
 1

2

3

4

5

6

7

8

Document Number: DSP1042

Date: 2010-04-22

Version: 1.0.0

System Virtualization Profile

Document Type: Specification

Document Status: DMTF Standard

Document Language: E

System Virtualization Profile DSP1042

2 DMTF Standard Version 1.0.0

Copyright Notice 9
Copyright © 2007, 2010 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 10

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time
to time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 30

http://www.dmtf.org/about/policies/disclosures.php

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 3

CONTENTS 31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

1 .. 9 Scope
2 .. 9 Normative references
3 .. 10 Terms and definitions
4 .. 11 Symbols and abbreviated terms
5 .. 12 Synopsis
6 .. 13 Description

6.1 ... 13 Profile relationships
6.2 .. 15 System virtualization class schema
6.3 .. 17 Virtual system configurations
6.4 .. 18 Resource allocation
6.5 ... 19 Snapshots

7 .. 19 Implementation
7.1 .. 19 Host system
7.2 ... 19 Profile registration

7.2.1 ... 20 This profile
7.2.2 ... 20 Scoped resource allocation profiles

7.3 ... 20 Representation of hosted virtual systems
7.3.1 ... 21 Profile conformance for hosted virtual systems
7.3.2 21 CIM_VirtualSystemSettingData.VirtualSystemType property

7.4 .. 21 Virtual system management capabilities
7.4.1 ... 21 CIM_VirtualSystemManagementCapabilities class
7.4.2

... 21
CIM_VirtualSystemManagementCapabilities.VirtualSystemTypesSupported[]
array property

7.4.3
... 21

CIM_VirtualSystemManagementCapabilities.SynchronousMethodsSupported[]
array property

7.4.4
... 22

CIM_VirtualSystemManagementCapabilities.AsynchronousMethodsSupported[]
array property

7.4.5
.. 22

CIM_VirtualSystemManagementCapabilities.IndicationsSupported[] array
property

7.4.6
.. 22

Grouping Rules for implementations of methods of the
CIM_VirtualSystemManagementService class

7.5 ... 23 Virtual system definition and modification
7.5.1 ... 23 CIM_VirtualSystemSettingData.InstanceID property
7.5.2 ... 23 CIM_VirtualSystemSettingData.ElementName property
7.5.3 24 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property
7.5.4 24 CIM_VirtualSystemSettingData.VirtualSystemType property

7.6 .. 24 Virtual resource definition and modification
7.7 .. 25 Virtual system snapshots

7.7.1 .. 25 Virtual system snapshot service and capabilities
7.7.2 ... 26 Virtual system snapshot representation
7.7.3 ... 26 Designation of the last applied snapshot
7.7.4 ... 26 Designation of the most current snapshot in branch
7.7.5 .. 27 Virtual system snapshot capabilities

8 ... 27 Methods
8.1 ... 27 General behavior of extrinsic methods

8.1.1 .. 27 Resource allocation requests
8.1.2 ... 28 Method results
8.1.3 .. 28 Asynchronous processing

8.2 .. 29 Methods of the CIM_VirtualSystemManagementService class
8.2.1 29 CIM_VirtualSystemManagementService.DefineSystem() method
8.2.2 31 CIM_VirtualSystemManagementService.DestroySystem() method

System Virtualization Profile DSP1042

4 DMTF Standard Version 1.0.0

8.2.3
... 32

CIM_VirtualSystemManagementService.AddResourceSettings() method
(Conditional)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

8.2.4 34 CIM_VirtualSystemManagementService.ModifyResourceSettings() method
8.2.5 35 CIM_VirtualSystemManagementService.ModifySystemSettings() method
8.2.6 36 CIM_VirtualSystemManagementService.RemoveResourceSettings() method

8.3 .. 37 Methods of the CIM_VirtualSystemSnapshotService class
8.3.1 37 CIM_VirtualSystemSnapshotService.CreateSnapshot() method
8.3.2 39 VirtualSystemSnapshotService.DestroySnapshot() method
8.3.3 .. 40 VirtualSystemSnapshotService.ApplySnapshot() method

8.4 .. 41 Profile conventions for operations
8.4.1 .. 41 CIM_AffectedJobElement
8.4.2 .. 42 CIM_ComputerSystem
8.4.3 .. 42 CIM_ConcreteJob
8.4.4 .. 42 CIM_Dependency
8.4.5 .. 42 CIM_ElementCapabilities
8.4.6 ... 42 CIM_ElementConformsToProfile
8.4.7 ... 42 CIM_HostedDependency
8.4.8 ... 42 CIM_HostedService
8.4.9 .. 42 CIM_LastAppliedSnapshot
8.4.10 ... 42 CIM_MostCurrentSnapshotInBranch
8.4.11 ... 42 CIM_ReferencedProfile
8.4.12 ... 43 CIM_RegisteredProfile
8.4.13 .. 43 CIM_ServiceAffectsElement
8.4.14 ... 43 CIM_SnapshotOfVirtualSystem
8.4.15 .. 43 CIM_System
8.4.16 .. 43 CIM_VirtualSystemManagementCapabilities
8.4.17 ... 43 CIM_VirtualSystemManagementService
8.4.18 ... 43 CIM_VirtualSystemSnapshotService
8.4.19 .. 43 CIM_VirtualSystemSnapshotCapabilities
8.4.20 .. 43 CIM_VirtualSystemSnapshotServiceCapabilities

9 ... 43 Use Cases
9.1 .. 44 General assumptions
9.2 ... 44 Discovery, localization, and inspection

9.2.1
... 45

SLP-Based discovery of CIM object managers hosting implementations of this
Profile

9.2.2 46 Locate conformant implementations using the EnumerateInstances() operation
9.2.3 46 Locate conformant implementations using the ExecuteQuery() operation
9.2.4 46 Locate host systems represented by central instances of this profile
9.2.5 47 Locate implementations of scoped resource allocation profiles
9.2.6 .. 47 Locate virtual system management service
9.2.7 ... 48 Determine the capabilities of an implementation
9.2.8 .. 49 Locate hosted resource pools of a particular resource type
9.2.9 49 Obtain a set of central instances of scoped resource allocation profiles
9.2.10 .. 50 Determine implemented resource types
9.2.11 .. 51 Determine the default resource pool for a resource type
9.2.12

... 52
Determine the resource pool for a resource allocation request or an allocated
resource

9.2.13 ... 52 Determine valid settings for a resource type
9.2.14 ... 53 Determine implementation class specifics
9.2.15 .. 54 Determine the implementation class for a resource type
9.2.16 ... 54 Locate virtual systems hosted by a host system

9.3 .. 55 Virtual system definition, modification, and destruction
9.3.1 ... 55 Virtual system definition
9.3.2 .. 57 Virtual system modification
9.3.3 ... 61 Destroy virtual system

9.4 .. 61 Snapshot-related activities
9.4.1 ... 64 Locate virtual system snapshot service

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 5

9.4.2 64 Determine capabilities of a virtual system snapshot service140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177

