CIM System Virtualization Model White Paper

Version 1.0.0
Status: Informational
Publication Date: 11/11/2007 6:31 AM
DSP2013

Copyright © 2007 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF isanot-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DM TF specifications and documents
for uses consistent with this purpose, provided that correct attribution is given. As DM TF specifications may be
revised from time to time, the particular version and rel ease date should aways be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights,
including provisional patent rights (herein "patent rights'). DM TF makes no representations to users of the standard
asto the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party
patent right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights,
owners or claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal
theory whatsoever, for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s
reliance on the standard or incorporation thereof in its product, protocols or testing procedures. DM TF shall have no
liability to any party implementing such standard, whether such implementation is foreseeable or not, nor to any
patent owner or claimant, and shall have no liability or responsibility for costs or lossesincurred if astandard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party implementing the
standard from any and all claims of infringement by a patent owner for such implementations.

For information about patents held by third-parties which have notified the DM TF that, in their opinion, such patent
may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

DSP2013 Page 2 of 33

http://www.dmtf.org/about/policies/disclosures.php

CIM System Virtualization Model White Paper
CIM Version 2.16

Version 1.0.0

Publication Date: 11/11/2007 6:31 AM
DSP2013

Status: Informational

Abstract

The DMTF Common Information Model (CIM) is a conceptual information model for describing
computing and business entities in Internet, enterprise, and service-provider environments. CIM
uses object-oriented techniques to provide a consistent definition of and structure for data. The
CIM Schema establishes a common conceptual framework that describes the managed
environment.

This white paper describes the CIM model for system virtualization, including the schema
additions for the general resource allocation pattern and the modeling of virtual and host
computer systems. The target audience of this white paper is anyone who wants to understand
the modeling of system virtualization using CIM. Some familiarity with virtualization and the
genera concepts of the CIM model is assumed.

Acknowledgments

The author acknowledges the contributions from the members of the DMTF System
Virtualization, Partitioning, and Clustering Work Group.

DSP2013 Page 3 of 33

Table of Contents

Y 01 o TSRS 3
ACKNOWIBAGIMENLS. ...ttt ettt et e e s te s e e et e s ae e e e steeaeeseseeemeeaaesseensesaeeneeseeaneenseneeaneens 3
A 1 (oo (U oo o PSSP 7
1.1 Background Reference MaErial..........ccccvieeiieiiiieie ettt st 7
O AN o o 0 V=0 I = 1 = o= PR 7

1.1.2 Referencesunder DeVEIOPMENTcoi i 7

O 1= 11011 Vo oo P 8

A © = oV T PSSRSO 10
N R = |11 =0 1= 0SS 10

2.2 Basic Virtua Computer SystemM MOGEiNGcoviveeieiiceereceee e 11

2.3 Modding Virtua DeviCes and SYSLEMS.........cccueviiieeieiieeesie s eree st see st ste e sre e sre e see e sneees 13

2.4 Virtual System CONfIQUIBLIONS.ccoiiiieierieeeese st erie e e sttt e see e seeseeeeeseesseeeesneeeeseesneeneas 14
2.5 Modding Resource Pools and ResoUrce AllOCaLIONS..........cccviuveveerieiiese e 15

3 The System VirtualiZation MOcoueiiiiiie ettt 17
TNt R o (0 0 o (S 17

3.2 Concepts Addressed by the MOoooeiiieece e 19
G220 R = (= o U1 (ot AN | o o= 1 o) o P 19

3.2.2 Allocation CapabilitiESccceiiiieieeee et 21

3.2.3 System Virtualization and Virtual SYStEMS.........ccccceviieereiiceese e 23

3.2.4 Virtual DeViCE MOEINGcccueiieieiee ettt s 27

4 Reationshipsto Other Standards and SPeCifiCationS..........ccoooiveererieere e 27
4.1 Overlapping Standards and SPeCIfiCatioNS..........cccvieiiiiiere e 27

5 System Virtualization MOOel USE CaSESeoiiiiriieiie ettt nee e eneesaeseeeneen 28
5.1 Managing the Host COMPULEr SYSIEM......ccociiiiieiicieeie ettt st 28
5.1.1 Discovering the CIM implementation for a System Virtualizationcccccceceevvneenenne. 28

5.1.2 Discovering a HOst COMPULEr SYSEEIMcciiiiiiieeere e 28

5.1.3 Determining the Capabilities of an Implementation.............ccccecevvvievvveece s 28

5.1.4 Determining the Supported Resource Types of an Implementation............c.cccceeeveeneee. 28

5.1.5 Finding Resource Pools and their Constituent RESOUICESccccvveerereeeeneseese e 28

5.1.6 Determining the Capacity and Allocation of a Resource Podlccccoeecvevvveeciecinennene, 28

5.1.7 Determining Resources Allocated from aResource PoOl...........ccooceevvieeececeece s, 29

5.1.8 Determining the Valid Settings for a Resource Allocation............coceevveeeeneieeieneeenne 29

5.1.9 Locating Virtua Systems Hosted by a Host Computer Systemcoceeeevvvceieneeenne. 29

5.2 Managing aVirtual COMPULEr SYSEEIM........cciiieiiieeie ettt sne e 29
5.2.1 Creating aVirtual COmMPULEr SYSEEIM.......cooiiieiriieeese et 29

5.2.2 Determining aVirtual System’s State and Other Properties..........oovvvereveieeieeinenennens 29

5.2.3 Determining the “Defined” Virtual System Configuration............cccceecvveevevieseeieseenenns 29

5.2.4 Determining the Virtual SyStem SLIUCLUIE............eeveviieeie e 30

5.2.5 Changing the Virtua System SEate........cccooiieir i 30

5.2.6 Modifying aVirtual SYSIEM.........cccciiiiiieie et st 30

5.2.7 Destroying aVirtual SYSLEM.........ccoiiiiieeeicie ettt sttt 30

5.2.8 Managing SNEPSNOLSccueieeierieeieiieeiees e see et eeesaeseeeseesseeeessesneeseseeeneeseesseeeesaeeneenes 30
APPENIX A — REFEIEINCES. ...ttt ettt ettt et e s te et e s besre e eesaeeneestesneeneeseeenseseeeneenes 32
Appendix B — EXtending the MOEcooiioee e e 33

List of Figures

DSP2013 Page 5 of 33

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

11/11/2007

Elements of the System Virtualization ENVIroNMENt............cccceeeieieeieseeieseeeese e 11

Basic System Virtualization MOGEcccooeeiiiiieiesece et 12
MUILIPIE CIMOMS VIBW ...ttt ste et sreeeesneeeesseeneeseesaeeneens 13
Virtual System with Device and State EXIENSIONcoervereeieeierineneseseseeeeeeesesees 14
Virtual System CONfigQUIaLioNcccvieerieiieeere ettt ene s 15
Resource Pools and Resource AHOCEHIONcceeriririnerieeieesese e e 16
Virtualization Profil@ SITUCIUNE..........oiiiiiieenere e 18
Resource Allocation Class Diagraimccooeeeereieenese e see e 20
Virtual Resource Allocation INStance Diagramccoceeeereriereneseere e 20
Simple RESOUICE AITOCELIONc.coiuiiieeiecie ettt nas 21
Allocation Capabilities Class Diagram.........cccceieiieieeieieese et sre e 22
Allocation Capabilities Applied to Host Computer System and Resource Podl 22
Allocation Capabilities Applied to aVirtual System Resource Allocation...................... 23
Virtual System Modeling Class Diagramccooeecereieeneneeeseee e 24
Virtual System State DIiagramccceieeieieeeerie et e e sresre e 25
Defined Virtual System RePresentalion..........cecviveieieseeseseee et eee e 26
Active Virtual System RepreSentalion.ccooeiieeereriere e 26
Instance Diagram for Virtual Device MOodel...........ccooiireiiieeeee e 27

Page 6 of 33

1 Introduction

This white paper describes the CIM model for system virtualization, including the schema
additions for the general resource allocation pattern and the modeling of virtual and host
computer systems. The model elements described in this paper enable management of system
virtualization environments including management of virtual computer systems and their
associated virtual resources and host computer system virtualization including resource pools
and allocation from those pools.

