

CIM System Virtualization Model White Paper

Version 1.0.0
Status: Informational

Publication Date: 11/11/2007 6:31 AM
DSP2013

DSP2013 Page 2 of 33

Copyright © 2007 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and documents
for uses consistent with this purpose, provided that correct attribution is given. As DMTF specifications may be
revised from time to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights,
including provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard
as to the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party
patent right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights,
owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal
theory whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s
reliance on the standard or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no
liability to any party implementing such standard, whether such implementation is foreseeable or not, nor to any
patent owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing the
standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion, such patent
may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

http://www.dmtf.org/about/policies/disclosures.php

DSP2013 Page 3 of 33

CIM System Virtualization Model White Paper
CIM Version 2.16

Version 1.0.0
Publication Date: 11/11/2007 6:31 AM

DSP2013
Status: Informational

Abstract

The DMTF Common Information Model (CIM) is a conceptual information model for describing
computing and business entities in Internet, enterprise, and service-provider environments. CIM
uses object-oriented techniques to provide a consistent definition of and structure for data. The
CIM Schema establishes a common conceptual framework that describes the managed
environment.

This white paper describes the CIM model for system virtualization, including the schema
additions for the general resource allocation pattern and the modeling of virtual and host
computer systems. The target audience of this white paper is anyone who wants to understand
the modeling of system virtualization using CIM. Some familiarity with virtualization and the
general concepts of the CIM model is assumed.

Acknowledgments

The author acknowledges the contributions from the members of the DMTF System
Virtualization, Partitioning, and Clustering Work Group.

DSP2013 Page 5 of 33

Table of Contents

Abstract ... 3
Acknowledgments... 3
1 Introduction .. 7

1.1 Background Reference Material.. 7
1.1.1 Approved References.. 7
1.1.2 References under Development .. 7

1.2 Terminology.. 8
2 Overview .. 10

2.1 Requirements... 10
2.2 Basic Virtual Computer System Modeling ... 11
2.3 Modeling Virtual Devices and Systems .. 13
2.4 Virtual System Configurations.. 14
2.5 Modeling Resource Pools and Resource Allocations.. 15

3 The System Virtualization Model... 17
3.1 Profile Structure .. 17
3.2 Concepts Addressed by the Model.. 19

3.2.1 Resource Allocation.. 19
3.2.2 Allocation Capabilities ... 21
3.2.3 System Virtualization and Virtual Systems .. 23
3.2.4 Virtual Device Modeling .. 27

4 Relationships to Other Standards and Specifications ... 27
4.1 Overlapping Standards and Specifications.. 27

5 System Virtualization Model Use Cases .. 28
5.1 Managing the Host Computer System... 28

5.1.1 Discovering the CIM implementation for a System Virtualization 28
5.1.2 Discovering a Host Computer System.. 28
5.1.3 Determining the Capabilities of an Implementation ... 28
5.1.4 Determining the Supported Resource Types of an Implementation 28
5.1.5 Finding Resource Pools and their Constituent Resources .. 28
5.1.6 Determining the Capacity and Allocation of a Resource Pool ... 28
5.1.7 Determining Resources Allocated from a Resource Pool... 29
5.1.8 Determining the Valid Settings for a Resource Allocation... 29
5.1.9 Locating Virtual Systems Hosted by a Host Computer System 29

5.2 Managing a Virtual Computer System.. 29
5.2.1 Creating a Virtual Computer System.. 29
5.2.2 Determining a Virtual System’s State and Other Properties... 29
5.2.3 Determining the “Defined” Virtual System Configuration... 29
5.2.4 Determining the Virtual System Structure.. 30
5.2.5 Changing the Virtual System State ... 30
5.2.6 Modifying a Virtual System.. 30
5.2.7 Destroying a Virtual System... 30
5.2.8 Managing Snapshots ... 30

Appendix A – References.. 32
Appendix B – Extending the Model ... 33

List of Figures

11/11/2007 Page 6 of 33

Figure 1 Elements of the System Virtualization Environment.. 11
Figure 2 Basic System Virtualization Model .. 12
Figure 3 Multiple CIMOMs View .. 13
Figure 4 Virtual System with Device and State Extension ... 14
Figure 5 Virtual System Configuration ... 15
Figure 6 Resource Pools and Resource Allocation ... 16
Figure 7 Virtualization Profile Structure... 18
Figure 8 Resource Allocation Class Diagram ... 20
Figure 9 Virtual Resource Allocation Instance Diagram .. 20
Figure 10 Simple Resource Allocation ... 21
Figure 11 Allocation Capabilities Class Diagram... 22
Figure 12 Allocation Capabilities Applied to Host Computer System and Resource Pool 22
Figure 13 Allocation Capabilities Applied to a Virtual System Resource Allocation 23
Figure 14 Virtual System Modeling Class Diagram ... 24
Figure 15 Virtual System State Diagram .. 25
Figure 16 Defined Virtual System Representation.. 26
Figure 17 Active Virtual System Representation.. 26
Figure 18 Instance Diagram for Virtual Device Model... 27

DSP2013 Page 7 of 33

1 Introduction
This white paper describes the CIM model for system virtualization, including the schema
additions for the general resource allocation pattern and the modeling of virtual and host
computer systems. The model elements described in this paper enable management of system
virtualization environments including management of virtual computer systems and their
associated virtual resources and host computer system virtualization including resource pools
and allocation from those pools.

1.1 Background Reference Material
This section lists approved references and references that are currently under development.