178
179
180
181
182
183
184
185

186

187
188
189

9.4.3 ... 65 Create snapshot
9.4.4 ... 65 Locate snapshots of a virtual system
9.4.5 .. 65 Locate the source virtual system of a snapshot
9.4.6 66 Locate the most current snapshot in a branch of snapshots
9.4.7 ... 66 Locate dependent snapshots
9.4.8 ... 67 Locate parent snapshot
9.4.9 .. 67 Apply snapshot
9.4.10 ... 68 Destroy snapshot

10 .. 68 CIM elements
10.1 ... 69 CIM_AffectedJobElement
10.2 ... 69 CIM_ConcreteJob
10.3 ... 70 CIM_Dependency
10.4 .. 70 CIM_ElementCapabilities (Host system)
10.5 ... 70 CIM_ElementCapabilities (Virtual system management service)
10.6 ... 71 CIM_ElementCapabilities (Virtual system snapshot service)
10.7 .. 72 CIM_ElementCapabilities (Snapshots of virtual systems)
10.8 .. 72 CIM_ElementConformsToProfile
10.9 .. 73 CIM_HostedDependency
10.10 ... 73 CIM_HostedService (Virtual system management service)
10.11 .. 74 CIM_HostedService (Virtual system snapshot service)
10.12 ... 74 CIM_LastAppliedSnapshot
10.13 .. 75 CIM_MostCurrentSnapshotInBranch
10.14 ... 75 CIM_ReferencedProfile
10.15 .. 76 CIM_RegisteredProfile
10.16 .. 76 CIM_ServiceAffectsElement (Virtual system management service)
10.17 ... 77 CIM_ServiceAffectsElement (Virtual system snapshot service)
10.18 .. 77 CIM_SnapshotOfVirtualSystem
10.19 ... 78 CIM_System
10.20 ... 78 CIM_VirtualSystemManagementCapabilities
10.21 .. 79 CIM_VirtualSystemManagementService
10.22 ... 79 CIM_VirtualSystemSettingData (Input)
10.23 .. 80 CIM_VirtualSystemSettingData (Snapshot)
10.24 ... 81 CIM_VirtualSystemSnapshotCapabilities
10.25 .. 81 CIM_VirtualSystemSnapshotService
10.26 ... 82 CIM_VirtualSystemSnapshotServiceCapabilities

Figures

Figure 1 – Profiles related to system virtualization ... 14
Figure 2 – System Virtualization Profile: Class diagram... 16
Figure 3 – System Virtualization Profile instance diagram: Discovery, localization, and inspection........... 45
Figure 4 – Virtual system configuration based on input virtual system configurations and

implementation defaults .. 56
Figure 5 – Virtual system resource modification ... 60
Figure 6 – System Virtualization Profile: Snapshot example .. 63

Tables

Table 1 – Related Profiles ... 12
Table 2 – DefineSystem() method: Parameters... 29
Table 3 – DefineSystem() method: Return code values .. 31

System Virtualization Profile DSP1042

6 DMTF Standard Version 1.0.0

Table 4 – DestroySystem() method: Parameters... 32 190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

Table 5 – DestroySystem() method: Return code values .. 32
Table 6 – AddResourceSettings() method: Parameters... 33
Table 7 – AddResourceSettings() method: Return code values .. 33
Table 8 – ModifyResourceSettings() method: Parameters .. 34
Table 9 – ModifyResourceSettings() Method: Return code values.. 35
Table 10 – ModifySystemSettings() Method: Parameters.. 36
Table 11 – ModifySystemSettings() Method: Return code values ... 36
Table 12 – RemoveResourceSettings() Method: Parameters ... 37
Table 13 – RemoveResourceSettings() Method: Return code values... 37
Table 14 – CreateSnapshot() method: Parameters ... 38
Table 15 – CreateSnapshot() method: Return code values... 39
Table 16 – DestroySnapshot() method: Parameters.. 39
Table 17 – DestroySnapshot() method: Return code values ... 40
Table 18 – ApplySnapshot() method: Parameters ... 40
Table 19 – ApplySnapshot() method: Return code values... 41
Table 20 – CIM Elements: System Virtualization Profile ... 68
Table 21 – Association: CIM_AffectedJobElement ... 69
Table 22 – Class: CIM_ConcreteJob .. 69
Table 23 – Class: CIM_Dependency Class... 70
Table 24 – Association: CIM_ElementCapabilities (Host System).. 70
Table 25 – Association: CIM_ElementCapabilities (Virtual system management) 71
Table 26 – Association: CIM_ElementCapabilities (Snapshot service)... 71
Table 27 – Association: CIM_ElementCapabilities (Snapshots of virtual systems) 72
Table 28 – Association: CIM_ElementConformsToProfile... 72
Table 29 – Association: CIM_HostedDependency.. 73
Table 30 – Association: CIM_HostedService (Virtual system management service) 73
Table 31 – Association: CIM_HostedService (Virtual system snapshot service) .. 74
Table 32 – Association: CIM_LastAppliedSnapshot ... 74
Table 33 – Association: CIM_MostCurrentSnapshotInBranch .. 75
Table 34 – Association: CIM_ReferencedProfile... 75
Table 35 – Class: CIM_RegisteredProfile ... 76
Table 36 – Association: CIM_ServiceAffectsElement (Virtual system management service)..................... 77
Table 37 – Association: CIM_ServiceAffectsElement ... 77
Table 38 – Association: CIM_SnapshotOfVirtualSystem .. 78
Table 39 – Class: CIM_VirtualSystemManagementCapabilities... 78
Table 40 – Class: CIM_VirtualSystemManagementCapabilities... 78
Table 41 – Class: CIM_VirtualSystemManagementService ... 79
Table 42 – Class: CIM_VirtualSystemSettingData (Input) .. 80
Table 43 – Class: CIM_VirtualSystemSettingData (Snapshot) ... 80
Table 44 – Class: CIM_VirtualSystemSnapshotCapabilities... 81
Table 45 – Class: CIM_VirtualSystemSnapshotService ... 81
Table 46 – Class: CIM_VirtualSystemSnapshotServiceCapabilities... 82

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 7

Foreword 234

235
236

237
238

239

240

241

243

This profile (DSP1042, System Virtualization Profile) was prepared by the System Virtualization,
Partitioning and Clustering Working Group of the DMTF.

The DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and sys-
tems management and interoperability.

Acknowledgments

The authors wish to acknowledge the following people.