1.1 Background Reference Material
This section lists approved references and references that are currently under development.

1.1.1 Approved References

DMTF DSP0004, CIM Infrastructure Specification 2.3.0

DMTF DSP0200, CIM Operations over HTTP 1.2.0

DMTF DSP0201, Specification for the Representation of CIM in XML 2.2.0
DMTF DSP1000, Management Profile Specification Template 1.0
DMTF DSP1001, Management Profile Specification Usage Guide 1.0
DMTF DSP1012, Boot Control Profile 1.0

DMTF DSP1022, CPU Profile 1.0

DMTF DSP1026, System Memory Profile, 1.0

DMTF DSP1027, Power Sate Management Profile 1.0

DMTF DSP1033, Profile Registration Profile 1.0

DMTF DSP1041, Resource Allocation Profile 1.0

DMTF DSP1042, System Virtualization Profile 1.0

DMTF DSP1043, Allocation Capabilities Profile 1.0

DMTF DSP1052, Computer System Profile 1.0

DMTF DSP1057, Virtual System Profile 1.0

DMTF DSP1059, Generic Device Resource Virtualization Profile 1.0
SNIA, Storage Management Initiative Specification (SMI-S)

1.1.2 References under Development

DMTF DSP1044, Processor Device Resource Virtualization Profile 0.7
DMTF DSP1045, Memory Resource Virtualization Profile 0.7

DMTF DSP1047, Block Based Storage Resource Virtualization Profile 0.2
DMTF DSP1048, File Based Storage Resource Virtualization Profile
DMTF DSP1049, Sorage Adapter Resource Virtualization Profile 0.7

DSP2013 Page 7 of 33

http://www.dmtf.org/standards/published_documents/DSP0004V2.3_final.pdf
http://www.dmtf.org/standards/published_documents/DSP200.pdf
http://www.dmtf.org/standards/wbem/DSP201.html#SecCLASS
http://www.dmtf.org/standards/published_documents/DSP1000.pdf
http://www.dmtf.org/standards/published_documents/DSP1001.pdf
http://www.dmtf.org/apps/org/workgroup/svrmgmt/download.php/21576/DMTF-Boot_Control_Profile-1.0.0c.doc
http://www.dmtf.org/standards/published_documents/DSP1022.pdf
http://www.dmtf.org/standards/published_documents/DSP1026.pdf
http://www.dmtf.org/standards/published_documents/DSP1027.pdf
http://www.dmtf.org/standards/published_documents/DSP1033.pdf
http://www.dmtf.org/standards/published_documents/DSP1041.pdf
http://www.dmtf.org/standards/published_documents/DSP1042.pdf
http://www.dmtf.org/standards/published_documents/DSP1043.pdf
http://www.dmtf.org/standards/published_documents/DSP1052.pdf
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/22157/DMTF-Virtual_System_Profile_0_7_5_a.pdf
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/21449/Generic_Device_Resource_Virtualization_Profile-0.5.doc
http://www.snia.org/tech_activities/standards/curr_standards/smi/
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/15977/CpuResourceVirtualizationProfile-v01.doc
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/18939/DMTF_Memory_Resource_Virtualization_Profile_Diagrams.vsd
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/21201/DMTF-Block_Based_Storage_Resource_Virtualization_Profile-0_2_0.doc
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/18938/DMTF-Memory_Resource_Virtualization%20Profile_v0.7.doc
http://www.dmtf.org/apps/org/workgroup/redundancy/download.php/21202/DMTF-Storage_Adapter_Resource_Virtualization_Profile-0_2_0.doc

1.2 Terminology

Term

Definition

allocated resource

The partitioned or virtual resource that has been
allocated to a consumer based on the associated
resource allocation

child pool

A pool whose resources are backed by other resource
pools. A child pool is a consumer of resources from its
parent resource pools. All child pools contain no host
resources; instead, they draw their resources from
their parent pools through resource allocations.

consumer

The entity that receives allocated resources, for
example, a virtual system or a child resource pool

current resource allocation setting data

The resource allocation setting data associated with
the current allocation state of an allocated resource.
These settings may differ from the defined resource
allocation setting data if the host system supports the
dynamic modification of a resource allocation.

dedicated virtual resource

A virtual resource that has been given exclusive use
of a host resources. The host resources is not shared
with any other consumer.

defined resource allocation setting data

The data associated with an allocated resource that
describes the allocation settings to be used when that
allocated resource is exposed to a virtual system
during its instantiation or re-instantiation.

device resource allocation

The resource allocation to a consumer where there is
a logical device representing the resource allocated.

host resource

A device or computing resource contained by the host
system that may be allocated with either exclusive or
shared access through the host system to provide
resources to a resource pool or consumer

host system

A system that contains resources that may be
allocated or virtualized

pass-through resource allocation

A resource allocation to a consumer in which the
virtual resource is logically identical to the allocated
host resource

resource allocation

The definition of the resource allocated to a
consumer. It may be used to instantiate virtual
resources.

resource allocation setting data (RASD)

Settings that define the resource allocation. These
settings are used by the host system to manage the
allocated resource and its relationship to the host
resources and/or the resource pool from which it was
allocated.

11/11/2007

Page 8 of 33

defined RASD

The RASD data representing the resource allocation
request related to a currently not allocated resource. It
decribes the allocation settings to be used when that
resource is allocated to a virtual system during its
(re)instantiation.

current RASD

The RASD representing the resource allocation of a
currently allocated resource. These settings may differ
from the defined RASD if the host system supports
the dynamic modification of a resource allocation.

resource pool

An abstract entity used by the host system for the
purpose of allocating and exposing allocated
resources to consumers

resource type

A generic type that categorizes classes of resources
(for example, Processor, Memory, Network Adapter,
and so on)

shared virtual resource

An allocated resource that has been given the use of
host resources that may also be shared with other
consumers

simple resource allocation

The resource allocation to a consumer in which there
is no logical device representing the resource
allocated

virtual computer system

A virtual system as applied to a computer system.
Other common industry terms for such a system
include: Virtual Machine, Hosted Computer, Child
Partition, Logical Partition, Domain, Guest, and
Container.

virtual resource

The instantiation of the allocated resource that is
exposed to a consumer through a logical device

virtual system

A system that is composed of allocated resources that
may be partitioned or virtualized resources

virtual system setting data (VSSD)

Settings that define virtual system configuration data.

