum, <value 2>} 2382
 }} 2383
 {S=0x01 0x02, set, { 2384
 {S=0x01 0x02, enum, <value 0>} 2385
 }} 2386
 }} 2387
 {S=0x01 0x02, string, “Dummy ID”} 2388
 {S=0x01 0x06, integer, 12} 2389
}} 2390

Next, we decode the sequence numbers to identify which dictionary they select: 2391

PLDM for Redfish Device Enablement DSP0218

78 Published Version 1.2.0

 2392
{S=major/0, set, { 2393
 {S=annotation/16, string, “/redfish/v1/systems/1/DummySimples/1”} 2394
 {S=major/0, array, { 2395
 {S=major/0, set, { 2396
 {S=major/0, boolean, true} 2397
 {S=major/1, enum, <value 2>} 2398
 }} 2399
 {S=major/1, set, { 2400
 {S=major/1, enum, <value 0>} 2401
 }} 2402
 }} 2403
 {S=major/1, string, “Dummy ID”} 2404
 {S=major/3, integer, 12} 2405
}} 2406

Next, we use the selected dictionary to replace decoded sequence numbers with the strings they 2407
represent: 2408
 2409

{“DummySimple”, set, { 2410
 {“@odata.id”, string, “/redfish/v1/systems/1/DummySimples/1”} 2411
 {“ChildArrayProperty”, array, { 2412
 {<Array element 0>, set, { 2413
 {“AnotherBoolean”, boolean, true} 2414
 {“LinkStatus”, enum, “NoLink”} 2415
 }} 2416
 {<Array element 1>, set, { 2417
 {“LinkStatus”, enum, “LinkDown”} 2418
 }} 2419
 }} 2420
 {“Id”, string, “Dummy ID”} 2421
 {“SampleIntegerProperty”, integer, 12} 2422
}} 2423

We can now write out the decoded BEJ data in JSON format if desired (an MC will need to do this to 2424
forward an RDE Device’s response to a client, but an RDE Device may not need this step): 2425
 2426

{ 2427
 “DummySimple” : { 2428
 “@odata.id” : “/redfish/v1/systems/1/DummySimples/1”, 2429
 “ChildArrayProperty” : [2430
 { 2431
 “AnotherBoolean” : true, 2432
 “LinkStatus” : “NoLink” 2433
 }, 2434
 { 2435
 “LinkStatus” : “LinkDown” 2436
 } 2437
], 2438
 “Id” : “Dummy ID”, 2439
 “SampleIntegerProperty” : 12 2440
 } 2441
} 2442

8.7 BEJ locators 2443

A BEJ locator represents a particular location within a resource at which some operation is to take place. 2444
The locator itself consists of a list of sequence numbers for the series of nodes representing the traversal 2445
from the root of the schema tree down to the point of interest. The list of schema nodes is concatenated 2446
together to form the locator. A locator with no sequence numbers targets the root of the schema. 2447

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 79

NOTE The sequence numbers are absolute as they are relative to the schema, not to the subset of the schema for 2448
which the RDE Device supports data. This enables a locator to be unambiguous. 2449

As an example, consider a locator, encoded for the example dictionary of clause 8.6.1: 2450

0x01 0x08 0x01 0x00 0x01 0x00 0x01 0x06 0x01 0x02 2451

Decoding this locator, begins with decoding the length in bytes of the locator. In this case, the first two 2452
bytes specify that the remainder of the locator is 8 bytes long. The next step is to decode the bejTupleS-2453
formatted sequence numbers. The low-order bit of each sequence number references the schema to 2454
which it refers; in this case, the pattern 0b indicates the major schema. Decoding produces the following 2455
list: 2456

0, 0, 3, 1 2457

Now, referring to the dictionary enables identification of the target location. Remember that all indices are 2458
zero-based: 2459

• The first zero points to DummySimple 2460

• The second zero points to the first child of DummySimple, or ChildArrayProperty 2461

• The three points to the fourth element in the ChildArrayProperty array, an anonymous instance 2462
of the array type (array instances are not reflected in the dictionary, but are implicitly the 2463
immediate children of any array) 2464

• The one points to the second child inside the ChildArray element type, or LinkStatus 2465

9 Operational behaviors 2466

This clause describes the operational behavior for initialization, Operations/Tasks, and Events. 2467

9.1 Initialization (MC perspective) 2468

The following clauses present initialization of RDE Devices with MCs. 2469

9.1.1 Sample initialization ladder diagram 2470

Figure 8 presents the ladder diagram for an example initialization sequence. 2471

Once the MC detects the RDE Device, it begins the discovery process by invoking the 2472
NegotiateRedfishParameters command to determine the concurrency and feature support for the RDE 2473
Device. It then uses the NegotiateMediumParameters command to determine the maximum message 2474
size that the MC and the RDE Device can both support. This finishes the RDE discovery process. 2475

After discovery comes the RDE registration process. It consists of two parts, PDR retrieval and dictionary 2476
retrieval. To retrieve the RDE PDRs, the MC utilizes the PLDM for Platform Monitoring and Control 2477
FindPDR command to locate PDRs that are specific to RDE4. For each such PDR located, the MC then 2478
retrieves it via one or more message sequences in the PLDM for Platform Monitoring and Control 2479
GetPDR command. 2480

After all the PDRs are retrieved, the next step is to retrieve dictionaries. For each Redfish Resource PDR 2481
that the MC retrieved, it retrieves the relevant dictionaries via a standardized process in which it first 2482
executes the GetSchemaDictionary command to obtain a transfer handle for the dictionary. It then uses 2483
the transfer handle with the RDEMultipartReceive command to retrieve the corresponding dictionary. 2484

4 Note: FindPDR is an optional command. If the RDE Device does not support it, the MC may achieve equivalent
functionality by using GetPDR to transfer of each PDR one at a time, discarding any that are not RDE PDRs.

PLDM for Redfish Device Enablement DSP0218

80 Published Version 1.2.0

Multiple initialization variants are possible; for example, it is conceivable that retrieval of some or all 2485
dictionaries could be postponed until such time as the MC needs to translate BEJ and/or JSON code for 2486
the relevant schema. Further, the MC may be able to determine that one or more of the dictionaries it has 2487
already retrieved is adequate to support a PDR and thus skip retrieving that dictionary anew. Finally, if the 2488
DeviceConfigurationSignature from the NegotiateRedfishParameters command matches the one for data 2489
that the MC has already cached for the RDE Device, it may skip the retrieval altogether. 2490

MC RDE
Device

NegotiateRedfishParameters(MCConcurrencySupport, MCFeatureSupport)

NegotiateMediumParameters(MCMaximumTransferChunkSizeBytes)

SUCCESS[DeviceConncurrencySupport, DeviceCapabilitiesFlags, DeviceFeatureSupport,
DeviceConfigurationSignature, DeviceProviderName]

SUCCESS[DeviceMaximumTransferChunkSizeBytes]

Dictionary Retrieval

GetSchemaDictionary(ResourceID, RequestedSchemaClass = [MAJOR | ANNOTATION | ...])

SUCCESS[DictionaryFormat=0x00, TransferHandler=X]

RDEMultipartReceive(DataTransferHandle=X, OperationID = 0x0000000,
TransferOperation=XFER_FIRST_PART)

SUCCESS[TransferFlag=START, NextDataTransferHandle, Data]
. . .

PD
R Retrieval

FindPDR(findHandle=[0x0000_0000 or nextFindHandle from previous cmd response],
PDRType=[Redfish Resource PDR])

SUCCESS[nextFindHandle, nextDataTransferHandle=X, transferFlag,
responseCount, responseData]

GetPDR(dataTransferHandle=X, transferOperationFlag=GetNextPart)
SUCCESS[nextDataTransferHandle=X', transferFlag,

responseCount, responseData]

. . .

 2491

Figure 8 – Example Initialization ladder diagram 2492

9.1.2 Initialization workflow diagram 2493

Table 46 details the information presented visually in Figure 9. 2494

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 81

Table 46 – Initialization Workflow 2495

Step Description Condition Next Step

1 – DISCOVERY The MC discovers the presence of the
RDE Device through either a medium-
specific or other out-of-band
mechanism

None 2

2 – NEG_REDFISH The MC issues the
NegotiateRedfishParameters command
to the device in order to learn basic
information about it

Successful command completion 3

3 – NEG_MEDIUM The MC issues the
NegotiateMediumParameters
command to the RDE Device to learn
how the RDE Device intends to behave
with this medium

Successful command completion 4

4 –NEED_PDR /
DICTIONARY_
CHECK

The MC may already have dictionaries
and PDRs for the RDE Device cached,
such as if this is not the first medium
the RDE Device has been discovered
on. The MC may choose not to retrieve
a fresh copy if the
DeviceConfigurationSignature
from the NegotiateRedfishParameters
command’s response message
matches what was previously received.

MC does not need to retrieve
PDRs or dictionaries for this RDE
Device

6

Otherwise 5

5 –
RETRIEVE_PDR /
DICTIONARY

The MC retrieves PDRs and/or
dictionaries from the RDE Device

Retrieval complete 6

6 –
INIT_COMPLETE

The MC has finished discovery and
registration for this device

None None

PLDM for Redfish Device Enablement DSP0218

82 Published Version 1.2.0

RDE Device
Discovered on

Medium

Negotiate
Redfish

Parameters

1

2

MC Needs
RDE PDRs and/or

Dictionaries?

4

No

Retrieve RDE
PDRs and/or
Dictionaries

5

Yes

Initialization
complete for
this medium

6

Negotiate
Medium

Parameters

3

Discovery

Registration

 2496

Figure 9 – Typical RDE Device discovery and registration 2497

9.2 Operation/Task lifecycle 2498

The following clauses present the Task lifecycle from two perspectives, first from an Operation-centric 2499
viewpoint and then from the RDE Device perspective. MC and RDE Device implementations of RDE shall 2500
comply with the sequences presented here. 2501

9.2.1 Example Operation command sequence diagrams 2502

This clause presents request/response messaging sequences for common Operations. 2503

9.2.1.1 Simple read Operation ladder diagram 2504

Figure 10 presents the ladder diagram for a simple read Operation. The Operation begins when the 2505
Redfish client sends a GET request over an HTTP connection to the MC. The MC decodes the URI 2506
targeted by the GET operation to pin it down to a specific resource and PDR and sends the 2507
RDEOperationInit command to the RDE Device that owns the PDR, with OperationType set to READ. 2508
The RDE Device now has everything it needs for the Operation, so it performs a BEJ encoding of the 2509
schema data for the requested resource and sends it as an inline payload back to the MC. Sending inline 2510
is possible in this case because the read data is small enough to not cause the response message to 2511
exceed the maximum transfer size that was previously negotiated in the NegotiateMediumParameters 2512
command. The MC in turn has all of the results for the Operation, so it sends RDEOperationComplete to 2513
finalize the Operation. The RDE Device can now throw away the BEJ encoded read result, so it does so 2514

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 83

and responds to the MC with success. Finally, the MC uses the dictionary it previously retrieved from the 2515
RDE Device to decode the BEJ payload for the read command into JSON data and the MC sends the 2516
JSON data back to the client. 2517

Redfish
Client MC RDE

Device

HTTP/GET(header)

RDEOperationInit(ResourceID = X, OperationID = Y, OperationType = READ,
OperationFlags = 0)

SUCCESS, response_data

INACTIVE

INACTIVE
(Device can free buffers)

INACTIVE

COMPLETED
RDEOperationComplete(ResourceID = X, OperationID = Y)

Decode BEJ

SUCCESS[OperationStatus = FINISHED, CompletionPercentage = 100,
OperationExecutionFlags = have_result_payload,

ResultTransferFlag = 0x00, ETag = E, ResponsePayloadLength > 0, BEJ_data]

SUCCESS

Encode BEJ

 2518

Figure 10 – Simple read Operation ladder diagram 2519

9.2.1.2 Complex read Operation diagram 2520

Figure 11 presents the ladder diagram for a more complex read Operation. As with the simple read case, 2521
the Operation begins when the Redfish client sends a GET request over an HTTP connection to the MC. 2522
The MC again decodes the URI targeted by the GET operation to pin it down to a specific resource and 2523
PDR and sends the RDEOperationInit command to the RDE Device that owns the PDR, with 2524
OperationType set to READ. In this case, however, the OperationFlags that the MC sent with the 2525
RDEOperationInit command indicate that there are supplemental parameters to be sent to the RDE 2526
Device, so the RDE Device must wait for these before beginning work on the Operation. The MC sends 2527
these supplemental parameters to the RDE Device via the SupplyCustomRequestParameters command. 2528

At this point, the RDE Device has everything it needs for the Operation, so just as before, the RDE 2529
Device performs a BEJ encoding of the schema data for the requested resource. As opposed to the 2530
previous example, in this case the BEJ-encoded payload is too large to fit within the response message, 2531
so the RDE Device instead supplied a transfer handle that the MC can use to retrieve the BEJ payload 2532
separately. The MC, seeing this, performs a series of RDEMultipartReceive commands to retrieve the 2533
payload. Once it is all transferred, the MC has everything it needs. Whether it needed to retrieve a 2534
dictionary or it already had one, the MC now sends the RDEOperationComplete command to finalize the 2535
Operation and allow the RDE Device to throw away the BEJ encoded read result. If the MC needs a 2536
dictionary to decode the BEJ payload, it may retrieve one via the GetSchemaDictionary command 2537
followed by one or more RDEMultipartReceive commands to retrieve the binary dictionary data. 2538
(Normally, the MC would have retrieved the dictionary during initialization; however, if the MC has limited 2539
storage space to cache dictionaries, it may have been forced to evict it.) Finally, the MC uses the 2540
dictionary to decode the BEJ payload for the read command into JSON data and then the MC sends the 2541
JSON data back to the client. 2542
 2543

PLDM for Redfish Device Enablement DSP0218

84 Published Version 1.2.0

 2544

Redfish
Client MC RDE

Device

HTTP/GET(header)

RDEOperationInit(ResourceID = X, OperationID = Y, OperationType = READ,
OperationFlags = contains_custom_request_parameters)

SUCCESS

RDEMultipartReceive(DataTransferHandle=Z, OperationID=0x01, TransferOperation=FIRST_PART)

SUCCESS [TransferFlag = END, NextDataTransferFlag = 0x0, data]

SupplyCustomRequestParameters(ResourceID = X, OperationID = Y, Header_data)

SUCCESS, response_data

INACTIVE

NEEDING
PAYLOAD

INACTIVE
(Device can free buffers)

GetSchemaDictionary(ResourceID, schemaClass=MAJOR)
SUCCESS[TransferHandle = A]

INACTIVE

NEED
INPUT

HAVE
RESULTS

COMPLETED
RDEOperationComplete(ResourceID = X, OperationID = Y)

GetSchemaDictionary(ResourceID, schemaClass = MAJOR)

RDEMultipartReceive(DataTransferHandle = A, OperationID = 0x0000,
TransferOperation = FIRST_PART)

SUCCESS [TransferFlag = END, NextDataTransferFlag = 0x0, data]

Decode BEJ

Optional, not needed if
MC already has the

Dictionary

SUCCESS[OperationStatus = FINISHED, CompletionPercentage = 100,
OperationExecutionFlags = have_result_payload,

ResultTransferFlag = Z, ETag = E, ResponsePayloadLength = 0]

SUCCESS

...

...

Encode BEJ

 2545

 Figure 11 – Complex Read Operation ladder diagram 2546

9.2.1.3 Write (update) Operation ladder diagram 2547

Figure 12 presents the ladder diagram for a write Operation. As with the read cases, the Operation begins 2548
when the Redfish client sends a request over an HTTP connection to the MC, in this case, an UPDATE. 2549
Once again, the MC decodes the URI targeted by the UPDATE Operation to pin it down to a specific 2550
resource and PDR. Before it can send the RDEOperationInit command to the RDE Device that owns the 2551
PDR, the MC must perform a BEJ encoding of the JSON payload it received from the Redfish client. If the 2552
BEJ encoded payload were small enough to fit within the maximum transfer chunk, the MC could inline it 2553
with the RDEOperationInit command; however, in this example, that is not the case. The MC therefore 2554
sends RDEOperationInit with the OperationType set to UPDATE and a nonzero transfer handle. Seeing 2555
this, the RDE Device knows to expect a larger payload via RDEMultipartSend. 2556

The MC uses the RDEMultipartSend command to transfer the encoded payload to the RDE Device in one 2557
or more chunks. The contains_request_parameters Operation flag is not set, so the RDE Device will not 2558
expect supplemental parameters as part of this Operation. Having everything it needs to execute, the 2559
RDE Device moves to the TRIGGERED state. The MC now sends the RDEOperationStatus command to 2560
the RDE Device to have it execute the Operation. (In practice, the RDE Device is allowed to begin 2561
executing the Operation as soon as it has received the request payload, so it may choose not to wait for 2562
the RDEOperationStatus command to do so.) The RDE Device executes the Operation and sends the 2563

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 85

results to the MC as the response to the RDEOperationStatus command. As before, the MC finalizes the 2564
Operation via RDEOperationComplete and then sends the results back to the client. 2565

Redfish
Client MC RDE

Device

HTTP/UPDATE
(header, JSON payload)

RDEOperationInit(ResourceID = X, OperationID = Y, OperationType = UPDATE,
OperationFlags = contains_request_payload),

SendDataTransferHandle = Z, RequestPayloadLength = 0
SUCCESS

RDEOperationStatus(ResourceID = X, OperationID = Y, Header_data)

SUCCESS

INACTIVE

NEEDING
PAYLOAD

INACTIVE
(Device can free buffers)

INACTIVE

NEED
INPUT

COMPLETEDRDEOperationComplete(ResourceID = X, OperationID = Y)

SUCCESS[OperationStatus = FINISHED, CompletionPercentage = 100,
OperationExecutionFlags = 0,

ResultTransferHandle = 0, ResponsePayloadLength = 0]

SUCCESS

...
RDEMultipartSend(DataTransferHandle = Z, NextDataTransferHandle = Z'

OperationID = Y, TransferFlag = START, data)

SUCCESS [TransferOperation = XFER_COMPLETE]

Encode BEJ

Decode BEJ TRIGGERED

 2566

Figure 12 – Write Operation ladder diagram 2567

9.2.1.4 Write (update) with Long-running Task Operation Ladder Diagram 2568

 2569

Figure 13 presents the ladder diagram for a write Operation that spawns a long-running Task. As with the 2570
previous case, the Operation begins when the Redfish client sends an UPDATE request over an HTTP 2571
connection to the MC, and the MC decodes the URI targeted by the UPDATE Operation to pin it down to 2572
a specific resource and PDR. Before it can send the RDEOperationInit command to the RDE Device that 2573
owns the PDR, the MC must perform a BEJ encoding of the JSON payload it received from the Redfish 2574
client. Unlike the previous example, the BEJ encoded payload here is small enough to fit in the maximum 2575
transfer chunk, so the MC inlines it into the RDEOperationInit request command. Again, the 2576
contains_request_parameters Operation flag is not set, so the RDE Device will not expect supplemental 2577
parameters as part of this Operation. 2578

When the RDE Device receives the RDEOperationInit request command, it has everything it needs to 2579
begin work on the Operation. In this case, the RDE Device determines that performing the write will take 2580
longer than PT1, so the RDE Device spawns a long-running Task to process the write asynchronously 2581
and sends TaskSpawned in the OperationExecutionFlags to inform the MC. 2582

When it discovers that the RDE Device spawned a long-running Task, the MC adds a member to the 2583
Task collection it maintains and synthesizes a TaskMonitor URI to send back to the client in a location 2584
response header. At this point, the client can issue an HTTP GET to retrieve a status update on the Task; 2585
when it does so, the MC sends RDEOperationStatus to the RDE Device to get the status update and 2586
sends it back to the client as the result of the GET operation. 2587

At some point, the asynchronous Task finishes executing. When this happens, the RDE Device issues a 2588
PlatformEventMessage to send a TaskCompletion event to the MC. (This presupposes that the RDE 2589
Device and the MC both support asynchronous eventing. Were this not the case, the RDE Device would 2590