Editor:

• Michael Johanssen – IBM 242

Contributors:

• Gareth Bestor – IBM 244
• Chris Brown – HP 245
• Mike Dutch – Symantec 246
• Jim Fehlig – Novell 247
• Kevin Fox – Sun Microsystems, Inc. 248
• Ron Goering – IBM 249
• Daniel Hiltgen – EMC/VMware 250
• Michael Johanssen – IBM 251
• Larry Lamers – EMC/VMware 252
• Andreas Maier – IBM 253
• Aaron Merkin – IBM 254
• John Parchem – Microsoft 255
• Nihar Shah – Microsoft 256
• David Simpson – IBM 257
• Carl Waldspurger – EMC/VMware 258

System Virtualization Profile DSP1042

8 DMTF Standard Version 1.0.0

Introduction 259

260
261
262
263
264
265

The information in this specification should be sufficient for a provider or consumer of this data to
unambiguously identify the classes, properties, methods, and values that shall be instantiated and
manipulated to represent and manage a host system, its resources, and related services, and to create
and manipulate virtual systems. The target audience for this specification is implementers who are writing
CIM-based providers or consumers of management interfaces that represent the components described
in this document.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 9

System Virtualization Profile 266

268
269
270
271
272

274
275
276

277

1 Scope 267

This profile is an autonomous profile that specifies the minimum top-level object model needed for the
representation of host systems and the discovery of hosted virtual computer systems. In addition, it
specifies a service for the manipulation of virtual computer systems and their resources, including
operations for the creation, deletion, and modification of virtual computer systems and operations for the
addition or removal of virtual resources to or from virtual computer systems.

2 Normative references 273

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

DMTF DSP0004, CIM Infrastructure Specification 2.5
http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf 278

279 DMTF DSP0200, CIM Operations over HTTP 1.3
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf 280

281 DMTF DSP0201, Representation of CIM in XML 2.3
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf 282

283 DMTF DSP1001, Management Profile Specification Usage Guide 1.0
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf 284

285 DMTF DSP1012, Boot Control Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1012_1.0.pdf 286

287 DMTF DSP1022, CPU Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf 288

289 DMTF DSP1027, Power State Management Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1027_1.0.pdf 290

291 DMTF DSP1033, Profile Registration Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf 292

293 DMTF DSP1041, Resource Allocation Profile 1.1
http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf 294

295 DMTF DSP1043, Allocation Capabilities Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf 296

297 DMTF DSP1044, Processor Device Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1044_1.0.pdf 298

299 DMTF DSP1045, Memory Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1045_1.0.pdf 300

301 DMTF DSP1047, Storage Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1047_1.0.pdf 302

http://www.dmtf.org/standards/published_documents/DSP0004_2.5.pdf
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf
http://www.dmtf.org/standards/published_documents/DSP1001_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1012_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1022_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1027_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1033_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1041_1.1.pdf
http://www.dmtf.org/standards/published_documents/DSP1043_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1044_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1045_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1047_1.0.pdf

System Virtualization Profile DSP1042

10 DMTF Standard Version 1.0.0

DMTF DSP1052, Computer System Profile 1.0 303
http://www.dmtf.org/standards/published_documents/DSP1052_1.0.pdf 304

305 DMTF DSP1053, Base Metrics Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1053_1.0.pdf 306

307 DMTF DSP1057, Virtual System Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1057_1.0.pdf 308

309 DMTF DSP1059, Generic Device Resource Virtualization Profile 1.0
http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf 310

311 ISO/IEC Directives, Part2:2004, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 312

314

3 Terms and definitions 313

For the purposes of this document, the following terms and definitions apply. For the purposes of this
document, the terms and definitions in DSP1033 and DSP1001 also apply. 315

317
318

320
321

323
324
325

327
328
329

331
332

334
335

337
338

340
341
342

3.1 316
can
used for statements of possibility and capability, whether material, physical, or causal

3.2 319
cannot
used for statements of possibility and capability, whether material, physical, or causal

3.3 322
conditional
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted, when the specified conditions are met

3.4 326
mandatory
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.5 330
may
indicates a course of action permissible within the limits of the document

3.6 333
need not
indicates a course of action permissible within the limits of the document

3.7 336
optional
indicates a course of action permissible within the limits of the document

3.8 339
referencing profile
indicates a profile that owns the definition of this class and can include a reference to this profile in its
"Related Profiles" table

http://www.dmtf.org/standards/published_documents/DSP1052_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1053_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1057_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP1059_1.0.pdf
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 11

3.9 343
shall 344

345
346

348
349
350

352
353
354

356
357

359
360

362
363

365
366

368
369

371
372

374
375
376
377
378
379

381

383
384

indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.10 347
shall not
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.11 351
should
indicates that among several possibilities, one is recommended as particularly suitable, without mention-
ing or excluding others, or that a certain course of action is preferred but not necessarily required

3.12 355
should not
indicates that a certain possibility or course of action is deprecated but not prohibited

3.13 358
unspecified
indicates that this profile does not define any constraints for the referenced CIM element

3.14 361
implementation
a set of software components that realize the classes that are specified or specialized by this profile

3.15 364
client
application that exploits facilities specified by this profile

3.16 367
this profile
a reference to this DMTF management profile: DSP1042 (System Virtualization Profile)

3.17 370
virtualization platform
virtualizing infrastructure provided by a host system that enables the deployment of virtual systems

3.18 373
WBEM service
a component that provides a service accessible through a WBEM protocol
A single WBEM service instance may be used by multiple WBEM client instances. The term WBEM
service is used to denote the entire set of components on the server side that is needed to provide the
service. For example, in typical WBEM infrastructures this includes a CIM object manager and a set of
CIM providers.

4 Symbols and abbreviated terms 380

The following symbols and abbreviations are used in this document.

4.1 382
RASD
resource allocation setting data

System Virtualization Profile DSP1042

12 DMTF Standard Version 1.0.0

4.2 385
SLP 386

387

389
390

392
393

395
396
397
398
399
400

401
402

service location protocol

4.3 388
VS
virtual system

4.4 391
VSSD
virtual system setting data

5 Synopsis 394

Profile Name: System Virtualization
Version: 1.0.0
Organization: DMTF
CIM Schema Version: 2.22
Central Class: CIM_System
Scoping Class: CIM_System

This profile is an autonomous profile that defines the minimum object model for the representation of host
systems. It identifies component profiles that address the allocation of resources. It extends the object
model for the representation of virtual systems and virtual resources defined in DSP1057. 403

404
405

406
407

408

The central instance and the scoping instance of this profile shall be an instance of the CIM_System class
that represents a host system.

Table 1 lists DMTF management profiles that this profile depends on, or that may be used in the context
of this profile.

Table 1 – Related Profiles

Profile Name Organization Version Relationship Description

Profile Registration DMTF 1.0 Mandatory The DMTF management profile that de-
scribes the registration of DMTF
management profiles; see 7.2.

Virtual System DMTF 1.0 Mandatory The autonomous DMTF management profile
that specifies the minimum object model
needed for the inspection and basic
manipulation of a virtual system; see 7.3.

Processor Device
Resource Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of processor re-
sources; see 7.2.2.

Memory Resource
Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of memory re-
sources; see 7.2.2.

Storage Adapter Resource
Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of storage
adapter resources; see 7.2.2.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 13

Profile Name Organization Version Relationship Description

Generic Device Resource
Virtualization

DMTF 1.0 Conditional The component DMTF management profile
that specifies the allocation of generic re-
sources; see 7.2.2.

