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Disclaimer
• The information in this presentation represents a snapshot of work in 

progress within the DMTF.   
• This information is subject to change without notice.  The standard 

specifications remain the normative reference for all information.   
• For additional information, see the DMTF website: www.dmtf.org 
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http://www.dmtf.org/


Introduction
• Redfish is built for inventory, configuration, and ad hoc monitoring 

• Continuous polling Redfish resources for telemetry is not efficient  
• Existing TelemetryService and MetricReport needs improvement 

• Implementations tend to only support vendor-defined, non-interoperable reports  
• Resulting report data cannot be easily correlated with Redfish resources 

• Contents of the report are not tied to their source in the Redfish data model 
• Requires a priori knowledge of product / service to set up 

• Cannot deploy same report definition across a multivendor fleet 
• Desire to increase ecosystem adoption and interoperability 

• Telemetry support must operate well with popular telemetry clients 
• E.g. Prometheus, Telegraf, OpenTelemetry, etc.  

• Need a simpler scheme to encourage support on small-footprint devices
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Requirements
• Support three methods of gathering telemetry: 

• Polling – Client performs GET on resource(s) with minimal overhead 
• Streaming – Service sends optimized bundles of data at regular intervals 
• Reporting – Service records data over time, periodically produces a report 

• Ability to create vendor and device-independent reports 
• Ability to “blind deploy” telemetry configuration with no a priori knowledge 

• POST to create a configuration, POST to create a subscription 
• Preserve and leverage the investment in the Redfish data model 

• Output must match, or enable client to transform to, resource definitions 
• Encourage adoption and interoperability 

• Minimize creation of new resources or structures 
• Minimize new functions or implementation options to encourage adoption 
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Terminology
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Sensor: #26 
Time: 10/03 2:00pm 
Temperature: 41.5C

10/03/24

Sensor: #21 
Time: 10/04 4:00pm 
Temperature: 39.8C

Sensor: #21 
Time: 10/04 4:15pm 
Temperature: 40.3C

Sensor: #21 
Time: 10/04 3:45pm 
Temperature: 39.1C

A record contains data 
from a single source at a 
specific time

A report is a set of 
records collected and 
stored over time

Feed

A stream is a bundle 
of records, sent to a 
remote destination as 
they are created

A feed produces records 
from one or more sources 
at defined intervals 

Sensor: #23 
Time: 10/03 2:00pm 
Temperature: 41.8C



TELEMETRY RECORDS
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Selecting properties for telemetry
• Many properties in Redfish resources are static data for a given 

instance, or only updated upon configuration or state changes 
• Redfish separates fast-changing data into separate resources 

• But even these resources include some static, supporting properties 
• Choose telemetry-focused subsets of properties for each schema 

• Omit configuration data, supporting properties, links to resources, etc. 
• Example: In Sensor, normally, only the Reading value changes 

• Define these subsets as part of the standard schema 
• Ensures client can correlate the subset with the full resource 
• An instance of this subset retrieved at a given time is a “record”
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Telemetry verbosity
• Record definition must balance efficiency vs. completeness 

• Dashboards, control systems, and other real-time users desire efficiency 
due to higher-frequency sampling rates 

• Analysis tools desire detailed, complete data at lower sampling rates 
• Two verbosity levels defined for each schema or resource 

• “Compact” – Data likely to change given expected sampling rates 
• Intent is to minimize payload for efficiency 
• Example: Sensor readings, utilization levels, performance counters 

• “Detailed” – Adds data less likely to change, but useful for analysis 
• Provide any non-static data that could be classified as “telemetry” 
• Example: Device state, error counters, average/low/peak readings
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NEW Redfish.Id and Redfish.Time annotations

• @Redfish.Id contains a hash of @odata.id for each resource 
• This significantly reduces string length of this required, static data 
• Service create a value unique within the service (not universal) 
• @odata.id always appears in first record of a stream or report 
• Examples for: "/redfish/v1/PowerEquipment/RackPDUs/1/Outlets/A3“ 

• “@Redfish.Id”: “ZjU1YT”   (truncated base64-encoded SHA-1 hash)
• “@Redfish.Id”: “OutA3”    (service-defined replacement string) 

