
Redfish for Factory Automation

Work in Progress

DMTF Redfish Forum

Version WIP80 - June, 2024

Copyright 2024 © DMTF

Disclaimer

• The information in this presentation represents a snapshot of work in
progress within the DMTF.

• This information is subject to change without notice. The standard
specifications remain the normative reference for all information.

• For additional information, see the DMTF website: www.dmtf.org

2

http://www.dmtf.org/

Copyright 2024 © DMTF

Introduction

• DMTF Redfish Forum received a technology submission from PICMG

proposing additions to the Redfish data model to support factory

automation and Industrial “Internet of Things” (IIoT)

• The Redfish Forum has held discussions with members of PICMG to

review their submission and provide feedback

• This work in progress bundle reflects the results of this collaboration

with the intent to gather industry feedback and quickly bring this

support into the Redfish standard

3

Copyright 2024 © DMTF

Context

• Factory 4.0 represents a significant shift in factory automation from the

current state. Key attributes are:

• Convergence of Information Technology and Operations Technology.

• Internet of Things (smart sensors and effecters)

• Big data and analytics

• Custom and reconfigurable machinery

• Cyber-physical such as digital twinning

• This proposal extends the Redfish data model to support Factory 4.0

automation tasks in two main areas:

• Robust job management suitable for factory scheduling

• Composable hardware configuration through automation building blocks

4

Copyright 2024 © DMTF

ENHANCEMENTS TO

JOB MANAGEMENT

5

Copyright 2024 © DMTF

Factory Context for Redfish Job Service

6

• Golden dots show potential locations

of Redfish services

• Services operate in a hierarchy

• Factory orchestration ->

• Floor Orchestration ->

• Line Control ->

• Machine

Control

• Each level in the hierarchy may have

a 1 to many relationship

• Jobs started at higher levels of the

hierarchy may spawn many jobs on

lower levels of the hierarchy

• Debugging requires the ability to

backtrack

Copyright 2024 © DMTF

Assumptions on usage

• New jobs consist of requests to execute factory “recipes” that enable

configuration and operation of factory equipment

• Factory equipment must be configured properly to run the jobs (e.g. correct

tooling and ingredients)

• Jobs are interpreted by the equipment’s executor(s) to coordinate the

operation of AutomationNodes and other endpoints

• Jobs are created through the SubmitJob action on the related

JobDocument resource (recipe)

• Properties within the recipe describe optional and mandatory parameters

for the SubmitJob action

• Job lifecycle is controlled by JobService policies and actions posted to

the JobService or the specific Job instance

7

Copyright 2024 © DMTF

Updated Job Service Architecture

8

Job service

/redfish/v1/JobService

Job Document

Collection Job

Collection

Job Executor

Collection

“Document #2”

Job Document “Job #4”

Job

“Executor #1”

Job Executor

Collection Resource

Chassis

Collection

“Chassis #3”

Chassis

Singleton

NEW/MODIFIED

Redfish

service

root

Copyright 2024 © DMTF

Additions to Redfish Job data model

• NEW JobDocument

• New schema that defines the recipe to be executed

• Describes required and optional parameters for job creation

• NEW JobExecutor

• Describes a resource capable of running jobs of a specific type

• Additions to Job for document-based jobs

• A Job resource represents an instance of a “recipe”

• Lifecycle of the job follows a defined state machine

• Lifecycle of the job may be controlled through actions

9

Copyright 2024 © DMTF

Document-Based JobState Lifecycle

10

New

Validating Invalid

Pending

Running SuspendedException

Completed

CancelledCancelled

Suspend

Resume

Cancel

SubmitJob

:TargetValidationFailed

Validate

:FailureCondition

ValidationPolicy

= Bypass

Validate – action

:FailureCondition – operation result

ValidationPolicy=true - condition

:TargetValidationSucceded

start-conditions-met

= true

Copyright 2024 © DMTF

Job Validation

• There are two validation steps: source validation, and target validation

• Source validation occurs during the SubmitJob action

• Source validation checks for:

• Malformed data or invalid parameters

• No executors that can run the job

• The action will return with an error indicating the issue

• On error, no Job will be created

• Target validation may optionally be required for a given JobService based on

the value of ValidationPolicy

• Target validation checks the ability of the equipment to execute the job based on the

machine’s current state

• Target validation checks for items like proper machine configuration and proper

ingredients being present

• If a job fails target validation, it will transition to the “Invalid” state

• An operator may then reconfigure the equipment and attempt to revalidate the job so that it

can be executed

11

Copyright 2024 © DMTF

JobDocument example

{

 "@odata.type": "#JobDocument.v1_0_0.JobDocument",

 "Id": "Recipe1",

 "Name": "Sweet candy",

 "Description" : "Produce specified amount of the sweet candies",

 "Actions": {

 "#JobDocument.SubmitJob": {

 "target": "/redfish/v1/JobService/Documents/Recipe1/Actions/JobDocument.SubmitJob"

 }

 },

 "DocumentType" : "Script",

 "Version" : "1.0.0-20210215",

 "CreationTime" : "2022-01-16T04:14:33+06:00",

 "DocumentDataURI" : "https://recipestore.vendor.com/recipes?Action=Download&RecipeId=SweetCandy",

 "Status": {

 "State": "Enabled",

 "Health": "OK"

 },

12

Where the document was obtained from

The SubmitJob action – used to create Jobs

related to this JobDocument

Copyright 2024 © DMTF

JobDocument example (continued)

 "ParameterMetadata": [

 {

 "Name" : "AmountPieces",

 "DataType" : "Number",

 "MinimumValue": 0,

 "Required": true,

 "Description": "something",

 "ValueHint": "10000"

 },

 {

 "Name": "Flavors",

 "AllowableValues": ["Orange","Strawberry","Lemon","Lime","Raspberry","Vanilla"],

 "DataType": "String",

 "Required": true,

 "Description": "The flavors of the candy. One or two choices may be given",

 "ValueHint": "Orange"

 },

 {

 "Name":"Shape",

 "AllowableValues": ["Cylinder","Sphere","Dome","Cone"],

 "DataType" : "String",

 "Required": true,

 "Description": "The shape of the candy.",

 "ValueHint": "Dome"

 }

],

 "Links" : {"SupportedExecutors": [{"@odata.id":"/redfish/v1/JobService/Executors/1"}] },

 "@odata.id": "/redfish/v1/JobService/Documents/Recipe1"

}

13

A list of executors that will work with this

JobDocument. It is expected that the

service will complete this collection.

Metadata that describes parameters that are

expected/accepted during the SubmitJob action.

Every JobDocument may have different required and

optional parameters expected at when submitting a job.

Copyright 2024 © DMTF

Job (updated) example

{

 "@odata.id": "/redfish/v1/JobService/Jobs/1",

 "@odata.type": "#Job.v1_3_0.Job",

 "Id": "1",

 "Name": "Document-based Job",

 "Description" : "This job was created using a the SubmitJob action on a JobDocument resource",

 "Actions": {

 "#Job.Cancel": {"target":"/redfish/v1/JobService/Jobs/1/Actions/Job.Cancel”},

 "#Job.Invalidate": {"target": "/redfish/v1/JobService/Jobs/1/Actions/Job.Invalidate"},

 "#Job.Resubmit": {"target": "/redfish/v1/JobService/Jobs/1/Actions/Job.Resubmit"},

 "#Job.Resume": {"target": "/redfish/v1/JobService/Jobs/1/Actions/Job.Resume"},

 "#Job.ForceStart": {"target": "/redfish/v1/JobService/Jobs/1/Actions/Job.ForceStart"},

 "#Job.Suspend": {"target": "/redfish/v1/JobService/Jobs/1/Actions/Job.Suspend"},

 "#Job.Validate": {"target": "/redfish/v1/JobService/Jobs/1/Actions/Job.Validate"},

 },

 "JobType": "DocumentBased",

 "CreationTime" : "2022-01-16T04:14:33+06:00",

 "JobPriority": 0,

 "PercentComplete" : 25,

 "LastUpdateTime" : "2022-01-16T04:15:31+06:00",

 "EstimatedCompletionTime" : "2022-01-16T04:18:31+06:00",

 "JobState": "Pending",

14

Actions to control the lifecycle of the job

Job type. DocumentBased jobs use the

new behavior described in this proposal.

Posted jobs behave as before.

The priority assigned for this job.

The state of the job. This field is updated as the job

moves through its lifecycle.