1.1.1 Approved References

DMTF DSP0004, CIM Infrastructure Specification 2.3.0

DMTF DSP0200, CIM Operations over HTTP 1.2.0

DMTF DSP0201, Specification for the Representation of CIM in XML 2.2.0

DMTF DSP1000, Management Profile Specification Template 1.0

DMTF DSP1001, Management Profile Specification Usage Guide 1.0

DMTF DSP1012, Boot Control Profile 1.0

DMTF DSP1022, CPU Profile 1.0

DMTF DSP1026, System Memory Profile, 1.0

DMTF DSP1027, Power State Management Profile 1.0

DMTF DSP1033, Profile Registration Profile 1.0

DMTF DSP1041, Resource Allocation Profile 1.0

DMTF DSP1042, System Virtualization Profile 1.0

DMTF DSP1043, Allocation Capabilities Profile 1.0

DMTF DSP1052, Computer System Profile 1.0

DMTF DSP1057, Virtual System Profile 1.0

DMTF DSP1059, Generic Device Resource Virtualization Profile 1.0

SNIA, Storage Management Initiative Specification (SMI-S)

1.1.2 References under Development

DMTF DSP1044, Processor Device Resource Virtualization Profile 0.7

DMTF DSP1045, Memory Resource Virtualization Profile 0.7

DMTF DSP1047, Block Based Storage Resource Virtualization Profile 0.2

DMTF DSP1048, File Based Storage Resource Virtualization Profile

DMTF DSP1049, Storage Adapter Resource Virtualization Profile 0.7

http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf
http://www.dmtf.org/standards/published_documents/DSP200.pdf
http://www.dmtf.org/standards/wbem/DSP201.html#SecCLASS
http://www.dmtf.org/standards/published_documents/DSP1000.pdf
http://www.dmtf.org/standards/published_documents/DSP1001.pdf
http://www.dmtf.org/apps/org/workgroup/svrmgmt/download.php/21576/DMTF-Boot_Control_Profile-1.0.0c.doc
http://www.dmtf.org/standards/published_documents/DSP1022.pdf
http://www.dmtf.org/standards/published_documents/DSP1026.pdf
http://www.dmtf.org/standards/published_documents/DSP1027.pdf
http://www.dmtf.org/standards/published_documents/DSP1033.pdf
http://www.dmtf.org/standards/published_documents/DSP1041.pdf
http://www.dmtf.org/standards/published_documents/DSP1042.pdf
http://www.dmtf.org/standards/published_documents/DSP1043.pdf
http://www.dmtf.org/standards/published_documents/DSP1052.pdf
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/22157/DMTF-Virtual_System_Profile_0_7_5_a.pdf
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/21449/Generic_Device_Resource_Virtualization_Profile-0.5.doc
http://www.snia.org/tech_activities/standards/curr_standards/smi/
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/15977/CpuResourceVirtualizationProfile-v01.doc
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/18939/DMTF_Memory_Resource_Virtualization_Profile_Diagrams.vsd
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/21201/DMTF-Block_Based_Storage_Resource_Virtualization_Profile-0_2_0.doc
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/18938/DMTF-Memory_Resource_Virtualization%20Profile_v0.7.doc
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/21202/DMTF-Storage_Adapter_Resource_Virtualization_Profile-0_2_0.doc

11/11/2007 Page 8 of 33

1.2 Terminology
Term Definition
allocated resource The partitioned or virtual resource that has been

allocated to a consumer based on the associated
resource allocation

child pool A pool whose resources are backed by other resource
pools. A child pool is a consumer of resources from its
parent resource pools. All child pools contain no host
resources; instead, they draw their resources from
their parent pools through resource allocations.

consumer The entity that receives allocated resources, for
example, a virtual system or a child resource pool

current resource allocation setting data The resource allocation setting data associated with
the current allocation state of an allocated resource.
These settings may differ from the defined resource
allocation setting data if the host system supports the
dynamic modification of a resource allocation.

dedicated virtual resource A virtual resource that has been given exclusive use
of a host resources. The host resources is not shared
with any other consumer.

defined resource allocation setting data The data associated with an allocated resource that
describes the allocation settings to be used when that
allocated resource is exposed to a virtual system
during its instantiation or re-instantiation.

device resource allocation The resource allocation to a consumer where there is
a logical device representing the resource allocated.

host resource A device or computing resource contained by the host
system that may be allocated with either exclusive or
shared access through the host system to provide
resources to a resource pool or consumer

host system A system that contains resources that may be
allocated or virtualized

pass-through resource allocation A resource allocation to a consumer in which the
virtual resource is logically identical to the allocated
host resource

resource allocation The definition of the resource allocated to a
consumer. It may be used to instantiate virtual
resources.

resource allocation setting data (RASD) Settings that define the resource allocation. These
settings are used by the host system to manage the
allocated resource and its relationship to the host
resources and/or the resource pool from which it was
allocated.

DSP2013 Page 9 of 33

defined RASD The RASD data representing the resource allocation
request related to a currently not allocated resource. It
decribes the allocation settings to be used when that
resource is allocated to a virtual system during its
(re)instantiation.

current RASD
The RASD representing the resource allocation of a
currently allocated resource. These settings may differ
from the defined RASD if the host system supports
the dynamic modification of a resource allocation.

resource pool An abstract entity used by the host system for the
purpose of allocating and exposing allocated
resources to consumers

resource type A generic type that categorizes classes of resources
(for example, Processor, Memory, Network Adapter,
and so on)

shared virtual resource An allocated resource that has been given the use of
host resources that may also be shared with other
consumers

simple resource allocation The resource allocation to a consumer in which there
is no logical device representing the resource
allocated

virtual computer system A virtual system as applied to a computer system.
Other common industry terms for such a system
include: Virtual Machine, Hosted Computer, Child
Partition, Logical Partition, Domain, Guest, and
Container.

virtual resource The instantiation of the allocated resource that is
exposed to a consumer through a logical device

virtual system A system that is composed of allocated resources that
may be partitioned or virtualized resources

virtual system setting data (VSSD) Settings that define virtual system configuration data.