DSP2013

Page 9 of 33

2 Overview

The CIM system virtualization model, including CIM schema additions and a set of supporting
profile documents, enables the management of system virtualization. Virtualization isa
substitution process producing virtual resources which change aspects of the way consumers
interact with the resources. These virtual resources are usually based on underlying physical
resources, but they may have different properties or qualities. For example, virtual resources may
have different capacities or sizes than the underlying resources or may have different qualities of
service, such asimproved performance or reliability. In system virtualization a host computer
system provides the underlying resources that compose virtual computer systems and their
constituent virtual devices.

2.1 Requirements

The following general requirements were considered during the design of the system
virtualization model:

o Enableclientsthat are unaware of virtualization to manage virtual systems. That is,
after avirtual computer system is created, most management operations (such aslist,
install, configure, show devices) should be available ssimilarly on virtual or physical
systems.

e The model should be flexible and genera enough to support all types of platform
virtualization including hypervisor-based virtualization, logical and physical
partitioning, and operating system containers. The general patterns developed to model
resource Virtualization should be applicable as new types of virtualization become
available.

e Because the capabilities of system virtualization implementations vary widely, the
model should support the runtime inspection of a system’s capabilities so that a client
does not need a priori knowledge about an implementation’ s capabilities for the system
to be managed effectively. Thisincludes the ability to determine supported resource
types, resources, and lifecycle capabilities.

e Management operations should be modeled such that reasonable defaults are made
available wherever possible.

e Themodel should be extensible, with clear mechanisms for adding implementation-
specific capabilities and for allowing a client to discover these capabilities.

e Themodel should leverage existing work that the DM TF (Server Management Work
Group and Desktop & Mobile Work Group) has done for computer systems and their
associated devices, and that SNIA has done for storage related modeling (see the SMI-

9.
The following requirements relate to modeling of virtual and host computer systems and their
associated resources:

e Themodel should support the capability to discover and enumerate virtual computer
systems, host computer systems, and the relationships between them.

11/11/2007 Page 10 of 33

e The model should support the capability to create virtual computer systems by
specifying resources (such as CPU, memory, network, and disk) and attributes (shared,
virtualized, based on specific resource, and so on) for those resources. Deletion and
modification of virtual computer systems should be supported.

e Themodel should support creation, deletion, modification and inventory of virtua
resources.

e Themodel should support the ability, where feasible, to determine the mapping of
virtual resources to the underlying host resource through as many layers of
virtualization as required. For example, acustomer that is notified that a particular
physical disk isreceiving intermittent errors should be able to determine which virtual
machines would be affected if the disk failed. This may require combining information
from multiple modeling domains.

2.2 Basic Virtual Computer System Modeling

The basic elements of a system virtualization environment are shown in Figure 1. The resources
that make up the virtualization environment typically are supplied by one or more host computer
systems. A virtualization layer (usualy firmware or software, but possibly hardware) manages
the lifecycle of avirtual computer system, which is composed of resources allocated or assigned
from the host computer system. A virtual computer system may be active and running an
operating system and applications with afull complement of virtual devices defined and
allocated, or it may be inactive with no software running and a subset of the virtual devices
actually allocated.

Apps
OS
Virtual Computer Virtual Computer , """
System System
([IO0O000T)
g 2 | |5 B
Virtualization
Layer
|
00 m=m

Host Computer
System |3

Figurel Elements of the System Virtualization Environment

The system virtualization model enables the client to manage the virtualization layer and the full
lifecycle of the hosted virtual computer systems.

DSP2013 Page 11 of 33

The basic elements of the system virtualization model are shown in Figure 2. Both host and
virtual computer systems (also known in the industry as avirtual machine) are represented
similarly by instances of the CIM_ComputerSystem class. Computer system devices are modeled
through instances of subclasses of the CIM_LogicalDevice class. The relationship between
system and devicesis modeled through the CIM_SystemDevice association. The relationship of
virtual computer systemsto their host system is modeled through the CIM_HostedDependency
association.

s TN
\

VirtualComputerSystem

HostedDependency HostComputerSystem

VirtualComputerSystem —

SystemDevice

—

LogicalDevice LogicalDevice

SystemDevice

| Logical Device| | Logical Device| Logical Device

Virtualization
Virtual Computer
Systems \ / Host Computer
—_— System

Figure2 Basic System Virtualization Model

Additional instrumentation about the environment may be available outside the scope of the
system virtualization model. The host computer system may provide management capabilities
through the implementation of additional physical device and computer system profiles as
defined in the Server Management Work Group (SMWG) or the Desktop & Mobile Work Group
(DMWG). Additionally, the operating system or applications running in avirtual computer
system may also implement aspects of CIM models. The information presented through this
means (often described as “in band” or “through OS”) reflects the basic view of the resources for
asingle virtual system. Identifying correlating properties so that management clients can
combine various instrumentation sources into a single unified view is an important requirement
of the system virtualization and related modeling work. Figure 3 shows how the OS,
virtualization and hardware models might be presented for this environment.

Control of the basic lifecycle operations (activate, deactivate, suspend) of the virtual systemis
available consistently for computer systems through the RequestStateChange method. For more
details of the management of the virtual computer system lifecycle, see 3.2.3.1.

Subsequent sections describe the modeling details for resource virtualization, resource allocation,
and virtual system configuration representation.

11/11/2007 Page 12 of 33

/ OperatingSystem \
| | Properties must allow
Instrumentation | | client to correlate
provided through | ComputerSystem <—|/’ these CS instances as
OS running within | | representing the same
VM hosting separate | | cs
CIMOM Computer System
I Model I
| |
CIMOM
N I e
——_——_— - - - - - - —_—_—_————— — - -~
4 / N
| |
| VirtualComputerSystem VirtualComputerSystem |
System | |
Virtualization Model | |
provided through | VirtualProcessor LogicalDevice |
CIMOM hosted on < I |
virtualization control I |
point. This model is I |
. . HostComputerSystem
the subject of this I System |
paper. I Virtualization |
| Model I
Memory | | Processor | | Disk |
\ CIMOM
NG ~_ _ _ - - 7/
Additional platform e — — — — — = — N
IeYeI mformatl.on / HostComputerSystem \
might be provided I I
through host | I
computer system. | _
Memor i Platform Model |
This model would | [Processor | [Disk |
conform to SMASH |)
or DASH profiles. \ CIMOM v
e e e e e e e e e e e e e S S S — — —— —— —— — —

Figure3 Multiple CIMOMsView

2.3 Modeling Virtual Devices and Systems

Figure 2 shows that a virtual computer system can be modeled as an instance of the
CIM_ComputerSystem class with its devices modeled as instances of subclasses of
CIM_LogicaDevice (CIM_Memory, CIM_ Processor, and so on). This model enables a
management client to manage a virtual system without understanding the details of
virtualization. To fully manage a virtual system environment the management client must have
available additional information about the virtual computer system and related virtual devices.
This additional virtualization-specific information is made available through an instance of a
subclass of the CIM_SettingData class associated with the base device instance as a “ state”
extension or aspect. This basic pattern is shown in Figure 4. Instances of the CIM_L ogicaDevice
class representing virtual system logical devices are associated through the
CIM_SettingsDefinesState association to related instances of
CIM_ResourceAllocationSettingData class (RASD), which provides additional virtualization
related details about the device. For example, information about the backing host device, the
guantity of host resource allocated, and so on would be presented in the associated RASD

DSP2013 Page 13 of 33

instance. Likewise, the CIM_ComputerSystem instance that represents the virtual computer
system has an associated instance of the CIM_Virtual SystemSettingData class that provides
additional information about the virtual computer system.