6 Description 409

This clause contains informative text only. 410

411
412

413

414

415

416

417

418

419

420

421
422

423
424

425
426

428
429
430

This profile defines a top-level object model for the inspection and control of system virtualization facilities
provided by host systems. It supports the following range of functions:

• the detection of host systems that provide system virtualization facilities

• the discovery of scoped host resources

• the discovery of scoped resource pools

• the inspection of host system capabilities for

– the creation and manipulation of virtual systems

– the allocation of resources of various types

• the inspection of resource pool capabilities

• the discovery of hosted virtual systems

• the inspection of relationships between host entities (host systems, host resources, and re-
source pools) and virtual entities (virtual systems and virtual resources)

• the creation and manipulation of virtual systems using input configurations, predefined
configurations available at the host system, or both

• the creation and manipulation of snapshots that capture the configuration and state of a virtual
system at a particular point in time

6.1 Profile relationships 427

A client that is exploiting system virtualization facilities specified by this profile needs to be virtualization
aware. The specified model keeps that knowledge at an abstract level that is independent of a particular
system virtualization platform implementation or technology.

This profile complements DSP1057. 431

432
433
434
435

• This profile focuses on virtualization aspects related to host systems and their resources, such
as modeling the relationships between host resources and virtual resources. Further it
addresses virtualization-specific tasks such as the creation or modification of virtual systems
and their configurations.

• DSP1057 defines a top-level object model for the inspection and basic operation of virtual
systems. It is a specialization of

436
DSP1052 that defines a management interface for general-

purpose computer systems. Consequently, the interface specified for the basic inspection and
operation of virtual systems is conformant with that specified for real systems. A client that is
exploiting capabilities specified by

437
438
439

DSP1052 with respect to virtual systems that are instrument
conformant with

440
DSP1057 can inherently handle virtual systems like real systems without being

virtualization aware.
441
442

443 Figure 1 shows the structure of DMTF management profiles related to system virtualization.

System Virtualization Profile DSP1042

DSP1043
Allocation

Capabilities
(Optional)

DSP1042
System Virtualization

DSP1041
Resource
Allocation
(Optional)

DSP1044
CPU Resource
Virtualization

(Optional)

Abstract
Component

Component

Autonomous

Abstract
Component

DSP1045
Memory Resource

Virtualization
(Optional)

DSP1050
Network Port

Resource
Virtualization

(Optional)

Component

Component

DSP1049
Storage Resource

Virtualization
(Optional)

Component

DSP1052
ComputerSystem

DSP1027
Power State
Management

(Optional)

DSP1033
Profile Registration

Component

Other
Component

Profiles

DSP1057
Virtual System

DSP1004
Base Server
(Optional)

Autonomous

Abstract
Autonomous

Autonomous

DSP1022
CPU Profile
(Optional)

DSP1014
Ethernet Port Profile

(Optional)

Component

Component

DSP1012
Boot Control Profile

(Optional)

Component

DSP1026
System Memory

Profile
(Optional)

Component

DMTF
Management

Profiles
Related to

System
Virtualization

Other
Device
Profiles

Component

DSP1059
Generic Device Re-
source Virtualization

(Optional)

Scoped By

Scoped By

 444

445 Figure 1 – Profiles related to system virtualization

14 DMTF Standard Version 1.0.0

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 15

For example, an implementation that instruments a virtualization platform may implement some of the fol-
lowing DMTF management profiles:

446
447

448

449
450

• This profile

This profile enables the inspection of host systems, their resources, their capabilities, and their
services for creation and manipulation of virtual systems.

• DSP1057 451

DSP1057 enables the inspection of and basic operations on virtual systems. 452

453

454
455
456
457

458

459
460

• Resource-type-specific profiles

Resource-type-specific profiles enable the inspection and operation of resources for one
particular resource type. They apply to both virtual and host resources; they do not cover
virtualization-specific aspects of resources. A client may exploit resource-type-specific profiles
for the inspection and manipulation of virtual and host resources in a similar manner.

• Resource allocation profiles

Resource allocation profiles enable the inspection and management of resource allocation re-
quests, allocated resources, and resources available for allocation. Resource allocation profiles
are based on DSP1041 and on DSP1043. Resource allocation profiles are scoped by this
profile. A client may exploit resource allocation profiles for the inspection of

461
462

463

464

465

466

467

– allocated resources

– allocation dependencies that virtual resources have on host resources and resource pools

– capabilities that describe possible values for allocation requests

– capabilities that describe the mutability of resource allocations

For some resource types, specific resource allocation profiles are specified that address re-
source-type-specific resource allocation aspects and capabilities. Examples are DSP1044 and 468
DSP1047. 469

470 The management of the allocation of basic virtual resources that are not covered by a resource-
type-specific resource allocation profile is specified in DSP1059. 471

473
474
475
476

6.2 System virtualization class schema 472

Figure 2 shows the complete class schema of this profile. It outlines elements that are specified or
specialized by this profile, as well as the dependency relationships between elements of this profile and
other profiles. For simplicity in diagrams, the prefix CIM_ has been removed from class and association
names.

System Virtualization Profile DSP1042

ComputerSystem
(See " Virtual System Profile")

VirtualSystemSettingData
(See "Virtual System Profile")

VirtualSystemManagementService

LogicalDevice
(See "Resource Allocation Profile"

or device type specific profile)

ResourceAllocationSettingData
(See "Resource Allocation Profile")

ResourcePool
(See "Resource Allocation Profile")

*

1
SettingsDefineState
(See "Resource Allocation Profile")

0..1

1

Se
tti

ng
sD

ef
in

eS
ta

te
(S

ee
 "V

irt
ua

l S
ys

te
m

 P
ro

fil
e"

)

ResourcePoolConfigurationService
(See "Resource Allocation Profile")

1 0..1

HostedService1

*

S
ys

te
m

D
ev

ic
e

(S
ee

 "R
es

ou
rc

e
A

llo
ca

tio
n

P
ro

fil
e"

or

 d
ev

ic
e

ty
pe

 s
pe

ci
fic

 p
ro

fil
e)

AllocationCapabilities
(See "Allocation Capabilities Profile")

1

*

ElementCapabilities
(See "Allocation Capabilities Profile")

VirtualSystemManagementCapabilities

1..*

0..1

SettingsDefineCapabilities
(See "Allocation Capabilities Profile")

1*

ServiceAffectsElement
(See "Resource Allocation Profile")

*

0..1

S
er

vi
ce

A
ffe

ct
sE

le
m

en
t

ConcreteJob1 *AffectedJobElement

*

1

C
on

cr
et

eC
om

po
ne

nt
(S

ee
 "R

es
ou

rc
e

A
llo

ca
tio

n
P

ro
fil

e"
)

1

*
ElementAllocatedFromPool
(See "Resource Allocation Profile")

*

1

H
os

te
dR

es
ou

rc
eP

oo
l

(S
ee

 "R
es

ou
rc

e
A

llo
ca

tio
n

P
ro

fil
e"

)

0..1
* ElementSettingData

(See "Virtual System Profile")

1

*

H
os

te
dD

ep
en

de
nc

y

1

*

HostedDependency
(See "Resource Allocation Profile")

*
0..1

ElementSettingData
(See "Resource Allocation Profile")

RegisteredProfile

1 1

ElementCapabilities

1 *

ReferencedProfile

1

*
ConcreteComponent
(See "Virtual System Profile")