PLDM for Redfish Device Enablement DSP0218

86 Published Version 1.2.0

still generate the TaskCompletion event, but would wait for the MC to invoke the 2591
PollForPlatformEventMessage command to report the event.) Regardless of which way the MC gets the 2592
event, it then sends the RDEOperationStatus command one last time in order to retrieve the final results 2593
from the Operation. The next time the client performs a GET on the TaskMonitor, the MC can send back 2594
the final results of the Operation. Finally, the MC finalizes the Operation via RDEOperationComplete at 2595
which point the MC can delete the Task collection member and the TaskMonitor URI and the RDE Device 2596
can free up any buffers associated with the Operation and/or Task. 2597

 2598

Redfish
Client MC RDE

Device

HTTP/UPDATE
(header, JSON payload)

RDEOperationInit(ResourceID=X, OperationID=Y, OperationType=UPDATE,
OperationFlags=contains_request_payload),

SendDataTransferHandle = 0, RequestPayloadLength > 0

SUCCESS [OperationStatus=RUNNING, CompletionPercentage=0,
CompletionTimeSeconds=XX, OperationExecutionFlags=TaskSpawned,

ReponsePayloadLength=0]

RDEOperationStatus(ResourceID=X, OperationID=Y)

SUCCESS
[HttpResponse=202,

Location=TaskMonitorURI]

INACTIVE

LONG
RUNNING

RDEOperationComplete(ResourceID=X, OperationID=Y)

SUCCESS[OperationStatus=RUNNING, CompletionPercentage> 0,
OperationExecutionFlags=TaskSpawned,

ResponsePayloadLength=0]

SUCCESS

...
LONG

RUNNING

PlatformEventMessage(TID=A, eventClass=redfishTaskExecutedEvent,
ResourceID=X, OperationID=Y)

RDEOperationStatus(ResourceID=X, OperationID=Y)

SUCCESS[OperationStatus=Completed, CompletionPercentage=100,
ResponsePayloadLength> 0, response_payload]

SUCCESS INACTIVE
(Device can free buffers)

HTTP/GET TaskMonitorURI

SUCCESS
[HttpResponse=202,
Body=TaskResource]

HTTP/GET TaskMonitorURI

SUCCESS
[HttpResponse=200,

Body=TaskResult]

COMPLETED

MC can delete
TaskMonitor

and Task resources

Encode BEJ

Decode BEJ

 2599

Figure 13 – Write Operation with long-running Task ladder diagram 2600

9.2.2 Operation/Task overview workflow diagrams (Operation perspective) 2601

This clause describes the operating behavior for MCs and RDE Devices over the lifecycle of Operations 2602
from an Operation-centric perspective. The workflow diagrams are split between simpler, short-lived 2603
Operations and those that spawn a Task to be processed asynchronously. These workflow diagrams are 2604
intended to capture the standard flow for the execution of most Operations, but do not cover every 2605
possible error condition. For full precision, refer to clause 9.2.3. 2606

9.2.2.1 Operation overview workflow diagram 2607

Table 47 details the information presented visually in Figure 14. 2608

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 87

Table 47 – Operation lifecycle overview 2609

Step Description Condition Next Step

1 – START The lifecycle of an Operation begins
when the MC receives an
HTTP/HTTPS operation from the
client

For any Redfish Read
(HTTP/HTTPS GET) operations

2

For any other operation 3

2 – GET_DIGEST For Read operations, the MC may
use the GetResourceETag
command to record a digest
snapshot. If the RDE Device
advertised that it is capable of
reading a resource atomically in the
NegotiateRedfishParameters
command (see clause 11.1), the MC
may skip this step if the read does
not span multiple resources (such as
through the $expand request
header)

Unconditional 3

3 – INITIALIZE_OP The MC checks the HTTP/HTTPS
operation to see if it contains JSON
payload data to be transferred to the
RDE Device. If so, it performs a BEJ
encoding of this data. It then uses
the RDEOperationInit command to
begin the Operation with the RDE
Device

Unconditional 4

4 –
SEND_PAYLOAD_
CHK

If the RDE Operation contains BEJ
payload data, it needs to be sent to
the RDE Device. The payload data
may be inlined in the
RDEOperationInit request message
if the resulting message fits within
the negotiated transfer chunk limit.

If the Operation contains a non-
inlined payload (that did not fit in the
RDEOperationInit request message)

5

Otherwise 6

5 –
SEND_PAYLOAD

The MC uses the RDEMultipartSend
command to send BEJ-encoded
payload data to the RDE Device

The last chunk of payload data has
been sent

6

More data remains to be sent 5
6 –
SEND_PARAMS_C
HK

If the RDE Operation contains
uncommon request parameters or
headers that need to be transferred
to the RDE Device, they need to be
sent to the RDE Device.

If the Operation contains
supplemental request parameters

7

Otherwise 8

7 –
SEND_PARAMS

The MC uses the
SupplyCustomRequestParameters
command to submit the
supplemental request parameters to
the RDE Device

Unconditional 8

8 – TRIGGERED The RDE Device begins executing
the Operation as soon as it has all
the information it needs for it

Unconditional 9

9 –
COMPLETION_CH
K

The RDE Device must respond to
the triggering command (that
provided the last bit of information
needed to execute the Operation or
a follow-up call to
RDEOperationStatus if the last data

If the RDE Device is able to
complete the Operation “quickly”

11

Otherwise 10

PLDM for Redfish Device Enablement DSP0218

88 Published Version 1.2.0

Step Description Condition Next Step
was sent via RDEMultipartSend)
within PT1 time. If it can complete
the Operation within that timeframe,
it does not need to spawn a Task to
run the Operation asynchronously.

10 – LONG_RUN If the RDE Device was not able to
complete the Operation quickly
enough it spawns a Task to execute
asynchronously. See Figure 15 for
details of the Task sublifecycle.

Once the Task finishes executing 11

11 –
RCV_PAYLOAD_C
HK

If the Operation contains a response
payload, the RDE Device encodes it
in BEJ format. If the response
payload is small enough to inline
and have the response message fit
within the negotiated maximum
transfer chunk, the RDE Device
appends it to the response message
of:

• RDEOperationInit, if this
was the triggering
command

• SupplyCustomRequestPar
ameters, if this was the
triggering command

• The first
RDEOperationStatus after
a triggering
RDEMultipartSend
command, if the Operation
could be completed
“quickly”

• The first
RDEOperationStatus after
asynchronous Task
execution finishes,
otherwise

If there is no payload or if the
payload is small enough to be
inlined into the response message of
the appropriate command

13

Otherwise 12

12 –
RCV_PAYLOAD

The MC uses the
RDEMultipartReceive command to
retrieve the BEJ-encoded payload
from the RDE Device

The last chunk of payload data has
been sent

13

More data remains to be sent 12

13 –
RCV_PARAMS_CH
K

The MC checks to see if the
Operation result contains
supplemental response parameters

If the Operation contains response
parameters

14

Otherwise 15
14 – RCV_PARAMS The MC uses the

RetrieveCustomResponseParamete
rs command to obtain the
supplemental response parameters.
NOTE The transfer of a non-inlined

response payload and
supplemental response
parameters may be performed
in either order. For simplicity,
the flow shown assumes that a
response payload would be
transferred before

Unconditional 15

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 89

Step Description Condition Next Step
supplemental response
parameters; however, the
opposite assumption could be
made by swapping the
positions of blocks 11/12 with
blocks 13/14 in the figure.

15 – COMPLETE The MC sends the
RDEOperationComplete command
to finalize the Operation

n/a n/a

16 – CMP_DIGEST If the Operation was a read and the
MC collected an ETag in step 2, the
MC compares the response ETag
with the one it collected in step 2 to
check for a consistency violation. If it
finds one, it may retry the operation
or give up. The MC may skip the
consistency check (treat it as
successful without checking) if the
RDE Device advertised that is has
the capability to read a resource
atomically in its response to the
NegotiateRedfishParameters
command (see clause 11.1).

Read operation and mismatched
ETags and retry count not exceeded

2

Not a read, no ETag collected, the
ETags match, or retry count
exceeded

n/a: Done

PLDM for Redfish Device Enablement DSP0218

90 Published Version 1.2.0

Operation
Initialization

Record ETag

All Others

Contains Non-
inlined Send Data?

YesMultipart
Send

More Data
No

Operation
Triggered

Send Complete

Completed
Immediately?

No

Yes

Contains Non-
inlined Response

Data?
Yes

Multipart
Receive

More Data
No

Read Operation,
 ETag Mismatch,
Retry count not

exceeded

Execution Complete

Operation
Complete

Read Operation

Spawn
Task

Receive Complete

Supply
Parameters

Contains
Parameters

No

Yes

Start

Yes

Contains
Parameters?

Receive
Parameters

Yes No

1 2

3

45

6

87

910

1112

13
16

14

15

Done

No

 2610

Figure 14 – RDE Operation lifecycle overview (holistic perspective) 2611

9.2.2.2 Task overview workflow diagram 2612

Table 48 details the information presented visually in Figure 15. 2613

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 91

Table 48 – Task lifecycle overview 2614

Current Step Description Condition Next Step

1 – TRIGGERED The sublifecycle of a Task begins
when the RDE Device receives all
the data it needs to perform an
Operation. (This corresponds to
Step 8 in Table 47.)

Unconditional 2

2 –
COMPLETION_CHK

The RDE Device must respond to
the triggering command (that
provided the last bit of information
needed to execute the Operation)
within PT1 time. If it cannot
complete the Operation within that
timeframe, it spawns a Task to run
the Operation asynchronously.

If the RDE Device is able to
complete the Operation quickly (not
a Task)

17

Otherwise 3

3 – LONG_RUN The RDE Device runs the Task
asynchronously

Unconditional 5

4 – REQ_STATUS The MC may issue an
RDEOperationStatus command at
any time to the RDE Device.

If issued 5

5 –STATUS_CHK The RDE Device must be ready to
respond to an RDEOperationStatus
command while running a Task
asynchronously

Status request received 6
No status request received 8

6 –
PROCESS_STATU
S

The RDE Device sends a response
to the RDEOperationStatus
command to provide a status update

Unconditional 3

7 – REQ_KILL The MC may issue an
RDEOperationKill command at any
time to the RDE Device

Unconditional 8

8 –KILL_CHK The RDE Device must be ready to
respond to an RDEOperationKill
command while running a Task
asynchronously

Kill request received 9
No kill request received 10

9 – PROCESS_KILL If the RDE Device receives a kill
request, it may or may not be able to
abort the Task. This is an RDE
Device-specific decision about
whether the Task has crossed a
critical boundary and must be
completed

RDE Device cannot stop the Task 10
RDE Device can stop the Task 11

10 –
ASYNC_EXECUTE_
FINISHED_CHK

The RDE Device should eventually
complete the Task

If the Task has been completed 12
If the Task has not been completed 3

11 –
PERFORM_ABORT

The RDE Device aborts the Task in
response to a request from the MC

Unconditional 17

PLDM for Redfish Device Enablement DSP0218

92 Published Version 1.2.0

Current Step Description Condition Next Step
12 –
COMPLETION_EVE
NT

After the Task is complete, the RDE
Device generates a Task
Completion Event

Unconditional 13

13 – ASYNC_CHK The mechanism by which the Task
completion Event reaches the MC
depends on how the MC configured
the RDE Device for Events via the
PLDM for Platform Monitoring and
Control SetEventReceiver command

Asynchronous Events 14
Polled Events 15

14 – PEM_POLL The MC uses the
PollForPlatformEventMessage
command to check for Events and
finds the Task Completion Event

Unconditional 16

15 – PEM_SEND The RDE Devices sends the Task
Completion Event to the MC
asynchronously via the
PlatformEventMessage command

Unconditional 16

16 –
GET_TASK_FOLLO
WUP

After receiving the Task completion
Event, the MC uses the
RDEOperationStatus command to
retrieve the outcome of the Task’s
execution

Unconditional 17

17 – TASK_DONE The MC checks the response
message to the
RDEOperationStatus command to
see if there is a response payload
(This corresponds to Step 11 in
Table 47.)

See Step 11 in Table 49 See Step 11
in Table 49

 2615

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 93

Operation
Triggered

Completed
Immediately?

No
Task Spawned,

Running
Asynchronously

Task
Completion

Event

MC Retrieves
Task Completion

Event

Operation
Status

Request?

No

Yes Provide Status
update

Operation
Completed?

No

Received
Operation Kill

Request?

Yes Can RDE Device
Stop Operation?

RDE Device
Kills Operation

Yes

(To 11 in Operation
Workflow)

Yes

No

Yes

1

2
3

5 6

8 9

11

12

Operation
Status Query

Operation Kill
Request

4

7

Async Support?

13

Platform Event
Message

MC Polls for
Events

Yes

No

14 15

16

17

10

 2616

Figure 15 – RDE Task lifecycle overview (holistic perspective) 2617

 2618

PLDM for Redfish Device Enablement DSP0218

94 Published Version 1.2.0

9.2.3 RDE Operation state machine (RDE Device perspective) 2619

The following clauses describe the operating behavior for the lifecycle of Operations and Tasks from an 2620
RDE Device-centric perspective. Table 49 details the information presented visually in Figure 16. The 2621
states presented in this state machine are not (collectively) the total state for the RDE Device, but rather 2622
the state for the Operation. The total state for the RDE Device would involve separate instances of the 2623
Task/Operation state machine replicated once for each of the concurrent Operations that the RDE Device 2624
and the MC negotiated to support at registration time. 2625

9.2.3.1 State definitions 2626

The following states shall be implemented by the RDE Device for each Operation it is supporting: 2627

• INACTIVE 2628

– INACTIVE is the default Operation state in which the RDE Device shall start after 2629
initialization. In this state, the RDE Device is not processing an Operation as it has not 2630
received an RDEOperationInit command from the MC. 2631

• NEED_INPUT 2632

– After receiving the RDEOperationInit command, the RDE Device moves to this state if it is 2633
expecting additional Operation-specific parameters or a payload that was not inlined in the 2634
RDEOperationInit command. 2635

• TRIGGERED 2636

– Once the RDE Device receives everything it needs to execute an Operation, it begins 2637
executing it immediately. If the triggering command – the command that supplied the last 2638
bit of data needed to execute the Operation – was RDEOperationInit or 2639
SupplyCustomRequestParameters, the response message to the triggering command 2640
reflects the initial results for the Operation. However, if the triggering command was a 2641
RDEMultipartSend, initial results are deferred until the MC invokes the 2642
RDEOperationStatus command. This state captures the case where the Operation was 2643
triggered by a RDEMultipartSend and the MC has not yet sent an RDEOperationStatus 2644
command to get initial results. In this state, the RDE Device may execute the Operation; 2645
alternatively, it may wait to receive RDEOperationStatus to begin execution. 2646

• TASK_RUNNING 2647

– If the RDE Device cannot complete the Operation within the timeframe needed for the 2648
response to the command that triggered it, the RDE Device spawns a Task in which to 2649
execute the Operation asynchronously. 2650

• HAVE_RESULTS 2651

– When execution of the Operation produces a response parameters or a response payload 2652
that does not fit in the response message for the command that triggered the Operation (or 2653
detected its completion, if a Task was spawned or if there was a payload but no custom 2654
request parameters), the RDE Device remains in this state until the MC has collected all of 2655
these results. 2656

• COMPLETED 2657

– The RDE Device has completed processing of the Operation and awaits acknowledgment 2658
from the MC that it has received all Operation response data. This acknowledgment is 2659
done by the MC issuing the RDEOperationComplete command. When the RDE Device 2660
receives this command, it may discard any internal records or state it has maintained for 2661
the Operation. 2662

• FAILED 2663

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 95

– The MC has explicitly killed the Operation or an error prevented execution of the 2664
Operation. 2665

• ABANDONED 2666

– If MC fails to progress the Operation through this state machine, the RDE Device may 2667
abort the Operation and mark it as abandoned. 2668

9.2.3.2 Operation lifecycle state machine 2669

Figure 16 illustrates the state transitions the RDE Device shall implement. Each bubble represents a 2670
particular state as defined in the previous clause. Upon initialization, system reboot, or an RDE Device 2671
reset the RDE Device shall enter the INACTIVE state. 2672

 Table 49 – Task lifecycle state machine 2673

Current State Trigger Response Next State

0 - INACTIVE RDEOperationInit
- RDE Device not ready
- RDE Device does not wish

to specify a deferral
timeframe

ERROR_NOT_READY,
HaveCustomResponseParameter
s bit in OperationExecutionFlags
not set

INACTIVE

RDEOperationInit
- RDE Device not ready
- RDE Device does wish to

specify a deferral
timeframe

ERROR_NOT_READY,
HaveCustomResponseParameter
s bit in OperationExecutionFlags
set

HAVE_RESULTS

RDEOperationInit,
SupplyCustomRequestParameters,
RDEOperationStatus,
RDEOperationKill, or
RDEOperationComplete

- Resource ID does not
correspond to any active
Operation

ERROR_NO_SUCH_RESOURCE INACTIVE

RDEOperationInit, wrong resource
type for POST Operation in request
(e.g., Action sent to a collection)

ERROR_WRONG_LOCATION_T
YPE

INACTIVE

RDEOperationInit, RDE Device
does not allow the requested
Operation

ERROR_NOT_ALLOWED INACTIVE

RDEOperationInit, RDE Device
does not support the requested
Operation

ERROR_UNSUPPORTED INACTIVE

RDEOperationInit, Operation ID has
MSBit clear (indicating that the MC
is attempting to initiate an Operation
with an ID reserved for the RDE
Device)

ERROR_INVALID_DATA INACTIVE

RDEOperationInit, request contains
any other error

Various, depending on the specific
error encountered

INACTIVE

RDEOperationStatus

OPERATION_INACTIVE INACTIVE

PLDM for Redfish Device Enablement DSP0218

96 Published Version 1.2.0

Current State Trigger Response Next State

RDEOperationInit;
- valid request
- Operation Flags indicate

request non-inlined
payload or parameters to
be sent from MC to RDE
Device

Success NEED_INPUT

RDEOperationInit;
- valid request
- Operation Flags indicate

no request payload to be
sent from MC to RDE
Device (or request payload
inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device cannot
complete Operation within
PT1

Success TASK_RUNNING

RDEOperationInit;
- valid request
- Operation Flags indicate

no request payload to be
sent from MC to RDE
Device (or request payload
inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device completes
Operation within PT1

- response flags indicate
response parameters or a
non-inlined response
payload to be retrieved
from RDE Device

Success HAVE_RESULTS

RDEOperationInit;
- valid request
- Operation Flags indicate

no request payload to be
sent from MC to RDE
Device (or request payload

ERROR_INSUFFICIENT_STORA
GE

FAILED

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 97

Current State Trigger Response Next State
inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device completes
Operation within PT1

- response flags indicate
response parameters or a
non-inlined response
payload to be retrieved
from RDE Device

- Response payload too
large for RDE Device to
process

RDEOperationInit;
- valid request
- Operation Flags indicate

no request payload to be
sent from MC to RDE
Device (or request payload
inlined in RDEOperationInit
request message)

- request flags indicate no
supplemental parameters
needed

- RDE Device completes
Operation within PT1

- no payload to be retrieved
from RDE Device or
response payload fits
within response message
such that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

Success COMPLETED

RDEOperationKill (any combination
of flags)

ERROR_UNEXPECTED INACTIVE

Any other Operation command ERROR INACTIVE

1- NEED_INPUT

RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

NEED_INPUT

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
NEED_INPUT

RDEOperationInit request flags
indicated supplemental parameters
and or payload data to be sent;

None ABANDONED

PLDM for Redfish Device Enablement DSP0218

98 Published Version 1.2.0

Current State Trigger Response Next State
Tabandon timeout waiting for
RDEMultipartSend/SupplyCustomR
equestParameterscommand

RDEOperationKill;
- neither run_to_completion

nor discard_record flag set

Success FAILED

RDEOperationKill;
- run_to_completion flag not

set
- discard_record flag set

Success INACTIVE

RDEOperationKill;
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA NEED_INPUT