Copyright 2024 © DMTF

Job (updated) example - continued

 "Parameters" : {

 "AmountPieces":10000,

 "Flavor":"Orange",

 "Shape":"Cylinder"

 },

 "StartTime" : "2022-01-16T04:14:33+06:00",

 "JobStatus": "OK",

 "Links" : {

 "ParentJob": { "@odata.id": "https://192.168.0.1/redfish/v1/JobService/Jobs/1" },

 "SubsidiaryJobs": [

 { "@odata.id": https://192.168.0.3/redfish/v1/JobService/Jobs/1 }

],

 "JobDocument" : { "@odata.id" : "/redfish/v1/JobService/Documents/Recipe1" },

 "Executor" : { "@odata.id" : "/redfish/v1/JobService/Executors/1" },

 "PreferredExecutors" : [

 { "@odata.id" : "/redfish/v1/JobService/Executors/1" }

],

 "ValidatedExecutors" : [{

 "@odata.id" : "/redfish/v1/JobService/Executors/1" }

]

 }

}

15

The parameters specified when the job was

submitted. These may be different for jobs based on

different job documents. The job document

ParameterMetadata field specifies which parameters

should be present for the job.

If the job was created by another

job, contains a link to the job. Can

be a remote or local URI

A collection of URIs to the jobs that

were created by this job. Can be

remote or local URIs

A link to the Executor that is executing

this job

Links to preferred executors that were

specified at job creation

Links to executors that this job has

been validated to work on.

Copyright 2024 © DMTF

Job excerpt

• The job resource now supports an excerpt that can be used to gather status

information without getting the entire Job resource

• Properties included in the excerpt:

• EstimatedCompletionTime

• JobState

• PercentComplete

16

Copyright 2024 © DMTF

JobExecutor example

{

 "@odata.type": "#JobExecutor.v1_0_0.JobExecutor",

 "Id": "1",

 "Name": "Main Job Executor",

 "Description" : "Executor for Document-based Jobs",

 "ExecutorName" : "Script",

 "Status": {

 "State": "Enabled",

 "Health": "OK"

 },

 "MaximumConcurrentJobs":1,

 "Links" : {

 "ExecutingJobs" : [

 { "@odata.id" : "/redfish/v1/JobService/Jobs/1" }

],

 "Chassis" : { "@odata.id" : "/redfish/v1/Chassis/Aggregator" },

 "ComputerSystem" : { "@odata.id" : "/redfish/v1/Systems/1" }

 },

 "@odata.id": "/redfish/v1/JobService/Executors/1"

}

17

Specifies type of jobs executed.

Collection of jobs that are currently

executing

Copyright 2024 © DMTF

JobService (updated) example

{

 "@odata.id": "/redfish/v1/JobService",

 "@odata.type": "#JobService.v1_2_0.JobService",

 "Actions": {

 "@odata.type": "#JobService.v1_2_0.Actions",

 "#JobService.CancelAllJobs": {"target": "/redfish/v1/JobService/Actions/JobService.CancelAllJobs"},

 "#JobService.InvalidateAllJobs": {"target": "/redfish/v1/JobService/Actions/JobService.InvalidateAllJobs"},

 "#JobService.ResumeAllJobs": {"target": "/redfish/v1/JobService/Actions/JobService.ResumeAllJobs"},

 "#JobService.SuspendAllJobs": {"target": "/redfish/v1/JobService/Actions/JobService.SuspendAllJobs"}

 },

 "DateTime": "2022-01-1T02:00:00+06:00",

 "Id": "JobService",

 "JobDocuments": {

 "@odata.id": "/redfish/v1/JobService/Documents"

 },

 "JobExecutors": {

 "@odata.id": "/redfish/v1/JobService/Executors"

 },

 "ValidationPolicy" : "Bypass",

 "Jobs": {

 "@odata.id": "/redfish/v1/JobService/Jobs"

 },

18

Executors associated with the

service

Job documents serve as

“templates” for creating new jobs

Job resources tracked by the

service

Actions to control Jobs

Policy related to validation of

Document-based jobs

Copyright 2024 © DMTF

JobService (updated) example (continued)

 "Log": {

 "@odata.id": "/redfish/v1/JobService/LogService"

 },

 "Name": "Job Service",

 "ServiceCapabilities": {

 "MaxJobs": 60,

 "MaxSteps": 5,

 "Scheduling": true,

 "UserSpecifiedJobs": true,

 "DocumentBasedJobs": true

 },

 "ServiceEnabled": true,

 "Status": {

 "State": "Enabled",

 "Health": "OK"

 }

}

19

Capabilities of the JobService.