System

1

*

ElementConformsToProfile

0..1

0..1

Dependency

0..1 1
ElementCapabilities

VirtualSystemSnapshotServiceCapabilitiesVirtualSystemSnapshotService

1 1
ElementCapabilities

*

0..1

S
er

vi
ce

A
ffe

ct
sE

le
m

en
t

0..1

0..1

0..1

La
st

A
pp

lie
dS

na
ps

ho
t

0..1

0..1

M
os

tC
ur

re
nt

Sn
ap

sh
ot

In
B

ra
nc

h

0..1

*

S
na

ps
ho

tO
fV

irt
ua

lS
ys

te
m

VirtualSystemSnapshotCapabilities
1

* ElementCapabilities

EnabledLogicalElementCapabilities
(See " Virtual System Profile")

10..1

*

0..1

Se
rv

ic
eA

ffe
ct

sE
le

m
en

t

EnabledLogicalElement
(See "Resource Allocation Profile")

ManagedSystemElement
(See "Resource Allocation Profile")

0..1

*

ResourceAllocationFromPool
(See "Resource Allocation Profile")

477
478

479

480

481
482

Figure 2 – System Virtualization Profile: Class diagram

This profile specifies the use of the following classes and associations:

• the CIM_RegisteredProfile class and the CIM_ElementConformsToProfile association for the
advertisement of conformance to this profile

16 DMTF Standard Version 1.0.0

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 17

• the CIM_ReferencedProfile association for the representation of a scoping relationship between
this profile and scoped DMTF management profiles

483
484

485

486
487

488
489
490

491
492

493
494
495

496
497

498
499

500
501

• the CIM_System class for the representation of host systems

• the CIM_HostedDependency association for the representation of the hosting relationship be-
tween a host system and hosted virtual systems

• the CIM_VirtualSystemManagementService class for the representation of virtual system
management services available at a host system, providing operations like the creation and
modification of virtual systems and their components

• the CIM_HostedService association for the representation of the relationship between a host
system and services that it provides

• the CIM_VirtualSystemManagementCapabilities class for the representation of optional fea-
tures, properties, and methods available for the management of virtual systems hosted by a
host system

• the CIM_ElementCapabilities association for the representation of the relationship between a
host system, a virtual system or a service, and their respective capabilities

• the CIM_ServiceAffectsElement association for the representation of the relationship between
defined services and affected elements like virtual systems or virtual system snapshots

• the CIM_VirtualSystemSettingData class for the representation of snapshots (in addition to the
use of that class for the representation of virtual aspects of a virtual system as specified by
DSP1057) 502

503
504

505
506

507
508
509

510
511

512

513
514

515
516
517

518
519
520

521
522
523

• the CIM_VirtualSystemSnapshotService class for the representation of snapshot-related ser-
vices available at a host system

• the CIM_VirtualSystemSnapshotServiceCapabilities class for the representation of optional fea-
tures, properties, and methods available for the management of snapshots of virtual systems

• the CIM_VirtualSystemSnapshotCapabilities class for the representation of optional features,
properties, and methods available for the management of snapshots relating to one particular
virtual system

• the CIM_SnapshotOfVirtualSystem association for the representation of the relationship be-
tween a snapshot of a virtual system and the virtual system itself

• the CIM_Dependency association for dependencies among virtual system snapshots

• the CIM_LastAppliedSnapshot association for the representation of the relationship between a
virtual system and the snapshot that was most recently applied to it

• the CIM_MostCurrentSnapshotInBranch association for the representation of the relationship
between a virtual system and the snapshot that is the most current snapshot in a sequence of
snapshots captured from the virtual system

• the CIM_ConcreteJob class and the CIM_AffectedJobElement association to model a mecha-
nism that allows tracking of asynchronous tasks resulting from operations such as the optional
CreateSystem() method of the CIM_VirtualSystemManagementService class

In general, any mention of a class in this document means the class itself or its subclasses. For example,
a statement such as "an instance of the CIM_LogicalDevice class" implies an instance of the CIM_Logi-
calDevice class or a subclass of the CIM_LogicalDevice class.

6.3 Virtual system configurations 524

This profile extends the use of virtual system configurations. DSP1057 defines a virtual system
configuration as one top-level instance of the CIM_VirtualSystemSettingData class that aggregates zero

525
526

System Virtualization Profile DSP1042

18 DMTF Standard Version 1.0.0

or more instances of the CIM_ResourceAllocationSettingData class through the CIM_VirtualSystemSet-
tingDataComponent association.

527
528

DSP1057 defines the concept of virtual system configurations and applies it to the following types of
virtual system configurations:

529
530

531
532

533

534
535

536
537

538
539

540
541

542

544
545
546
547

548
549

550
551

552

553
554

555

556
557
558

559
560
561

562
563
564
565

566
567
568

• the "State" virtual system configuration, which represents a virtualization-specific state that ex-
tends a virtual system representation

• the "Defined" virtual system configuration, which represents virtual system definitions

• the "Next" virtual system configuration, which represents the virtual system configuration that
will be used for the next activation of a virtual system

This profile applies the concept of virtual system configurations and defines the following additional types
of virtual system configurations:

• the "Input" virtual system configuration, which represents configuration information for new vir-
tual systems

• the "Reference" virtual system configuration, which represents configuration information that
complements an "Input" virtual system configuration for a new virtual system

• the "Snapshot" virtual system configuration, which represents snapshots of virtual systems

6.4 Resource allocation 543

An allocated resource is a resource subset or resource share that is allocated from a resource pool. An
allocated resource is obtained based on a resource allocation request. Both allocated resources and
resource allocation requests are represented through instances of the
CIM_ResourceAllocationSettingData class.

A virtual resource or a comprehensive set of virtual resources is the representation of an allocated re-
source. For example, a set of virtual processors represent an allocated processor resource.

Resource allocation is the process of obtaining an allocated resource based on a resource allocation re-
quest. This profile distinguishes two types of resource allocation:

• Persistent Resource Allocation

Persistent resource allocation occurs while virtual resources are defined and supporting re-
sources are persistently allocated from a resource pool.

• Transient Resource Allocation

Transient resource allocation occurs as virtual resources are instantiated and supporting re-
sources are temporarily allocated from a resource pool for the lifetime of the virtual resource in-
stance.

EXAMPLE 1: Persistent Resource Allocation: File-based virtual disk

A host file is persistently allocated as the virtual disk is defined. The file remains persistently allocated
while the virtual disk remains defined even while the virtual system is not instantiated.

EXAMPLE 2: Transient Resource Allocation: Host memory

A contiguous chunk of host memory is temporarily allocated to support virtual memory as the scoping vir-
tual system is instantiated. The memory chunk remains allocated for the time that the virtual system
remains instantiated.

EXAMPLE 3: Transient Resource Allocation: I/O bandwidth

An I/O bandwidth is temporarily allocated as the scoping virtual system is instantiated. The I/O bandwidth
remains allocated only while the virtual system remains instantiated.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 19

It is a normal situation that within one implementation large numbers of virtual systems are defined such
that obtaining the sum of all resource allocation requests would overcommit the implementation’s capabili-
ties. Nevertheless, the implementation is able support virtual systems or resources in performing their
tasks if it ensures that only a subset of such virtual systems or resources is active at a time that the sum
of their allocated resources remains within the implementation’s capabilities.