11/11/2007 Page 10 of 33

2 Overview
The CIM system virtualization model, including CIM schema additions and a set of supporting
profile documents, enables the management of system virtualization. Virtualization is a
substitution process producing virtual resources which change aspects of the way consumers
interact with the resources. These virtual resources are usually based on underlying physical
resources, but they may have different properties or qualities. For example, virtual resources may
have different capacities or sizes than the underlying resources or may have different qualities of
service, such as improved performance or reliability. In system virtualization a host computer
system provides the underlying resources that compose virtual computer systems and their
constituent virtual devices.

2.1 Requirements
The following general requirements were considered during the design of the system
virtualization model:

• Enable clients that are unaware of virtualization to manage virtual systems. That is,
after a virtual computer system is created, most management operations (such as list,
install, configure, show devices) should be available similarly on virtual or physical
systems.

• The model should be flexible and general enough to support all types of platform
virtualization including hypervisor-based virtualization, logical and physical
partitioning, and operating system containers. The general patterns developed to model
resource virtualization should be applicable as new types of virtualization become
available.

• Because the capabilities of system virtualization implementations vary widely, the
model should support the runtime inspection of a system’s capabilities so that a client
does not need a priori knowledge about an implementation’s capabilities for the system
to be managed effectively. This includes the ability to determine supported resource
types, resources, and lifecycle capabilities.

• Management operations should be modeled such that reasonable defaults are made
available wherever possible.

• The model should be extensible, with clear mechanisms for adding implementation-
specific capabilities and for allowing a client to discover these capabilities.

• The model should leverage existing work that the DMTF (Server Management Work
Group and Desktop & Mobile Work Group) has done for computer systems and their
associated devices, and that SNIA has done for storage related modeling (see the SMI-
S).

The following requirements relate to modeling of virtual and host computer systems and their
associated resources:

• The model should support the capability to discover and enumerate virtual computer
systems, host computer systems, and the relationships between them.

• The model should support the capability to create virtual computer systems by
specifying resources (such as CPU, memory, network, and disk) and attributes (shared,
virtualized, based on specific resource, and so on) for those resources. Deletion and
modification of virtual computer systems should be supported.

• The model should support creation, deletion, modification and inventory of virtual
resources.

• The model should support the ability, where feasible, to determine the mapping of
virtual resources to the underlying host resource through as many layers of
virtualization as required. For example, a customer that is notified that a particular
physical disk is receiving intermittent errors should be able to determine which virtual
machines would be affected if the disk failed. This may require combining information
from multiple modeling domains.

2.2 Basic Virtual Computer System Modeling
The basic elements of a system virtualization environment are shown in Figure 1. The resources
that make up the virtualization environment typically are supplied by one or more host computer
systems. A virtualization layer (usually firmware or software, but possibly hardware) manages
the lifecycle of a virtual computer system, which is composed of resources allocated or assigned
from the host computer system. A virtual computer system may be active and running an
operating system and applications with a full complement of virtual devices defined and
allocated, or it may be inactive with no software running and a subset of the virtual devices
actually allocated.

Figure 1 Elements of the System Virtualization Environment

The system virtualization model enables the client to manage the virtualization layer and the full
lifecycle of the hosted virtual computer systems.

DSP2013 Page 11 of 33

The basic elements of the system virtualization model are shown in Figure 2. Both host and
virtual computer systems (also known in the industry as a virtual machine) are represented
similarly by instances of the CIM_ComputerSystem class. Computer system devices are modeled
through instances of subclasses of the CIM_LogicalDevice class. The relationship between
system and devices is modeled through the CIM_SystemDevice association. The relationship of
virtual computer systems to their host system is modeled through the CIM_HostedDependency
association.

Figure 2 Basic System Virtualization Model

Additional instrumentation about the environment may be available outside the scope of the
system virtualization model. The host computer system may provide management capabilities
through the implementation of additional physical device and computer system profiles as
defined in the Server Management Work Group (SMWG) or the Desktop & Mobile Work Group
(DMWG). Additionally, the operating system or applications running in a virtual computer
system may also implement aspects of CIM models. The information presented through this
means (often described as “in band” or “through OS”) reflects the basic view of the resources for
a single virtual system. Identifying correlating properties so that management clients can
combine various instrumentation sources into a single unified view is an important requirement
of the system virtualization and related modeling work. Figure 3 shows how the OS,
virtualization and hardware models might be presented for this environment.

Control of the basic lifecycle operations (activate, deactivate, suspend) of the virtual system is
available consistently for computer systems through the RequestStateChange method. For more
details of the management of the virtual computer system lifecycle, see 3.2.3.1.

Subsequent sections describe the modeling details for resource virtualization, resource allocation,
and virtual system configuration representation.

11/11/2007 Page 12 of 33

Figure 3 Multiple CIMOMs View

2.3 Modeling Virtual Devices and Systems
Figure 2 shows that a virtual computer system can be modeled as an instance of the
CIM_ComputerSystem class with its devices modeled as instances of subclasses of
CIM_LogicalDevice (CIM_Memory, CIM_ Processor, and so on). This model enables a
management client to manage a virtual system without understanding the details of
virtualization. To fully manage a virtual system environment the management client must have
available additional information about the virtual computer system and related virtual devices.
This additional virtualization-specific information is made available through an instance of a
subclass of the CIM_SettingData class associated with the base device instance as a “state”
extension or aspect. This basic pattern is shown in Figure 4. Instances of the CIM_LogicalDevice
class representing virtual system logical devices are associated through the
CIM_SettingsDefinesState association to related instances of
CIM_ResourceAllocationSettingData class (RASD), which provides additional virtualization
related details about the device. For example, information about the backing host device, the
quantity of host resource allocated, and so on would be presented in the associated RASD

DSP2013 Page 13 of 33

instance. Likewise, the CIM_ComputerSystem instance that represents the virtual computer
system has an associated instance of the CIM_VirtualSystemSettingData class that provides
additional information about the virtual computer system.