RDEOperationKill;
- both run_to_completion

and discard_record flags
both set

ERROR_UNEXPECTED (can’t run
to completion without further input
from MC, so the request is
contradictory)

NEED_INPUT

RDEOperationStatus OPERATION_NEED_INPUT NEED_INPUT

RDEMultipartSend;
- data inlined or Operation

flags indicate no payload
data

ERROR_UNEXPECTED NEED_INPUT

RDEMultipartSend;
- transfer error

Error specific to type of transfer
failure encountered

NEED_INPUT
(MC may retry
send or use
RDEOperationKill
to abort
Operation)

RDEMultipartSend;
- more data to be sent from

the MC to the RDE Device
after this chunk

Success NEED_INPUT

RDEMultipartSend;
- no more data to be sent

from the MC to the RDE
Device after this chunk

- RDEOperationInit request
flags indicated
supplemental parameters
needed

- params not yet sent

Success NEED_INPUT

RDEMultipartSend;
- no more data to be sent

after this chunk
- RDEOperationInit request

flags indicated
supplemental parameters

ERROR_INSUFFICIENT_STORA
GE

FAILED

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 99

Current State Trigger Response Next State
not needed or parameters
already sent

- request payload too large
to be processed by RDE
Device

RDEMultipartSend;
- no more data to be sent

after this chunk
- RDEOperationInit request

flags indicated
supplemental parameters
not needed or parameters
already sent

Success TRIGGERED

RDEMultipartSend;
- data already transferred

ERROR_UNEXPECTED NEED_INPUT

SupplyCustomRequestParameters;
- Operation includes

unsupported ETag
operation or query option

ERROR_UNSUPPORTED FAILED

SupplyCustomRequestParameters;
- Operation flags indicated

supplemental parameters
not needed or payload
data remaining to be sent

ERROR_UNEXPECTED NEED_INPUT

SupplyCustomRequestParameters;
- no payload data remaining

to be sent
- ETagOperation is

ETAG_IF_MATCH and no
ETag matches or
ETagOperation is
ETAG_IF_NONE_MATCH
and an ETAG matches

ERROR_ETAG_MATCH FAILED

SupplyCustomRequestParameters;
- request contains

unsupported RDE custom
header

ERROR_UNRECOGNIZED_CUS
TOM_HEADER

FAILED

SupplyCustomRequestParameters;
- no payload data remaining

to be sent
- Error occurs in processing

of Operation

Error specific to type of failure
encountered

FAILED

SupplyCustomRequestParameters;
- no payload data remaining

to be sent
- RDE Device cannot

complete Operation within
PT1

Success LONG_RUNNING

PLDM for Redfish Device Enablement DSP0218

100 Published Version 1.2.0

Current State Trigger Response Next State

SupplyCustomRequestParameters;
- no payload data remaining

to be sent
- RDE Device completes

Operation within PT1
- response flags indicate

response parameters or a
non-inlined response
payload to be retrieved
from RDE Device

- response payload too large
to be processed by RDE
Device

ERROR_INSUFFICIENT_STORA
GE

FAILED

SupplyCustomRequestParameters;
- no payload data remaining

to be sent
- RDE Device completes

Operation within PT1

- response flags indicate
response parameters or a
non-inlined response
payload to be retrieved
from RDE Device

Success HAVE_RESULTS

SupplyCustomRequestParameters;
- no payload data remaining

to be sent
- RDE Device completes

Operation within PT1

- no payload to be retrieved
from RDE Device or
response payload fits
within response message
such that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

Success COMPLETED

RDEMultipartReceive,
RDEOperationComplete

ERROR_UNEXPECTED NEED_INPUT

Any other Operation command ERROR NEED_INPUT

2 - TRIGGERED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

TRIGGERED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
TRIGGERED

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 101

Current State Trigger Response Next State

Tabandon timeout waiting for
RDEOperationStatus command

None ABANDONED

RDEOperationStatus; error occurs
in processing of Operation

Error specific to type of failure
encountered

FAILED

RDEOperationKill
- discard_results flag set
- any other flag set

ERROR_INVALID_DATA TRIGGERED

RDEOperationKill
- discard_results flag set
- no other flag set

ERROR_UNEXPECTED TRIGGERED

RDEOperationKill
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA TRIGGERED

RDEOperationKill;
- Operation executing;

Operation can be killed
- neither run_to_completion

nor discard_record flag set

Success FAILED

RDEOperationKill
- Operation executing
- Operation can be killed
- run_to_completion flag not

set
- discard_record flag set

Success INACTIVE

RDEOperationKill
- Operation executing
- Operation can be killed
- both run_to_completion

and discard_record flags
set

ERROR_UNEXPECTED (can’t run
to completion without further input
from MC to move it to
TASK_RUNNING, so the request
is contradictory)

TRIGGERED

RDEOperationKill
- Operation executing
- Operation cannot be killed

or Operation execution
finished

- any combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

TRIGGERED

RDEOperationStatus;
- RDE Device cannot

complete Operation within
PT1

OPERATION_TASK_RUNNING TASK_RUNNING

RDEOperationStatus;
- RDE Device completes

Operation within PT1
- response payload too large

for RDE Device to process

ERROR_INSUFFICIENT_STORA
GE

FAILED

PLDM for Redfish Device Enablement DSP0218

102 Published Version 1.2.0

Current State Trigger Response Next State

RDEOperationStatus;
- RDE Device completes

Operation within PT1
- payload to be retrieved

from RDE Device or
response parameters
present

Success HAVE_RESULTS

RDEOperationStatus;

- RDE Device completes
Operation within PT1

- no payload or payload fits
within response message
such that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

Success COMPLETED

RDEMultipartSend,
RDEMultipartReceive,
SupplyCustomRequestParameters,
RetrieveCustomResponseParamete
rs, RDEOperationComplete

ERROR_UNEXPECTED TRIGGERED

Any other Operation command ERROR TRIGGERED

3 -
TASK_RUNNING
`

RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

TASK_RUNNING

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
TASK_RUNNING

Error occurs in processing of
Operation

None FAILED

RDEOperationKill
- discard_results flag set
- any other flag set

ERROR_INVALID_DATA TASK_RUNNING

RDEOperationKill
- discard_results flag set
- no other flag set

ERROR_UNEXPECTED TASK_RUNNING

RDEOperationKill
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA TASK_RUNNING

RDEOperationKill;
- Operation can be aborted
- neither run_to_completion

nor discard_record flag set

Success FAILED

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 103

Current State Trigger Response Next State

RDEOperationKill
- Operation executing
- Operation can be killed
- run_to_completion flag not

set
- discard_record flag set

Success INACTIVE

RDEOperationKill
- Operation executing
- Operation can be killed
- both run_to_completion

and discard_record flags
set

Success TASK_RUNNING

RDEOperationKill;
- Operation cannot be

aborted or has finished
execution

- any combination of
run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

TASK RUNNING

Execution finishes;
- Operation not killed

Generate Task Completion Event
(only once per Operation). Send
to MC via PlatformEventMessage
if MC configured the RDE Device
to use asynchronous Events via
SetEventReceiver; otherwise, MC
will retrieve Event via
PollForPlatformEventMessage.
See Event lifecycle in clause 9.3
for further details

TASK_RUNNING

Execution finishes;
- Operation killed

None INACTIVE

Execution finished;
- Task Completion Event

received by MC;
- Tabandon timeout waiting for

RDEOperationStatus
command

None ABANDONED

RDEOperationStatus;
- execution not yet finished

OPERATION_TASK_RUNNING TASK RUNNING

RDEOperationStatus;
- execution finished
- payload too large for RDE

Device to process

ERROR_INSUFFICIENT_STORA
GE

FAILED

RDEOperationStatus;
- execution finished
- payload to be retrieved

from RDE Device or
response parameters
present

OPERATION_HAVE_RESULTS HAVE_RESULTS

PLDM for Redfish Device Enablement DSP0218

104 Published Version 1.2.0

Current State Trigger Response Next State

RDEOperationStatus;
- execution finished
- no payload or payload fits

in response message such
that total response
message size is within
negotiated maximum
transfer chunk

- no response parameters

OPERATION_COMPLETED COMPLETED

RDEMultipartSend,
RDEMultipartReceive,
RDEOperationComplete

ERROR_UNEXPECTED TASK_RUNNING

Any other Operation command ERROR TASK_RUNNING

4 -
HAVE_RESULT
S

RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

HAVE_RESULTS

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
HAVE_RESULTS

RDEOperationKill
- discard_results flag set
- any other flag set

ERROR_INVALID_DATA HAVE_RESULTS

RDEOperationKill
- discard_results flag set
- no other flag set

SUCCESS INACTIVE

RDEOperationKill
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA HAVE_RESULTS

RDEOperationKill;
- any other combination of

run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

HAVE_RESULTS

RDEOperationStatus OPERATION_HAVE_RESULTS HAVE_RESULTS

RDEMultipartReceive;
- MC aborts transfer

Do not send data; Success;
Prepare to restart transfer with
next RDEMultipartReceive
command

HAVE_RESULTS

RDEMultipartReceive;
- transfer error

Error specific to type of transfer
failure encountered

HAVE_RESULTS
(MC may retry
receive or
abandon
Operation)

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 105

Current State Trigger Response Next State

RDEMultipartReceive;
- more data to transfer from

the RDE Device to the MC
after this chunk

Send data; Success HAVE_RESULTS

RDEMultipartReceive;
- no more data to transfer

from the RDE Device to
the MC after this chunk

- response parameters to
send

Send data; Success HAVE_RESULTS

RDEMultipartReceive;
- no more data to transfer

from the RDE Device to
the MC after this chunk

- no response parameters
present

Send data; Success COMPLETED

Tabandon timeout waiting for
RDEMultipartReceive and/or
RetrieveCustomResponseParamete
rs commands (depending on type of
results still to be retrieved)

None ABANDONED

ReceiveCustomResponseParamete
rs

- RDE Device was not ready
when RDEOperationInit
command was sent and
wished to specify a deferral
timeframe

Deferral Timeframe; Success FAILED

ReceiveCustomResponseParamete
rs

- response payload data not
yet transferred

Success HAVE_RESULTS

ReceiveCustomResponseParamete
rs

- response payload data
partially transferred

ERROR_UNEXPECTED HAVE_RESULTS

ReceiveCustomResponseParamete
rs

- no response payload or all
response payload data
transferred

Success COMPLETED

Any other Operation or transfer
command

Error HAVE_RESULTS

5 - COMPLETED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS;
no disruption to existing Operation

COMPLETED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this

PLDM for Redfish Device Enablement DSP0218

106 Published Version 1.2.0

Current State Trigger Response Next State
Operation
remains in
COMPLETED

RDEOperationKill
- discard_results flag set
- any other flag set

ERROR_INVALID_DATA COMPLETED

RDEOperationKill
- discard_results flag set
- no other flag set

ERROR_UNEXPECTED COMPLETED

RDEOperationKill
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA COMPLETED

RDEOperationKill;
- any other combination of

run_to_completion and
discard_record flags set

ERROR_OPERATION_UNKILLAB
LE

COMPLETED

RDEOperationStatus OPERATION_COMPLETED COMPLETED

RDEOperationComplete Success INACTIVE

Any other Operation command Error COMPLETED

6 - FAILED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS
Operation

FAILED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
FAILED

RDEOperationKill
- discard_results flag set
- any other flag set

ERROR_INVALID_DATA FAILED

RDEOperationKill
- discard_results flag set
- no other flag set

ERROR_UNEXPECTED FAILED

RDEOperationKill
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA FAILED

RDEOperationKill
- any other combination of

run_to_completion and
discard_record flags set

ERROR_OPERATION_FAILED FAILED

RDEOperationStatus OPERATION_FAILED FAILED

RDEOperationComplete Success INACTIVE

Any other Operation command ERROR_OPERATION_FAILED FAILED

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 107

Current State Trigger Response Next State
7 - ABANDONED RDEOperationInit, same rdeOpID ERROR_OPERATION_EXISTS

Operation
ABANDONED

RDEOperationInit, different rdeOpID Success or
ERROR_CANNOT_CREATE_OP
ERATION, depending on whether
the RDE Device has another slot
to execute an Operation

The new
Operation is
tracked in a
separate copy of
the state
machine; this
Operation
remains in
ABANDONED

RDEOperationKill
- discard_results flag set
- any other flag set

ERROR_INVALID_DATA ABANDONED

RDEOperationKill
- discard_results flag set
- no other flag set

ERROR_UNEXPECTED ABANDONED

RDEOperationKill
- run_to_completion flag set
- discard_record flag not set

ERROR_INVALID_DATA ABANDONED

RDEOperationKill;
- any other combination of

run_to_completion and
discard_record flags set

ERROR_OPERATION_ABANDO
NED

ABANDONED

RDEOperationStatus OPERATION_ABANDONED ABANDONED

RDEOperationComplete Success INACTIVE

Any other Operation command ERROR_OPERATION_ABANDO
NED

ABANDONED

PLDM for Redfish Device Enablement DSP0218

108 Published Version 1.2.0

0 - Inactive

2 - Triggered

7 - Abandoned 6 - Failed

1 - Need
Input

4- Have
Results
RDEMultipartReceive or
RetrieveCustomResponseParameters,
no more results pending

3 - Task
Running

5 - Completed

RDEOperationInit,
noninlined payload

or params

Inputs supplied,
Operation finished,

results available

RDEMultipartSend,
last chunk,

no params or params sent Inputs supplied,
Task spawned

(‡)

(†)

RDEOperationComplete

RDEOperationComplete

Any of
{1,2,3,4}

MC fails to
advance

Operation

RDEOperationComplete

RDEMultipartSend or
SupplyCustomRequestParameters;

more input pending

RDEMultipartReceive or
RetrieveCustomResponseParameters;
more results pending

RDEOperationStatus,
noninlined payload
or response params

Inputs supplied,
Operation finished,

no or inlined payload,
no response params

RDEOperationInit,
no or inlined payload,

no params,
result payload or params

RDEOperationInit,
no or inlined payload,

no params,
no or inlined payload,

no params

RDEOperationStatus,
Operation finished,

no or inlined payload,
no response params

(‡): RDEOperationStatus,
Task spawned

RDEOperationStatus,
Operation finished,

no or inlined payload,
no response params

(†): RDEOperationStatus,
Operation finished,
non-inlined payload
or response params

RDEOperationInit,
no or inlined payload,

no params,
Task spawned

Any of
{1,2,3,4}

Error occurs while
executing Operation

Operation finished; previously killed
with run_to_completion

RDEOperationKill,
discard_results bit set

 2674

Figure 16 – Operation lifecycle state machine (RDE Device perspective) 2675

9.3 Event lifecycle 2676

Table 50 describes the operating behavior for MCs and RDE Devices over the lifecycle of Events 2677
depicted visually in Figure 17. This sequence applies to both Task completion Events and schema-based 2678
Events. MC and RDE Device implementations of RDE shall comply with the sequences presented here. 2679

Table 50 – Event lifecycle overview 2680

Current State Description Condition Next Step

1 – OCCURS The lifecycle of an Event begins when the Event
occurs.

Unconditional 2

2 – RECORD The RDE Device creates an Event record. Unconditional 3

3 – ASYNC_CHK The MC used the SetEventReceiver command to
configure the RDE Device either to use
asynchronous Events or to be polled for Events.

Asynchronous Events 6
Polling 4

4 – EVT_POLL The MC polls for Events using the
PollForPlatformEventMessage command and
discovers the Event.

Unconditional 5

5 – DISC_PREV If the PollForPlatformEventMessage command
request message reflected a previous Event to

Unconditional 8

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 109

Current State Description Condition Next Step
be acknowledged, the RDE Device discards the
record for that previous Event.

6 – EVT_SEND The RDE Device issues a
PlatformEventMessage command to the MC to
notify it of the Event.

MC acknowledges the Event 7
MC does not acknowledge
the Event and retry count
(PN1, see DSP0240) not
exceeded

6

MC does not acknowledge
the Event and retry count
exceeded

7

7 – DISC_RCRD The RDE Device discards its Event record. Unconditional 8

8 – MORE_CHK Are there more Events (in the asynchronous
case) or there was an Event to acknowledge (in
the synchronous case)?

Yes 3
No 9

9 – DONE Event processing is complete. n/a -

PLDM for Redfish Device Enablement DSP0218

110 Published Version 1.2.0

Event
Happens

RDE Device
Creates Event

Record

RDE Device
Discards Event

Record

1

2

RDE Device
Sends
Event

6
MC does not acknowledge;
retry count not exceeded

Asynchrony
Supported?

3
Yes

MC Polls for
Event

4

No

MC acks or
retry count
exceeded

7

More Events?

8

Yes

Done

9

No

RDE Device
Discards
Previous

Event Record

5

 2681

Figure 17 – Redfish event lifecycle overview 2682

10 PLDM commands for Redfish Device Enablement 2683

This clause provides the list of command codes that are used by MCs and RDE Devices that implement 2684
PLDM Redfish Device Enablement as defined in this specification. The command codes for the PLDM 2685

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 111

messages are given in Table 51. RDE Devices and MCs shall implement all commands where the entry 2686
in the “Command Requirement for RDE Device” or “Command Requirement for MC”, respectively, is 2687
listed as Mandatory. RDE Devices and MCs may optionally implement any commands where the entry in 2688
the “Command Requirement for RDE Device” or “Command Requirement for MC”, respectively, is listed 2689
as Optional. 2690

Table 51 – PLDM for Redfish Device Enablement command codes 2691

Command Command
Code

Command
Requirement

for RDE Device

Command
Requirement

for MC

Command
Requestor
(Initiator)

Reference

Discovery and Schema Management Commands
NegotiateRedfishParameters 0x01 Mandatory Mandatory MC See 11.1

NegotiateMediumParameters 0x02 Mandatory Mandatory MC See 11.2

GetSchemaDictionary 0x03 Mandatory Mandatory MC See 11.3

GetSchemaURI 0x04 Mandatory Mandatory MC See 11.4

GetResourceETag 0x05 Mandatory Mandatory MC See 11.5

GetOEMCount 0x06 Optional Optional MC See 11.6

GetOEMName 0x07 Optional Optional MC See 11.7

GetRegistryCount 0x08 Optional Optional MC See 11.8

GetRegistryDetails 0x09 Optional Optional MC See 11.9

SelectRegistryVersion 0x0A Optional Optional MC See 11.10

GetMessageRegistry 0x0B Optional Optional MC See 11.11

GetSchemaFile 0x0C Optional Optional MC See 11.12

Reserved 0x0D-0x0F

RDE Operation and Task Commands
RDEOperationInit 0x10 Mandatory Mandatory MC See 12.1

SupplyCustomRequestParameters 0x11 Mandatory Mandatory MC See 12.2

RetrieveCustomResponseParamet
ers

0x12 Conditional4 Mandatory MC See 12.3

RDEOperationComplete 0x13 Mandatory Mandatory MC See 12.4

RDEOperationStatus 0x14 Mandatory Mandatory MC See 12.5

RDEOperationKill 0x15 Optional Optional MC See 12.6

RDEOperationEnumerate 0x16 Mandatory Optional MC See 12.7

Reserved 0x17-0x2F

Multipart Transfer Commands

RDEMultipartSend 0x30 Conditional1 Conditional1 MC See 13.1

RDEMultipartReceive 0x31 Mandatory Mandatory MC See 13.2

Reserved 0x32-0x3F

Reserved For Future Use
Reserved 0x40-0xFF

Referenced PLDM Base Commands (PLDM Type 0)

PLDM for Redfish Device Enablement DSP0218

112 Published Version 1.2.0

Command Command
Code

Command
Requirement

for RDE Device

Command
Requirement

for MC

Command
Requestor
(Initiator)

Reference

NegotiateTransferSize See DSP0240 Conditional1 Conditional1 MC See
DSP0240

MultipartSend See DSP0240 Conditional1 Conditional1 MC See
DSP0240

MultipartReceive See DSP0240 Conditional1 Conditional1 MC See
DSP0240

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 113

Command Command
Code

Command
Requirement

for RDE Device

Command
Requirement

for MC

Command
Requestor
(Initiator)