Virtual System Representation Virtual System State Extension

0.1 SettingsDefineState 1
ComputerSystem - VirtualSystemSettingData

1 1

SystemDevice VirtualSystemSetting-

DataComponent
* *
LogicalDevice ResourceAllocationSettingData
. SettingsDefineState
\ Additional
Logically device and state extension information about the
. . are treated as single entity modeling virtual device is

Core device modeling as

I ified in CIM the device and its additional present in the
generally speciiied in information associated RASD

Figure4 Virtual System with Device and State Extension

2.4 Virtual System Configurations

There are several contexts for which it isimportant to model a virtual system configuration, even
if the virtual system isnot currently active. Figure 5 illustrates the concept of avirtual system
configuration that consists of setting data that represents the virtual system and an associated
setting data instance for each of the configured resources. An instance of

CIM_Virtual SystemSettingData represents the virtual computer system configuration
information and instances of CIM_ResourceAllocationSettingData i nstances represent
configuration information for each of the virtual devices.

A virtual system configuration is used to represent a saved virtual system configuration (for
example, the configuration information that might be represented in a configuration file for an
inactive virtual system).

Many system virtualization implementations support the functionality of snapshots. Snapshots
capture the state of avirtual system, allowing the user to revert back to a snapshot that restores
the compl ete state of the system to the state when the snapshot was captured. Each instance of a
snapshot is modeled with avirtual system configuration that represents the state when the
snapshot was taken.

11/11/2007 Page 14 of 33

Virtual System Configuration

/ Computer
VirtualSystemSettingData System

Configuration
information

VirtualSystemSetting-
DataComponent

Memory Configuration CPU Configuration Disk Configuration Network Configuraiton

S /

Setting Data with
device configuration
data

Figure5 Virtual System Configuration

2.5 Modeling Resource Pools and Resource Allocations

Resource pools and resource allocations are the key elements for virtualization modeling. These
elements are shown working together in Figure 6.

A resource pool isalogical entity (with associated controls) provided by the host system for the
purpose of allocation and assignment of resources. A given resource pool may be used to allocate
resources of a specific type. Pools may have associated host resources, but pools are not required
to have component host resources. Resources allocated from aresource pool for virtual devices
are represented by instances of the appropriate subclass of CIM_LogicalDevice with an
associated instance of CIM_ResourceAllocationSettingData representing the allocation
information.

The resource virtualization model provides for representing the rel ationship between avirtual
device and its underlying host device through the CIM_Logicalldentity or the
CIM_HostedDependency association as long as that relationship isrelatively static (like for
example for disk devices). Often these rel ationshi ps change very dynamically and it does not
make sense to return thislevel of information (for example processor or memory resources).

DSP2013 Page 15 of 33

Host System:
System
Element
ElementSettingData SettingsDefineState Allocated —
r —| r —| r FromPool HostedResourcePool
Defined State: Current State:
ResourceAllocation ResourceAllocation Virtual Resource: HostPool: SystemDevice
SettingData SettingData LogicalDevice ResourcePool
Component

ResourceAllocationFromPool Host Resource:
LogicalDevice

Figure 6 Resour ce Pools and Resour ce Allocation

11/11/2007 Page 16 of 33

3 The System Virtualization Model

This section provides details about profiles related to virtualization and the concepts behind the
system virtualization model.

3.1 Profile Structure

In the DMTF, the CIM schema and associated behavior for a particular management domain is
defined through a series of management profile documents. Each profile identifies the classes,
properties, methods, and values that should be instantiated and manipulated to represent and
manage a given domain. Figure 7 shows the structure of the profile documents related to
virtualization. Two abstract profiles, Resource Allocation Profile and Allocation Capabilities
Profile, describe the basic abstract patterns used for management of virtual systems. Two
top-level, autonomous profiles specialize the Computer System Profile: System Virtualization
Profile and Virtual System Profile. A series of device-specific profiles describe in more detail the
management of virtual devices.

The Resource Allocation Profile describes the basic resource allocation pattern for resource
pools, allocations, and setting data. It also defines the resource-pool-lifecycle management and
relationships.

The Allocation Capabilities Profile extends the management capability of referencing profiles by
adding the ability to represent the default, supported, and range of property values for resource
allocation requests for a given resource, and the mutability of propertiesin a
CIM_ResourceAllocationSettingData i nstance.

The System Virtualization Profile is an autonomous profile that specifies the object model
needed for the representation of host systems and the discovery of hosted virtual computer
systems. In addition, it specifies a service for the manipulation of virtual computer systems and
thelr resources, including operations for the creation, deletion, and modification of virtual
computer systems and operations for the addition or removal of virtual resourcesto or from
virtual computer systems.

The System Virtualization Profile references a set of component profiles that specify resource
alocation for specific device types like CPU, memory, storage (block and file backed) and
storage adapters, networking and networking adapters, removable devices, keyboard, video and
mouse devices. These component profiles are specializations of both the Resource Allocation
Profile and the Allocation Capabilities Profile.

The Virtual System Profile is an autonomous DM TF management profile that defines the model
needed to provide for the inspection of avirtual system and its components. The Virtual System
Profile specializes the Computer System Profile that defines the model needed to define abasic
computing platform. In addition, the Virtual System Profile defines optional basic control
operations for activating, deactivating, pausing, or suspending avirtual system.

The Computer System Profile references a set of component profiles that are defined for each of
the device types that make up a computer system including CPU, memory, storage (block and
file backed) and storage adapters, networking and networking adapters, removable devices,
keyboard, video and mouse devices.

DSP2013 Page 17 of 33

Component Abstract
P Autonomous
DSP1033 DSP1052
Profile Computer
Registration System
[r T— Scoped By ——
N
Autonomous Autonomous Autonomous
DSP1042 DSP1057 DSP1004
System Virtual Base Server
Virtualization System (Optional)
A
Abstract Abstract
Component Component
DSP1041 DSP1043
Resource Allocation
Allocation Capabilities
(Optional) (Optional)
>
)
B 3 5
3]
Q.
g |
O
(%]
D Component
Generic Device s
Resource DSP1044
Virtualization CPU Resource
(Optional) Virtualization
m (Optional)
Component
DSP1045
~ Memory Resource
Virtualization
(Optional)
DMTF Management
Profiles Related to
System Virtualization Component
DSP1050
A Network Port
Resource
Virtualization
(Optional)
Component
DSP1049
Storage Resource
Virtualization
(Optional)
Other
O O (O component
Profiles
Figure7 Virtualization Profile Structure
11/11/2007 Page 18 of 33

Component
DSP1027
Power State
Management
(Optional)
Component
DSP1012
Boot Control
(Optional)
Component
DSP1022
CPU
(Optional)
Component
DSP1026
System Memory
(Optional)
Component
DSP1014
Ethernet Port
(Optional)
Other
O O O Device
Profiles

3.2 Concepts Addressed by the Model

Conceptualy, the system virtualization model can be divided into the following components:

e Resource allocation that includes models for resource pools, resource allocation from
pools, and services for managing pools.

e Allocation capabilities that provides the ability for aclient to determine at runtime the
system capabilities, including minimum, maximum and default values for resource
allocation related properties.

e System virtualization and virtual systems that enables a client to manage virtual
systems, including enumerating virtual systems and their component resources and
controlling the lifecycle of virtual systems, and to manage the host computer system
including creation of virtual systems and management of virtual system configurations
including snapshots.

e Virtua device that extends existing device models by exploiting the resource allocation
and allocation capabilities patterns to enable management of virtual devices.