Figure 4 Virtual System with Device and State Extension

2.4 Virtual System Configurations
There are several contexts for which it is important to model a virtual system configuration, even
if the virtual system is not currently active. Figure 5 illustrates the concept of a virtual system
configuration that consists of setting data that represents the virtual system and an associated
setting data instance for each of the configured resources. An instance of
CIM_VirtualSystemSettingData represents the virtual computer system configuration
information and instances of CIM_ResourceAllocationSettingData instances represent
configuration information for each of the virtual devices.

A virtual system configuration is used to represent a saved virtual system configuration (for
example, the configuration information that might be represented in a configuration file for an
inactive virtual system).

Many system virtualization implementations support the functionality of snapshots. Snapshots
capture the state of a virtual system, allowing the user to revert back to a snapshot that restores
the complete state of the system to the state when the snapshot was captured. Each instance of a
snapshot is modeled with a virtual system configuration that represents the state when the
snapshot was taken.

11/11/2007 Page 14 of 33

Figure 5 Virtual System Configuration

2.5 Modeling Resource Pools and Resource Allocations
Resource pools and resource allocations are the key elements for virtualization modeling. These
elements are shown working together in Figure 6.

A resource pool is a logical entity (with associated controls) provided by the host system for the
purpose of allocation and assignment of resources. A given resource pool may be used to allocate
resources of a specific type. Pools may have associated host resources, but pools are not required
to have component host resources. Resources allocated from a resource pool for virtual devices
are represented by instances of the appropriate subclass of CIM_LogicalDevice with an
associated instance of CIM_ResourceAllocationSettingData representing the allocation
information.

The resource virtualization model provides for representing the relationship between a virtual
device and its underlying host device through the CIM_LogicalIdentity or the
CIM_HostedDependency association as long as that relationship is relatively static (like for
example for disk devices). Often these relationships change very dynamically and it does not
make sense to return this level of information (for example processor or memory resources).

DSP2013 Page 15 of 33

ElementSettingData SettingsDefineState
Element
Allocated
FromPool

ResourceAllocationFromPool

Defined State:
ResourceAllocation

SettingData

Current State:
ResourceAllocation

SettingData
Virtual Resource:

LogicalDevice

Host System:
System

HostPool:
ResourcePool

Host Resource:
LogicalDevice

HostedResourcePool

Component

SystemDevice

Figure 6 Resource Pools and Resource Allocation

11/11/2007 Page 16 of 33

DSP2013 Page 17 of 33

3 The System Virtualization Model
This section provides details about profiles related to virtualization and the concepts behind the
system virtualization model.

3.1 Profile Structure
In the DMTF, the CIM schema and associated behavior for a particular management domain is
defined through a series of management profile documents. Each profile identifies the classes,
properties, methods, and values that should be instantiated and manipulated to represent and
manage a given domain. Figure 7 shows the structure of the profile documents related to
virtualization. Two abstract profiles, Resource Allocation Profile and Allocation Capabilities
Profile, describe the basic abstract patterns used for management of virtual systems. Two
top-level, autonomous profiles specialize the Computer System Profile: System Virtualization
Profile and Virtual System Profile. A series of device-specific profiles describe in more detail the
management of virtual devices.

The Resource Allocation Profile describes the basic resource allocation pattern for resource
pools, allocations, and setting data. It also defines the resource-pool-lifecycle management and
relationships.

The Allocation Capabilities Profile extends the management capability of referencing profiles by
adding the ability to represent the default, supported, and range of property values for resource
allocation requests for a given resource, and the mutability of properties in a
CIM_ResourceAllocationSettingData instance.

The System Virtualization Profile is an autonomous profile that specifies the object model
needed for the representation of host systems and the discovery of hosted virtual computer
systems. In addition, it specifies a service for the manipulation of virtual computer systems and
their resources, including operations for the creation, deletion, and modification of virtual
computer systems and operations for the addition or removal of virtual resources to or from
virtual computer systems.

The System Virtualization Profile references a set of component profiles that specify resource
allocation for specific device types like CPU, memory, storage (block and file backed) and
storage adapters, networking and networking adapters, removable devices, keyboard, video and
mouse devices. These component profiles are specializations of both the Resource Allocation
Profile and the Allocation Capabilities Profile.

The Virtual System Profile is an autonomous DMTF management profile that defines the model
needed to provide for the inspection of a virtual system and its components. The Virtual System
Profile specializes the Computer System Profile that defines the model needed to define a basic
computing platform. In addition, the Virtual System Profile defines optional basic control
operations for activating, deactivating, pausing, or suspending a virtual system.

The Computer System Profile references a set of component profiles that are defined for each of
the device types that make up a computer system including CPU, memory, storage (block and
file backed) and storage adapters, networking and networking adapters, removable devices,
keyboard, video and mouse devices.