569
570
571
572
573

575
576
577
578
579

580
581
582
583
584

585
586

587
588
589
590

591
592
593

595
596

597
598

599
600
601
602
603

605
606

6.5 Snapshots 574

A snapshot is a reproduction of the virtual system as it was at a particular point in the past. A snapshot
contains configuration information and may contain state information of the virtual system and its
resources, such as the content of virtual memory or the content of virtual disks. A snapshot can be applied
back into the virtual system any time, reproducing a situation that existed when the snapshot was cap-
tured.

The extent of snapshot support may vary: an implementation may support full snapshots, snapshots that
capture the virtual system’s disks only, or both. Further, an implementation may impose restrictions on the
virtual system state of the source virtual system—for example, supporting the capturing of snapshots only
while the virtual system is in the "Defined" state. The extent of snapshot support is modeled through spe-
cific capabilities classes.

Implementations may establish relationships between snapshots. For example, snapshots may be or-
dered by their creation time.

This profile specifies mechanisms for the creation, application, and destruction of snapshots. It specifies a
snapshot model that enables the inspection of snapshot-related configuration information such as the
virtual system configurations that were effective when the snapshot was captured. Relationships between
snapshots are also modeled.

This profile specifies mechanisms that enable the inspection of configuration information of snapshots
and their related virtual systems only. This profile does not specify mechanisms for the inspection of the
content that was captured in a snapshot, such as raw virtual memory images or raw virtual disk images.

7 Implementation 594

This clause details the requirements related to classes and their properties for implementations of this
profile. The CIM Schema descriptions for any referenced element and its sub-elements apply.

The list of all required methods can be found in 8 ("Methods") and the list of all required properties can be
found in 10 ("CIM elements").

Where reference is made to CIM Schema properties that enumerate values, the numeric value is norma-
tive and the descriptive text following it in parentheses is informational. For example, in the statement "If
an instance of the CIM_VirtualSystemManagementCapabilities class contains the value
3 (DestroySystemSupported) in an element of the SynchronousMethodsSupported[] array property," the
value "3" is normative text and "(DestroySystemSupported)" is informational text.

7.1 Host system 604

The CIM_System class shall be used for the representation of host systems. There shall be one instance
of the CIM_System class for each host system that is managed conformant to this profile.

7.2 Profile registration 607

DSP1033 describes how an implementation of a profile shall advertise that a profile is implemented. 608

System Virtualization Profile DSP1042

20 DMTF Standard Version 1.0.0

7.2.1 This profile 609

The implementation of this profile shall be indicated by an instance of the CIM_RegisteredProfile class in
the CIM Interop namespace. Each instance of the CIM_System class that represents a host system that
is manageable through this profile shall be a central instance of this profile by associating it with the
instance of the CIM_RegisteredProfile class through an instance of the CIM_ElementConformsToProfile
association.

610
611
612
613
614

616
617

618
619
620
621
622

7.2.2 Scoped resource allocation profiles 615

An implementation of this profile may indicate that it is capable of representing the allocation of resources
to support virtual resources by implementing scoped resource-allocation DMTF management profiles.

The support of scoped resource-allocation profiles is conditional with respect to the presence of an in-
stance of the CIM_RegisteredProfile class in the Interop namespace that represents the scoped resour-
ce–allocation profile implementation and is associated with the instance of the CIM_RegisteredProfile
class that represents an implementation of this profile through an instance of the CIM_ReferencedProfile
association.

Resource-allocation DMTF management profiles are based on DSP1041 and DSP1043. The resource-
allocation DMTF management profiles that are scoped by this profile are listed in

623
624 Table 1, starting with

DSP1044. 625

626
627

628
629

630

An implementation that provides conditional support for inspecting and managing the allocation of re-
sources of one particular resource type shall apply one of the following implementation approaches:

• If a resource-type-specific resource-allocation DMTF management profile is specified for that re-
source type, that profile should be implemented.

• If no resource-type-specific resource-allocation DMTF management profile exists at version 1.0
or later, DSP1059 should be implemented. 631

632
633

634
635
636
637

638

639
640
641
642
643

644
645
646
647
648
649

651

For any implementation of a scoped-resource-allocation DMTF management profile, all of the following
conditions shall be met:

• The instance of the CIM_RegisteredProfile class that represents the implementation of this pro-
file and the instance of the CIM_RegisteredProfile class that represents the implementation of
the scoped resource-allocation DMTF management profile shall be associated through an in-
stance of the CIM_ReferencedProfile association.

• One of the following conditions regarding profile implementation advertisement shall be met:

– Central Class Profile Implementation Advertisement:
Instances of the CIM_ElementConformsToProfile association shall associate each instance
of the CIM_ResourcePool class that is a central instance of the scoped-resource-allocation
DMTF management profile with the instance of the CIM_RegisteredProfile class that repre-
sents an implementation of the scoped-resource-allocation DMTF management profile.

– Scoping Class Profile Implementation Advertisement:
No instances of the CIM_ElementConformsToProfile association shall associate any in-
stance of the CIM_ResourcePool class that is a central instance of the scoped-resource-
allocation DMTF management profile with the instance of the CIM_RegisteredProfile class
that represents an implementation of the scoped-resource-allocation DMTF management
profile.

7.3 Representation of hosted virtual systems 650

This profile strengthens the requirements for the representation of virtual system configurations specified
by DSP1057 for hosted virtual systems. 652

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 21

7.3.1 Profile conformance for hosted virtual systems 653

Any virtual system that is hosted by a conformant host system shall be represented by an instance of the
CIM_ComputerSystem class that is a central instance of

654
DSP1057. That instance shall be associated with

the instance of the CIM_System class that represents the conformant host system through an instance of
the CIM_HostedDependency association.

655
656
657

659
660
661
662
663

665
666

668
669
670

672

673
674

675
676

677
678
679
680

682

683
684

685
686

687
688
689
690
691
692

7.3.2 CIM_VirtualSystemSettingData.VirtualSystemType property 658

The value of the VirtualSystemType property shall be equal to an element of the
VirtualSystemTypesSupported[] array property in the instance of the
CIM_VirtualSystemManagementCapabilities class that is associated with the instance of the
CIM_VirtualSystemManagementService class that represents the host system, or shall be NULL if the
value of the VirtualSystemTypesSupported[] array property is NULL (see 7.4.2).

7.4 Virtual system management capabilities 664

This subclause models capabilities of virtual system management in terms of the
CIM_VirtualSystemManagementCapabilities class.

7.4.1 CIM_VirtualSystemManagementCapabilities class 667

An instance of the CIM_VirtualSystemManagementCapabilities class shall be used to represent the virtual
system management capabilities of a host system. That instance shall be associated with the instance of
the CIM_System class that represents the host system through the CIM_ElementCapabilities association.