• @Redfish.Time annotation created for telemetry records 
• Added to every telemetry record to report the data acquisition time 
• UNIX epoch based on UTC time for consistency across services 
• Example:   “@Redfish.Time”: 1696261238
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Telemetry record definitions (1 of 2)
In general, “Compact” records contain sensor readings and key performance counters 
“Detailed” records add Status (State/Health), additional performance and error counters 

• BatteryMetrics – charge rates, current, voltage 
• Circuit, Outlet, PowerDistributionMetrics – current, voltage, power, energy, frequency 
• CoolantConnector, CoolingLoop – pressure, flow rate, temperature 
• DriveMetrics – Read/write counters, uncorrectable error counts, power, temperature 

• Detailed: adds corrected errors, NVMe statistics 
• EnvironmentMetrics – power, energy, temperature, humidity 
• HeaterMetrics – heating time, power, temperature 
• MemoryMetrics - Read/write counters, uncorrectable error counts, power, temperature 

• Detailed: adds corrected error counters, predicted media life 
• NetworkAdapterMetrics – TX/RX counters 

• Detailed: Specific counters for NCSI, Multicast/Unicast TX/RX, etc 
• NetworkDeviceFunctionMetrics – TX/RX counters 

• Detailed: Specific counters for FibreChannel,  Multicast/Unicast TX/RX, etc
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Telemetry record definitions (2 of 2)

• PortMetrics - TX/RX counters 
• Detailed: Specific counters for FibreChannel, GenZ, Transceivers, Multicast/Unicast TX/RX, etc. 

• PowerSupplyMetrics – input and output: current, voltage, power, energy, frequency 
• ProcessorMetrics - TX/RX counters 

• Detailed: Specific counters for NCSI, Multicast/Unicast TX/RX, etc.  
• Pump – Speed, speed control 
• Reservoir – Fluid level, pressure 
• Sensor – Reading, apparent power/energy 

• Detailed: Average / lowest / peak Reading 
• StorageControllerMetrics – Read/write bytes and units, uncorrected error counts 

• Detailed: NVMe SMART properties, correctable error counts 
• ThermalMetrics – Power, energy, temperature readings 

• Detailed: Heater usage, lifetime readings
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Example: Sensor telemetry record
GET /redfish/v1/Chassis/1/Sensors/ServerTemp?telemetry=Compact

{
   “@odata.id”:  "/redfish/v1/Chassis/1/Sensors/ServerTemp",
   “@Redfish.Time”: 1696261238,
   "Reading": 21.3
}
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@Redfish.Time annotation 
included in telemetry payload

@odata.type and other schema-required 
properties are not included – since client 
explicitly requested the telemetry subset and 
therefore is aware of that result

For a Sensor resource, the Reading is 
the primary piece of data, which can 
change frequently. 

Additional sensor data (average, peak, 
lowest values) would be available in the 
“detailed” telemetry record



Example: Outlet record
{
   “@Redfish.Id”: "OutA3",
   “@Redfish.Time”: 1696261238,
   "Voltage": {
      "Reading": 202.3
   },
   "CurrentAmps": {
      "Reading": 1.73
   },
   "PowerWatts": {
       "Reading": 349.9,
       "ApparentVA": 349.9,
       "ReactiveVAR": 0.1,
       "PowerFactor": 0.99
   },
   "EnergykWh": {
       "Reading": 61848
   }
}

13

@Redfish.Id annotation 
replaces @odata.id to reduce 
payload size after first record in 
a stream or report



TELEMETRY FEEDS 
GENERATING TELEMETRY RECORDS
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Telemetry feeds
• Allow creation of telemetry feeds that continuously produce 

telemetry records from selected resources at a defined interval 
• Service can also pre-define feeds ready for subscribers 

• Each feed produces records delivered to subscribers 
• A single record contains the subset of properties from any applicable 

resource instance defined for the feed 
• Each feed can serve multiple types of subscribers: 

• A stream of telemetry records sent as they are created 
• A report created from records stored over a defined interval 

• Regardless of destination, the format of the feed is the same
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JSON Lines
• JSON Lines is the chosen record format 