New fields added to report whether

handing of user-specified or

document-based jobs is supported.

Copyright 2024 © DMTF

Proposed Additions to the JobEvent Message Registry

• Defines messages for Document-based Job related events

• JobValidationBypassed - A job has been queued without validation

• JobValidationStarted- A job validation has been started

• JobValidatedOK - A job validation has completed

• JobValidateException - A job validation has completed with warnings or

errors

20

Copyright 2024 © DMTF

AUTOMATION NODES

21

Copyright 2024 © DMTF

Where does Redfish Industrial IoT fit in the Factory?

22

Sensor Nodes

• Smart Sensors report capabilities

• Exposed as Redfish Sensor

Effector Nodes

• Accept a Setpoint

• Controls Motion, Temperature, Pressure, etc.

• Exposed as Redfish Control

Endpoint Controller

• Includes multiple Sensor and Effector Nodes

• Synchronizes motion of multiple Effector Nodes

• Exposed as new Redfish AutomationNode

Aggregator/Bridge

• Can control multiple Endpoint Controllers

• Also exposed as an AutomationNode

Higher levels of integration supported to build a complete factory

Copyright 2024 © DMTF

AutomationNode Architecture

23

AutomationNode Collection

/redfish/v1/AutomationNodes

Redfish

service

root

“Mixer Unit”

AutomationNode

“X-Axis Motion”

AutomationNode

Automation

Instrumentation

“3-Axis Motion”

AutomationNode

Automation

InstrumentationAutomation

Instrumentation

Collection Resource

Chassis

Collection

“Delivery”

Chassis

Singleton

NEW

“Mixer”

Chassis

Copyright 2024 © DMTF

NEW AutomationNode

• Provides Smart Sensor or Smart Controller metrics and behaviors for

industrial IoT and Factory Automation applications

• Compatible with PICMG IoT.1 device firmware specification

• Other low-level solutions are possible

• NodeType explains purpose of the node and populates Control and

Sensor data in the AutomationInstrumentation resource

• Simple – simple set of control and associated sensor(s)

• PID – PID-based control loop

• MotionPosition, MotionVelocity – single axis synchronized robotic motion

• MotionPositionGroup – multi-axis synchronized robotic motion

• NodeState shows the current state of the unit

• Running, Idle, Waiting, Done, ConditionStop, ErrorStop

• Actions provide means to affect the state of the node

• Start, Stop, Wait, Reset, SendTrigger

24

Copyright 2024 © DMTF

NEW AutomationNode, continued

• MotionProfile allows selection of profile motion types

• AssertInterlock provides means to manually trigger the device interlock

• This could be modeled as an Action instead

• Action becomes a POST to a specific URI with different permissions than a

PATCH operation on the AutomationNode

• Complex factory equipment can be composed of multiple

AutomationNode resource instances

• Nodes can be “grouped” together to present unified data when applicable

• For example, a multi-axis motion controller includes 3 single-axis nodes

• Grouping allows for any operation to affect all axis at once (atomic) while

providing individual configuration of the underlying single-axis nodes

25

Copyright 2024 © DMTF

Motion Position NodeType

• Controls velocity and acceleration while moving to a specific position

• This mode is important for a variety of robotics operations

• Multiple axis can be synchronized together for complex motions

26

Copyright 2024 © DMTF

Motion Velocity NodeType

• Controls an output to a constant velocity (no final position)

• This mode is important for a variety of robotics control operations

• Multiple axis can be synchronized together for complex motions

27

Copyright 2024 © DMTF

NodeState state diagram (applies to any NodeType)

28

Idle

Done
(applicable for motion

automation nodes)

Running

Waiting
(applicable for motion

automation nodes)

ErrorStopConditionStop

Red Text - actions

Blue Text - conditions

Start Stop

trigger_received=true
position=final position

Stop

StopStop

Wait

Stop

Error condition=truerecoverable condition=true

Start (used to slew to a new velocity)

Copyright 2024 © DMTF

NEW AutomationInstrumentation

• Resource for monitoring the node and adjusting the controls

• Builds on excerpts of Control and Sensor instances

• Details for each control or sensor, such as limits and alert thresholds, can

be accessed by following DataSourceUri links

• Properties are populated depending on NodeType

• Motion-related properties only appear for motion-based nodes

• Additional multi-axis motion properties appear for motion “groups”

