
Redfish Telemetry
Streaming and Reporting

Proposal
Jeff Autor (Hewlett Packard Labs, HPE)

October 2024

Copyright © 2024 DMTF

Disclaimer
• The information in this presentation represents a snapshot of work in

progress within the DMTF.
• This information is subject to change without notice. The standard

specifications remain the normative reference for all information.
• For additional information, see the DMTF website: www.dmtf.org

2

http://www.dmtf.org/

Introduction
• Redfish is built for inventory, configuration, and ad hoc monitoring

• Continuous polling Redfish resources for telemetry is not efficient
• Existing TelemetryService and MetricReport needs improvement

• Implementations tend to only support vendor-defined, non-interoperable reports
• Resulting report data cannot be easily correlated with Redfish resources

• Contents of the report are not tied to their source in the Redfish data model
• Requires a priori knowledge of product / service to set up

• Cannot deploy same report definition across a multivendor fleet
• Desire to increase ecosystem adoption and interoperability

• Telemetry support must operate well with popular telemetry clients
• E.g. Prometheus, Telegraf, OpenTelemetry, etc.

• Need a simpler scheme to encourage support on small-footprint devices

3

Requirements
• Support three methods of gathering telemetry:

• Polling – Client performs GET on resource(s) with minimal overhead
• Streaming – Service sends optimized bundles of data at regular intervals
• Reporting – Service records data over time, periodically produces a report

• Ability to create vendor and device-independent reports
• Ability to “blind deploy” telemetry configuration with no a priori knowledge

• POST to create a configuration, POST to create a subscription
• Preserve and leverage the investment in the Redfish data model

• Output must match, or enable client to transform to, resource definitions
• Encourage adoption and interoperability

• Minimize creation of new resources or structures
• Minimize new functions or implementation options to encourage adoption

4

Terminology

5

Sensor: #26
Time: 10/03 2:00pm
Temperature: 41.5C

10/03/24

Sensor: #21
Time: 10/04 4:00pm
Temperature: 39.8C

Sensor: #21
Time: 10/04 4:15pm
Temperature: 40.3C

Sensor: #21
Time: 10/04 3:45pm
Temperature: 39.1C

A record contains data
from a single source at a
specific time

A report is a set of
records collected and
stored over time

Feed

A stream is a bundle
of records, sent to a
remote destination as
they are created

A feed produces records
from one or more sources
at defined intervals

Sensor: #23
Time: 10/03 2:00pm
Temperature: 41.8C

TELEMETRY RECORDS

6

Selecting properties for telemetry
• Many properties in Redfish resources are static data for a given

instance, or only updated upon configuration or state changes
• Redfish separates fast-changing data into separate resources

• But even these resources include some static, supporting properties
• Choose telemetry-focused subsets of properties for each schema

• Omit configuration data, supporting properties, links to resources, etc.
• Example: In Sensor, normally, only the Reading value changes

• Define these subsets as part of the standard schema
• Ensures client can correlate the subset with the full resource
• An instance of this subset retrieved at a given time is a “record”

7

Telemetry verbosity
• Record definition must balance efficiency vs. completeness

• Dashboards, control systems, and other real-time users desire efficiency
due to higher-frequency sampling rates

• Analysis tools desire detailed, complete data at lower sampling rates
• Two verbosity levels defined for each schema or resource

• “Compact” – Data likely to change given expected sampling rates
• Intent is to minimize payload for efficiency
• Example: Sensor readings, utilization levels, performance counters

• “Detailed” – Adds data less likely to change, but useful for analysis
• Provide any non-static data that could be classified as “telemetry”
• Example: Device state, error counters, average/low/peak readings

8

NEW Redfish.Id and Redfish.Time annotations

• @Redfish.Id contains a hash of @odata.id for each resource
• This significantly reduces string length of this required, static data
• Service create a value unique within the service (not universal)
• @odata.id always appears in first record of a stream or report
• Examples for: "/redfish/v1/PowerEquipment/RackPDUs/1/Outlets/A3“

• “@Redfish.Id”: “ZjU1YT” (truncated base64-encoded SHA-1 hash)
• “@Redfish.Id”: “OutA3” (service-defined replacement string)