Reference

Referenced PLDM for Monitoring and Control Commands (PLDM Type 2)

GetPDRRepositoryInfo See DSP0248 Mandatory Mandatory MC See
DSP0248

GetPDR See DSP0248 Mandatory Mandatory MC See
DSP0248

SetEventReceiver See DSP0248 Conditional2 Conditional2 MC See
DSP0248

PlatformEventMessage See DSP0248 Optional3 Conditional3 RDE
Device

See
DSP0248

PollForPlatformEventMessage See DSP0248 Optional2 Conditional3 MC See
DSP0248

Notes: 2692

1) Either RDEMultipartSend or PLDM common MultipartSend is required if the RDE Device intends to 2693
support write Operations. RDE versions of bulk transfer commands shall be used if either the RDE 2694
Device or the MC does not support PLDM common versions; if both the RDE Device and the MC 2695
advertise support for PLDM common versions of bulk transfer commands (via the PLDM Base 2696
NegotiateTransferSize command), the RDE versions shall not be used. 2697

2) SetEventReceiver is mandatory if the RDE Device intends to support asynchronous messaging for 2698
Events via PlatformEventMessage. 2699

3) RDE Devices and MCs must support either PlatformEventMessage or 2700
PollForPlatformEventMessage in order to enable Event support. 2701

4) SupplyCustomResponseParameter is required if the RDE Device ever sets the 2702
HaveCustomResponseParameters flag in the OperationExecutionFlags field of the response 2703
message for a triggering command. 2704

11 PLDM for Redfish Device Enablement – Discovery and schema 2705
commands 2706

This clause describes the commands that are used by RDE Devices and MCs that implement the 2707
discovery and schema management commands defined in this specification. The command codes for the 2708
PLDM messages are given in Table 51. 2709

11.1 NegotiateRedfishParameters command (0x01) format 2710

This command enables the MC to negotiate general Redfish parameters with an RDE Device. The MC 2711
shall send this command to the RDE Device prior to any other RDE command. An RDE Device that 2712
supports multiple mediums shall provide the same response to this command independent of the medium 2713
on which this command was issued. 2714

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2715
respond with data formatted per the Response Data section. For a non-SUCCESS CompletionCode, only 2716
the CompletionCode field of the Response Data shall be returned. 2717

PLDM for Redfish Device Enablement DSP0218

114 Published Version 1.2.0

Table 52 – NegotiateRedfishParameters command format 2718

Type Request data

uint8 MCConcurrencySupport
The maximum number of concurrent outstanding Operations the MC can support for this RDE
Device. Must be > 0; a value of 1 indicates no support for concurrency. A value of 255 (0xFF) shall
be interpreted to indicate that no such limit exists. Upon completion of this command, the RDE
Device shall not initiate an Operation if MCConcurrencySupport (or DeviceConcurrencySupport
whichever is lower) Operations are already active.

bitfield16 MCFeatureSupport
Operations and functionality supported by the MC; for each, 1b indicates supported, 0b not:
[15:9] - reserved
[8] - BEJ v1.1 encoding and decoding supported; 1b = yes
[7] - events_supported; 1b = yes. Must be 1b if MC supports Redfish Events or Long-running
 Tasks.
[6] - action_supported; 1b = yes
[5] - replace_supported; 1b = yes
[4] - update_supported; 1b = yes
[3] - delete_supported; 1b = yes
[2] - create_supported; 1b = yes
[1] - read_supported; 1b = yes. All MCs that implement PLDM for Redfish Device Enablement
 shall support read Operations
[0] - head_supported; 1b = yes

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }

uint8 DeviceConcurrencySupport
The maximum number of concurrent outstanding Operations the RDE Device can support. Must be
> 0; a value of 1 indicates no support for concurrency. A value of 255 (0xFF) shall be interpreted to
indicate that no such limit exists. Regardless of the RDE Device’s level of support for concurrency, it
shall not initiate an Operation if a limit indicated by MCConcurrencySupport has already been
reached.

bitfield8 DeviceCapabilitiesFlags
Capabilities for this RDE Device; for each, 1b indicates the RDE Device has the capability, 0b not:
[7:3] - reserved
[2] - bej_1_1_support: the RDE Device supported encoding and decoding BEJ version 1.1
[1] - expand_support: the RDE Device can process a $expand request query parameter

(expressed via the LinkExpand field of the SupplyCustomRequestParameters
command)

[0] - atomic_resource_read: the RDE Device can respond to a read of an entire resource
atomically, guaranteeing consistency of the read

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 115

Type Response data (continued)

bitfield16 DeviceFeatureSupport
Operations and functionality supported by this RDE Device; for each, 1b indicates supported, 0b
not:
[15:8] - reserved
[7] - events_supported; 1b = yes. Must be 1b if RDE Device supports Redfish Events or Long-
 running Tasks. Shall match PLDM Event support indicated via support for PLDM for
 Platform Monitoring and Control (DSP0248) SetEventReceiver command
[6] - action_supported; 1b = yes
[5] - replace_supported; 1b = yes
[4] - update_supported; 1b = yes
[3] - delete_supported; 1b = yes
[2] - create_supported; 1b = yes
[1] - read_supported; 1b = yes. All RDE Devices shall support read Operations
[0] - head_supported; 1b = yes

uint32 DeviceConfigurationSignature
A signature (such as a CRC-32) calculated across all RDE PDRs and dictionaries that the RDE
Device supports. This calculation should be performed as if all of the RDE PDRs and dictionaries
were concatenated together into a single block of memory. The RDE Device may order the RDE
PDRs and dictionaries in any sequence it chooses; however, it should be consistent in this ordering
across invocations of the NegotiateRedfishParameters command. The RDE Device may use any
method to generate the signature so long as it guarantees that a change to one or more RDE PDRs
and/or dictionaries will not result in the same signature being generated.
The RDE Device may generate the signature in any manner it sees fit; however, the signature
generated for any given set of PDRs and dictionaries shall match any previous signature generated
for the same set of PDRs and dictionaries. If a nonzero result from an RDE Device signature
matches the result from a previous invocation of this command, the MC may generally assume that
any RDE PDRs and/or dictionaries it has stored for the RDE Device remain unchanged and can be
reused. However, MCs must be aware that any hashing algorithm risks a false positive match in
result between hashes of two distinct sets of data. To mitigate this risk, MCs should utilize a
secondary check, such as comparing the updateTime field in the PLDM for Platform Monitoring and
Control GetPDRRepositoryInfo command response message to that from when PDRs were
previously retrieved.

varstring DeviceProviderName
An informal name for the RDE Device

11.2 NegotiateMediumParameters command (0x02) format 2719

This command enables the MC to negotiate medium-specific parameters with an RDE Device. The MC 2720
should invoke this command on each communication medium (e.g., RBT, SMBus, PCIe VDM) on which it 2721
intends to interface with the RDE Device. The MC shall send this command over the transport for a 2722
particular medium to negotiate parameters for that medium. When the RDE Device receives a request 2723
with data formatted per the Request Data section below, it shall respond with data formatted per the 2724
Response Data section. For a non-SUCCESS CompletionCode, only the CompletionCode field of the 2725
Response Data shall be returned. 2726

PLDM for Redfish Device Enablement DSP0218

116 Published Version 1.2.0

Table 53 – NegotiateMediumParameters command format 2727

Type Request data

uint32 MCMaximumTransferChunkSizeBytes
An indication of the maximum amount of data the MC can support for a single message transfer.
This value represents the size of the PLDM header and PLDM payload; medium specific header
information shall not be included in this calculation. For cases of larger messages, a protocol-
specific multipart transfer shall be utilized.
All MC implementations shall support a transfer size of at least 64 bytes.
NOTE For MCTP-based mediums, this is relative to the message size, not the packet size.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }
If the MC reports a maximum transfer size of less than 64 bytes, the RDE Device shall respond with
completion code ERROR_INVALID_DATA.

uint32 DeviceMaximumTransferChunkSizeBytes
The maximum number of bytes that the RDE Device can support in a chunk for a single message
transfer. This value represents the size of the PLDM header and PLDM payload; medium specific
header information shall not be included in this calculation. If this value is greater than
MCMaximumTransferChunkSizeBytes, the RDE Device shall “throttle down” to using the smaller
value. If this value is smaller, the MC shall not attempt a transfer exceeding it.
All RDE Device implementations shall support a transfer size of at least 64 bytes.
NOTE For MCTP-based mediums, this is relative to the message size, not the packet size.

11.3 GetSchemaDictionary command (0x03) format 2728

This command enables the MC to retrieve a dictionary (full or truncated; see clause 7.2.2.3) associated 2729
with a Redfish Resource PDR. After invoking the GetSchemaDictionary command, the MC shall, upon 2730
receipt of a successful completion code and a valid read transfer handle, invoke one or more 2731
RDEMultipartReceive commands (clause 13.2) to transfer data for the dictionary from the RDE Device. 2732
The MC shall only have one dictionary, schema, or message registry retrieval in process from a given 2733
RDE Device at any time. In the event that the MC begins a dictionary, schema, or message registry 2734
retrieval when a previous retrieval has not yet completed (i.e., more chunks of dictionary or schema data 2735
remain to be retrieved), the previous retrieval is implicitly aborted and the RDE Device may discard any 2736
data associated with the transfer. 2737

MCs are discouraged from invoking the GetSchemaDictionary command in the middle of processing an 2738
RDE Operation (excluding when it is running asynchronously as a long-running task). Instead, whenever 2739
possible, they should run the Operation back to the INACTIVE state and only then retrieve dictionaries 2740
needed to finalize processing of Operation results. (Ideally, these dictionaries would have been cached 2741
before the Operation was initialized.) Neither the GetSchemaDictionary command nor any 2742
RDEMultipartReceive commands used to retrieve a dictionary shall be construed as resetting the 2743
abandonment timer (Tabandon, see clause 7.6). 2744

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2745
respond with data formatted per the Response Data section if it supports the command. For a non-2746
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2747

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 117

Table 54 – GetSchemaDictionary command format 2748

Type Request data

uint32 ResourceID
The ResourceID of any resource in the Redfish Resource PDR from which to retrieve the
dictionary. A ResourceID of 0xFFFF FFFF may be supplied to retrieve dictionaries common to all
RDE Device resources (such as the event or annotation dictionary) without referring to an
individual resource.

schemaClass RequestedSchemaClass
The class of schema being requested

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE
}
If the RDE Device does not support a schema of the type requested, it shall return
CompletionCode ERROR_UNSUPPORTED. If the supplied Resource ID does not correspond
to a collection, but the RequestedSchemaClass is COLLECTION_MEMBER_TYPE, the RDE
Device shall return ERROR_INVALID_DATA.

uint8 DictionaryFormat
The format of the dictionary as specified in the dictionary’s VersionTag, defined in clause 7.2.3.2.

uint32 TransferHandle
A data transfer handle that the MC shall use to retrieve the dictionary data via one or more
RDEMultipartReceive commands (see clause 13.2). In conjunction with a non-failed
CompletionCode, the RDE Device shall return a valid transfer handle.

11.4 GetSchemaURI command (0x04) format 2749

This command enables the MC to retrieve the formal URI for one of the RDE Device’s schemas. 2750

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2751
respond with data formatted per the Response Data section if it supports the command. For a non-2752
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2753

PLDM for Redfish Device Enablement DSP0218

118 Published Version 1.2.0

Table 55 – GetSchemaURI command format 2754

Type Request data

uint32 ResourceID
The ResourceID of a resource in a Redfish Resource PDR from which to retrieve the URI. A
ResourceID of 0xFFFF FFFF may be supplied to retrieve URIs for schemas common to all RDE
Device resources (such as for the annotation schema) without referring to an individual resource.

schemaClass RequestedSchemaClass
The class of schema being requested

uint8 OEMExtensionNumber
Shall be zero for a standard DMTF-published schema, or the one-based OEM extension to a
standard schema

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE
}
For an out-of-range OEMExtensionNumber, the RDE Device shall return
ERROR_INVALID_DATA. If the RDE Device does not support a schema of the type requested, it
shall return CompletionCode ERROR_UNSUPPORTED.

uint8 StringFragmentCount
The number of fragments N into which the URI string is broken; shall be greater than zero. The
MC shall concatenate these together to reassemble the final string.

varstring SchemaURI [0]
URI string fragment for the schema. The reassembled string shall be the canonical URI for the
JSON Schema used by the RDE Device.

… …

varstring SchemaURI [N - 1]
URI string fragment for the schema. The reassembled string shall be the canonical URI for the
JSON Schema used by the RDE Device.

11.5 GetResourceETag command (0x05) format 2755

This command enables the MC to retrieve a hashed summary of the data contained immediately within a 2756
resource, including all OEM extensions to it, or of all data within an RDE Device. The retrieved ETag shall 2757
reflect the underlying data as specified in the Redfish specification (DSP0266). 2758

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2759
respond with data formatted per the Response Data section if it supports the command. For a non-2760
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2761

In the event that the RDE Device cannot provide a response to this command within the PT1 time period 2762
(defined in DSP0240), the RDE Device may provide completion code ETAG_CALCULATION_ONGOING 2763
and continue the process of generating the ETag. The MC may then poll for the completed ETag by 2764
repeating the same GetResourceETag command that it gave that previously yielded this result. The RDE 2765
Device in turn shall signal whether it has completed the calculation by responding with a completion code 2766
of either SUCCESS (the calculation is done) or ETAG_CALCULATION_ONGOING (otherwise). It is 2767
recommended that the MC delay for an integer multiple of PT1 between retry attempts. 2768

Following an invocation of this command that results in a completion code of 2769
ETAG_CALCULATION_ONGOING, any other RDE command, including an invocation of 2770
GetResourceETag with a different request message, shall be interpreted by the RDE Device as implicitly 2771

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 119

canceling the pending GetResourceETag command and cause it to stop generating the ETag. The RDE 2772
Device shall then proceed to respond to the newly arrived command normally. 2773
NOTE ETags provided via this command are not escaped for inclusion in JSON data. MCs should be aware that 2774
performing a raw comparison of an ETag retrieved from this command with one received as part of BEJ-encoded 2775
JSON data will result in a mismatch as the ETag format requires characters that must be escaped in JSON data. 2776

Table 56 – GetResourceETag command format 2777

Type Request data

uint32 ResourceID
The ResourceID of a resource in the Redfish Resource PDR for the instance from which to get an
ETag digest; or 0xFFFF FFFF to get a global digest of all resource-based data within the RDE
Device

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE,
ETAG_CALCULATION_ONGOING }

varstring ETag
The RFC7232-compliant ETag string data; the string text format shall be UTF-8. Either a strong or a
weak etag may be returned.
This field shall be omitted if the CompletionCode is not SUCCESS.

11.6 GetOEMCount command (0x06) format 2778

This command enables the MC to retrieve the number of OEM extensions for a schema. 2779

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2780
respond with data formatted per the Response Data section if it supports the command. For a non-2781
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2782

Table 57 – GetOEMCount command format 2783

Type Request data

uint32 ResourceID
The ResourceID of the resource in the Redfish Resource PDR from which to retrieve the OEM
count. A ResourceID of 0xFFFF FFFF may be supplied to retrieve OEM counts for schemas
common to all RDE Device resources (such as the event dictionary) without referring to an
individual resource.

schemaCla
ss

RequestedSchemaClass
The class of schema being requested.
NOTE Redfish does not allow OEM extensions to Annotation and Registry schemas.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE }

uint8 OEMCount
The number of OEM extensions associated with the schema. For schema classes that do not
support OEM extensions this value shall be zero.

PLDM for Redfish Device Enablement DSP0218

120 Published Version 1.2.0

11.7 GetOEMName command (0x07) format 2784

This command enables the MC to retrieve information about the name associated with an OEM extension 2785
to a schema (including schemas for which OEM information is available in a Redfish Resource PDR). 2786

RDE Devices shall enumerate OEM extensions in lexicographic order. 2787

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2788
respond with data formatted per the Response Data section if it supports the command. For a non-2789
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2790

Table 58 – GetOEMName command format 2791

Type Request data

uint32 ResourceID
The ResourceID of any resource in the Redfish Resource PDR from which to retrieve an OEM
name. A ResourceID of 0xFFFF FFFF may be supplied to retrieve OEM names for extensions to
schemas common to all RDE Device resources (such as the event dictionary) without referring to an
individual resource.

schemaCla
ss

RequestedSchemaClass
The class of schema being requested

uint8 OEMIndex
The zero-based index of the OEM extension about which information is to be retrieved. The total
number of OEM extensions supported by an RDE Device for a given schema may be retrieved via
the GetOEMCount command; the index supplied here should be less than that count.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE }
A response code of ERROR_INVALID_DATA shall be used to indicate when the supplied index
does not exist in the schema or when the schema class does not support OEM schemas.

varstring OEMName
The OEM name associated with the extension

11.8 GetRegistryCount command (0x08) format 2792

This command enables the MC to retrieve the number of message registries supported by an RDE 2793
Device. 2794

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2795
respond with data formatted per the Response Data section if it supports the command. For a non-2796
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2797

Table 59 – GetRegistryCount command format 2798

Type Request data

-- None

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 121

uint8 RegistryCount
The number of registries supported by the Device

11.9 GetRegistryDetails command (0x09) format 2799

This command enables the MC to retrieve information about a message registry an RDE Device supports. 2800

RDE Devices shall enumerate message registries in lexicographic order and return message registry 2801
versions in reverse numeric order (most recent versions listed first). The RDE Device shall truncate the 2802
list and decrease the count as needed to ensure that the response message fits within the negotiated 2803
message size, thereby omitting mention of support for older versions. 2804

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2805
respond with data formatted per the Response Data section if it supports the command. For a non-2806
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2807

Table 60 – GetRegistryDetails command format 2808

Type Request data

uint8 RegistryIndex
The zero-based index of the message registry about which information is to be retrieved. The total
number of registries supported by an RDE Device may be retrieved via the GetRegistryCount
command; the index supplied here should not exceed that count.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }
ERROR_INVALID_DATA: The supplied index does not correspond to a supported registry

varstring RegistryPrefix
The Redfish prefix (name without version information) associated with the registry

varstring RegistryURI
URI at which the registry schema is published

uint8[2] RegistryLanguage
Language in which the registry is published, as an ISO 639-1 two-letter code

uint8 VersionCount
The number N of registry versions the RDE Device supports for this registry

ver32 Version [0]
First (newest) version of the registry supported

… …

ver32 Version [N - 1]
Last (oldest) version of the registry supported

11.10 SelectRegistryVersion command (0x0A) format 2809

This command enables the MC to specify the version of a supported Redfish message registry that the 2810
RDE device should use. By default, the RDE Device shall utilize the latest version of the registry that it 2811
supports. 2812

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2813
respond with data formatted per the Response Data section if it supports the command. 2814

PLDM for Redfish Device Enablement DSP0218

122 Published Version 1.2.0

Table 61 – SelectRegistryVersion command format 2815

Type Request data

uint8 RegistryIndex
The zero-based index of the message registry for which the registry is to be selected. The total
number of registries supported by an RDE Device may be retrieved via the GetRegistryCount
command; the index supplied here should be less than that count.

ver32 RegistryVersion
Version of the registry to be used

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }
ERROR_INVALID_DATA: The supplied index does not correspond to a supported registry or the
supplied version is not supported

11.11 GetMessageRegistry command (0x0B) format 2816

This command enables the MC to retrieve the formal JSON registry for a Redfish message registry 2817
supported by the RDE device. After invoking the GetMessageRegistry command, the MC shall, upon 2818
receipt of a successful completion code and a valid read transfer handle, invoke one or more 2819
RDEMultipartReceive commands (clause 13.2) to transfer data for the registry from the RDE Device. The 2820
MC shall only have one dictionary, schema, or message registry retrieval in process from a given RDE 2821
Device at any time. In the event that the MC begins a dictionary, schema, or message registry retrieval 2822
when a previous retrieval has not yet completed (i.e., more chunks of dictionary or schema data remain to 2823
be retrieved), the previous retrieval is implicitly aborted and the RDE Device may discard any data 2824
associated with the transfer. 2825

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2826
respond with data formatted per the Response Data section if it supports the command. For a non-2827
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2828

Table 62 – GetMessageRegistry command format 2829

Type Request data

uint8 RegistryIndex
The zero-based index of the message registry to be retrieved. The total number of registries
supported by an RDE Device may be retrieved via the GetRegistryCount command; the index
supplied here should not exceed that count.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }
ERROR_INVALID_DATA: The supplied index does not correspond to a supported registry

uint8 SchemaFormat
Bitwise OR of two values:
Text format: { RAW_UTF8 = 0; GZIP_UTF8 = 1 }
Schema format: { JSON = 0x10; CSDL = 0x20; YAML = 0x30 }
In most cases, a message registry would be supplied as a GZIP’d UTF-8 JSON document, the
value supplied would be 0x10.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 123

uint32 TransferHandle
A data transfer handle that the MC shall use to retrieve the registry data via one or more
RDEMultipartReceive commands (see clause 13.2). In conjunction with a non-failed
CompletionCode, the RDE Device shall return a valid transfer handle.