• Related sensor readings can also be populated for any NodeType

• TemperatureCelsius, Voltage, CurrentAmps

29

Copyright 2024 © DMTF

Representative Factory Machine (Candy Printer)

Hopper 1

Hopper 1

Valve

Ingredients Supply

Mixing Vat 1

Mixing Vat 1 Pump

Tank 1

Tank 1 Pump

Tank 2

Tank 1 Pump

Tank 3

Tank 1 Pump

Tank 4

Tank 1 Pump

Tank 5

Tank 1 Pump

Tank 6

Tank 1 Pump

Tank 7

Tank 1 Pump

Tank 8

Tank 1 Pump

Tank 9

Tank 1 Pump

Tank 10

Tank 1 Pump

Tank 11

Tank 1 Pump

Tank 12

Tank 1 Pump

Hopper 2

Hopper 1

Valve

Hopper 3

Hopper 1

Valve

Mixer 1

Motor

Mixer 1

Heater

Mixer Unit
X Axis Y Axis Z Axis

Delivery Unit Conveyor Unit
Conveyor Motor

Power Unit

Indicators & Controls

A

A A A
A

A

A

A

A

A

A

A

A

A

A

A

A

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%
k

g Nozzle

Sensor(s)

Controller

Copyright 2024 © DMTF

AutomationNode example: Mixer and Delivery Unit

Mixing Vat 1

Mixer 1

Heater

Mixer Unit

X Axis Y Axis Z Axis

Delivery Unit

A

A A A

Nozzle

V

Sensor(s)

Automation Node

Chassis

3-axis motion control

PID Temperature

Control

Miscellaneous

Machine

Sensors

Chassis with an

AutomationNode and

general sensors

General Sensor readings

shown in EnvironmentMetrics

for the Chassis

Chassis with multiple

AutomationNode

instances in a group

The 3-axis motion node

AutomationNode builds

upon a “group” of three

additional nodes (X, Y, Z)

Copyright 2024 © DMTF

AutomationNode example
{

 "@odata.type": "#AutomationNode.v1_0_0.AutomationNode",

 "Id": "XAxisMover",

 "Name": "X-Axis positioner",

 "Description": "The X axis automation node for the machine.",

 "Status": {

 "State": "Enabled",

 "Health": "OK",

 "Conditions": []

 },

 "AssertInterlock": false,

 "NodeState": "Running",

 "NodeType": "MotionPosition",

 "MotionProfile": "Trapezoidal",

 "MotionAxis": "X",

 "Instrumentation": {

 "@odata.id": "/redfish/v1/AutomationNodes/XAxisMover/AutomationInstrumentation"

 },

 "Links": {

 "Chassis": [{"@odata.id": "/redfish/v1/Chassis/3AxisMotion“ }

]

 },

 "@odata.id": "/redfish/v1/AutomationNodes/XAxisMover"

}

32

Motion-related properties allow

selection of Profile types and axis

alignment

Copyright 2024 © DMTF

AutomationInstrumentation example
{

 "@odata.type": "#AutomationInstrumentation.v1_0_0.AutomationInstrumentation",

 "Id": "Instrumentation",

 "Name": "Instrumentation for X-Axis Motion Controller",

 "Status": {

 "State": "Enabled",

 "Health": "OK",

 "Conditions": []

 },

 "NodeState": "Running",

 "PositionMeters": {

 "DataSourceUri": "/redfish/v1/Chassis/3AxisMotion/Controls/XOutput",

 "SetPoint": 0.75,

 "Reading": 0.51

 },

 "VelocityMpS": {

 "DataSourceUri": "/redfish/v1/Chassis/3AxisMotion/Controls/XVelocity",

 "Reading": 0.02

 },

 "AccelerationMpS2": {

 "Reading": 0.0

 },

 "@odata.id": "/redfish/v1/AutomationNodes/XAxisMover/AutomationInstrumentation"