• @Redfish.Time annotation created for telemetry records
• Added to every telemetry record to report the data acquisition time
• UNIX epoch based on UTC time for consistency across services
• Example: “@Redfish.Time”: 1696261238

9

Telemetry record definitions (1 of 2)
In general, “Compact” records contain sensor readings and key performance counters
“Detailed” records add Status (State/Health), additional performance and error counters

• BatteryMetrics – charge rates, current, voltage
• Circuit, Outlet, PowerDistributionMetrics – current, voltage, power, energy, frequency
• CoolantConnector, CoolingLoop – pressure, flow rate, temperature
• DriveMetrics – Read/write counters, uncorrectable error counts, power, temperature

• Detailed: adds corrected errors, NVMe statistics
• EnvironmentMetrics – power, energy, temperature, humidity
• HeaterMetrics – heating time, power, temperature
• MemoryMetrics - Read/write counters, uncorrectable error counts, power, temperature

• Detailed: adds corrected error counters, predicted media life
• NetworkAdapterMetrics – TX/RX counters

• Detailed: Specific counters for NCSI, Multicast/Unicast TX/RX, etc
• NetworkDeviceFunctionMetrics – TX/RX counters

• Detailed: Specific counters for FibreChannel, Multicast/Unicast TX/RX, etc

10

Telemetry record definitions (2 of 2)

• PortMetrics - TX/RX counters
• Detailed: Specific counters for FibreChannel, GenZ, Transceivers, Multicast/Unicast TX/RX, etc.

• PowerSupplyMetrics – input and output: current, voltage, power, energy, frequency
• ProcessorMetrics - TX/RX counters

• Detailed: Specific counters for NCSI, Multicast/Unicast TX/RX, etc.
• Pump – Speed, speed control
• Reservoir – Fluid level, pressure
• Sensor – Reading, apparent power/energy

• Detailed: Average / lowest / peak Reading
• StorageControllerMetrics – Read/write bytes and units, uncorrected error counts

• Detailed: NVMe SMART properties, correctable error counts
• ThermalMetrics – Power, energy, temperature readings

• Detailed: Heater usage, lifetime readings

11

Example: Sensor telemetry record
GET /redfish/v1/Chassis/1/Sensors/ServerTemp?telemetry=Compact

{
 “@odata.id”: "/redfish/v1/Chassis/1/Sensors/ServerTemp",
 “@Redfish.Time”: 1696261238,
 "Reading": 21.3
}

12

@Redfish.Time annotation
included in telemetry payload

@odata.type and other schema-required
properties are not included – since client
explicitly requested the telemetry subset and
therefore is aware of that result

For a Sensor resource, the Reading is
the primary piece of data, which can
change frequently.

Additional sensor data (average, peak,
lowest values) would be available in the
“detailed” telemetry record

Example: Outlet record
{
 “@Redfish.Id”: "OutA3",
 “@Redfish.Time”: 1696261238,
 "Voltage": {
 "Reading": 202.3
 },
 "CurrentAmps": {
 "Reading": 1.73
 },
 "PowerWatts": {
 "Reading": 349.9,
 "ApparentVA": 349.9,
 "ReactiveVAR": 0.1,
 "PowerFactor": 0.99
 },
 "EnergykWh": {
 "Reading": 61848
 }
}

13

@Redfish.Id annotation
replaces @odata.id to reduce
payload size after first record in
a stream or report

TELEMETRY FEEDS
GENERATING TELEMETRY RECORDS

14

Telemetry feeds
• Allow creation of telemetry feeds that continuously produce

telemetry records from selected resources at a defined interval
• Service can also pre-define feeds ready for subscribers

• Each feed produces records delivered to subscribers
• A single record contains the subset of properties from any applicable

resource instance defined for the feed
• Each feed can serve multiple types of subscribers:

• A stream of telemetry records sent as they are created
• A report created from records stored over a defined interval

• Regardless of destination, the format of the feed is the same

15

JSON Lines
• JSON Lines is the chosen record format

• A stream consists of a bundle of records in JSON Lines format
• A report is a JSON Lines-formatted file