3.2.1 Resource Allocation

The classes for the resource allocation model are shown in Figure 8. The main classes are
CIM_ResourcePool class and CIM_ResourceAllocationSettingData class as well as the classes
modeling the capabilities and service classes for the manipulation of pools.

A resource pool, modeled using the CIM_ResourcePool class, is the central management point
for the alocation of resources. Typically apool collects host system resources whose capabilities
are allocated to a consumer. Resources allocated from pools with no component devices are
known as “synthetic devices.” In many implementations, virtual Ethernet adapters are an
example of asynthetic device.

Types of alocation supported include

e pass-through resource allocation, in which the alocated device isidentical to the pool
device

« dedicated resource alocation, in which the virtual deviceis allocated exclusive use of
the pool device

o shared resource allocation, in which the alocated device is shared among consumers

Properties of the CIM_ResourcePool class model information about the resource type and
capacity supported by the pool.

Allocation from a pool is represented by an instance of CIM_ResourceAllocationSettingData. As
mentioned previoudly, this key classin the virtualization model represents allocations, as well as
extended state and capabilities. Properties of this class model provide information allowing the
client to determine the type and quantity of resource consumed, as well as the quantity of virtual
resource exposed and the type of alocation.

Initially host computer system resources are aggregated into a*“primordial” pool indicated by a
property in the CIM_ResourcePool class.

DSP2013 Page 19 of 33

Some implementations may support creating and managing child pools and moving resourcesin
and out of pools. These functions are modeled using the CIM_ ResourcePool Capabilities and

CIM_ResourcePool Service classes.

System

[| (See Core Model (Enabled
Logical Element))

Capabilities

LogicalElement

Cap., & Power Mgmt))

(See Core Model (SettingData, Profiles,

(See Core Model (Managed
System Element))

Hosted

!

ResourcePool {E}

ResourcePool {E}

D : string {key}

SynchronousMethodsSupported : uint16 {enum,
AsynchronousMethodsSupported : uint16 {enum} *

Poolld : string

Primordial : boolean

Capacity : uint64

Reserved : uint64

Type : uint16 {enum}

4 Inheritance
Association

OtherResourceType : string
ResourceSubType : string
AllocationUnits : string

{E} Experimental Class or Property

ElementAllocated
FromPool {E}

SettingData

(See Core Model (SettingData,
Profiles, Cap., & Power Mgmt))

ResourceAllocationSettingData {E}

ResourceType : uint16 {enum}
ResourceType : string
ResourceSubType : string
PoollD : string
ConsumerVisibility : uint16 {enum}
HostResource : string[]
AllocationUnits : string
VirtualQuantity : uint64
Reservation : uint64

Limit : uint64

Weight : uint32
AutomaticAllocation : boolean
AutomaticDeallocation : boolean
Parent : string

Connection : string[]

Address : string

Service

(See Core Model (Logical Element))

?

ResourcePoolConfigurationService {E}

CreateResourcePool (

[IN] ElementName : string

[IN] HostResources : ref CIM_LogicalDevice[]

[IN] ResourceType : string

[OUT] Pool : ref CIM_ResourcePool

[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

CreateChildResourcePool (

[IN] ElementName : string

[IN] Settings : string[]

[IN] ParentPool : ref CIM_ResourcePool

[OUT] Pool : ref CIM_ResourcePool

[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

DeleteResourcePool (
[IN Pool : ref CIM_ResourcePool
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

MappingBehavior : uint16 {enum}

AddResourcesToResourcePool (

[IN] HostResources : ref CIM_LogicalDevice[]

[IN Pool : ref CIM_ResourcePool

[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

| (
[IN] HostResources : ref CIM_LogicalDevice[]
[IN Pool : ref CIM_ResourcePool
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

ChangeParentResourcePool (

[IN] ChildPool : ref CIM_ResourcePool

[IN] ParentPool : ref CIM_ResourcePool

[OUT] Pool : ref CIM_ResourcePool

[IN] Settings : string[]

[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

Figure8 Resour ce Allocation Class Diagram

In Figure 9, we see an example of these resource management classes showing an instance of a
resource pool that collects host system devices. Allocated from the pool are virtual devices and
RASDs, which give additional information about the allocation.

:ResourcePoolConfigurationCapabilities :ResourcePoolConfigurationService Virtualization System:
System
[—ElementCapabilities—| ——HostedService—
ServiceAffects
Element
Element
El SettingDat: SettingsDefineSt Allocated SystemDevice
FromPool
HostedR Pool
Defined State: Current State: Virtual Resource: Primordial: ostedResourceroo
ResourceAllocation ResourceAllocation LogicalDevice ResourcePool
SettingData SettingData
Component
ResourceAllocation A
FromPool Host Resource:
LogicalDevice
HostedDependency

Figure9 Virtual Resource Allocation Instance Diagram

11/11/2007 Page 20 of 33

In Figure 10 another use of these classes is shown in an example of “simple” resource allocation.
In this case there is no allocated logical device; the allocated resources are shown only as

RASDs. This pattern is appropriate where the allocated resource is not modeled as adevice, asin
electrical power allocation, for example.

:ResourcePoolConfigurationCapabilities

I—ElementCapabilities—

:ResourcePoolConfigurationService

Mset:
ManagedSystemElement

rasdi:
ResourceAllocationSettingData

;ElementSeningData—l

’—ElementSeningDala—|

Mse2:
ManagedSystemElement

rasd2:
ResourceAllocationSettingData

ResourceAllocationFromPool

ServiceAffects

Element

—HostedService—] ComputerSystem

Primordial:
ResourcePool

ResourceAllocationFromPool

Component

Host Resource:
LogicalDevice

Component

Figure 10 Simple Resour ce Allocation

3.2.2 Allocation Capabilities

System1:

SystemDevice

HostedResourcePool

Host Resource:
LogicalDevice

SystemDevice

The basic classes associated with the all ocation capabilities model are shown in Figure 11. This
pattern enables a client to determine at run time the capabilities, including minimum, maximum,
default, and specific values that are supported by the implementation in various contexts.

The basic pattern uses an instance of the CIM_AllocationCapabilities class and a collection of
RASDs associated through the CIM_SettingsDefinesCapabilities association whose properties
values are set to define the role (minimum, maximum) of the values in the associated RASD.
Thisideais best illustrated in the following examples.

DSP2013

Page 21 of 33

Figure 12 shows the allocation capabilities pattern applied at the host computer system and at the

ManagedElement

Figure 11

»
ElementCapabilities

*

AllocationCapabilities

E

SettingsDefineCapabilities

*

ResourceAllocationSettingData

(See Resource Allocation Profile,
DSP1041)

Allocation Capabilities Class Diagram

resource pool. A capability set (an instance of CIM_AllocationCapabilities and the associated

instances of CIM_ResourceAllocationSettingData) at the host computer system level appliesto
all resources of the specified type. A capability set associated with aresource pool would apply

to resources created from the resource pool.