DSP1033
Profile

Registration

Component

DSP1042
System

Virtualization

Autonomous

DSP1057
Virtual
System

Autonomous

DSP1004
Base Server

(Optional)

Autonomous

DSP1027
Power State
Management

(Optional)

Component

DSP1052
Computer
System

Abstract
Autonomous

DSP1041
Resource
Allocation
(Optional)

Abstract
Component

DSP1043
Allocation

Capabilities
(Optional)

Abstract
Component

DSP1059
Generic Device

Resource
Virtualization

(Optional)

DSP1044
CPU Resource
Virtualization

(Optional)

Component

DSP1045
Memory Resource

Virtualization
(Optional)

Component

DSP1050
Network Port

Resource
Virtualization

(Optional)

Component

DSP1049
Storage Resource

Virtualization
(Optional)

Component

DSP1012
Boot Control

(Optional)

Component

DSP1022
CPU

(Optional)

Component

 DSP1026
System Memory

(Optional)

Component

DSP1014
Ethernet Port

(Optional)

Component

Other
Component

Profiles

Other
Device
Profiles

DMTF Management
Profiles Related to

System Virtualization

Scoped By

S
co

pe
d

B
y

Figure 7 Virtualization Profile Structure

11/11/2007 Page 18 of 33

DSP2013 Page 19 of 33

3.2 Concepts Addressed by the Model
Conceptually, the system virtualization model can be divided into the following components:

• Resource allocation that includes models for resource pools, resource allocation from
pools, and services for managing pools.

• Allocation capabilities that provides the ability for a client to determine at runtime the
system capabilities, including minimum, maximum and default values for resource
allocation related properties.

• System virtualization and virtual systems that enables a client to manage virtual
systems, including enumerating virtual systems and their component resources and
controlling the lifecycle of virtual systems, and to manage the host computer system
including creation of virtual systems and management of virtual system configurations
including snapshots.

• Virtual device that extends existing device models by exploiting the resource allocation
and allocation capabilities patterns to enable management of virtual devices.

3.2.1 Resource Allocation

The classes for the resource allocation model are shown in Figure 8. The main classes are
CIM_ResourcePool class and CIM_ResourceAllocationSettingData class as well as the classes
modeling the capabilities and service classes for the manipulation of pools.

A resource pool, modeled using the CIM_ResourcePool class, is the central management point
for the allocation of resources. Typically a pool collects host system resources whose capabilities
are allocated to a consumer. Resources allocated from pools with no component devices are
known as “synthetic devices.” In many implementations, virtual Ethernet adapters are an
example of a synthetic device.

Types of allocation supported include

• pass-through resource allocation, in which the allocated device is identical to the pool
device

• dedicated resource allocation, in which the virtual device is allocated exclusive use of
the pool device

• shared resource allocation, in which the allocated device is shared among consumers

Properties of the CIM_ResourcePool class model information about the resource type and
capacity supported by the pool.

Allocation from a pool is represented by an instance of CIM_ResourceAllocationSettingData. As
mentioned previously, this key class in the virtualization model represents allocations, as well as
extended state and capabilities. Properties of this class model provide information allowing the
client to determine the type and quantity of resource consumed, as well as the quantity of virtual
resource exposed and the type of allocation.

Initially host computer system resources are aggregated into a “primordial” pool indicated by a
property in the CIM_ResourcePool class.

Some implementations may support creating and managing child pools and moving resources in
and out of pools. These functions are modeled using the CIM_ResourcePoolCapabilities and
CIM_ResourcePoolService classes.

Figure 8 Resource Allocation Class Diagram

In Figure 9, we see an example of these resource management classes showing an instance of a
resource pool that collects host system devices. Allocated from the pool are virtual devices and
RASDs, which give additional information about the allocation.

Figure 9 Virtual Resource Allocation Instance Diagram

11/11/2007 Page 20 of 33

In Figure 10 another use of these classes is shown in an example of “simple” resource allocation.
In this case there is no allocated logical device; the allocated resources are shown only as
RASDs. This pattern is appropriate where the allocated resource is not modeled as a device, as in
electrical power allocation, for example.

Figure 10 Simple Resource Allocation

3.2.2 Allocation Capabilities

The basic classes associated with the allocation capabilities model are shown in Figure 11. This
pattern enables a client to determine at run time the capabilities, including minimum, maximum,
default, and specific values that are supported by the implementation in various contexts.

The basic pattern uses an instance of the CIM_AllocationCapabilities class and a collection of
RASDs associated through the CIM_SettingsDefinesCapabilities association whose properties
values are set to define the role (minimum, maximum) of the values in the associated RASD.
This idea is best illustrated in the following examples.

DSP2013 Page 21 of 33

Figure 11 Allocation Capabilities Class Diagram

Figure 12 shows the allocation capabilities pattern applied at the host computer system and at the
resource pool. A capability set (an instance of CIM_AllocationCapabilities and the associated
instances of CIM_ResourceAllocationSettingData) at the host computer system level applies to
all resources of the specified type. A capability set associated with a resource pool would apply
to resources created from the resource pool.

Host System: ComputerSystem

AllocationCapabilities

ResourceType : CPU

ElementCapabilities
Characteristics: Default

SettingsDefine
Capabilities

ValueRange :
Maximums

SettingsDefine
Capabilities

ValueRange :
Minimums

SettingsDefine
Capabilities

ValueRange :
Increments

SettingsDefine
Capabilities
ValueRole :

Default

:ResourcePool

ResourceType : CPU

RASD1 :
ResourceAllocationSettingData
VirtualQuantity : 2

RASD2 :
ResourceAllocationSettingData
VirtualQuantity : 1

RASD3 :
ResourceAllocationSettingData
VirtualQuantity : 1

RASD4 :
ResourceAllocationSettingData
VirtualQuantity : 1

HostedResourcePool

AllocationCapabilities

ResourceType : CPU

SettingsDefine
Capabilities

ValueRange :
Maximums

SettingsDefine
Capabilities

ValueRange :
Minimums

SettingsDefine
Capabilities

ValueRange :
Increments

SettingsDefine
Capabilities
ValueRole :

Default

RASD6 :
ResourceAllocationSettingData
VirtualQuantity: 4
Weight: 10000

RASD7 :
ResourceAllocationSettingData
VirtualQuantity : 1
Weight 10

RASD8 :
ResourceAllocationSettingData
VirtualQuantity : 1

RASD9 :
ResourceAllocationSettingData
VirtualQuantity : 1

ElementCapabilities
Characteristics: Default

Figure 12 Allocation Capabilities Applied to Host Computer System and Resource Pool

11/11/2007 Page 22 of 33

The pattern can also be used to understand mutability of a virtual resource as shown in
Figure 13. In this case the capability set specifies the ranges for changing the virtual quantity and
weight of a virtual system resource allocation.