}

33

Position-based motion allows a

SetPoint for desired final position

Velocity and Acceleration Control

excerpts provide pass-through Sensor

readings but lack a SetPoint

Copyright 2024 © DMTF

Handling “pending” automation node operations

• Automation nodes may have their “next operation” queued up to begin

immediately after the current operation is completed

• While this is technically the next ‘step’ in a Job or similar operation, the

difference is the timing of the sequence

• A motion controller would immediately begin its next ‘move’, not wait in an

idle state for the job service to send a command

• Proposal uses a new PendingSetPoint on any Control

• The client performs a PATCH on SetPoint, the service responds by

populating PendingSetPoint containing the new desired value

• Once the current operation is complete, the value of SetPoint changes, and

the PendingSetPoint is removed from the payload

• This concept may be better handled using Redfish “Settings” resource

• A subordinate Settings resource is present when “queued operations” are

required by the node, along with a @Redfish.Settings annotation

34

Copyright 2024 © DMTF

Additions to Sensor and Control

• Added Sensor ReadingType and Control ControlType values

• LinearPosition (m) and RotationalPosition (rad)

• LinearVelocity (m/s) and RotationalVelocity (rad/s)

• LinearAcceleration (m/s^2) and RotationalAcceleration (rad/s^2)

• New Control SetPointType for “Monitor”

• Allows a Control instance to “pass-through” a related Sensor Reading

without having a SetPoint

• Used to populate Control excerpts where the implementation may be either

a Control or a Sensor, depending on configuration

• Enables clients to monitor a single Reading property, regardless of the

presence of a SetPoint

• Example: A motion controller may report Velocity, but don’t allow adjustments

• Added SetPointError to report Reading difference from SetPoint

• Terminology common for Control Loops

35

Copyright 2024 © DMTF

AutomationNode Event Message Registry Proposal

• AutomationNodeEvent Registry

• To be developed (not included in the WIP80 release bundle)

• Define messages for AutomationNode related state changes

• NodeIdle

• NodeWaiting

• NodeRunning

• NodeDone

• NodeStoppedCondition

• NodeStoppedError

• Will need additional messages for error conditions, limits exceeded,

interlocks, for example:

• InterlockAsserted, InterlockCleared

• PositionUpperLimitExceeded, PositionLowerLimitExceeded

36

Copyright 2024 © DMTF

Getting involved in Redfish

Redfish Standards page
• Schemas, Specs, Mockups, White Papers & more

• http://www.dmtf.org/standards/redfish

Redfish Developer Portal
• Redfish Interactive Resource Explorer

• Educational material, documentation & other links

• http://redfish.dmtf.org

Redfish User Forum
• User forum for questions, suggestions and discussion

• http://www.redfishforum.com

DMTF Feedback Portal
• Provide feedback or submit proposals for Redfish standards

• https://www.dmtf.org/standards/feedback

DMTF Redfish Forum
• Join the DMTF to get involved in future

• http://www.dmtf.org/standards/spmf

37

Copyright 2024 © DMTF

Q & A and Discussion

38

	Slide 1: Redfish for Factory Automation Work in Progress
	Slide 2: Disclaimer
	Slide 3: Introduction
	Slide 4: Context
	Slide 5: Enhancements to Job management
	Slide 6: Factory Context for Redfish Job Service
	Slide 7: Assumptions on usage
	Slide 8: Updated Job Service Architecture
	Slide 9: Additions to Redfish Job data model
	Slide 10: Document-Based JobState Lifecycle
	Slide 11: Job Validation
	Slide 12: JobDocument example
	Slide 13: JobDocument example (continued)
	Slide 14: Job (updated) example
	Slide 15: Job (updated) example - continued
	Slide 16: Job excerpt
	Slide 17: JobExecutor example
	Slide 18: JobService (updated) example
	Slide 19: JobService (updated) example (continued)
	Slide 20: Proposed Additions to the JobEvent Message Registry
	Slide 21: Automation Nodes
	Slide 22: Where does Redfish Industrial IoT fit in the Factory?
	Slide 23: AutomationNode Architecture
	Slide 24: NEW AutomationNode
	Slide 25: NEW AutomationNode, continued
	Slide 26: Motion Position NodeType
	Slide 27: Motion Velocity NodeType
	Slide 28: NodeState state diagram (applies to any NodeType)
	Slide 29: NEW AutomationInstrumentation
	Slide 30: Representative Factory Machine (Candy Printer)
	Slide 31: AutomationNode example: Mixer and Delivery Unit
	Slide 32: AutomationNode example
	Slide 33: AutomationInstrumentation example
	Slide 34: Handling “pending” automation node operations
	Slide 35: Additions to Sensor and Control
	Slide 36: AutomationNode Event Message Registry Proposal
	Slide 37: Getting involved in Redfish
	Slide 38: Q & A and Discussion