Host System: ComputerSystem

ElementCapabilities

Characteristics: Default

HostedResourcePool

:ResourcePool

AllocationCapabilities

ResourceType : CPU

Figure12

SettingsDefine
Capabilities
ValueRange :
Maximums

SettingsDefine
Capabilities
ValueRange :
Minimums

SettingsDefine
Capabilities
ValueRange :
Increments

SettingsDefine
Capabilities
ValueRole :

Default

11/11/2007

ResourceType : CPU

ElementCapabilities
|7 Characteristics: Default

RASDS6 :
ResourceAllocationSettingData

AllocationCapabilities

VirtualQuantity: 4
Weight: 10000

ResourceType : CPU

RASD7 :
ResourceAllocationSettingData

| VirtualQuantity : 1

Weight 10

RASDS :
ResourceAllocationSettingData

VirtualQuantity : 1

RASD9 :
ResourceAllocationSettingData

—{ VirtualQuantity : 1

SettingsDefine
Capabilities
ValueRange :
Maximums

SettingsDefine
Capabilities
ValueRange :
Minimums

SettingsDefine
Capabilities
ValueRange :
Increments

SettingsDefine
Capabilities
ValueRole :

Default

Page 22 of 33

1

RASDL1 :
ResourceAllocationSettingData

VirtualQuantity : 2

RASD2 :
ResourceAllocationSettingData

VirtualQuantity : 1

RASD3:
ResourceAllocationSettingData

VirtualQuantity : 1

RASD4 :
ResourceAllocationSettingData

—{ VirtualQuantity : 1

Allocation Capabilities Applied to Host Computer System and Resour ce Pool

The pattern can also be used to understand mutability of avirtual resource as shownin
Figure 13. In this case the capability set specifies the ranges for changing the virtua quantity and
weight of avirtual system resource allocation.

I_ SettingsDefineState —| SystemDevice Virtual System : ComputerSystem

CurrentResourceAllocationSettingData Virtual Resource : Processor

ResourceType : CPU
VirtualQuantity : 1
Weight: 500

I
ElementCapabilities
Characteris}ics: Default

AllocationCapabilities

ResourceType : CPU

.) RASD1 :
L SettanSP(?f'ne ResourceAllocationSettingData
Capabiliies N Ziquantty - 16
ValueRange : Weight: 10000
Maximums
. i RASD2 :
SettlngsPQflne ResourceAllocationSettingData
| Capabllltles' — VirtualQuantity : 1
Vall:l(-Z:RanQe : Weight: 10
Minimums
.] RASD3 :
SettanSP(?f'ne ResourceAllocationSettingData
. R
ge: Weight: 1
Increments

Figure 13 Allocation Capabilities Applied to a Virtual System Resour ce Allocation

3.2.3 System Virtualization and Virtual Systems

The classes introduced in the modeling of virtual systems are shown in Figure 14. The
CIM_Virtual SystemManagementService and CIM_Virtua SystemM anagementCapabilities
classes provide the ability to add, delete, and modify resources of avirtual system and to define
and delete avirtual system.

Clients can determine specific information about an implementation’ s support for virtual system
resource manipulation through the allocation capabilities instances that are associated with the
virtual resources and resource pools.

DSP2013 Page 23 of 33

Capabilities

(See Core Model (SettingData, Profiles, Cap., &
Power Mgmt))

*

VirtualSystemManagementCapabilities

VirtualSystemTypesSupported : string[],
SynchronousMethodsSupported : uint16 {enum,
AsynchronousMethodsSupported : uint16 {enum}
IndicationsSupported : uint16 {enum}

Figure 14

11/11/2007

Service

(See Core Model (Logical Element))

*

VirtualSystemManagementService {E}

AddResourceSettings (

AffectedConfiguration : ref CIM_VirtualSystemSettingData,
AffectedConfiguration : string[],

[OUT] ResultingResourceSettings : ref CIM_ResourceAllocationSettingData,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

DefineSystem (

SystemSettings : string,

ResourceSettings : string[],

ReferenceConfiguration : ref CIM_VirtualSystemSettingData,
[OUT] ResultingSystem : ref CIM_ComputerSystem,

[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

DestroySystem (
AffectedSystem : ref CIM_ComputerSystem,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

ModifyResourceSettings (

ResourceSettings : string[],

[OUT] ResultingResourceSettings : ref CIM_ResourceAllocationSettingData,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

ModifySystemSettings (
SystemSettings : string[],
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

RemoveResourceSettings (
ResultingResourceSettings : ref CIM_ResourceAllocationSettingData,
[OUT] Job : ref CIM_ConcreteJob) : uint16 {enum};

Virtual System Modeling Class Diagram

Page 24 of 33

3.2.3.1 Virtual System States
The states of avirtual system are shown in Figure 15.

Initial State

VS State: Defined Activate
EnabledState: Disabled
PowerState: Off-Soft

c
2
<) N
5=; VS State: Active
3 EnabledState: Enabled
g PowerState: On m
g J
T A
@
8
o
‘g VS State: Paused -
3 EnabledState: Quiesce 8
< PowerState: Sleep-Light 7]
2 (7))
LE|
Q
<
T 4 VS State: Suspended
EnabledState: Enabled but Offline
PowerState: Sleep-Deep
g
2
[
Final State

Figure 15 Virtual System State Diagram
DSP2013 Page 25 of 33

A new virtual system can be created by using the DefineSystem() method of the CIM_Virtual
System ManagementService. Inputs to this method are CIM_Virtual SystemSettingData and
CIM_ResourceAllocationSettingData i nstances, which define the virtual system as awhole and
each of the desired virtual resources. At the successful completion of this method the new virtual
computer system is represented in the model by an instance of the CIM_ComputerSystem class
(with state extension) and avirtual system configuration that represents the saved configuration
information. Any devices that are alocated during definition (for example, virtual disk) are
represented by the appropriate logical device. The system isin the “Defined” state. This would
also correspond to a“Powered Off” state. A diagram of an example system in this state is shown
in Figure 16.

“Defined” Virtual System Representation
Virtual System Configuration (representing Virtual System Instance)
(representing Virtual System Definition)
VirtualCS : VirtualSystemSettingData “—{ VS VirtualSystemSettingData [————————1 : ComputerSystem
— R E:--kk
M 'R All i tingDat « »\/i
emory esourceAllocationSet IngLata State Vlrtual System
Extensions
(representing virtualization
— Processor : ResourceAllocationSettingData specific state extension
of Computer System and
devices)
 Disk : ResourceAllocationSettingData Disk : ResourceAllocationSettingData ——
1 : LogicalDisk

o /

Figure 16 Defined Virtual System Representation

From the “Defined” state a system can be activated to enter the “ Active” or “Powered On” state.
During activation the underlying system allocates resources as specified in the virtual system
configuration setting data instances, and device and state extension CIM instances are
instantiated. The resulting virtual system is modeled as shown in Figure 17.