7.4.2 CIM_VirtualSystemManagementCapabilities.VirtualSystemTypesSupported[] array 671
property

The implementation of the VirtualSystemTypesSupported[] array property is optional. The
VirtualSystemTypesSupported[] array property should be implemented.

If the VirtualSystemTypesSupported[] array property is implemented, the provisions in this subclause
apply.

Array values shall designate the set of supported virtual system types. If the
VirtualSystemTypesSupported[] array property is not implemented (has a value of NULL), the
implementation does not externalize the set of implemented virtual system types, but internally still may
exhibit different types of virtual systems.

7.4.3 CIM_VirtualSystemManagementCapabilities.SynchronousMethodsSupported[] 681
array property

The implementation of the SynchronousMethodsSupported[] array property is optional. The
SynchronousMethodsSupported[] array property should be implemented.

If the SynchronousMethodsSupported[] array property is implemented, the provisions in this subclause
apply.

Array values shall designate the set of methods of the CIM_VirtualSystemManagementService class that
are implemented with synchronous behavior only. A NULL value or an empty value set shall be used to
indicate that no methods are implemented with synchronous behavior. If a method is designated within
the value set of the SynchronousMethodsSupported[] property, that method shall always exhibit
synchronous behavior and shall not be designated within the value set of the
AsynchronousMethodsSupported[] property.

System Virtualization Profile DSP1042

22 DMTF Standard Version 1.0.0

7.4.4 CIM_VirtualSystemManagementCapabilities.AsynchronousMethodsSupported[] 693
array property 694

695
696

697
698

699
700
701
702
703

705

706
707

708

709
710

712

713
714
715

717
718
719
720
721
722

723
724
725
726
727

729
730
731
732
733
734
735

The implementation of the AsynchronousMethodsSupported[] array property is optional. The
AsynchronousMethodsSupported[] array property should be implemented.

If the AsynchronousMethodsSupported[] array property is implemented, the provisions in this subclause
apply.

Array values shall designate the set of methods of the CIM_VirtualSystemManagementService class that
are implemented with synchronous and potentially with asynchronous behavior. A NULL value or an
empty value set shall be used to indicate that no methods are implemented with asynchronous behavior.
If a method is designated with a value in the AsynchronousMethodsSupported[] array property, it may
show either synchronous or asynchronous behavior.

7.4.5 CIM_VirtualSystemManagementCapabilities.IndicationsSupported[] array 704
property

The implementation of the IndicationsSupported[] array property is optional. The IndicationsSupported[]
array property should be implemented.

If the IndicationsSupported[] array property is implemented, the provisions in this subclause apply.

Array values shall designate the set of types of indications that are implemented. A NULL value or an
empty value set shall be used to indicate that indications are not implemented.

7.4.6 Grouping Rules for implementations of methods of the 711
CIM_VirtualSystemManagementService class

The grouping rules specified in this subclause shall be applied for implementations of methods of the
CIM_VirtualSystemManagementService class. Within a group either all methods or no method at all shall
be implemented; nevertheless synchronous and asynchronous behavior may be mixed.

7.4.6.1 Virtual system definition and destruction 716

If virtual system definition and destruction are implemented, the DefineSystem() and DestroySystem()
methods of the CIM_VirtualSystemManagementService class shall be implemented, and the values
2 (DefineSystemSupported) and 3 (DestroySystemSupported) shall be set in the
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties within the
instance of the CIM_VirtualSystemManagementCapabilities class that describes capabilities of the imple-
mentation.

If virtual system definition and destruction are not implemented, the values 2 (DefineSystemSupported)
and 3 (DestroySystemSupported) shall not be set in the SynchronousMethodsSupported[] or
AsynchronousMethodsSupported[] array properties of the instance of the
CIM_VirtualSystemManagementCapabilities class that describes the virtual system management capabili-
ties of the host system.

7.4.6.2 Virtual resource addition and removal 728

If the addition and removal of virtual resources to or from virtual systems are implemented, the
AddResourceSettings() and RemoveResourceSettings() methods of the
CIM_VirtualSystemManagementService class shall be implemented, and the values
1 (AddResourceSettingsSupported) and 7 (RemoveResourceSettingsSupported) shall be set in the
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties of the instance
of the CIM_VirtualSystemManagementCapabilities class that describes the virtual system management
capabilities of the host system.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 23

If the addition and removal of virtual resources to virtual systems is not implemented, the values
1 (AddResourceSettingsSupported) and 7 (RemoveResourceSettingsSupported) shall not be set in the
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties of the instance
of the CIM_VirtualSystemManagementCapabilities class that describes the virtual system management
capabilities of the host system.

736
737
738
739
740

742
743
744
745
746
747
748

749
750
751
752
753

755
756
757

758
759

760
761

762
763
764
765

767
768
769
770

771
772

773
774
775
776

778

7.4.6.3 Virtual system and resource modification 741

If the modification of virtual systems and virtual resources is implemented, the ModifyResourceSettings()
and ModifySystemSettings() methods of the CIM_VirtualSystemManagementService class shall be
implemented, and the values 5 (ModifyResourceSettingsSupported) and
6 (ModifySystemSettingsSupported) shall be set in the SynchronousMethodsSupported[] or
AsynchronousMethodsSupported[] array properties of the instance of the
CIM_VirtualSystemManagementCapabilities class that describes the virtual system management capabili-
ties of the host system.

If the modification of virtual systems and virtual resources is not implemented, the values
5 (ModifyResourceSettingsSupported) and 6 (ModifySystemSettingsSupported) shall not be set in the
SynchronousMethodsSupported[] or AsynchronousMethodsSupported[] array properties of the instance
of the CIM_VirtualSystemManagementCapabilities class that describes the virtual system management
capabilities of the host system.

7.5 Virtual system definition and modification 754

This profile specifies methods for the definition and modification of virtual systems. These method
specifications use the CIM_VirtualSystemSettingData class for the parameterization of system-specific
properties. Subsequent subclauses specify:

• how a client shall prepare instances of the CIM_VirtualSystemSettingData class that are used
as a parameter for a method that defines or modifies a virtual system

• how an implementation shall interpret instances of the CIM_VirtualSystemSettingData class that
are used as a parameter for a method that defines or modifies a virtual system

Definition requests for virtual systems are modeled through the
CIM_VirtualSystemManagementService.DefineSystem() method, and modification requests for virtual
system properties are modeled through the
CIM_VirtualSystemManagementService.ModifySystemSettings() method.

7.5.1 CIM_VirtualSystemSettingData.InstanceID property 766

A client shall set the value of the InstanceID property to NULL if the instance of the
CIM_VirtualSystemSettingData class is created locally. A client shall not modify the value of the
InstanceID property in an instance of the CIM_VirtualSystemSettingData class that was received from an
implementation and is sent back to the implementation as a parameter of a modification method.

The structure of the value of the InstanceID property is implementation specific. A client shall treat the
value as an opaque entity and shall not depend on the internal structure of the value.

An implementation shall use a non-NULL value to identify an existing instance of the
CIM_VirtualSystemSettingData class. If the value does not identify an instance of the
CIM_VirtualSystemSettingData class, an implementation shall return a return code that indicates an inva-
lid parameter (see 8.2.4.3).