• Allows easy concatenation of multiple JSON documents
• Appeared ~2017 from post-SQL database crowd (Apache Spark, etc.)
• Simple description: “CSV for JSON”, see https://jsonlines.org

• Allows for simple accumulation of multiple JSON payloads
• Strip every “\n” from JSON payload, append to file, add “\n”, repeat…

• Well-supported by open source tools, libraries, etc.
• Barely need more “Readline File I/O” support + JSON encoder

16

http://www.jsonlines.org/

Sample telemetry report of temperature Sensors

17

Telemetry report file contents in JSON Lines format

1 {"@odata.id": "/redfish/v1/Chassis/1/Sensors/Temp", "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696282838 }</n>

2 {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU1Temp", "@Redfish.Id": “U97WR3”, "Reading": 46.9, "@Redfish.Time":
1696282838 }</n>

3 {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU2Temp", "@Redfish.Id": “N5TR4C", "Reading": 48.2, "@Redfish.Time":
1696282838 }</n>

4 { "@Redfish.Id": "JK893F", "Reading": 41.7, "@Redfish.Time": 1696283136 }</n>

5 { "@Redfish.Id": "U97WR3", "Reading": 46.9, "@Redfish.Time": 1696283136 }</n>

6 { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283136 }</n>

7 { "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696283431 }</n>

8 { "@Redfish.Id": “U97WR3", "Reading": 46.9, "@Redfish.Time”: 1696283431 }</n>

9 { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283431 }</n>

NEW TelemetryFeed schema
• DataFeedSources [{ }]– describe the data to gather

• BaseURI – Gather records starting at this URI, traverse down tree
• ResourceType – The resource type (schema) to gather (e.g. Sensor)
• DetailedRecords – Provide “Compact” or “Detailed” records (Boolean)
• FilterKeyValues[] – Include record if “key property” matches value(s)

• Example: Sensor defines ReadingType as key, match “Temperature”

• Schedule{ } – frequency of sampling and start time for the feed
• RecurrenceInterval – Sampling frequency of the resource(s)
• StartTime – Provide means to sync reports and samples

• Plus some user options and local report configuration…

18

NEW TelemetryFeed mockup
{
 "@odata.type": "#TelemetryFeed.v1_0_0.TelemetryFeed”,
 "Id": “Temperature",
 “Name”: “Temperature Sensor Telemetry”,
 “TelemetryFeedId”: “Temperature”,
 “Enabled”: true,
 “LocalReportsEnabled”: true,
 “LocalReportsKeepAtMost”: 3,
 “DataFeedSources”: [{
 “BaseURI”: “/redfish/v1/Chassis”,
 “ResourceType”: “Sensor”,
 “DetailedRecords”: false,
 “FilterKeyValues”: [“Temperature”] ! Filter by “ReadingType” for Sensor
 }],
 “IncludeEntireResource”: “Once”, ! “Once”, “Never”, “Always”
 “HashIdentifiers”: true ! Replaces “@odata.id” with “@Redfish.Id”
 “ReportDuration”: “PT24H”,
 “Schedule”: {
 “RecurrenceInterval”: “PT5M”,
 “InitialStartTime”: “2023-10-03T00:00”, ! Ability to sync reports across many services
 },
 “Reports”: [{
 “ReportURI”: “/redfish/v1/TelemetryService/Temperature-20231003T0000.jsonl”,
 “StartTime”: “2023-10-03T00:00”,
 “SizeBytes”: 23426
 }]
}

19

Array allows multiple resource types in a
single report, primarily for use cases
where identical / equivalent properties
exist across multiple schemas

User-supplied TelemetryFeedId ensures
reports can be referenced without prior
knowledge of the Id values

TELEMETRY SUBSCRIPTIONS
RECEIVING TELEMETRY RECORDS

20

NEW Streaming telemetry support
• New EventFormatType of “TelemetryFeed” in EventDestination

• Subscribe to receive telemetry feed in JSON Lines format
• Supports both POST Event method or Server-Sent Eventing (SSE)
• TelemetryFeedId references the specific telemetry feed to receive

• Create a subscriptions without searching TelemetryFeedCollection

• POST Event payload is a JSON Lines bundle
• HTTP headers define content type and subscriber context