“Defined” Virtual System Representation
Virtual System Configuration (representing Virtual System Instance)
(representing Virtual System Definition)
VirtualCS : VirtualSystemSettingData VS : VirtualSystemSettingData : ComputerSystem [——
Memory : ResourceAllocationSettingData Memory : ResourceAllocationSettingData r : Memory
Processor : ResourceAllocationSettingData Processor : ResourceAllocationSettingData r : Processor
Disk : ResourceAllocationSettingData Disk : ResourceAllocationSettingData r : LogicalDisk

Figure 17 Active Virtual System Representation

11/11/2007 Page 26 of 33

3.2.4 Virtual Device Modeling

The classes and pattern used for virtual device modeling have already been introduced. An
instance of avirtual deviceis represented by the appropriate CIM _L ogical Device subclass, the
alocation and state are represented using RASDs, and the capabilities for allocation and
modification of the device are represented using the Allocation Capabilities pattern previously
described. An example instance diagram illustrating these concepts is shown in Figure 18.

Typicaly there will be a device profile that describes the behavior of the device model in general
(for example, CPU Profile, System Memory Profile, and so on) and a virtualization-related
profile that describes additional considerations for modeling virtual devices using the
virtualization patterns (Processor Device Resource Virtualization Profile, Memory Resource
Virtualization Profile, and so on).

The Generic Device Resource Virtualization Profile provides a genera profile that can be
applied if more specific device or device virtualization profiles are not available.

:‘ResourcePoolConfigurationCapabilities :ResourcePoolConfigurationService Virtualization System: System

ElementCapabilities

HostedServic

VirtualSystem:System

ServiceAffects

SystemDevice Element 3
Element g
ElementSettingData: SettingsDefine State——— Allocated €
FromPool %
»

Defined State: Current State: VirtuallB:IB_Port Primordial:

ResourceAllocation ResourceAllocation ResourcePool HostedResourcePool
SettingData SettingData Component
; I
I_Reso;:g;/—;ll(;)cﬁa "mé ElementCapabilities HostlB:
1B_Port
IBAllocation:AllocationCapability
[
SettingsDeﬁnIeCapabiIities
Defauilt:
ResourceAllocation
SettingData
Figure 18 Instance Diagram for Virtual Device M odel
4 Relationships to Other Standards and Specifications

4.1 Overlapping Standards and Specifications

There are no known virtualization management standards. This work extends the existing CIM
system modeling by reusing system and logical device classesto model virtual systems.

DSP2013 Page 27 of 33

5 System Virtualization Model Use Cases

This section provides use cases for managing the host computer system or a virtual computer
system.

5.1 Managing the Host Computer System

The System Virtualization model is defined to allow a management client to determine at
execution time information about the managed virtualization environment, including supported
virtual resource types, valid values for resource allocations, and capabilities for managing
resource pools.

5.1.1 Discovering the CIM implementation for a System Virtualization

A client can discover CIM implementations of virtualization management through SLP, by
following profile registration associations, or through a priori knowledge of host name or IP
address where CIMOM s running.

5.1.2 Discovering a Host Computer System

A client can find instances of the CIM_Computer System class representing host systems can be
found by following the CIM _ElementConformsToProfile association from the instance of the
CIM_RegisteredProfile class representing System Virtualization Profile

5.1.3 Determining the Capabilities of an Implementation

To determine the capabilities of an implementation, from the instance of CIM_ComputerSystem
that represents the host computer system the client can traverse the CIM_ElementCapabilities
association to an instance of CIM_Virtual SystemM anagementCapabilities. Properties of this
instance supply information about supported virtual system types, methods, and indications.

5.1.4 Determining the Supported Resource Types of an Implementation

The preferred mechanism for determining supported resource types is to find instances of
registered profiles scoped by the System Virtualization Profile, find the central class for each of
these profiles, and collect the resource types represented..

5.1.5 Finding Resource Pools and their Constituent Resources

A client can find Resource Pools by traversing the the CIM_HostedResourcePool association
from the instance of CIM_Computer System that represents the host computer system. A client
can identify elements of aresource pool by traversing the CIM_Component association to the
appropriate subclass of the CIM_L ogicalDevice class.

5.1.6 Determining the Capacity and Allocation of a Resource Pool

The Capacity property of the CIM_ResourcePool instance that represents the resource pool
provides the total capacity of this pool. The Reserved property provides the total amount of the
currently allocated resources.

11/11/2007 Page 28 of 33

5.1.7 Determining Resources Allocated from a Resource Pool

To determine the details of the resources allocated from a given resource pool aclient can
traverse the CIM _ElementAllocatedFromPool association to find all of the devices allocated
from this pool. A client can determine additional details about the allocation by traversing the
CIM_ResourceAllocatedFromPool association to each RASD for the allocations.

5.1.8 Determining the Valid Settings for a Resource Allocation

Aninstance of CIM_AllocationCapabilities and its associated (through
CIM_SettingsDefinesCapabilities) CIM_ResourceAllocationSettingData instances can help a
client determine the capabilities for a resource type or aresource type alocated from a specific
resource pool. The client can find the CIM _AllocationCapabilities instance by following
CIM_ElementCapabilities from an instance of CIM_ResourcePool or CIM_Computer System.

5.1.9 Locating Virtual Systems Hosted by a Host Computer System

Given a CIM_Computer System instance that represents the host computer system, the
CIM_Computer System instances associated to the host computer system through
CIM_HostedDependency are the instances of virtual computer systems.

5.2 Managing a Virtual Computer System
The following use cases show various aspects of managing a virtual computer system.

5.2.1 Creating a Virtual Computer System

The basic operation of creating avirtual computer system is done using the DefineSystem()
method of the CIM_VirtualizationM anagementService associated with the instance of
CIM_ComputerSystem that represents the host computer system. This method takes asinput an
instance of CIM_Virtual SystemSettingData and an array of instances of
CIM_ResourceAllocationSettingData, which represent the requests for resources that are
required to compose the target virtual computer system. Valid resource types and ranges of
property values can be determined as noted in previous use cases. Typically, implementations
also provide default values for most property valuesif they are unspecified.

5.2.2 Determining a Virtual System’s State and Other Properties

From the instance of CIM_ComputerSystem that represents the virtual computer system the
EnabledState property represents the virtual system'’s state. Other properties of the virtual system
can be obtained from the CIM_ComputerSystem instance and from the associated (through the
SettingsDefineState association) CIM _Virtual SystemSettingData (V SSD) instance.

5.2.3 Determining the “Defined” Virtual System Configuration

Each virtual computer system has a“Defined” configuration that is permanently recorded and
takes effect when a deactivated virtual computer system is activated. This configuration can be
determined given an instance of CIM_ComputerSystem that represents the virtual computer
system by following the SettingsDefineState association to the VSSD instance, which represents
the state extension for the virtual computer system. From this V SSD instance the

DSP2013 Page 29 of 33

CIM_ElementSettingData associated VSSD anchors the “Defined” virtual system configuration,
and each of the associated RASDs provides details of the virtual system device configuration.

5.2.4 Determining the Virtual System Structure

From the instance of CIM_ComputerSystem that represents the virtual computer system the
client can traverse the CIM_SystemDevice association to find the component devices of the
virtual computer system. For each of these devices the associated RASDs that represent the
virtualization “extensions’ of the device can be found by the CIM_SettingsDefineState
association, and persistent device configuration information can be obtained by RASD associated
to the state extension by the CIM _ElementSettingData associ ation.

