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Networking laboratory for dynamic routing 

tests, resembling the topology of an ISP and 

involving 44 virtual devices as follows: 

• 16 Cisco routers 

• 6 Juniper routers 

• 6 Linux/Quagga routers 

• 12 end user computers 

• 4 Servers (WinXP, FreeBSD, Ubuntu, 

Debian) 

 

 

 

 

 

 

 

 

 

 
 

Deployed over two testing platforms: 

Deployment scenarios 

Primitive Description 

defineVM Defines a new virtual machine 

undefineVM Undefines an existent virtual machine 

startVM Starts a virtual machine 

shutdownVM Shutdowns a virtual machine in an ordered way. 

destroyVM Kills (switches off) a virtual machine 

saveVM Hibernates a virtual machine (saves state to disk)  

restoreVM Restores a virtual machine previously hibernated 

suspendVM Suspends a virtual machine (saves state to memory) 

resumeVM Resumes a previously suspended virtual machine 

rebootVM Reboots a virtual machine (=shutdown+define+start) 

resetVM Resets a virtual machine (=destroy+define+start) 

executeCMD Executes a command inside the virtual machine 

host1 host2 
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Distributed Deployment Architecture 

Distributed Cluster Architecture 

VNX Internal  API 

VNUML made of two main components: 

1. XML based scenario specification 

language 

2. Language interpreter 
 

Three basic operations: 

• Scenario building: virtual scenario 

specification is processed to create all 

the virtual machines and interconnect 

them by virtual networks following the 

scenario topology 

• Command execution: users can directly 

interact with virtual machines or 

automatize the execution of commands 

with the help of VNUML   

• Scenario releasing: virtual machines 

and networks are released   
 

VNUML development started in 2003 and it 

has been used in several research projects 

and university networking laboratories. More 

details in http://www.dit.upm.es/vnuml. 

Previous work : VNUML  

Virtual Networks User Mode Linux (VNUML) 

is a general purpose open-source scenario-

based management tool designed to help 

building virtual network testbeds 

automatically. 

Virtualization based testbeds widely used for 

the creation of network environments 

needed to test protocols and applications. 

 
 

However, complexity of present networks 

and protocols arises the need of very 

complex network testbeds, made of tenths 

or hundreds of virtual machines. 

 

 

Need for tools to support the design, 

deployment and management of large 

virtual network scenarios over        

clusters of servers 
 

 

Apart from large scale initiatives, several 

tools are available for small group or 

individual use: 

• VNUML (www.dit.upm.es/vnuml) 

• Netkit (http://wiki.netkit.org) 

• MLN (http://mln.sourceforge.net) 

• Marionnet (http://mln.sourceforge.net/) 

• CORE (http://cs.itd.nrl.navy.mil/work/core) 

However, none of them support neither 

distributed deployment (except VNUML) nor 

the diversity of  virtual machines operating 

systems needed for complex testbeds.   

First VNX version succesfully used in 

university networking laboratories. Develop-

ment continues, mainly focused on 

improving distributed version. 
 

Future work includes: 

• Full OVF support  

• Dynamic scenarios (adding or deleting 

machines and networks, machine 

migration 

• Graphical user interface 

• New virtual machine types (e.g. Android) 

• Plug-in to control physical equipment 

• Better network emulation capabilities 

• Testbeds over the cloud: deploy virtual 

scenarios over cloud infrastructures 
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In EDIV project, a partnership between 

Telefónica I+D and UPM, a wrapper 

application to VNUML was developed to 

allow the distributed deployment of virtual 

scenarios over clusters of servers.   

 

VNUML Operation Workflow 

EDIV segments virtual scenarios into sub-

scenarios deployed to the different servers, 

interconnecting them by means of VLANs.  
 

EDIV includes basic segmentation 

algorithms (restrictions, round robin and 

weighted round robin) as well as an API to 

allow the user to develop new segmentation 

algorithms. 

 

VNX implementation 

VNUML/EDIV Limitations 

Limitations of VNUML and EDIV tools: 

• Only Linux virtual machines  (User Mode 

Linux limitation). Performance problems. 

• Inability to manage virtual machines 

individually 

• Autoconfiguration and command 

execution limited  

• Distributed version (EDIV) limitations: 

manual network configuration for 

disperse clusters, lack of monitoring 

tools, etc 
 

All these limitations led us to create: 

 

 

First version of VNX available: 

• libvirt support. Tested with Linux 

(Ubuntu, Fedora, CentOS), FreeBSD and 

Windows (XP and 7).  

• Dynamips and Olive router emulation 

support 

• Virtual machine individual management 

(start, stop, restart, reboot, suspend, etc) 

• OVF-like autoconfiguration and 

command execution support 

• Plug-in architecture to add extensions to 

VNX 

• Distributed deployment support (EDIV) 

• Library of root filesystems available: 

Ubuntu, Fedora, CentOS, FreeBSD, etc 
 

VNX is mostly written in Perl (around 25000 

lines of code); Windows autoconf daemon 

writen in C++. Around 40% of VNUML code 

reused with minor modifications. 

VNX overall goal is the creation of a tool to 

allow the deployment of large virtual network 

scenarios over a federated cluster 

environment made of disperse nodes 

interconnected by means of layer 2/3 

tunnels over Internet. 
 

Each node is composed of: 

• Virtualization servers running different 

types of hypervisors 

• Physical (non-virtual) equipment to allow 

the creation of hybrid virtual scenarios    

 

 

 

VNX (Virtual Networks over LinuX) is a 

major rewrite of VNUML. A modular 

architecture based on a virtual machine 

control API has been defined to  

accommodate new virtualization platforms: 

 

 

 

 

 

 

 

 

 

 

 

Plug-ins developed: 

• libvirt, the Linux standard API for 

virtualization (libvirt.org), provides access 

to most of virtualization platforms 

supported in Linux (KVM, Xen, UML, etc) 

• Dynamips, to support emulated CISCO 

routers 

• UML, which includes old VNUML code 
 

The internal API is a simplified version of 

libvirt API, with the addition of a primitive to 

execute commands inside virtual machines. 

 

 

 

 

 

 

 

 

 

 

 

New autoconfiguration and command 

execution mechanism created. Based on the 

OVF approach: a dynamic cdrom offered to 

virtual machines with an XML file with 

autoconfiguration parameters and 

commands to execute. 

 

  

 

VNUML redesign: VNX 
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