• Content-Type: application/jsonlines
• X-Redfish-Context: <context> ! Custom HTTP Header defined for this purpose

21

EventDestination mockup for Redfish Event style
{
 "@odata.id": "/redfish/v1/EventService/Subscriptions/43"
 "@odata.type": "#EventDestination.v1_16_0.EventDestination",
 "Id": “43",
 "Name": “Telemetry streaming for temperature and power measurements",
 "Destination": "http://www.dnsname.com/Destination1",
 “EventFormatType": “TelemetryFeed",
 "SubscriptionType": “RedfishEvent”,
 "DeliveryRetryPolicy": "TerminateAfterRetries",
 "Status": {
 "State": "Enabled"
 },
 "Context": "WebUser3",
 "Protocol": "Redfish",
 “TelemetryFeedIds”: [“Temperature”, “Power”]
}

22

TelemetryFeed SSE payload example
SSE subscription request:

GET https://192.168.1.32/sse-uri?$filter=TelemetryFeed eq ‘Temperature’

SSE event stream:
id: 1
data: {"@odata.id": "/redfish/v1/Chassis/1/Sensors/Temp", "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696282838 }
data: {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU1Temp", "@Redfish.Id": “U97WR3”, "Reading": 46.9, "@Redfish.Time": 1696282838 }
data: {"@odata.id": "/redfish/v1/Chassis/1/Sensors/CPU2Temp", "@Redfish.Id": “N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696282838 }

id: 2
data: { "@Redfish.Id": "JK893F", "Reading": 41.7, "@Redfish.Time": 1696283136 }
data: { "@Redfish.Id": "U97WR3", "Reading": 46.9, "@Redfish.Time": 1696283136 }
data: { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283136 }

id: 3
data: { "@Redfish.Id": “JK893F", "Reading": 41.7, "@Redfish.Time": 1696283431 }
data: { "@Redfish.Id": “U97WR3", "Reading": 46.9, "@Redfish.Time”: 1696283431 }
data: { "@Redfish.Id": "N5TR4C", "Reading": 48.2, "@Redfish.Time": 1696283431 }

23

Local and Remote-delivered Telemetry Reports
• Reports contain records from a single telemetry feed

• Report delivered at the end of the specified reporting interval
• Service can store reports locally

• User downloads using URIs provided in TelemetryFeed
• Reports property provides information and links to all report instances

• Users can subscribe to a telemetry report
• Create EventDestination with EventFormatType of “TelemetryReport”
• Destination must be a file folder location the service can access
• New properties added to supply credentials for remote location

24

EventDestination mockup for remote Telemetry Report
{
 "@odata.id": "/redfish/v1/EventService/Subscriptions/44"
 "@odata.type": "#EventDestination.v1_16_0.EventDestination",
 "Id": “44",
 "Name": “Telemetry report for temperature measurements",
 "Destination": “ftp://www.dnsname.com/reports/",
 “EventFormatType": “TelemetryFeed",
 "SubscriptionType": “FileTransfer",
 "DeliveryRetryPolicy": "TerminateAfterRetries",
 "Status": {
 "State": "Enabled"
 },
 "Context": "WebServer3",
 "Protocol": “Redfish",
 “TransferProtocol”: “FTP”,
 “Username”: “dumptruck”,
 “Password”: null,
 “Certificates”: { },
 “ClientCertificates”: { },
 “TelemetryFeedIds”: [“Temperature”]
}

25

New properties provide transfer
protocol and credentials for
placing file at destination

Single TelemetryFeedId value for the report

Subscriber’s Context is used to
construct report filename

Call to Action
• Download Work-in-progress release bundle, which includes:

• Worksheet containing proposed telemetry record contents
• Schema additions and mockups of new resources
• Sample JSON Lines report
• Expanded version of this presentation
• DSP-IS0027.ZIP from http://www.dmtf.org/standards/redfish

• Provide feedback to DMTF Redfish Forum
• Comments or suggestions on this material
• Feedback on telemetry record definitions or other use cases
• Open source telemetry tools that we should target

26

Q&A & Discussion

27