5.2.5 Changing the Virtual System State

Given areference to the CIM_ComputerSystem instance that represents the virtual computer
system the client can effect state changes by invoking the

CIM_Enabl edL ogical ElementRequestStateChange() method. A client can determine valid state
values by finding the associated CIM_ElementCapabilities instance and analyzing the
RequestedStatesSupported property.

5.2.6 Modifying a Virtual System

Clients may be able to modify various aspects of a virtual computer system including adding or
deleting virtual resources, modifying virtual resource definitions, or modifying the virtual
resource state extension. Allocation capabilities and associated RASDs can be used to determine
what modifications an implementation supports.

To add new virtual resources the client prepares one or more instances of RASDs that represent
the alocation requests for new virtual resources and invokes the AddResourceSettings() method
on the virtual system management service to add the virtual resources.

To modify existing resources the client obtains RASDs or V SSDs that represent the state
extension or resource definition to be modified and alters the properties in these instances locally
within ranges supported by the implementation. The ModifyResourceSettings() method of the
virtual system management service can then be invoked with the modified RASD values to effect
the desired changes.

5.2.7 Destroying a Virtual System

Given areference to an instance of CIM_Computer System that represents the virtual system to
be destroyed, the DestroySystem() method on the virtual system management service can be
invoked to effect the virtual system destruction.

5.2.8 Managing Snapshots
The following use cases illustrate various aspects of snapshot management.

11/11/2007 Page 30 of 33

5.2.8.1 Determining Support for Snapshots

Properties of the CIM _Virtual SystemSnapshotServiceCapabilities that are associated with the
CIM_Virtual SystemSnapshotService can be examined to determine the level of support for
snapshot types and snapshot related methods.

5.2.8.2 Creating a Snapshot

The CreateSnapshot() method on the Virtual SystemSnapshotService is invoked, passing a
reference to the system that is the target for the snapshot.

5.2.8.3 Locating Snapshots of a Virtual System

Given an instance of CIM_ComputerSystem that represents a virtual computer system the client
can follow instances of the CIM_SnapshotofVirtual System association to instances of
CIM_Virtual SystemSettingData, which anchors the snapshot related configuration classes for a
snapshot.

5.2.8.4 Locating the Most Current Snapshot in a Branch of Snapshots

Given an instance of CIM_Computer System that represents a virtual computer system, the client
can follow the CIM_M ostCurrentSnapshotinBranch association to the instance of
CIM_Virtual SystemSettingData that represents the most recent snapshot.

5.2.8.5 Locating Dependent Snapshots

Given areference to an instance of the CIM_Virtual SystemSettingData class that represents a
virtual system snapshot, the client can follow the CIM_Dependency association to instances of
CIM_Virtual SystemSettingData that represent dependent snapshots (if any).

5.2.8.6 Applying a Snapshot

Given areference to an instance of the CIM_ Virtual SystemSettingData class that represents a
virtual system snapshot, the client invokes the ApplySnapshot() method on the virtual system
snapshot service. The system is deactivated and system state is restored to the value of the
resources represented in the snapshot. The system is then activated.

5.2.8.7 Destroying a Snapshot

The DestroySnapshot() method on the Virtual SystemSnapshotService isinvoked, passing a
reference to the CIM_Virtual SystemSettingData instance that represents the snapshot to be
deleted.

DSP2013 Page 31 of 33

Appendix A — References

[1] Common Information Model (CIM) Specification, 2.2, June 14, 1999 - Downloadable from
http://www.dmitf.org/spec/cims.html

[2] Unified Modeling Language (UML) from the Open Management Group (OMG) -
Downloadable from http://www.omg.org/uml/

11/11/2007 Page 32 of 33

http://www.dmtf.org/spec/cims.html
http://www.omg.org/uml/

Appendix B — Extending the Model

The system virtualization model was designed for extensibility in several areas, including the
following:

Virtual resource types can be added by adding a resource type value from the Vendor
Reserved range of the ResourceType property of the
CIM_ResourceAllocationSettingData, CIM_ResourcePool, and
CIM_ResourceAllocation classes. The Description property is used to provide
additional details of the new resource type.

Virtual resource subtypes can be added using the ResourceSubtype property for the
associated classes. For example, the ResourceSubtype property can be used to
distinguish different models of a particular resource.

The CIM_ResourceAllocationSettingData class can be extended with implementation-
specific properties. One of the main motivators for the use of instances of thisclassin
several contextsisto allow the RASD to be extended once and then leveraged across
the model. A RASD with vendor extensionsis used in resource allocation, virtual
system configuration and extended state and as part of the allocation capabilities model.
By instantiating appropriate instances of RASD that are associated with instances of
CIM_AllocationCapabilities the implementation can inform the management client
about minimum, maximum and default values for a property that the client was not
originally aware of when designed.

DSP2013 Page 33 of 33

	1 Introduction
	1.1 Background Reference Material
	1.1.1 Approved References
	1.1.2 References under Development

	1.2 Terminology

	2 Overview
	2.1 Requirements
	2.2 Basic Virtual Computer System Modeling
	2.3 Modeling Virtual Devices and Systems
	2.4 Virtual System Configurations
	2.5 Modeling Resource Pools and Resource Allocations

	3 The System Virtualization Model
	3.1 Profile Structure
	3.2 Concepts Addressed by the Model
	3.2.1 Resource Allocation
	3.2.2 Allocation Capabilities
	3.2.3 System Virtualization and Virtual Systems
	3.2.3.1 Virtual System States

	3.2.4 Virtual Device Modeling

	4 Relationships to Other Standards and Specifications
	4.1 Overlapping Standards and Specifications

	5 System Virtualization Model Use Cases
	5.1 Managing the Host Computer System
	5.1.1 Discovering the CIM implementation for a System Virtualization
	5.1.2 Discovering a Host Computer System
	5.1.3 Determining the Capabilities of an Implementation
	5.1.4 Determining the Supported Resource Types of an Implementation
	5.1.5 Finding Resource Pools and their Constituent Resources
	5.1.6 Determining the Capacity and Allocation of a Resource Pool
	5.1.7 Determining Resources Allocated from a Resource Pool
	5.1.8 Determining the Valid Settings for a Resource Allocation
	5.1.9 Locating Virtual Systems Hosted by a Host Computer System

	5.2 Managing a Virtual Computer System
	5.2.1 Creating a Virtual Computer System
	5.2.2 Determining a Virtual System’s State and Other Properties
	5.2.3 Determining the “Defined” Virtual System Configuration
	5.2.4 Determining the Virtual System Structure
	5.2.5 Changing the Virtual System State
	5.2.6 Modifying a Virtual System
	5.2.7 Destroying a Virtual System
	5.2.8 Managing Snapshots
	5.2.8.1 Determining Support for Snapshots
	5.2.8.2 Creating a Snapshot
	5.2.8.3 Locating Snapshots of a Virtual System
	5.2.8.4 Locating the Most Current Snapshot in a Branch of Snapshots
	5.2.8.5 Locating Dependent Snapshots
	5.2.8.6 Applying a Snapshot
	5.2.8.7 Destroying a Snapshot
	Appendix A – References
	Appendix B – Extending the Model