11.12 GetSchemaFile command (0x0C) format 2830

This command enables the MC to retrieve the formal schema for a Redfish resource supported by the 2831
RDE device. After invoking the GetSchemaFile command, the MC shall, upon receipt of a successful 2832
completion code and a valid read transfer handle, invoke one or more RDEMultipartReceive commands 2833
(clause 13.2) to transfer data for the schema from the RDE Device. The MC shall only have one 2834
dictionary, schema, or message registry retrieval in process from a given RDE Device at any time. In the 2835
event that the MC begins a dictionary, schema, or message registry retrieval when a previous retrieval 2836
has not yet completed (i.e., more chunks of dictionary or schema data remain to be retrieved), the 2837
previous retrieval is implicitly aborted and the RDE Device may discard any data associated with the 2838
transfer. MCs should reference the version and signature of schemas, as documented in Redfish 2839
Resource PDRs, wherever possible to avoid duplicate download of schema files. 2840

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2841
respond with data formatted per the Response Data section if it supports the command. For a non-2842
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2843

Table 63 – GetSchemaFile command format 2844

Type Request data

uint32 ResourceID
The ResourceID of a Redfish Resource PDR from which to retrieve the schema for an associated
resource. A ResourceID of 0xFFFF FFFF may be supplied to retrieve a schema common to all
RDE Device resources (such as the event or annotation dictionary) without referring to an
individual resource.

schemaClass RequestedSchemaClass
The class of schema being requested

uint8 OEMOffset
The offset for an OEM extension schema (see 11.6).
A value of 0xFF shall be interpreted as requesting the base (standard) schema, including for
schemas that do not support OEM extensions.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_NO_SUCH_RESOURCE }
ERROR_INVALID_DATA: The supplied OEMOffset is not valid

uint8 SchemaFormat
Bitwise OR of two values:
Text format: { RAW_UTF8 = 0; GZIP_UTF8 = 1 }
Schema format: { JSON = 0x10; CSDL = 0x20; YAML = 0x30 }
For example, for a CSDL (XML) format schema supplied as GZIP’d UTF-8 text, the value
supplied would be 0x21.

uint32 TransferHandle
A data transfer handle that the MC shall use to retrieve the registry data via one or more
RDEMultipartReceive commands (see clause 13.2). In conjunction with a non-failed
CompletionCode, the RDE Device shall return a valid transfer handle.

PLDM for Redfish Device Enablement DSP0218

124 Published Version 1.2.0

12 PLDM for Redfish Device Enablement – RDE Operation and Task 2845
commands 2846

This clause describes the Task commands that are used by RDE Devices and MCs that implement 2847
Redfish Device Enablement as defined in this specification. The command numbers for the PLDM 2848
messages are given in Table 51. 2849

12.1 RDEOperationInit command (0x10) format 2850

This command enables the MC to initiate a Redfish Operation with an RDE Device on behalf of a client. 2851
After invoking the RDEOperationInit command, the MC may, upon receipt of a successful completion 2852
code, invoke one or more RDEMultipartSend commands (clause 13.1) to transfer payload data of type 2853
bejEncoding to the RDE Device. The MC shall only use RDEMultipartSend to transfer the payload data if 2854
that data cannot fit in the request message of the RDEOperationInit command. After any payload has 2855
been transferred, the MC may invoke the SupplyCustomRequestParameters command if additional 2856
parameters are required. See clause 9 for more details on the Operation lifecycle. 2857

After the RDE Device receives the RDEOperationInit command, if flags are not set to indicate that it 2858
should expect either payload data or custom request parameters, the RDE Device is triggered and shall 2859
begin execution of the Operation. Similarly, if the flags are set to expect a payload but not parameters, 2860
and the payload is contained inline in the request message, the RDE Device is implicitly triggered and 2861
shall begin execution of the Operation. 2862

If triggered, the RDE Device shall respond with results if it is able to complete the Operation within the 2863
time period required for a response to this message. If there is a response payload that fits within the 2864
ResponsePayload field while maintaining a message size compatible with the negotiated maximum chunk 2865
size (see NegotiateMediumParameters, clause 11.2), the RDE Device shall include it within this 2866
response. Only if including a response payload would cause the message to exceed the negotiated chunk 2867
size may the RDE Device flag it for transfer via RDEMultipartReceive. 2868

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2869
respond with data formatted per the Response Data section. Even with a non-SUCCESS 2870
CompletionCode, all fields of the Response Data shall be returned. 2871

Table 64 – RDEOperationInit command format 2872

Type Request data

uint32 ResourceID
The resourceID of a resource in the Redfish Resource PDR for the data that is the target of this
operation

rdeOpID OperationID
Identification number for this Operation; must match the one used for all commands relating to this
Operation.
NOTE Operation IDs with the most significant bit cleared are reserved for use by the RDE

Device; it is an error for the MC to supply such an ID.

enum8 OperationType
The type of Redfish Operation being performed.
values: { OPERATION_HEAD = 0; OPERATION_READ = 1; OPERATION_CREATE = 2;
OPERATION_DELETE = 3; OPERATION_UPDATE = 4; OPERATION_REPLACE = 5;
OPERATION_ACTION = 6 }

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 125

bitfield8 OperationFlags
Flags associated with this Operation:
[7:4] - reserved for future use
[3] - excerpt_flag; if 1b, the RDE Device should perform an excerpt read (see 7.2.3.11.6)
[2] - contains_custom_request_parameters; if 1b, the RDE Device should expect to receive a

SupplyCustomRequestParameters command request before it may trigger the
Operation

[1] - contains_request_payload; if 0b, the Operation does not require data to be sent
[0] - locator_valid; if 0b, the locator in the OperationLocator field shall be ignored

uint32 SendDataTransferHandle
Handle to be used with the first RDEMultipartSend command transferring BEJ formatted data for
the operation. If no data is to be sent for this operation or if the request payload fits entirely within
this request message, then it shall be zero (0x00000000) (see the RequestPayloadLength and
RequestPayload fields below).

uint8 OperationLocatorLength
Length in bytes of the OperationLocator for this Operation. This field shall be zero (0x00) if the
locator_valid bit in the OperationFlags field above is set to 0b or if the OperationType field above
is not one of OPERATION_UPDATE and OPERATION_ACTION.

uint32 RequestPayloadLength
Length in bytes of the request payload in this message. This value shall be zero (0x00000000)
under either of the following conditions:

• There is no request payload as indicated by contains_request_payload bit of the
OperationFlags parameter above

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command

bejLocator OperationLocator
BEJ locator indicating where the new Operation is to take place within the resource specified in
ResourceID.
When the OperationType is set to OPERATION_ACTION, this field shall be set to the location of
an action within a particular resource dictionary.
A BEJ locator shall not be set to the location of an action unless the OperationType is set to
OPERATION_ACTION. Similarly, a BEJ locator shall never be set to the location of any of the
fields within the action set. The RDE device shall treat a locator in violation of either of these rules
as invalid and shall return ERROR_INVALID_DATA in this case.
This field may not be supported for other operation types and shall be omitted if the
OperationLocatorLength field above is set to zero.

null or
bejEncoding

RequestPayload
The request payload. The format of this parameter shall be null (consisting of zero bytes) if the
RequestPayloadLength above is zero; it shall be bejEncoding otherwise.
When the OperationType is set to OPERATION_ACTION, and the requested action contains
parameters, the request payload shall consist of the set corresponding to the action; this set shall
then in turn contain any parameters associated with the action.
If the action does not require any parameters, the request payload shall be null.

PLDM for Redfish Device Enablement DSP0218

126 Published Version 1.2.0

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_CANNOT_CREATE_OPERATION,
ERROR_NOT_ALLOWED, ERROR_WRONG_LOCATION_TYPE,
ERROR_OPERATION_EXISTS, ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE,
ERROR_INSUFFICIENT_STORAGE }
Response codes ERROR_CANNOT_CREATE_OPERATION, ERROR_NOT_ALLOWED,
ERROR_WRONG_LOCATION_TYPE, ERROR_OPERATION_EXISTS,
ERROR_UNSUPPORTED, ERROR_NO_SUCH_RESOURCE, and
ERROR_INSUFFICIENT_STORAGE shall be interpreted to represent an operational failure, not a
command failure.

enum8 OperationStatus
values: { OPERATION_INACTIVE = 0; OPERATION_NEEDS_INPUT = 1;
OPERATION_TRIGGERED= 2; OPERATION_RUNNING = 3; OPERATION_HAVE_RESULTS =
4; OPERATION_COMPLETED = 5, OPERATION_FAILED = 6, OPERATION_ABANDONED = 7 }

uint8 CompletionPercentage
0..100: percentage complete; 101-253: reserved for future use; 254: not supported or otherwise
unable to estimate (but a valid Operation) 255: invalid Operation
This value shall be zero if the Operation has not yet been triggered or if the Operation has failed.

uint32 CompletionTimeSeconds
An estimate of the number of seconds remaining before the Operation is completed, or 0xFFFF
FFFF if such an estimate cannot be provided.
This value shall be 0xFFFF FFFF if the Operation has not yet been triggered or if the Operation
has failed.

bitfield8 OperationExecutionFlags
 [7:4] - Reserved
[3] - CacheAllowed – 1b = yes; shall be 0b for Operations other than read, head. Shall be 0b

unless Operation has finished. Referring to RFC 7234, a value of yes shall be considered
as equivalent to Cache-Control response header value “public” and a value of no shall be
considered as equivalent to Cache-Control response header value “no-store”. Other
cache directives are not supported. The decision of whether to allow caching of data is up
to the RDE Device. Typically, static data is allowed to be cached unless, for example, it
represents sensitive data such as login credentials; data that changes over time is
generally not marked as cacheable.

 To process the CacheAllowed flag, the MC shall behave as described in clause 7.2.3.10.7
[2] - HaveResultPayload – 1b = yes. Shall be 0b if Operation has not finished
[1] - HaveCustomResponseParameters – 1b = yes. Shall be 0b if Operation has not finished
[0] - TaskSpawned – 1b = yes
For a failed Operation, this field shall be 0b for all flags other than HaveResultPayload, which may
be 1b if a @Message.ExtendedInfo annotation is available to explain the result.

uint32 ResultTransferHandle
A data transfer handle that the MC may use to retrieve a larger response payload via one or more
RDEMultipartReceive commands (see clause 13.2). The RDE Device shall return a transfer
handle of 0xFFFFFFFF if Operation execution has not finished or if the Operation has not yet been
triggered. In the event of a failed Operation, or if the data fits entirely within the payload of this
command response, or if there is no data to retrieve, the RDE Device shall return a null transfer
handle, 0x00000000.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 127

Type Response data (continued)

bitfield8 PermissionFlags
Indicates the access level (types of Operations; see Table 33) granted to the resource targeted by
the Operation.
[7: 6] - reserved for future use
[5] - head access; 1b = access allowed
[4] - delete access; 1b = access allowed
[3] - create access; 1b = access allowed
[2] - replace access; 1b = access allowed
[1] - update access; 1b = access allowed
[0] - read access; 1b = access allowed
Additional notes on processing PermissionFlags may be found in clause 7.2.3.10.8.

uint32 ResponsePayloadLength
Length in bytes of the response payload in this message. This value shall be zero under any of
the following conditions:

• The Operation has not yet been triggered.
• The Operation status is not completed or failed, as indicated by the OperationStatus

parameter above. For a failed Operation, a @Message.ExtendedInfo annotation may be
supplied in the response payload.

• There is no response payload as indicated by Bit 2 of the OperationExecutionFlags
parameter above.

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command.

varstring ETag
String data for an ETag digest of the target resource; the string text format shall be UTF-8. The
ETag shall be skipped (a string consisting of just the null terminator returned in this field) for any of
the following actions: Action, Delete, Replace, and Update. The ETag shall also be skipped (a
string consisting of just the null terminator returned in this field) if execution of the Operation has
failed or not yet finished.
Additional notes on processing ETags may be found in clause 7.2.3.10.4.

NOTE ETags provided via this field are not escaped for inclusion in JSON data as they are
primarily intended to be used for the ETag HTML header. MCs should be aware that
performing a raw comparison of an ETag retrieved from this command with one
received as part of BEJ-encoded JSON data will result in a mismatch as the ETag
format requires characters that must be escaped in JSON data.

null or
bejEncoding

ResponsePayload
The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero; it shall be bejEncoding otherwise.

12.2 SupplyCustomRequestParameters command (0x11) format 2873

This command enables the MC to send custom HTTP/HTTPS X- headers and other uncommon request 2874
parameters to an RDE Device to be applied to an Operation if the client’s HTTP operation contains any 2875
such parameters. The MC must not use this command to submit any headers for which a standard 2876
handling is defined in either this specification or DSP0266. If the client’s HTTP operation does not contain 2877
the parameters conveyed in this command, the MC shall not send this command as part of its processing 2878
of the Operation. 2879

The MC shall only invoke this command in the event that at least one custom header or uncommon 2880
request parameter needs to be transferred to the RDE Device. When sent, the 2881
SupplyCustomRequestParameters command shall be invoked after the MC sends the 2882
RDEOperationInit command. 2883

PLDM for Redfish Device Enablement DSP0218

128 Published Version 1.2.0

After the RDE Device receives the SupplyCustomRequestParameters command, if flags from the original 2884
RDEOperationInit command (see clause 12.1) were not set to indicate that it should expect payload data 2885
or if the RDE Device has already received payload data, the RDE Device shall consider itself triggered 2886
and begin execution of the Operation. 2887

If triggered, the RDE Device shall respond with results if it is able to complete the Operation within the 2888
time period required for a response to this message. If there is a response payload that fits within the 2889
ResponsePayload field while maintaining a message size compatible with the negotiated maximum chunk 2890
size (see clause 11.2), the RDE Device shall include it within this response. Only if including a response 2891
payload would cause the message to exceed the negotiated chunk size may the RDE Device flag it for 2892
transfer via RDEMultipartReceive. 2893

The size of the request message is limited to the negotiated maximum chunk size (see clause 11.2). If the 2894
client supplied sufficiently many custom request headers and/or ETags that the request message would 2895
exceed this negotiated size, the MC shall abort the request and perform the following steps: 2896

1) Use the RDEOperationKill (see clause 12.6) and then RDEOperationComplete (see clause 2897
12.4) commands to abort and finalize the Operation if it had already been initiated via 2898
RDEOperationInit (see clause 12.1). 2899

2) Return to the client HTTP/HTTPS error code 431, Request Header Fields Too Large. 2900

3) Cease processing of the client request. 2901

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2902
respond with data formatted per the Response Data section. Even with a non-SUCCESS 2903
CompletionCode, all fields of the Response Data shall be returned. 2904

Table 65 – SupplyCustomRequestParameters command format 2905

Type Request data

uint32 ResourceID
The resourceID of a resource in the Redfish Resource PDR for the instance to which custom
headers should be supplied

rdeOpID OperationID
Identification number for this Operation; must match the one used for all commands relating to this
Operation.

uint16 LinkExpand
The value of a $levels qualifier to a $expand query option if supplied as part of an HTTP/HTTPS
GET operation. The MC shall supply a value of zero if the query option was not supplied. This
integer indicates the number of levels of links to expand when reading data from a resource. The
MC shall supply a value of zero if the $expand query option was not supplied. See DSP0266 for
more details.
This value should be ignored by the RDE Device if it did not set expand_support in the
DeviceCapabilitiesFlags response parameter to the NegotiateRedfishParameters command.
To process the LinkExpand parameters, the MC and RDE Device shall behave as described in
clause 7.2.3.11.3. In particular, when supporting this command, an RDE Device shall encode
pages expanded into with the bejResourceLinkExpansion format specification.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 129

Type Request data (continued)

uint16 CollectionSkip
The value of a $skip query option if supplied as part of an HTTP/HTTPS GET operation. The MC
shall supply a value of zero if the $skip query option was not supplied. This integer indicates the
number of Members in a resource collection to skip before retrieving the first resource. See
DSP0266 for more details.
Additional notes on processing the $skip query option may be found in clause 7.2.3.11.1.

uint16 CollectionTop
The value of a $top query option if supplied as part of an HTTP/HTTPS GET operation. The MC
shall supply a value of 0xFFFF (to be treated by the RDE Device as unlimited) if the query option
was not supplied. This indicates the number of Members of a resource collection to include in a
response. See DSP0266 for more details.
Additional notes on processing the $top query option may be found in clause 7.2.3.11.2.

uint16 PaginationOffset
The page offset for paginated response data that the RDE Device supplied in conjunction with an
@odata.nextlink annotation and decoded from a pagination URI. Shall be 0 if no pagination has
taken place. See clause 14.2.8 for more details on RDE Device-selected dynamic pagination.
Additional notes on pagination may be found in clause 14.2.8.

enum8 ETagOperation
To process an ETagOperation, the RDE Device shall respond as described in clauses 7.2.3.10.1
and 7.2.3.10.2.
values: { ETAG_IGNORE = 0; ETAG_IF_MATCH = 1; ETAG_IF_NONE_MATCH = 2 }

uint8 ETagCount
Number of ETags supplied in this message; should be zero if ETagOperation above is
ETAG_IGNORE and nonzero otherwise.

varstring ETag [0]
String data for first ETag, if ETagCount > 0. This string shall be UTF-8 format.
Additional notes on processing ETags may be found in clause 7.2.3.10.4.

… Additional ETags

uint8 HeaderCount
The number of RDE custom headers being supplied in this operation.
Additional notes on processing RDE custom headers may be found in clause 7.2.3.10.3.

varstring HeaderName [0]
The name of the header, including the PLDM-RDE- prefix

varstring HeaderParameter [0]
The parameter or parameters associated with the header. The MC may preprocess these – though
any such preprocessing is outside the scope of this specification – or convey them exactly as
received.

… …

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_ OPERATION_ABANDONED, ERROR_
OPERATION_FAILED, ERROR_UNSUPPORTED, ERROR_UNEXPECTED,
ERROR_UNRECOGNIZED_CUSTOM_HEADER, ERROR_ETAG_MATCH,
ERROR_NO_SUCH_RESOURCE, ERROR_INSUFFICIENT_STORAGE }
Response codes ERROR_UNSUPPORTED, ERROR_UNRECOGNIZED_CUSTOM_HEADER,
and ERROR_INSUFFICIENT_STORAGE shall be used to indicate that an unsupported request
parameter was sent. These responses represent an Operational failure, not a command failure.