Figure 13 Allocation Capabilities Applied to a Virtual System Resource Allocation

3.2.3 System Virtualization and Virtual Systems

The classes introduced in the modeling of virtual systems are shown in Figure 14. The
CIM_VirtualSystemManagementService and CIM_VirtualSystemManagementCapabilities
classes provide the ability to add, delete, and modify resources of a virtual system and to define
and delete a virtual system.

Clients can determine specific information about an implementation’s support for virtual system
resource manipulation through the allocation capabilities instances that are associated with the
virtual resources and resource pools.

DSP2013 Page 23 of 33

AddResourceSettings (
AffectedConfiguration : ref CIM_VirtualSystemSettingData,
AffectedConfiguration : string[],
[OUT] ResultingResourceSettings : ref CIM_ResourceAllocationSettingData,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

DefineSystem (
SystemSettings : string,
ResourceSettings : string[],
ReferenceConfiguration : ref CIM_VirtualSystemSettingData,
[OUT] ResultingSystem : ref CIM_ComputerSystem,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

DestroySystem (
AffectedSystem : ref CIM_ComputerSystem,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

ModifyResourceSettings (
ResourceSettings : string[],
[OUT] ResultingResourceSettings : ref CIM_ResourceAllocationSettingData,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

ModifySystemSettings (
SystemSettings : string[],
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

RemoveResourceSettings (
ResultingResourceSettings : ref CIM_ResourceAllocationSettingData,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

VirtualSystemTypesSupported : string[],
SynchronousMethodsSupported : uint16 {enum,
AsynchronousMethodsSupported : uint16 {enum}
IndicationsSupported : uint16 {enum}

(See Core Model (SettingData, Profiles, Cap., &
Power Mgmt))

(See Core Model (Logical Element))

Figure 14 Virtual System Modeling Class Diagram

11/11/2007 Page 24 of 33

3.2.3.1 Virtual System States

The states of a virtual system are shown in Figure 15.

VS State:
EnabledState: Disabled

PowerState: Off-Soft

VS State:
EnabledState: Enabled

PowerState: On

VS State:
EnabledState: Enabled but Offline

PowerState: Sleep-Deep

Initial State

Final State

VS State:
EnabledState: Quiesce

PowerState: Sleep-Light

Figure 15 Virtual System State Diagram

DSP2013 Page 25 of 33

A new virtual system can be created by using the DefineSystem() method of the CIM_Virtual
System ManagementService. Inputs to this method are CIM_VirtualSystemSettingData and
CIM_ResourceAllocationSettingData instances, which define the virtual system as a whole and
each of the desired virtual resources. At the successful completion of this method the new virtual
computer system is represented in the model by an instance of the CIM_ComputerSystem class
(with state extension) and a virtual system configuration that represents the saved configuration
information. Any devices that are allocated during definition (for example, virtual disk) are
represented by the appropriate logical device. The system is in the “Defined” state. This would
also correspond to a “Powered Off” state. A diagram of an example system in this state is shown
in Figure 16.

Figure 16 Defined Virtual System Representation

From the “Defined” state a system can be activated to enter the “Active” or “Powered On” state.
During activation the underlying system allocates resources as specified in the virtual system
configuration setting data instances, and device and state extension CIM instances are
instantiated. The resulting virtual system is modeled as shown in Figure 17.

Figure 17 Active Virtual System Representation

11/11/2007 Page 26 of 33

3.2.4 Virtual Device Modeling

The classes and pattern used for virtual device modeling have already been introduced. An
instance of a virtual device is represented by the appropriate CIM_LogicalDevice subclass, the
allocation and state are represented using RASDs, and the capabilities for allocation and
modification of the device are represented using the Allocation Capabilities pattern previously
described. An example instance diagram illustrating these concepts is shown in Figure 18.

Typically there will be a device profile that describes the behavior of the device model in general
(for example, CPU Profile, System Memory Profile, and so on) and a virtualization-related
profile that describes additional considerations for modeling virtual devices using the
virtualization patterns (Processor Device Resource Virtualization Profile, Memory Resource
Virtualization Profile, and so on).

The Generic Device Resource Virtualization Profile provides a general profile that can be
applied if more specific device or device virtualization profiles are not available.

Figure 18 Instance Diagram for Virtual Device Model

4 Relationships to Other Standards and Specifications

4.1 Overlapping Standards and Specifications
There are no known virtualization management standards. This work extends the existing CIM
system modeling by reusing system and logical device classes to model virtual systems.

DSP2013 Page 27 of 33

11/11/2007 Page 28 of 33

5 System Virtualization Model Use Cases
This section provides use cases for managing the host computer system or a virtual computer
system.

5.1 Managing the Host Computer System
The System Virtualization model is defined to allow a management client to determine at
execution time information about the managed virtualization environment, including supported
virtual resource types, valid values for resource allocations, and capabilities for managing
resource pools.

5.1.1 Discovering the CIM implementation for a System Virtualization

A client can discover CIM implementations of virtualization management through SLP, by
following profile registration associations, or through a priori knowledge of host name or IP
address where CIMOM is running.