• A stream consists of a bundle of records in JSON Lines format 
• A report is a JSON Lines-formatted file 

• Allows easy concatenation of multiple JSON documents 
• Appeared ~2017 from post-SQL database crowd (Apache Spark, etc.) 
• Simple description: “CSV for JSON”, see https://jsonlines.org 

• Allows for simple accumulation of multiple JSON payloads 
• Strip every “\n” from JSON payload, append to file, add “\n”, repeat… 

• Well-supported by open source tools, libraries, etc. 
• Barely need more “Readline File I/O” support + JSON encoder
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http://www.jsonlines.org/


Sample telemetry report of temperature Sensors
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# Telemetry report file contents in JSON Lines format

1 {"@odata.id": "/redfish/v1/Chassis/1/Sensors/Temp", "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696282838 }</n>

2 {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU1Temp", "@Redfish.Id": “U97WR3”, "Reading": 46.9, "@Redfish.Time": 
1696282838 }</n>

3 {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU2Temp", "@Redfish.Id": “N5TR4C", "Reading": 48.2, "@Redfish.Time": 
1696282838 }</n>

4 { "@Redfish.Id": "JK893F", "Reading": 41.7, "@Redfish.Time": 1696283136 }</n>

5 { "@Redfish.Id": "U97WR3", "Reading": 46.9, "@Redfish.Time": 1696283136 }</n>

6 { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283136 }</n>

7 { "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696283431 }</n>

8 { "@Redfish.Id": “U97WR3", "Reading": 46.9, "@Redfish.Time”: 1696283431 }</n>

9 { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283431 }</n>



NEW TelemetryFeed schema
• DataFeedSources [{ }]– describe the data to gather 

• BaseURI – Gather records starting at this URI, traverse down tree 
• ResourceType – The resource type (schema) to gather (e.g. Sensor) 
• DetailedRecords – Provide “Compact” or “Detailed” records (Boolean) 
• FilterKeyValues[] – Include record if “key property” matches value(s) 

• Example:  Sensor defines ReadingType as key, match “Temperature” 

• Schedule{ } – frequency of sampling and start time for the feed 
• RecurrenceInterval – Sampling frequency of the resource(s) 
• StartTime – Provide means to sync reports and samples  

• Plus some user options and local report configuration…
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NEW TelemetryFeed mockup
{
    "@odata.type": "#TelemetryFeed.v1_0_0.TelemetryFeed”,
    "Id": “Temperature",
    “Name”: “Temperature Sensor Telemetry”,
    “TelemetryFeedId”: “Temperature”,
    “Enabled”: true,
    “LocalReportsEnabled”: true,
    “LocalReportsKeepAtMost”: 3,
    “DataFeedSources”: [{
        “BaseURI”: “/redfish/v1/Chassis”,
        “ResourceType”: “Sensor”,
        “DetailedRecords”: false,
        “FilterKeyValues”: [“Temperature”]   !  Filter by “ReadingType” for Sensor
     }],
     “IncludeEntireResource”: “Once”,   ! “Once”, “Never”, “Always”
     “HashIdentifiers”: true     ! Replaces “@odata.id” with “@Redfish.Id”
     “ReportDuration”: “PT24H”,
     “Schedule”: {
        “RecurrenceInterval”: “PT5M”,
        “InitialStartTime”: “2023-10-03T00:00”,  ! Ability to sync reports across many services
     },
     “Reports”: [ {
         “ReportURI”: “/redfish/v1/TelemetryService/Temperature-20231003T0000.jsonl”,
         “StartTime”: “2023-10-03T00:00”,
         “SizeBytes”: 23426
     }]
}
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Array allows multiple resource types in a 
single report, primarily for use cases 
where identical / equivalent properties 
exist across multiple schemas

User-supplied TelemetryFeedId ensures 
reports can be referenced without prior 
knowledge of the Id values



TELEMETRY SUBSCRIPTIONS 
RECEIVING TELEMETRY RECORDS
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NEW Streaming telemetry support
• New EventFormatType of “TelemetryFeed” in EventDestination 