PLDM for Redfish Device Enablement DSP0218

130 Published Version 1.2.0

Type Response data (continued)

enum8 OperationStatus
values: { OPERATION_INACTIVE = 0; OPERATION_NEEDS_INPUT = 1;
OPERATION_TRIGGERED= 2; OPERATION_RUNNING = 3; OPERATION_HAVE_RESULTS =
4; OPERATION_COMPLETED = 5, OPERATION_FAILED = 6, OPERATION_ABANDONED = 7 }

uint8 CompletionPercentage
0..100: percentage complete; 101-253: reserved for future use; 254: not supported or otherwise
unable to estimate (but a valid Operation) 255: invalid Operation
This value shall be zero if the Operation has not yet been triggered or if the Operation has failed.

uint32 CompletionTimeSeconds
An estimate of the number of seconds remaining before the Operation is completed, or 0xFFFF
FFFF if such an estimate cannot be provided.
This value shall be 0xFFFF FFFF if the Operation has not yet been triggered or if the Operation
has failed.

bitfield8 OperationExecutionFlags
[7:4] - Reserved
[3] - CacheAllowed – 1b = yes; shall be 0b for Operations other than read, head. Shall be 0b

unless Operation has finished. Referring to RFC 7234, a value of yes shall be considered
as equivalent to Cache-Control response header value “public” and a value of no shall be
considered as equivalent to Cache-Control response header value “no-store”. Other
cache directives are not supported. The decision of whether to allow caching of data is up
to the RDE Device. Typically, static data is allowed to be cached unless, for example, it
represents sensitive data such as login credentials; data that changes over time is
generally not marked as cacheable

 To process the CacheAllowed flag, the MC shall behave as described in clause 7.2.3.10.7
[2] - HaveResultPayload – 1b = yes. Shall be 0b if Operation has not finished
[1] - HaveCustomResponseParameters – 1b = yes. Shall be 0b if Operation has not finished
[0] - TaskSpawned – 1b = yes
For a failed Operation, this field shall be 0b for all flags other than HaveResultPayload, which may
be 1b if a @Message.ExtendedInfo annotation is available to explain the result.

uint32 ResultTransferHandle
A data transfer handle that the MC may use to retrieve a larger response payload via one or more
RDEMultipartReceive commands (see clause 13.2). The RDE Device shall return a transfer
handle of 0xFFFFFFFF if Operation execution has not finished or if the Operation has not yet been
triggered. In the event of a failed Operation, or if the data fits entirely within the payload of this
command response, or if there is no data to retrieve, the RDE Device shall return a null transfer
handle, 0x00000000.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 131

Type Response data (continued)

bitfield8 PermissionFlags
Indicates the access level (types of Operations; see Table 33) granted to the resource targeted by
the Operation.
[7:6] - reserved for future use
[5] - head access; 1b = access allowed
[4] - delete access; 1b = access allowed
[3] - create access; 1b = access allowed
[2] - replace access; 1b = access allowed
[1] - update access; 1b = access allowed
[0] - read access; 1b = access allowed
The MC and RDE Device shall process PermissionFlags as described in clause 7.2.3.10.8.NOTE:
The bit mapping for the PermissionFlags field was changed in version 1.0.1 of this specification to
match that from the RDEOperationInit command, thereby making the entire response message
identical for both of these commands.

uint32 ResponsePayloadLength
Length in bytes of the response payload in this message. This value shall be zero under any of
the following conditions:

• The Operation has not yet been triggered
• The Operation status is not completed or failed, as indicated by the OperationStatus

parameter above. For a failed Operation, a @Message.ExtendedInfo annotation may be
supplied in the response payload.

• There is no response payload as indicated by Bit 2 of the OperationExecutionFlags
parameter above

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command

varstring ETag
String data for an ETag digest of the target resource; the string text format shall be UTF-8. The
ETag may be skipped (an empty string returned in this field) for any of the following actions:
Action, Delete, Replace, and Update. The ETag shall also be skipped (an empty string returned in
this field) if execution of the Operation has not yet finished.
This field supports the ETag Response header. Additional notes on processing ETags may be
found in clause 7.2.3.10.4.
NOTE ETags provided via this field are not escaped for inclusion in JSON data as they are

primarily intended to be used for the ETag HTML header. MCs should be aware that
performing a raw comparison of an ETag retrieved from this command with one
received as part of BEJ-encoded JSON data will result in a mismatch as the ETag
format requires characters that must be escaped in JSON data.

null or
bejEncoding

ResponsePayload
The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero; it shall be bejEncoding otherwise.

12.3 RetrieveCustomResponseParameters command (0x12) format 2906

This command enables the MC to retrieve custom HTTP/HTTPS headers or other uncommon response 2907
parameters from an RDE Device to be forwarded to the client that initiated a Redfish operation. The MC 2908
shall only invoke this command when the HaveCustomResponseParameters flag in the response 2909
message for a triggered RDE command indicates that it is needed. 2910

The RDE Device shall not supply more response headers than would allow the response message to fit in 2911
the negotiated maximum transfer chunk size (see clause 11.2). 2912

PLDM for Redfish Device Enablement DSP0218

132 Published Version 1.2.0

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2913
respond with data formatted per the Response Data section. For a non-SUCCESS CompletionCode, only 2914
the CompletionCode field of the Response Data shall be returned. 2915

Table 66 – RetrieveCustomResponseParameters command format 2916

Type Request data

uint32 ResourceID
The resourceID of a resource in the Redfish Resource PDR for the instance from which custom
headers should be reported

rdeOpID OperationID
Identification number for this Operation; must match the one used for all commands relating to this
Operation

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_UNEXPECTED, ERROR_NO_SUCH_RESOURCE }

uint32 DeferralTimeframe
The expected length of time in seconds before the RDE Device will be able to respond to a request
to start an Operation, or 0xFF if unknown. The MC shall ignore this field except when the completion
code of the previous RDEOperationInit was ERROR_NOT_READY.
This field supports the Retry-After response header. Additional notes on processing the Retry-After
response header may be found in clause 7.2.3.10.9.

uint32 NewResourceID
Resource ID for a newly created collection entry; this value shall be 0 and ignored if the Operation is
not a Redfish Create or if the Operation has failed or not yet completed.
This field supports the Location Response header. Additional notes on processing the Location
response header may be found in clause 7.2.3.10.6.

uint8 ResponseHeaderCount
Number of custom response headers contained in the remainder of this message

varstring HeaderName [0]
The name of the header, including the X- prefix
This field shall be omitted if ResponseHeaderCount above is zero

varstring HeaderParameter [0]
The parameter or parameters associated with the header. The MC may preprocess these – though
any such preprocessing is outside the scope of this specification – or convey them exactly as
received
This field shall be omitted if ResponseHeaderCount above is zero

… …

12.4 RDEOperationComplete command (0x13) format 2917

This command enables the MC to inform an RDE Device that it considers an Operation to be complete, 2918
including failed and abandoned Operations. The RDE Device in turn may discard any internal records for 2919
the Operation. 2920

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2921
respond with data formatted per the Response Data section. 2922

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 133

Table 67 – RDEOperationComplete command format 2923

Type Request data

uint32 ResourceID
The resourceID of a resource in the Redfish Resource PDR to which the Task’s operation was
targeted

rdeOpID OperationID
Identification number for this Operation; must match the one used for all commands relating to this
Operation

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_UNEXPECTED, ERROR_NO_SUCH_RESOURCE }

12.5 RDEOperationStatus command (0x14) format 2924

This command enables the MC to query an RDE Device for the status of an Operation. It is additionally 2925
used to collect the initial response when an RDE Operation is triggered by a RDEMultipartSend command 2926
or after a Task finishes asynchronous execution. 2927

When providing result data for an Operation that has finished executing, if there is a response payload 2928
that fits within the ResponsePayload field while maintaining a message size compatible with the 2929
negotiated maximum chunk size (see NegotiateMediumParameters, clause 11.2), the RDE Device shall 2930
include it within this response. Only if including a response payload would cause the message to exceed 2931
the negotiated chunk size may the RDE Device flag it for transfer via RDEMultipartReceive. 2932

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2933
respond with data formatted per the Response Data section. Even with a non-SUCCESS 2934
CompletionCode, all fields of the Response Data shall be returned. 2935

Table 68 – RDEOperationStatus command format 2936

Type Request data

uint32 ResourceID
The resourceID of a resource in the Redfish Resource PDR to which the Task’s operation was
targeted

rdeOpID OperationID
Identification number for this Operation; must match the one used for all commands relating to this
Operation

PLDM for Redfish Device Enablement DSP0218

134 Published Version 1.2.0

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_UNSUPPORTED, ERROR_ETAG_MATCH,
ERROR_UNRECOGNIZED_CUSTOM_HEADER, ERROR_INSUFFICIENT_STORAGE }
The completion code for RDEOperationStatus shall be one of the following:
SUCCESS: An RDE Operation was referenced in the OperationID request field and it is not in the
failed state. The actual current status of the RDE Operation is returned in the OperationStatus
field. If the OperationID does not correspond to an active Operation, the state shall be reported as
OPERATION_INACTIVE.
ERROR_UNSUPPORTED, ERROR_ETAG_MATCH,
ERROR_UNRECOGNIZED_CUSTOM_HEADER, ERROR_INSUFFICIENT_STORAGE : An RDE
Operation in the FAILED state was referenced in the OperationID request field, and the Operation
failed with the specified status code. OperationStatus shall be OPERATION_FAILED in this case.
These responses indicate a failure in the RDE Operation, not a failure in the RDEOperationStatus
command.

enum8 OperationStatus
values: { OPERATION_INACTIVE = 0; OPERATION_NEEDS_INPUT = 1;
OPERATION_TRIGGERED= 2; OPERATION_RUNNING = 3; OPERATION_HAVE_RESULTS =
4; OPERATION_COMPLETED = 5, OPERATION_FAILED = 6, OPERATION_ABANDONED = 7 }

uint8 CompletionPercentage
0..100: percentage complete; 101-253: reserved for future use; 254: not supported or otherwise
unable to estimate (but a valid Operation) 255: invalid Operation
This value shall be zero if the Operation has not yet been triggered or if the Operation has failed.

uint32 CompletionTimeSeconds
An estimate of the number of seconds remaining before the Operation is completed, or 0xFFFF
FFFF if such an estimate cannot be provided.
This value shall be 0xFFFF FFFF if the Operation has not yet been triggered or if the Operation
has failed.

bitfield8 OperationExecutionFlags
[7:4] - Reserved
[3] - CacheAllowed – 1b = yes; shall be 0b for Operations other than read, head. Shall be 0b

unless Operation has finished. Referring to RFC 7234, a value of yes shall be considered
as equivalent to Cache-Control response header value “public” and a value of no shall be
considered as equivalent to Cache-Control response header value “no-store”. Other
cache directives are not supported. The decision of whether to allow caching of data is up
to the RDE Device. Typically, static data is allowed to be cached unless, for example, it
represents sensitive data such as login credentials; data that changes over time is
generally not marked as cacheable

 To process the CacheAllowed flag, the MC shall behave as described in clause 7.2.3.10.7
[2] - HaveResultPayload – 1b = yes. Shall be 0b if Operation has not finished
[1] - HaveCustomResponseParameters – 1b = yes. Shall be 0b if Operation has not finished
[0] - TaskSpawned – 1b = yes
For a failed Operation, this field shall be 0b for all flags other than HaveResultPayload, which may
be 1b if a @Message.ExtendedInfo annotation is available to explain the result.

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 135

Type Response data (continued)

uint32 ResultTransferHandle
A data transfer handle that the MC may use to retrieve a larger response payload via one or more
RDEMultipartReceive commands (see clause 13.2). The RDE Device shall return a transfer
handle of 0xFFFFFFFF if Operation execution has not finished or if the Operation has not yet been
triggered. In the event of a failed Operation, or if the data fits entirely within the payload of this
command response, or if there is no data to retrieve, the RDE Device shall return a null transfer
handle, 0x00000000.
In the event that data transfer for this Operation is currently in progress (at least one chunk has
been transferred but the final chunk has not yet been transferred, and a timeout has not occurred
awaiting the request for the next chunk), the RDE Device shall return the transfer handle that was
most recently returned in the response message for a RDEMultipartSend or RDEMultipartReceive
command.

bitfield8 PermissionFlags
Indicates the access level (types of Operations; see Table 33) granted to the resource targeted by
the Operation.
[7:6] - reserved for future use
[5] - head access; 1b = access allowed
[4] - delete access; 1b = access allowed
[3] - create access; 1b = access allowed
[2] - replace access; 1b = access allowed
[1] - update access; 1b = access allowed
[0] - read access; 1b = access allowed
This field supports the Allow header. Additional notes on processing the Allow header may be
found in clause 7.2.3.10.8
.NOTE: The bit mapping for the PermissionFlags field was changed in version 1.0.1 of this
specification to match that from the RDEOperationInit command, thereby making the entire
response message identical for both of these commands.

uint32 ResponsePayloadLength
Length in bytes of the response payload in this message. This value shall be zero under any of
the following conditions:

• The Operation has not yet been triggered
• The Operation status is not completed or failed, as indicated by the OperationStatus

parameter above. For a failed Operation, a @Message.ExtendedInfo annotation may be
supplied in the response payload.

• There is no response payload as indicated by Bit 2 of the OperationExecutionFlags
parameter above

• The entire payload cannot fit within this message, subject to the maximum transfer chunk
size as determined at registration time via the NegotiateMediumParameters command

 2937

PLDM for Redfish Device Enablement DSP0218

136 Published Version 1.2.0

Type Response data (continued)

varstring ETag
String data for an ETag digest of the target resource; the string text format shall be UTF-8. The
ETag may be skipped (an empty string returned in this field) for any of the following actions:
Action, Delete, Replace, and Update. The ETag shall also be skipped (an empty string returned in
this field) if execution of the Operation has not yet finished.
Additional notes on processing ETags may be found in clause 7.2.3.10.4.
NOTE ETags provided via this field are not escaped for inclusion in JSON data as they are

primarily intended to be used for the ETag HTML header. MCs should be aware that
performing a raw comparison of an ETag retrieved from this command with one
received as part of BEJ-encoded JSON data will result in a mismatch as the ETag
format requires characters that must be escaped in JSON data.

null or
bejEncoding

ResponsePayload
The response payload. The format of this parameter shall be null (consisting of zero bytes) if the
ResponsePayloadLength above is zero; it shall be bejEncoding otherwise.

12.6 RDEOperationKill command (0x15) format 2938

This command enables the MC to request that an RDE Device terminate an Operation. The RDE Device 2939
shall kill the Operation if the Operation can be killed; however, the MC must be aware that not all 2940
Operations can be terminated. 2941

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2942
respond with data formatted per the Response Data section if it supports the command. 2943

Table 69 – RDEOperationKill command format 2944

Type Request data

uint32 ResourceID
The resourceID of a resource in the Redfish Resource PDR to which the Task’s operation was
targeted

rdeOpID OperationID
Identification number for this Operation; must match the one used for all commands relating to this
Operation

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 137

Type Request data (continued)

bitfield8 KillFlags
Flags for killing the Operation:
[7:3] - reserved for future use
[2] - discard_results; if 1b and the RDE Device is in the HAVE_RESULTS state for this

Operation, the results of the Operation shall be discarded and the Operation state set to
Inactive. The MC shall not set the discard_results bit in conjunction with any other bits in
the KillFlags. In the event that the MC violates this restriction, the RDE Device shall
respond with completion code ERROR_INVALID_DATA and stop processing the request.

 [1] - run_to_completion; if 1b, the Operation should be run to completion but no further
response should be sent to the MC. The MC shall not set the run_to_completion bit without
also setting the discard_record bit. In the event that the MC violates this restriction, the
RDE Device shall respond with completion code ERROR_INVALID_DATA and stop
processing the request.

[0] - discard_record; if 1b and the kill command returns success, the RDE Device shall discard
internal records associated with this Operation as soon as it is killed; the RDE Device
should not expect the MC to call RedfishOperationComplete for this Operation. If the
Operation has spawned a Task, the RDE Device shall not create an Event when execution
is finished.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_OPERATION_UNKILLABLE,
ERROR_NO_SUCH_RESOURCE, ERROR_UNEXPECTED }

12.7 RDEOperationEnumerate command (0x16) format 2945

This command enables the MC to request that an RDE Device enumerate all Operations that are 2946
currently active (not in state INACTIVE in the Operation lifecycle state machine of clause 9.2.3.2). It is 2947
expected that the MC will typically use this command during its initialization to discover any Operations 2948
that spawned Tasks that were active through a shutdown. 2949
NOTE When instantiating Operations, the RDE Device shall not create a new Operation if including the total data for 2950
all Operations would cause the response message for this command to exceed the negotiated maximum transfer 2951
chunk size (see clause 11.2) for any of the mediums on which the MC has communicated with the RDE Device. 2952

If the RDE Device accepts operations from protocols other than Redfish, it should make them visible as 2953
RDE Operations while they are active by enumerating them in response to this command. 2954

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2955
respond with data formatted per the Response Data section if it supports the command. For a non-2956
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2957

PLDM for Redfish Device Enablement DSP0218

138 Published Version 1.2.0

Table 70 – RDEOperationEnumerate command format 2958

Type Request data

n/a This request contains no parameters

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES }

uint16 OperationCount
The number of active Operations N described in the remainder of this message

uint32 ResourceID [0]
The resource ID of the Redfish Resource PDR to which the Operation was targeted. Shall be
omitted if OperationCount is zero

rdeOpID OperationID [0]
Operation identifier assigned for the Operation when the MC initialized the Operation via the
RDEOperationInit command or when the RDE Device chose to make an external Operation visible
via RDE.
This field shall be omitted if OperationCount above is zero

enum8 OperationType [0]
The type of Operation. Shall be omitted if OperationCount is zero
values: { OPERATION_HEAD = 0; OPERATION_READ = 1; OPERATION_CREATE = 2;
OPERATION_DELETE = 3; OPERATION_UPDATE = 4; OPERATION_REPLACE = 5;
OPERATION_ACTION = 6 }
This field shall be omitted if OperationCount above is zero

… …

uint32 ResourceID [N - 1]
The resource ID of the Redfish Resource PDR to which the Operation was targeted

rdeOpID OperationID [N - 1]
Operation identifier assigned for the Operation when the MC initialized the Operation via the
RDEOperationInit command or when the RDE Device chose to make an external Operation visible
via RDE

enum8 OperationType [N - 1]
The type of Operation
values: { OPERATION_HEAD = 0; OPERATION_READ = 1; OPERATION_CREATE = 2;
OPERATION_DELETE = 3; OPERATION_UPDATE = 4; OPERATION_REPLACE = 5;
OPERATION_ACTION = 6 }

13 PLDM for Redfish Device Enablement – Utility commands 2959

13.1 RDEMultipartSend command (0x30) format 2960

This command enables the MC to send a large volume of data to an RDE Device. In the event of a data 2961
checksum error, the MC may reissue the first RDEMultipartSend command with the initial data transfer 2962
handle; the RDE Device shall recognize this to mean that the transfer failed and respond as if this were 2963
the first transfer attempt. If the MC chooses not to restart the transfer, or in any other error occurs, the MC 2964
should abandon the transfer. In the latter case, if the transfer is part of an Operation, the MC shall 2965
explicitly abort and then finalize the Operation via the RDEOperationKill and RDEOperationComplete 2966
commands (see clauses 12.6 and 12.4). 2967

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 139

Similarly, in the event of transient transfer errors for individual chunks of the data, the MC may retry those 2968
chunks by reissuing the RDEMultipartSend command corresponding to those chunks provided it has not 2969
yet issued a RDEMultipartSend command for a subsequent chunk. When the RDE Device receives a 2970
request with data formatted per the Request Data section below, it shall respond with data formatted per 2971
the Response Data section. For a non-SUCCESS CompletionCode with the exception of 2972
ERROR_BAD_CHECKSUM, only the CompletionCode field of the Response Data shall be returned. In 2973
the case an ERROR_BAD_CHECKSUM is returned, the RDE Device may set the TransferOperation to 2974
XFER_FIRST_PART. 2975
NOTE In versions of this specification prior to v1.1.0, this command was named MultipartSend. 2976

Table 71 – RDEMultipartSend command format 2977

Type Request data

uint32 DataTransferHandle
A handle to uniquely identify the chunk of data to be sent. If TransferFlag below is START or
START_AND_END, this must match the SendDataTransferHandle that was supplied by the RDE
Device in the response to RDEOperationInit.
The DataTransferHandle supplied shall be either the initial handle to begin or restart a transfer or
the NextDataTransferHandle as specified in the previous chunk.

rdeOpID OperationID
Identification number for this Operation; must match the one previously used for all commands
relating to this Operation; 0x0000 if this transfer is not part of an Operation.

enum8 TransferFlag
An indication of current progress within the transfer. The value START_AND_END indicates that the
entire transfer consists of a single chunk.
value: { START = 0, MIDDLE = 1, END = 2, START_AND_END = 3 }

uint32 NextDataTransferHandle
The handle for the next chunk of data for this transfer; zero (0x00000000) if no further data.

uint32 DataLengthBytes
The length in bytes N of data being sent in this chunk, including both the Data and
DataIntegrityChecksum (if present) fields. This value and the data bytes associated with it shall not
cause this request message to exceed the negotiated maximum transfer chunk size (clause 11.2).

uint8 Data [0]
The first byte of the current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.