5.1.2 Discovering a Host Computer System

A client can find instances of the CIM_ComputerSystem class representing host systems can be
found by following the CIM_ElementConformsToProfile association from the instance of the
CIM_RegisteredProfile class representing System Virtualization Profile

5.1.3 Determining the Capabilities of an Implementation

To determine the capabilities of an implementation, from the instance of CIM_ComputerSystem
that represents the host computer system the client can traverse the CIM_ElementCapabilities
association to an instance of CIM_VirtualSystemManagementCapabilities. Properties of this
instance supply information about supported virtual system types, methods, and indications.

5.1.4 Determining the Supported Resource Types of an Implementation

The preferred mechanism for determining supported resource types is to find instances of
registered profiles scoped by the System Virtualization Profile, find the central class for each of
these profiles, and collect the resource types represented..

5.1.5 Finding Resource Pools and their Constituent Resources

A client can find Resource Pools by traversing the the CIM_HostedResourcePool association
from the instance of CIM_ComputerSystem that represents the host computer system. A client
can identify elements of a resource pool by traversing the CIM_Component association to the
appropriate subclass of the CIM_LogicalDevice class.

5.1.6 Determining the Capacity and Allocation of a Resource Pool

The Capacity property of the CIM_ResourcePool instance that represents the resource pool
provides the total capacity of this pool. The Reserved property provides the total amount of the
currently allocated resources.

DSP2013 Page 29 of 33

5.1.7 Determining Resources Allocated from a Resource Pool

To determine the details of the resources allocated from a given resource pool a client can
traverse the CIM_ElementAllocatedFromPool association to find all of the devices allocated
from this pool. A client can determine additional details about the allocation by traversing the
CIM_ResourceAllocatedFromPool association to each RASD for the allocations.

5.1.8 Determining the Valid Settings for a Resource Allocation

An instance of CIM_AllocationCapabilities and its associated (through
CIM_SettingsDefinesCapabilities) CIM_ResourceAllocationSettingData instances can help a
client determine the capabilities for a resource type or a resource type allocated from a specific
resource pool. The client can find the CIM_AllocationCapabilities instance by following
CIM_ElementCapabilities from an instance of CIM_ResourcePool or CIM_ComputerSystem.

5.1.9 Locating Virtual Systems Hosted by a Host Computer System

Given a CIM_ComputerSystem instance that represents the host computer system, the
CIM_ComputerSystem instances associated to the host computer system through
CIM_HostedDependency are the instances of virtual computer systems.

5.2 Managing a Virtual Computer System
The following use cases show various aspects of managing a virtual computer system.

5.2.1 Creating a Virtual Computer System

The basic operation of creating a virtual computer system is done using the DefineSystem()
method of the CIM_VirtualizationManagementService associated with the instance of
CIM_ComputerSystem that represents the host computer system. This method takes as input an
instance of CIM_VirtualSystemSettingData and an array of instances of
CIM_ResourceAllocationSettingData, which represent the requests for resources that are
required to compose the target virtual computer system. Valid resource types and ranges of
property values can be determined as noted in previous use cases. Typically, implementations
also provide default values for most property values if they are unspecified.

5.2.2 Determining a Virtual System’s State and Other Properties

From the instance of CIM_ComputerSystem that represents the virtual computer system the
EnabledState property represents the virtual system’s state. Other properties of the virtual system
can be obtained from the CIM_ComputerSystem instance and from the associated (through the
SettingsDefineState association) CIM_VirtualSystemSettingData (VSSD) instance.

5.2.3 Determining the “Defined” Virtual System Configuration

Each virtual computer system has a “Defined” configuration that is permanently recorded and
takes effect when a deactivated virtual computer system is activated. This configuration can be
determined given an instance of CIM_ComputerSystem that represents the virtual computer
system by following the SettingsDefineState association to the VSSD instance, which represents
the state extension for the virtual computer system. From this VSSD instance the

11/11/2007 Page 30 of 33

CIM_ElementSettingData associated VSSD anchors the “Defined” virtual system configuration,
and each of the associated RASDs provides details of the virtual system device configuration.

5.2.4 Determining the Virtual System Structure

From the instance of CIM_ComputerSystem that represents the virtual computer system the
client can traverse the CIM_SystemDevice association to find the component devices of the
virtual computer system. For each of these devices the associated RASDs that represent the
virtualization “extensions” of the device can be found by the CIM_SettingsDefineState
association, and persistent device configuration information can be obtained by RASD associated
to the state extension by the CIM_ElementSettingData association.

5.2.5 Changing the Virtual System State

Given a reference to the CIM_ComputerSystem instance that represents the virtual computer
system the client can effect state changes by invoking the
CIM_EnabledLogicalElementRequestStateChange() method. A client can determine valid state
values by finding the associated CIM_ElementCapabilities instance and analyzing the
RequestedStatesSupported property.

5.2.6 Modifying a Virtual System

Clients may be able to modify various aspects of a virtual computer system including adding or
deleting virtual resources, modifying virtual resource definitions, or modifying the virtual
resource state extension. Allocation capabilities and associated RASDs can be used to determine
what modifications an implementation supports.

To add new virtual resources the client prepares one or more instances of RASDs that represent
the allocation requests for new virtual resources and invokes the AddResourceSettings() method
on the virtual system management service to add the virtual resources.

To modify existing resources the client obtains RASDs or VSSDs that represent the state
extension or resource definition to be modified and alters the properties in these instances locally
within ranges supported by the implementation. The ModifyResourceSettings() method of the
virtual system management service can then be invoked with the modified RASD values to effect
the desired changes.

5.2.7 Destroying a Virtual System

Given a reference to an instance of CIM_ComputerSystem that represents the virtual system to
be destroyed, the DestroySystem() method on the virtual system management service can be
invoked to effect the virtual system destruction.