• Subscribe to receive telemetry feed in JSON Lines format 
• Supports both POST Event method or Server-Sent Eventing (SSE) 
• TelemetryFeedId references the specific telemetry feed to receive 

• Create a subscriptions without searching TelemetryFeedCollection 

• POST Event payload is a JSON Lines bundle 
• HTTP headers define content type and subscriber context 

• Content-Type: application/jsonlines
• X-Redfish-Context: <context>    ! Custom HTTP Header defined for this purpose
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EventDestination mockup for Redfish Event style
{
    "@odata.id": "/redfish/v1/EventService/Subscriptions/43"
    "@odata.type": "#EventDestination.v1_16_0.EventDestination",
    "Id": “43",
    "Name": “Telemetry streaming for temperature and power measurements",
    "Destination": "http://www.dnsname.com/Destination1",
    “EventFormatType": “TelemetryFeed",
    "SubscriptionType": “RedfishEvent”,
    "DeliveryRetryPolicy": "TerminateAfterRetries",
    "Status": {
        "State": "Enabled"
    },
    "Context": "WebUser3",
    "Protocol": "Redfish",
    “TelemetryFeedIds”: [ “Temperature”, “Power” ]
}
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TelemetryFeed SSE payload example
SSE subscription request: 

GET https://192.168.1.32/sse-uri?$filter=TelemetryFeed eq ‘Temperature’

SSE event stream: 
id: 1
data: {"@odata.id": "/redfish/v1/Chassis/1/Sensors/Temp", "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696282838 }
data: {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU1Temp", "@Redfish.Id": “U97WR3”, "Reading": 46.9, "@Redfish.Time": 1696282838 }
data: {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU2Temp", "@Redfish.Id": “N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696282838 }

id: 2
data: { "@Redfish.Id": "JK893F", "Reading": 41.7, "@Redfish.Time": 1696283136 }
data: { "@Redfish.Id": "U97WR3", "Reading": 46.9, "@Redfish.Time": 1696283136 }
data: { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283136 }

id: 3
data: { "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696283431 }
data: { "@Redfish.Id": “U97WR3", "Reading": 46.9, "@Redfish.Time”: 1696283431 }
data: { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283431 }
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Local and Remote-delivered Telemetry Reports
• Reports contain records from a single telemetry feed 

• Report delivered at the end of the specified reporting interval 
• Service can store reports locally 

• User downloads using URIs provided in TelemetryFeed 
• Reports property provides information and links to all report instances 

• Users can subscribe to a telemetry report 
• Create EventDestination with EventFormatType of “TelemetryReport” 
• Destination must be a file folder location the service can access 
• New properties added to supply credentials for remote location

24



EventDestination mockup for remote Telemetry Report
{
    "@odata.id": "/redfish/v1/EventService/Subscriptions/44"
    "@odata.type": "#EventDestination.v1_16_0.EventDestination",
    "Id": “44",
    "Name": “Telemetry report for temperature measurements",
    "Destination": “ftp://www.dnsname.com/reports/",
    “EventFormatType": “TelemetryFeed",
    "SubscriptionType": “FileTransfer",
    "DeliveryRetryPolicy": "TerminateAfterRetries",
    "Status": {
        "State": "Enabled"
    },
    "Context": "WebServer3",
    "Protocol": “Redfish", 
    “TransferProtocol”: “FTP”,
    “Username”: “dumptruck”,
    “Password”: null,
    “Certificates”: { },
    “ClientCertificates”: { },
    “TelemetryFeedIds”: [ “Temperature” ]
}

25

New properties provide transfer 
protocol and credentials for 
placing file at destination

Single TelemetryFeedId value for the report

Subscriber’s Context is used to 
construct report filename



Call to Action
• Download Work-in-progress release bundle, which includes: 

• Worksheet containing proposed telemetry record contents 
• Schema additions and mockups of new resources 
• Sample JSON Lines report 
• Expanded version of this presentation 
• DSP-IS0027.ZIP from http://www.dmtf.org/standards/redfish  

• Provide feedback to DMTF Redfish Forum 
• Comments or suggestions on this material 
• Feedback on telemetry record definitions or other use cases 
• Open source telemetry tools that we should target
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Q&A & Discussion
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