… …

uint8 Data [N-1]
The last byte of the current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.

PLDM for Redfish Device Enablement DSP0218

140 Published Version 1.2.0

Type Request data (continued)

uint32 DataIntegrityChecksum
32-bit CRC for the entirety of data (all parts concatenated together, excluding this checksum). Shall
be omitted for non-final chunks (TransferFlag ≠ END or START_AND_END) in the transfer. The
DataIntegrityChecksum shall not be split across multiple chunks. If appending the
DataIntegrityChecksum would cause this request message to exceed the negotiated maximum
transfer chunk size (clause 11.2), the DataIntegrityChecksum shall be sent as the only data in
another chunk.
For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11
+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the
integrity checksum computation. The CRC computation involves processing a byte at a time with the
least significant bit first.

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_UNEXPECTED, ERROR_BAD_CHECKSUM }
If the DataTransferHandle does not correspond to a valid chunk, the RDE Device shall return
CompletionCode ERROR_INVALID_DATA.

enum8 TransferOperation
The follow-up action that the RDE Device is requesting of the MC:

• XFER_FIRST_PART: resend the initial chunk (restarting the transmission, such as if the
checksum of data received did not match the DataIntegrityChecksum in the final chunk)

• XFER_NEXT_PART: send the next chunk of data
• XFER_ABORT: stop the transmission and do not retry. The MC shall proceed as if the

transmission is permanently failed in this case
• XFER_COMPLETE: no further follow-up needed, the transmission completed normally

value: { XFER_FIRST_PART = 0, XFER_NEXT_PART = 1, XFER_ABORT = 2,
XFER_COMPLETE = 3 }

13.2 RDEMultipartReceive command (0x31) format 2978

This command enables the MC to receive a large volume of data from an RDE Device. In the event of a 2979
data checksum error, the MC may reissue the first RDEMultipartReceive command with the initial data 2980
transfer handle; the RDE Device shall recognize this to mean that the transfer failed and respond as if this 2981
were the first transfer attempt. If the MC chooses not to restart the transfer, or in any other error occurs, 2982
the MC should abandon the transfer. In the latter case, if the transfer is part of an Operation, the MC shall 2983
explicitly abort and finalize the Operation via the RDEOperationKill and then RDEOperationComplete 2984
commands (see clauses 12.6 and 12.4). 2985

Similarly, in the event of transient transfer errors for individual chunks of the data, the MC may retry those 2986
chunks by reissuing the RDEMultipartReceive command corresponding to those chunks provided it has 2987
not yet issued a RDEMultipartReceive command for a subsequent chunk. 2988

When the RDE Device receives a request with data formatted per the Request Data section below, it shall 2989
respond with data formatted per the Response Data section if it supports the command. For a non-2990
SUCCESS CompletionCode, only the CompletionCode field of the Response Data shall be returned. 2991
NOTE In versions of this specification prior to v1.1.0, this command was named MultipartReceive. 2992

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 141

Table 72 – RDEMultipartReceive command format 2993

Type Request data

uint32 DataTransferHandle
A handle to uniquely identify the chunk of data to be retrieved. If TransferOperation below is
XFER_FIRST_PART and the OperationID below is zero, this must match the TransferHandle
supplied by the RDE Device in the response to the GetSchemaDictionary, GetMessageRegistry, or
GetSchemaFile command. If TransferOperation below is XFER_FIRST_PART and the OperationID
below is nonzero, this must match the SendDataTransferHandle that was supplied by the RDE
Device in the response to RDEOperationInit. If TransferOperation below is XFER_NEXT_PART, this
must match the NextDataHandle supplied by the RDE Device with the previous chunk.
The DataTransferHandle supplied shall be either the initial handle to begin or restart a transfer or
the NextDataTransferHandle supplied with the previous chunk.

rdeOpID OperationID
Identification number for this Operation; must match the one previously used for all commands
relating to this Operation; 0x0000 if this transfer is not part of an Operation

enum8 TransferOperation
The portion of data requested for the transfer:

• XFER_FIRST_PART: The MC is asking the transfer to begin or to restart from the
beginning

• XFER_NEXT_PART: The MC is asking for the next portion of the transfer
• XFER_ABORT: The MC is requesting that the transfer be discarded. The RDE Device may

discard any internal data structures it is maintaining for the transfer
value: { XFER_FIRST_PART = 0, XFER_NEXT_PART = 1, XFER_ABORT = 2 }

Type Response data

enum8 CompletionCode
value: { PLDM_BASE_CODES, ERROR_OPERATION_ABANDONED,
ERROR_OPERATION_FAILED, ERROR_UNEXPECTED, ERROR_BAD_CHECKSUM }
If the DataTransferHandle does not correspond to a valid chunk, the RDE Device shall return
CompletionCode ERROR_INVALID_DATA.
If the transfer is aborted, the RDE Device shall acknowledge this status by returning SUCCESS.

enum8 TransferFlag
value: { START = 0, MIDDLE = 1, END = 2, START_AND_END = 3 }
This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint32 NextDataTransferHandle
The handle for the next chunk of data for this transfer; zero (0x00000000) if no further data
This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint32 DataLengthBytes
The length in bytes N of data being sent in this chunk, including both the Data and
DataIntegrityChecksum (if present) fields. This value and the data bytes associated with it shall not
cause this response message to exceed the negotiated maximum transfer chunk size (clause 11.2).
This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint8 Data [0]
The first byte of current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.
This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

… …

PLDM for Redfish Device Enablement DSP0218

142 Published Version 1.2.0

Type Response data (continued)

uint8 Data [N-1]
The last byte of the current chunk of data. Shall be omitted if only the DataIntegrityChecksum is
present.
This field shall be omitted for a non-SUCCESS CompletionCode or if the transfer has been aborted

uint32 DataIntegrityChecksum
32-bit CRC for the entire block of data (all parts concatenated together, excluding this checksum).
Shall be omitted for non-final chunks (TransferFlag ≠ END or START_AND_END) in the transfer or
for aborted transfers. The DataIntegrityChecksum shall not be split across multiple chunks. If
appending the DataIntegrityChecksum would cause this response message to exceed the
negotiated maximum transfer chunk size (clause 11.2), the DataIntegrityChecksum shall be sent as
the only data in another chunk.
For this specification, the CRC-32 algorithm with the polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11
+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (same as the one used by IEEE 802.3) shall be used for the
integrity checksum computation. The CRC computation involves processing a byte at a time with the
least significant bit first.

14 Additional Information 2994

14.1 RDE Multipart transfers 2995

The various commands defined in clauses 11 and 12 support bulk transfers via the RDEMultipartSend 2996
and RDEMultipartReceive commands defined in clause 13. The RDEMultipartSend and 2997
RDEMultipartReceive commands use flags and data transfer handles to perform multipart transfers. A 2998
data transfer handle uniquely identifies the next part of the transfer. The data transfer handle values are 2999
implementation specific. For example, an implementation can use memory addresses or sequence 3000
numbers as data transfer handles. 3001
NOTE If both the RDE Device and the MC support use of PLDM common multipart transfers, those versions of the 3002
commands shall be used in lieu of the RDE versions. The following notes apply: 3003

• All transfers shall consist of a single portion, beginning at offset zero and transferring the entire buffer 3004

• The TransferContext field, which is defined in DSP0240 to be protocol specific, shall be supplied with the 3005
OperationID that would have been used with an RDE version of a multipart transfer 3006

• Handling of aborted transfers, which is defined in DSP0240 to be protocol specific, shall follow the notes 3007
provided within this specification for multipart transfers. 3008

14.1.1 Flag usage for RDEMultipartSend 3009

The following list shows some requirements for using TransferOperationFlag, TransferFlag, and 3010
DataTransferHandle in RDEMultipartSend data transfers: 3011

• To prepare a large data send for use in an RDE command, a DataTransferHandle shall be sent 3012
by the MC in the request message of the RDEOperationInit command. 3013

• To reflect a data transfer (re)initiated with a RDEMultipartSend command, the 3014
TransferOperation shall be set to XFER_FIRST_PART in the response message. 3015

• For transferring a part after the first part of data, the TransferOperation shall be set to 3016
XFER_NEXT_PART and the DataTransferHandle shall be set to the NextDataTransferHandle 3017
that was obtained in the request for the previous RDEMultipartSend command for this data 3018
transfer. 3019

• The TransferFlag specified in the request for a RDEMultipartSend command has the following 3020
meanings: 3021

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 143

– START, which is the first part of the data transfer 3022

– MIDDLE, which is neither the first nor the last part of the data transfer 3023

– END, which is the last part of the data transfer 3024

– START_AND_END, which is the first and the last part of the data transfer. In this case, the 3025
transfer consists of a single chunk 3026

• For a RDEMultipartSend, the requester shall consider a data transfer complete when it receives 3027
a success CompletionCode in the response to a request in which the TransferFlag was set to 3028
End or StartAndEnd. 3029

14.1.2 Flag usage for RDEMultipartReceive 3030

The following list shows some requirements for using TransferOperationFlag, TransferFlag, and 3031
DataTransferHandle in RDEMultipartReceive data transfers: 3032

• To prepare a large data transfer receive for use in an RDE command, a DataTransferHandle 3033
shall be sent by the RDE Device in the response message to the RDEOperationInit, 3034
SupplyCustomRequestParameters, or RDEOperationStatus command after an Operation has 3035
finished execution and results are ready for pick-up. 3036

• To initiate a data transfer with a RDEMultipartReceive command, the TransferOperation shall 3037
be set to XFER_FIRST_PART in the request message. 3038

• For transferring a part after the first part of data, the TransferOperation shall be set to 3039
XFER_NEXT_PART and the DataTransferHandle shall be set to the NextDataTransferHandle 3040
that was obtained in the response to the previous RDEMultipartReceive command for this data 3041
transfer. 3042

• The TransferFlag specified in the response of a RDEMultipartReceive command has the 3043
following meanings: 3044

– START, which is the first part of the data transfer 3045

– MIDDLE, which is neither the first nor the last part of the data transfer 3046

– END, which is the last part of the data transfer 3047

– START_AND_END, which is the first and the last part of the data transfer 3048

• For a RDEMultipartReceive, the requester and responder shall consider a data transfer 3049
complete when the TransferFlag in the response is set to END or START_AND_END. After this 3050
point, the transfer may not be restarted without repeating the invoking commands, such as 3051
GetSchemaDictionary for a multipart transfer of a dictionary. 3052

14.1.3 RDE Multipart transfer examples 3053

The following examples show how the multipart transfers can be performed using the generic mechanism 3054
defined in the commands. 3055

In the first example, the MC sends data to the RDE Device as part of a Redfish Update operation. 3056
Following the RDEOperationInit command sequence, the MC effects the transfer via a series of 3057
RDEMultipartSend commands. Figure 18 shows the flow of the data transfer. 3058

In the second example, the MC retrieves the dictionary for a schema. The request is initiated via the 3059
GetSchemaDictionary command and then effected via one or more RDEMultipartReceive commands. 3060

Figure 19 shows the flow of the data transfer. 3061

PLDM for Redfish Device Enablement DSP0218

144 Published Version 1.2.0

RDEOperationInit Request
(OperationID = 0x12345678, TaskFlags & 2 = 2, SendDataTransferHandle = 0xAABBCCDD)

RDEOperationInit Response
(CompletionCode = SUCCESS)

RDEMultipartSend Request
(DataTransferHandle = 0xAABBCCDD, NextDataTransferHandle = 0x00000001, OperationID = 0x12345678,

TransferFlag = START, Data = 1st chunk)

RDEMultipartSend Response
(CompletionCode = SUCCESS, TransferOperation = XFER_NEXT_PART)

RDEMultipartSend Request
(DataTransferHandle= 0x00000001, NextDataTransferHandle = 0x00000002, OperationID = 0x12345678,

TransferFlag = MIDDLE, Data = 2nd chunk)

RDEMultiPartSend Response
(CompletionCode = SUCCESS, TransferOperation = XFER_NEXT_PART)

RDEMultipartSend Request
(DataTransferHandle= 0x00000002, NextDataTransferHandle = 0x00000000, OperationID = 0x12345678,

TransferFlag = END, Data = 3rd chunk)

RDEMultipartSend Response
(CompletionCode = SUCCESS, TransferOperation = XFER_COMPLETE)

MC RDE Device

 3062

Figure 18 – RDEMultipartSend example 3063

GetSchemaDictionary Request
(ResourceID, schemaClass = MAJOR)

GetSchemaDictionary Response
(CompletionCode = SUCCESS, TransferHandle = 0x4A656E45)

RDEMultipartReceive Request
(DataTransferHandle = 0x4A656E45, OperationID = 0x0000, TransferOperation = XFER_FIRST_PART)

RDEMultipartReceive Response
(CompletionCode = SUCCESS, TransferFlag = START, NextDataTransferHandle = 0x08675309,

Data = 1st chunk)

RDEMultipartReceive Request
(DataTransferHandle= 0x08675309, OperationID = 0x0000, TransferOperation = XFER_NEXT_PART)

RDEMultiPartReceive Response
(CompletionCode = SUCCESS, TransferFlag = END, NextDataTransferHandle = 0x00000000,

Data = 2nd chunk)

MC RDE Device

 3064

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 145

Figure 19 – RDEMultipartReceive example 3065

14.2 Implementation notes 3066

Several implementation notes apply to manufacturers of RDE Devices or of management controllers. 3067

14.2.1 Schema updates 3068

If one or more schemas for an RDE Device are updated, the RDE Device may communicate this to the 3069
MC by triggering an event for the affected PDRs. When the MC detects a PDR update, it shall reread the 3070
affected PDRs. 3071

14.2.2 Storage of dictionaries 3072

It is not necessary for the MC to maintain all dictionaries in memory at any given time. It may flush 3073
dictionaries at will since they can be retrieved on demand from the RDE Devices via the 3074
GetSchemaDictionary command (clause 11.2). However, if the MC has to retrieve a dictionary “on 3075
demand” to support a Redfish query, this will likely incur a performance delay in responding to the client. 3076
For MCs with highly limited memory that cannot retain all the dictionaries they need to support, care must 3077
thus be exercised in the runtime selection of dictionaries to evict. Such caching considerations are 3078
outside the scope of this specification. 3079

14.2.3 Dictionaries for related schemas 3080

MCs must not assume that sibling instances of Redfish Resource PDRs in a hierarchy (such as collection 3081
members) use the same version of a schema. They could, for example, correspond to individual elements 3082
from an array of hardware (such as a disk array) built by separate manufacturers and supporting different 3083
versions of a major schema or with different OEM extensions to it. However, at such time as the MC has 3084
verified that two siblings do in fact use the same schemas, there is no reason to store multiple copies of 3085
the dictionary corresponding to that schema. Of course, sibling instances of resources stored within the 3086
same PDR share all dictionaries; it is only with instances of resources from separate PDRs that this 3087
applies. 3088

Similarly, it is expected to be fairly commonplace that the system managed by an MC could have multiple 3089
RDE Devices of the same class, such as multiple network adapters or multiple RAID array controllers. In 3090
such cases, however, there is no guarantee that each such RDE Device will support the same version of 3091
any given Redfish schema. 3092

To handle such cases, MCs have two choices. The most straightforward approach is to simply maintain 3093
each dictionary associated with the RDE Device it came from. This of course has space implications. A 3094
more practical approach is to store one copy of the dictionary for each version of the schema and then 3095
keep track of which version of the dictionary to use with which RDE Device. Because RDE Devices may 3096
support only subsets of the properties in resources, care must be taken when employing this approach to 3097
ensure that all supported properties are covered in the dictionaries selected. This may be done by 3098
merging dictionaries at runtime, though details of how to merge dictionaries are out of scope for this 3099
specification. In particular, OEM sections of dictionaries are not generally able to be merged as the 3100
sequence numbers for the names of the different OEM extensions themselves are likely to overlap. 3101

However, an even better approach is available. In Redfish schemas, so long as only the minor and 3102
release version numbers change, schemas are required to be fully backward compatible with earlier 3103
revisions. Individual properties and enumeration values may be added but never removed. The MC can 3104
therefore leverage this to retain only the newest instance of dictionary for each major version supported 3105
by RDE Devices. Again, the fact that RDE Devices may support only subsets of the properties in a 3106
resource means that care must be taken to ensure dictionary support for all the properties used across all 3107
RDE Devices that implement any given schema. 3108

PLDM for Redfish Device Enablement DSP0218

146 Published Version 1.2.0

14.2.4 [MC] HTTP/HTTPS POST Operations 3109

As specified in DSP0266, a Redfish POST Operation can represent either a Create Operation or an 3110
Action. To distinguish between these cases, the MC may examine the URI target supplied with the 3111
operation. If it points to a collection, the MC may assume that the Operation is a Create; if it points to an 3112
action, the MC may assume the Operation is an Action. Alternatively, the MC may presuppose that the 3113
POST is a Create Operation and if it receives an ERROR_WRONG_LOCATION_TYPE error code from 3114
the RDE Device, retry the Operation as an Action. This second approach reduces the amount of URI 3115
inspection the MC has to perform in order to proxy the Operation at the cost of a small delay in 3116
completion time for the Action case. (The supposition that POSTs correspond to Create Operations could 3117
of course be reversed, but it is expected that Actions will be much rarer than Create Operations.) 3118
Implementers should be aware that such delays could cause a client-side timeout. 3119

Another clue that could be used to differentiate between POSTs intended as create operations vs POSTs 3120
intended as actions would be trial encodings of supplied payload data. If there is no payload data, then 3121
the request is either in error or an action. In this case, the payload should be encoded with the dictionary 3122
for the major schema associated with target resource. On the other hand, if the payload is intended for a 3123
create operation, the correct dictionary to use would be the collection member dictionary, which may be 3124
retrieved via the GetSchemaDictionary command (clause 11.2), specifying 3125
COLLECTION_MEMBER_TYPE as the dictionary to retrieve. 3126

14.2.4.1 Support for Actions 3127

When a Redfish client issues a Redfish Operation for an Action, the URI target for the Action will be a 3128
POST of the form /redfish/v1/{path to root of RDE Device component}/{path to RDE Device owned 3129
resource}/Actions/schema_name.action_name. To process this, the MC may translate {path to root of 3130
RDE Device component} and {path to RDE Device owned resource} normally to identify the PDR against 3131
which the Operation should be executed. (If the URI is not in this format, this is another indication that the 3132
POST operation is probably a CREATE.) After it has performed this step, the MC can then check its PDR 3133
hierarchy to find the Redfish Action PDR containing an action named schema_name.action_name. If it 3134
doesn’t find one, the MC shall respond with HTTP status code 404, Not Found and stop processing the 3135
Operation. 3136

After the correct Action is located, the MC can translate any request parameters supplied with the Action. 3137
To do so, it should look within the dictionary at the point beginning with the named action, and then 3138
navigate into the Parameters set under the action. From there, standard encoding rules apply. When 3139
supplying a locator for the Action to the RDE Device as part of the RDEOperationInit command, the MC 3140
shall not include the Parameters set as one of the sequence numbers comprising the locator; rather, it 3141
shall stop with the sequence number for the property corresponding to the Action’s name. 3142