5.2.8 Managing Snapshots
The following use cases illustrate various aspects of snapshot management.

DSP2013 Page 31 of 33

5.2.8.1 Determining Support for Snapshots

Properties of the CIM_VirtualSystemSnapshotServiceCapabilities that are associated with the
CIM_VirtualSystemSnapshotService can be examined to determine the level of support for
snapshot types and snapshot related methods.

5.2.8.2 Creating a Snapshot

The CreateSnapshot() method on the VirtualSystemSnapshotService is invoked, passing a
reference to the system that is the target for the snapshot.

5.2.8.3 Locating Snapshots of a Virtual System

Given an instance of CIM_ComputerSystem that represents a virtual computer system the client
can follow instances of the CIM_SnapshotofVirtualSystem association to instances of
CIM_VirtualSystemSettingData, which anchors the snapshot related configuration classes for a
snapshot.

5.2.8.4 Locating the Most Current Snapshot in a Branch of Snapshots

Given an instance of CIM_ComputerSystem that represents a virtual computer system, the client
can follow the CIM_MostCurrentSnapshotInBranch association to the instance of
CIM_VirtualSystemSettingData that represents the most recent snapshot.

5.2.8.5 Locating Dependent Snapshots

Given a reference to an instance of the CIM_VirtualSystemSettingData class that represents a
virtual system snapshot, the client can follow the CIM_Dependency association to instances of
CIM_VirtualSystemSettingData that represent dependent snapshots (if any).

5.2.8.6 Applying a Snapshot

Given a reference to an instance of the CIM_VirtualSystemSettingData class that represents a
virtual system snapshot, the client invokes the ApplySnapshot() method on the virtual system
snapshot service. The system is deactivated and system state is restored to the value of the
resources represented in the snapshot. The system is then activated.

5.2.8.7 Destroying a Snapshot

The DestroySnapshot() method on the VirtualSystemSnapshotService is invoked, passing a
reference to the CIM_VirtualSystemSettingData instance that represents the snapshot to be
deleted.

11/11/2007 Page 32 of 33

Appendix A – References

[1] Common Information Model (CIM) Specification, 2.2, June 14, 1999 - Downloadable from
http://www.dmtf.org/spec/cims.html

[2] Unified Modeling Language (UML) from the Open Management Group (OMG) -
Downloadable from http://www.omg.org/uml/

http://www.dmtf.org/spec/cims.html
http://www.omg.org/uml/

DSP2013 Page 33 of 33

Appendix B – Extending the Model

The system virtualization model was designed for extensibility in several areas, including the
following:

• Virtual resource types can be added by adding a resource type value from the Vendor
Reserved range of the ResourceType property of the
CIM_ResourceAllocationSettingData, CIM_ResourcePool, and
CIM_ResourceAllocation classes. The Description property is used to provide
additional details of the new resource type.

• Virtual resource subtypes can be added using the ResourceSubtype property for the
associated classes. For example, the ResourceSubtype property can be used to
distinguish different models of a particular resource.

• The CIM_ResourceAllocationSettingData class can be extended with implementation-
specific properties. One of the main motivators for the use of instances of this class in
several contexts is to allow the RASD to be extended once and then leveraged across
the model. A RASD with vendor extensions is used in resource allocation, virtual
system configuration and extended state and as part of the allocation capabilities model.
By instantiating appropriate instances of RASD that are associated with instances of
CIM_AllocationCapabilities the implementation can inform the management client
about minimum, maximum and default values for a property that the client was not
originally aware of when designed.

	1 Introduction
	1.1 Background Reference Material
	1.1.1 Approved References
	1.1.2 References under Development

	1.2 Terminology

	2 Overview
	2.1 Requirements
	2.2 Basic Virtual Computer System Modeling
	2.3 Modeling Virtual Devices and Systems
	2.4 Virtual System Configurations
	2.5 Modeling Resource Pools and Resource Allocations

	3 The System Virtualization Model
	3.1 Profile Structure
	3.2 Concepts Addressed by the Model
	3.2.1 Resource Allocation
	3.2.2 Allocation Capabilities
	3.2.3 System Virtualization and Virtual Systems
	3.2.3.1 Virtual System States

	3.2.4 Virtual Device Modeling

	4 Relationships to Other Standards and Specifications
	4.1 Overlapping Standards and Specifications

	5 System Virtualization Model Use Cases
	5.1 Managing the Host Computer System
	5.1.1 Discovering the CIM implementation for a System Virtualization
	5.1.2 Discovering a Host Computer System
	5.1.3 Determining the Capabilities of an Implementation
	5.1.4 Determining the Supported Resource Types of an Implementation
	5.1.5 Finding Resource Pools and their Constituent Resources
	5.1.6 Determining the Capacity and Allocation of a Resource Pool
	5.1.7 Determining Resources Allocated from a Resource Pool
	5.1.8 Determining the Valid Settings for a Resource Allocation
	5.1.9 Locating Virtual Systems Hosted by a Host Computer System

	5.2 Managing a Virtual Computer System
	5.2.1 Creating a Virtual Computer System
	5.2.2 Determining a Virtual System’s State and Other Properties
	5.2.3 Determining the “Defined” Virtual System Configuration
	5.2.4 Determining the Virtual System Structure
	5.2.5 Changing the Virtual System State
	5.2.6 Modifying a Virtual System
	5.2.7 Destroying a Virtual System
	5.2.8 Managing Snapshots
	5.2.8.1 Determining Support for Snapshots
	5.2.8.2 Creating a Snapshot
	5.2.8.3 Locating Snapshots of a Virtual System
	5.2.8.4 Locating the Most Current Snapshot in a Branch of Snapshots
	5.2.8.5 Locating Dependent Snapshots
	5.2.8.6 Applying a Snapshot
	5.2.8.7 Destroying a Snapshot
	Appendix A – References
	Appendix B – Extending the Model