After the Action is complete, it may contain result parameters. If present, definitions for these will be found 3143
in the dictionary in a ReturnType set parallel to the Parameters set that contained any request 3144
parameters. If an Action does not contain explicit result parameters, the ReturnType set will generally not 3145
be present in the dictionary. The structure of the ReturnType set mirrors exactly that of the Parameters 3146
set. 3147

14.2.5 Consistency checking of read Operations 3148

Because the collection of data contained within a schema cannot generally be read atomically by RDE 3149
Devices, issues of consistency arise. In particular, if the RDE Device reads some of the data, performs an 3150
update, and then reads more data, there is no guarantee that data read in the separate “chunks” will be 3151
mutually consistent. While the level of risk that this could pose for a client consumer of the data may vary, 3152
the threat will not. The problem is exacerbated when reads must be performed across multiple resources 3153
in order to satisfy a client request: The window of opportunity for a write to slip in between distinct 3154
resource reads is much larger than the window between reads of individual pieces of data in a single 3155
resource. 3156

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 147

To resolve the threat of inconsistency, MCs should utilize a technique known as consistency checking. 3157
Before issuing a read, the MC should retrieve the ETag for the schema to be read, using the 3158
GetResourceETag command (clause 11.5). For a read that spans multiple resources, the global ETag 3159
should be read instead, by supplying 0xFFFFFFFF for the ResourceID in the command. The MC should 3160
then proceed with all of the reads and then check the ETag again. If the ETag matches what was initially 3161
read, the MC may conclude that the read was consistent and return it to the client. Otherwise, the MC 3162
should retry. It is expected that consistency failures will be very rare; however, if after three attempts, the 3163
MC cannot obtain a consistent read, it should report error 500, Internal Server Error to the client. 3164
NOTE For reads that only span a single resource, if the RDE Device asserts the atomic_resource_read bit in the 3165
DeviceCapabilitiesFlags response message to the NegotiateRedfishParameters command (clause 11.1), the MC 3166
may skip consistency checking. 3167

14.2.6 [MC] Placement of RDE Device resources in the outward-facing Redfish 3168
URI hierarchy 3169

In the Redfish Resource PDRs and Redfish Entity Association PDRs that an RDE Device presents, there 3170
will normally be one or a limited number that reflect EXTERNAL (0x0000) as their ContainingResourceID. 3171
These resources need to be integrated into the outward-facing Redfish URI hierarchy. Resources that do 3172
not reflect EXTERNAL as their ContainingResourceID do not need to be placed by the MC; it is the RDE 3173
Device’s responsibility to make sure that they are accessible via some chain of Redfish Resource and 3174
Redfish Entity Association PDRs (including PDRs chained via @link properties) that ultimately link to 3175
EXTERNAL. 3176

When retrieving these PDRs for RDE Device components, the MC should read the 3177
ProposedContainingResourceName from the PDR. While following this recommendation is not 3178
mandatory, the MC should use it to inform a placement decision. If the MC does not follow the placement 3179
recommendation, it should read the MajorSchemaName field to identify the type of RDE Device they 3180
correspond to. Within the canon of standard Redfish schemas, there are comparatively few that reside at 3181
the top level, and each has a well-defined place it should appear within the hierarchy. The MC should 3182
thus make a simple map of which top-level schema types map to which places in the hierarchy and use 3183
this to place RDE Devices. In making these placement decisions, the MC should take information about 3184
the hardware platform topology into account so as to best reflect the overall Redfish system. 3185

It may happen that the MC encounters a schema it does not recognize. This can occur, for example, if a 3186
new schema type is standardized after the MC firmware is built. The handling of such cases is up to the 3187
MC. One possibility would be to place the schema in the OEM section under the most appropriate 3188
subobject. For an unknown DMTF standard schema, this should be the OEM/DMTF object. (To tell that a 3189
schema is DMTF standard, the MC may retrieve the published URI via GetSchemaURI command of 3190
clause 11.4, download the schema, and inspect the schema, namespace, or other content.) 3191

Naturally, wherever the MC places the RDE Device component, it shall add a link to the RDE Device 3192
component in the JSON retrieved by a client from the enclosing location. 3193

14.2.7 LogEntry and LogEntryCollection resources 3194

RDE Devices that support the LogEntry and LogEntryCollection resources must be aware that large 3195
volumes of LogEntries can overwhelm the 16 bit ResourceID space available for identifying Redfish 3196
Resource PDRs. To handle this case, it is recommended that RDE Devices provide a PDR for the 3197
LogEntryCollection but do NOT provide PDRs for the individual LogEntry instances. Instead, RDE 3198
Devices that support these schemas should also support the link expansion query parameter (see $levels 3199
in DSP0266 and the LinkExpand parameter from SupplyCustomRequestParameters in clause 12.2). This 3200
means that they should fill out the related resource links in the “Members” section of the response with 3201
bejResourceLinkExpansion data in which the encoded ResourceID is set to zero to ensure that the MC 3202
gets the COLLECTION_MEMBER_TYPE dictionary from the LogEntryCollection. 3203

PLDM for Redfish Device Enablement DSP0218

148 Published Version 1.2.0

14.2.8 On-demand pagination 3204

In Redfish, certain read operations may produce a very large amount of data. For example, reading a 3205
collection with many members will produce output with size proportional to the number of members. 3206
Rather than overload clients with a huge transfer of data, Redfish Devices may paginate it into chunks 3207
and provide one page at a time with an @odata.nextlink annotation giving a URI from which to retrieve 3208
the next piece. 3209

RDE supports the same pagination approach. It is entirely at the RDE Device’s discretion whether to 3210
paginate and where to draw pagination boundaries. When the RDE Device wishes to paginate, it shall 3211
insert an @odata.nextlink annotation, using a deferred binding pagination reference (see 3212
$LINK.PDR<resource-ID>.PAGE<pagination-offset>% in clause 8.3), filling in the next page number for 3213
the data being returned. When the MC decodes this deferred binding, it shall create a temporary URI for 3214
the pagination and expose this pagination URI in the decoded JSON response it sends back to the client. 3215
Naturally, the encoded pagination URI must be decodable to extract the page number. Finally, when the 3216
client attempts a read from the pagination URI, the MC shall extract out the page number and send it to 3217
the RDE Device via the PaginationOffset field in the request message for the 3218
SupplyCustomRequestParameters command (clause 12.2). 3219

14.2.9 Considerations for Redfish clients 3220

No changes to behavior are required of Redfish clients in order to interact with BEJ-based RDE Devices; 3221
the details of providing them to the client are completely transparent from the client perspective. In fact, a 3222
fundamental design goal of this specification is that it should be impossible for a client to tell whether a 3223
Redfish message was ultimately serviced by an RDE Device that operates in JSON over HTTP/HTTPS or 3224
BEJ over PLDM. 3225

 3226

14.2.10 OriginOfCondition in Redfish events 3227

The OriginOfCondition field in the Redfish event schema contains a link reference to a Redfish resource 3228
associated with a Redfish event. In typical use cases, resource data is read upon receiving the event to 3229
determine the resource state when the event transpired. This can happen either explicitly, from the client 3230
performing a read on the OriginOfCondition resource, or implicitly, if IncludeOriginOfCondition is set in the 3231
EventDestination when the client registered for Redfish events. 3232

RDE version 1.1 does not provide support for a device to populate the OriginOfCondition field with full 3233
resource data. However, an MC that wishes to minimize the timing window for the race condition may 3234
perform the appropriate read immediately upon receiving the Redfish event. 3235

14.2.11 [MC] Merging dictionaries with OEM extensions 3236

When merging dictionaries, MCs should consider that OEM extensions to Redfish schemas are 3237
enumerated alphabetically. In particular, the root objects (sets) of extensions (which come immediately 3238
under “OEM” inside the root object of the host schema) are likely to have conflicting sequence numbers if 3239
different sets of extensions appear in two different dictionaries for a given host schema. 3240

Additionally, no attempt has been made in this specification to make registry dictionaries able to be 3241
merged. 3242

14.2.12 PATCH on Array Properties 3243

The Redfish standard (DSP0266) defines special behavior for Redfish PATCH Operations when applied 3244
to Array properties. All RDE Devices that support PATCHable Resources containing writable arrays shall 3245
support special encodings as described in this clause. 3246

DSP0218 PLDM for Redfish Device Enablement

Version 1.2.0 Published 149

NOTE The special support described in this clause was not detailed in specification versions prior to version 1.2.0. 3247
As a result, there is no guarantee that RDE devices that implement older versions of the specification will 3248
understand requests formatted in this fashion. In the event that a requested PATCH Operation requires 3249
special handling as detailed in this clause and the target device does not support at least specification 3250
version 1.2.0, the MC shall either: reject the PATCH Operation request as unsupported; or fetch the relevant 3251
array, manually build the updated form corresponding to the request, and then submit to the RDE Device a 3252
modified PATCH Operation containing the manually constructed array data. 3253

Within a PATCH request, the service shall accept null to remove an element. This null shall be encoded 3254
by the MC as a bejNULL field even if the dictionary entry for the array does not permit null data. The RDE 3255
Device shall accept a bejNULL in this context for the purpose of deleting an array element even if the 3256
dictionary does not permit null data. Array properties that use the fixed or variable length style, as defined 3257
DSP0266, shall remove those elements, while array properties that use the rigid style, as defined 3258
DSP0266, shall replace removed elements with null elements. 3259

Similarly, within a PATCH request, the service shall accept an empty object {} to leave an element 3260
unchanged. The RDE Device shall accept and interpret an empty object for this purpose. 3261

As defined DSP0266, a Redfish PATCH Operation may indicate the maximum size of an array by 3262
padding null elements at the end of the array sequence. As with deletions mentioned earlier in this 3263
clause, bejNULL encodings shall be used for this purpose by the MC and accepted by the RDE Device 3264
even if the dictionary for the corresponding resource does not permit NULL data. 3265

When processing a PATCH request, an RDE Device shall perform array modification operations in the 3266
following order: 3267

1. Modifications 3268
2. Deletions 3269
3. Additions 3270

As defined DSP0266, a Redfish PATCH Operation with fewer elements than in the current array shall 3271
remove the remaining elements of the array. The RDE Device shall comply to this requirement. 3272

PLDM for Redfish Device Enablement DSP0218

150 Published Version 1.2.0

ANNEX A 3273
(normative) 3274

 3275
Change log 3276

 3277

Version Date Description

1.0.0 2019-06-25 Released as DMTF Standard

1.0.1 2019-12-09 Errata update

1.1.0 2020-11-19 • Added support for nested annotations
• Enhanced message registry support, including a new registry

dictionary, BEJ encoding
• Improved ability to identify OEM extensions to schemas
• Added support for PLDM common multipart transfers

1.1.1 2021-10-27 Errata update

1.1.2 2022-10-26 Errata update

1.2.0 2024-06-21 • Added support for Redfish Parallel Resource PDR
• Clarified support for Redfish array element manipulation via null and

{}
• Errata updates

 3278

	Acknowledgments
	Document conventions
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Conventions
	5.1 Reserved and unassigned values
	5.2 Byte ordering
	5.3 PLDM for Redfish Device Enablement data types
	5.3.1 varstring PLDM data type
	5.3.2 schemaClass PLDM data type
	5.3.3 nnint PLDM data type
	5.3.4 bejEncoding PLDM data type
	5.3.5 bejTuple PLDM data type
	5.3.6 bejTupleS PLDM data type
	5.3.7 bejTupleF PLDM data type
	5.3.8 bejTupleL PLDM data type
	5.3.9 bejTupleV PLDM data type
	5.3.10 bejNull PLDM data type
	5.3.11 bejInteger PLDM data type
	5.3.12 bejEnum PLDM data type
	5.3.13 bejString PLDM data type
	5.3.14 bejReal PLDM data type
	5.3.15 bejBoolean PLDM data type
	5.3.16 bejBytestring PLDM data type
	5.3.17 bejSet PLDM data type
	5.3.18 bejArray PLDM data type
	5.3.19 bejChoice data PLDM type
	5.3.20 bejPropertyAnnotation PLDM data type
	5.3.21 bejRegistryItem PLDM data type
	5.3.22 bejResourceLink PLDM data type
	5.3.23 bejResourceLinkExpansion PLDM data type
	5.3.24 bejLocator PLDM data type
	5.3.25 rdeOpID PLDM data type

	6 PLDM for Redfish Device Enablement version
	7 PLDM for Redfish Device Enablement overview
	7.1 Redfish Provider architecture overview
	7.1.1 Roles

	7.2 Redfish Device Enablement concepts
	7.2.1 RDE Device discovery and registration
	7.2.1.1 RDE Device discovery
	7.2.1.2 RDE Device registration

	7.2.2 Data instances of Redfish schemas: Resources
	7.2.2.1 Alignment of resources
	7.2.2.2 Example linking of PDRs within RDE Devices
	7.2.2.3 Parallel resource relationships

	7.2.3 Dictionaries
	7.2.3.1 Canonizing a schema into a dictionary
	7.2.3.2 Dictionary binary format
	7.2.3.2.1 Hierarchical organization of entries

	7.2.3.3 Properties that support multiple formats
	7.2.3.4 Annotation dictionary format
	7.2.3.5 Registry dictionary format
	7.2.3.6 Links between schemas
	7.2.3.7 Actions in dictionaries
	7.2.3.8 Building dictionaries
	7.2.3.9 Primary Operations
	7.2.3.9.1 HTTP/HTTPS and Redfish
	7.2.3.9.1.1 Redfish Operation requests
	7.2.3.9.1.2 Redfish Operation responses
	7.2.3.9.1.3 Generic handling of Redfish Operations

	7.2.3.10 Redfish operation headers
	7.2.3.10.1 If-Match request header
	7.2.3.10.2 If-None-Match request header
	7.2.3.10.3 Custom HTTP headers
	7.2.3.10.3.1 PLDM-RDE-Expand-Type

	7.2.3.10.4 ETag response header
	7.2.3.10.5 Link response header
	7.2.3.10.5.1 Schema form
	7.2.3.10.5.2 Annotation form
	7.2.3.10.5.3 Passthrough form

	7.2.3.10.6 Location response header
	7.2.3.10.7 Cache-Control response header
	7.2.3.10.8 Allow response header
	7.2.3.10.9 Retry-After response header

	7.2.3.11 Redfish Operation request query options
	7.2.3.11.1 $skip query option
	7.2.3.11.2 $top query option
	7.2.3.11.3 $expand query option
	7.2.3.11.4 $levels query option qualifier
	7.2.3.11.5 $select query option qualifier
	7.2.3.11.6 Excerpt query option

	7.2.3.12 HTTP/HTTPS status codes
	7.2.3.13 Multihosting and Operations

	7.2.4 PLDM RDE Events
	7.2.4.1 [MC] Event subscriptions

	7.2.5 Task support

	7.3 Type code
	7.4 Transport protocol type supported
	7.5 Error completion codes
	7.6 Timing specification

	8 Binary Encoded JSON (BEJ)
	8.1 BEJ design principles
	8.2 SFLV tuples
	8.2.1 Sequence number
	8.2.2 Format
	8.2.3 Length
	8.2.4 Value

	8.3 Deferred binding of data
	8.4 BEJ encoding
	8.4.1 Conversion of JSON data types to BEJ
	8.4.1.1 JSON objects
	8.4.1.2 JSON arrays
	8.4.1.3 JSON numbers
	8.4.1.4 JSON strings
	8.4.1.5 JSON Boolean
	8.4.1.6 JSON null

	8.4.2 Resource links
	8.4.3 Registry items
	8.4.4 Annotations
	8.4.4.1 Nested Annotations

	8.4.5 Choice encoding for properties that support multiple data types
	8.4.6 Properties with invalid values

	8.5 BEJ decoding
	8.5.1 Conversion of BEJ data types to JSON
	8.5.1.1 BEJ Set
	8.5.1.2 BEJ Array
	8.5.1.3 BEJ Integer and BEJ Real
	8.5.1.4 BEJ String
	8.5.1.5 BEJ Boolean
	8.5.1.6 BEJ Null
	8.5.1.7 BEJ Resource Link
	8.5.1.8 BEJ Resource Link expansion

	8.5.2 Annotations
	8.5.2.1 Standalone annotations
	8.5.2.2 BEJ property annotations
	8.5.2.3 [MC] Related Properties in message annotations

	8.5.3 Sequence numbers missing from dictionaries
	8.5.4 Sequence numbers for read-only properties in modification Operations
	8.5.5 Annotations for RDE Devices

	8.6 Example encoding and decoding
	8.6.1 Example dictionary
	8.6.2 Example encoding
	8.6.3 Example decoding

	8.7 BEJ locators

	9 Operational behaviors
	9.1 Initialization (MC perspective)
	9.1.1 Sample initialization ladder diagram
	9.1.2 Initialization workflow diagram

	9.2 Operation/Task lifecycle
	9.2.1 Example Operation command sequence diagrams
	9.2.1.1 Simple read Operation ladder diagram
	9.2.1.2 Complex read Operation diagram
	9.2.1.3 Write (update) Operation ladder diagram
	9.2.1.4 Write (update) with Long-running Task Operation Ladder Diagram

	9.2.2 Operation/Task overview workflow diagrams (Operation perspective)
	9.2.2.1 Operation overview workflow diagram
	9.2.2.2 Task overview workflow diagram

	9.2.3 RDE Operation state machine (RDE Device perspective)
	9.2.3.1 State definitions
	9.2.3.2 Operation lifecycle state machine

	9.3 Event lifecycle

	10 PLDM commands for Redfish Device Enablement
	11 PLDM for Redfish Device Enablement – Discovery and schema commands
	11.1 NegotiateRedfishParameters command (0x01) format
	11.2 NegotiateMediumParameters command (0x02) format
	11.3 GetSchemaDictionary command (0x03) format
	11.4 GetSchemaURI command (0x04) format
	11.5 GetResourceETag command (0x05) format
	11.6 GetOEMCount command (0x06) format
	11.7 GetOEMName command (0x07) format
	11.8 GetRegistryCount command (0x08) format
	11.9 GetRegistryDetails command (0x09) format
	11.10 SelectRegistryVersion command (0x0A) format
	11.11 GetMessageRegistry command (0x0B) format
	11.12 GetSchemaFile command (0x0C) format

	12 PLDM for Redfish Device Enablement – RDE Operation and Task commands
	12.1 RDEOperationInit command (0x10) format
	12.2 SupplyCustomRequestParameters command (0x11) format
	12.3 RetrieveCustomResponseParameters command (0x12) format
	12.4 RDEOperationComplete command (0x13) format
	12.5 RDEOperationStatus command (0x14) format
	12.6 RDEOperationKill command (0x15) format
	12.7 RDEOperationEnumerate command (0x16) format

	13 PLDM for Redfish Device Enablement – Utility commands
	13.1 RDEMultipartSend command (0x30) format
	13.2 RDEMultipartReceive command (0x31) format

	14 Additional Information
	14.1 RDE Multipart transfers
	14.1.1 Flag usage for RDEMultipartSend
	14.1.2 Flag usage for RDEMultipartReceive
	14.1.3 RDE Multipart transfer examples

	14.2 Implementation notes
	14.2.1 Schema updates
	14.2.2 Storage of dictionaries
	14.2.3 Dictionaries for related schemas
	14.2.4 [MC] HTTP/HTTPS POST Operations
	14.2.4.1 Support for Actions

	14.2.5 Consistency checking of read Operations
	14.2.6 [MC] Placement of RDE Device resources in the outward-facing Redfish URI hierarchy
	14.2.7 LogEntry and LogEntryCollection resources
	14.2.8 On-demand pagination
	14.2.9 Considerations for Redfish clients
	14.2.10 OriginOfCondition in Redfish events
	14.2.11 [MC] Merging dictionaries with OEM extensions
	14.2.12 PATCH on Array Properties

	ANNEX A (normative) Change log