7.5.2 CIM_VirtualSystemSettingData.ElementName property 777

The implementation of the ElementName property is optional.

System Virtualization Profile DSP1042

24 DMTF Standard Version 1.0.0

If the ElementName property is implemented for virtual system definition and modification, the provisions
in this subclause apply.

779
780

781
782

783
784
785

786
787

A client may set the value of the ElementName property to assign a user-friendly name to a virtual sys-
tem.

In definition and modification requests, an implementation shall use the value of the ElementName prop-
erty to assign a user-friendly name to the new virtual system. The user-friendly name does not have to be
unique within the set of virtual systems that are defined at the host system.

If the implementation supports modification requests that affect the value of the ElementName property,
the implementation shall support the CIM_EnabledLogicalElementCapabilities class for virtual systems as
specified in DSP1052. 788

790

791
792

793
794

795
796
797

798
799
800
801

803

804
805

806
807
808
809
810

811
812
813
814
815

817
818
819

7.5.3 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property 789

The implementation of the VirtualSystemIdentifier property is optional.

If the VirtualSystemIdentifier property is implemented for virtual system definition and modification, the
provisions in this subclause apply.

A client should set the value of the VirtualSystemIdentifier property to explicitly request an identifier for the
new virtual system. A client may set the value of the VirtualSystemIdentifier property to NULL.

An implementation shall use the value of the VirtualSystemIdentifier property to assign an identifier to the
new virtual system. If the value of the VirtualSystemIdentifier property is NULL, the value of the
VirtualSystemIdentifier property for the new virtual system is unspecified (implementation dependent).

Some implementations may accept an implementation-dependent pattern that controls the assignment of
a value to the VirtualSystemIdentifier property. For example, an implementation might interpret a regular
expression like "^VM\d{1,6}\s" to assign a value to the VirtualSystemIdentifier property that starts with the
letters "VM" and is followed by at least one and not more than six digits.

7.5.4 CIM_VirtualSystemSettingData.VirtualSystemType property 802

The implementation of the VirtualSystemType property is optional.

If the VirtualSystemType property is implemented for virtual system definition and modification, the
provisions in this subclause apply.

A client may set the value of the VirtualSystemType property to explicitly request a virtual system type for
the new virtual system. A client may set the value of the VirtualSystemType property to NULL, requesting
the implementation to assign a virtual system type according to rules specified in this subclause. If
requesting a value other than NULL, the client should determine the list of valid system types in advance
(see 9.2.7).

An implementation shall use the value of the VirtualSystemType property to assign a type to the new vir-
tual system. If the value of the VirtualSystemType property is NULL, the implementation shall assign a
virtual system type in an implementation-dependent way. If the requested virtual system type is not sup-
ported, an implementation shall fail the method execution with an error code of 4 (Method execution failed
because invalid parameters were specified by the client).

7.6 Virtual resource definition and modification 816

This profile specifies how to define and modify virtual resources using methods of the virtual system
management service. In these method specifications, the CIM_ResourceAllocationSettingData class is
used for parameterization of resource allocation specific properties. For specifications that define the use
of the CIM_ResourceAllocationSettingData class, see DSP1041, DSP1043, and profiles that specialize
these (for example,

820
DSP1059). DSP1041 describes the use of the CIM_ResourceAllocationSettingData 821

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 25

class, and DSP1043 introduces the concept of allowing a client to determine the acceptable value sets for
values of properties of the CIM_ResourceAllocationSettingData class in virtual resource definition and
modification requests.

822
823
824

826

827

828

830
831

833

834

835

836

837
838

839

840

841

842
843

844
845

847

848

849
850

851
852
853
854

855
856
857

858

859

7.7 Virtual system snapshots 825

This subclause models the representation and manipulation of snapshots of virtual systems.

The implementation of virtual system snapshots is optional.

If virtual system snapshots are implemented, the provisions in this subclause apply.

7.7.1 Virtual system snapshot service and capabilities 829

This subclause models elements of virtual system snapshot management in terms of the
CIM_VirtualSystemSnapshotService class and the CIM_VirtualSystemSnapshotServiceCapabilities class.

7.7.1.1 Virtual system snapshots 832

The implementation of virtual system snapshots is optional.

If virtual system snapshots are implemented, the provisions in this subclause apply.

The implementation includes the creation, destruction, and application of virtual system snapshots.

If virtual system snapshots are implemented, the following conditions shall be met:

• the CIM_VirtualSystemSnapshotService class shall be implemented and the following methods
shall be implemented:

– CreateSnapshot(), for at least one type of snapshot

– DestroySnapshot()

– ApplySnapshot()

• There shall be exactly one instance of the CIM_VirtualSystemSnapshotService class associated
to the central instance of this profile through an instance of the CIM_HostedService association.

If virtual system snapshots are not implemented, the CIM_VirtualSystemSnapshotService class shall not
be implemented.

7.7.1.2 CIM_VirtualSystemSnapshotServiceCapabilities class 846

The provisions in this subclause are conditional.

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_VirtualSystemSnapshotServiceCapabilities class is implemented, the provisions in this
subclause apply.

An instance of the CIM_VirtualSystemSnapshotServiceCapabilities class shall be used to represent the
capabilities of the virtual system snapshot service of a host system. The instance shall be associated with
the instance of the CIM_VirtualSystemSnapshotService class that represents the virtual system snapshot
service through the CIM_ElementCapabilities association.

In the instance of the CIM_VirtualSystemSnapshotServiceCapabilities class that describes virtual system
snapshot service, all of the following values shall be set in either the SynchronousMethodsSupported[]
array property or the AsynchronousMethodsSupported[] array property:

• 2 (CreateSnapshotSupported)

• 3 (DestroySnapshotSupported)

System Virtualization Profile DSP1042

26 DMTF Standard Version 1.0.0

• 4 (ApplySnapshotSupported) 860

861
862
863
864
865
866

867
868
869

870
871
872

874

875

876

877
878
879
880

882

883

884

885
886
887
888

890

891

892
893

894

895

896
897

The implementation of the SynchronousMethodsSupported[] array property is conditional with respect to
at least one of the snapshot methods being implemented with synchronous behavior. A NULL value or an
empty value set shall be used to indicate that no methods are implemented with synchronous behavior. If
a method is designated within the value set of the SynchronousMethodsSupported[] property, that
method shall always exhibit synchronous behavior and shall not be designated within the value set of the
AsynchronousMethodsSupported[] property.

The implementation of the AsynchronousMethodsSupported[] array property is conditional with respect to
at least one of the snapshot methods being implemented with aynchronous behavior. A NULL value or an
empty value set shall be used to indicate that no methods are implemented with asynchronous behavior.

Further the SnapshotTypesSupported[] array property shall have a non-NULL value and contain at least
one element. Each element of the SnapshotTypesSupported[] array property shall designate one sup-
ported type of snapshot.

7.7.2 Virtual system snapshot representation 873

The provisions in this subclause are conditional.

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the representation of virtual system snapshots is implemented, the provisions in this subclause apply.

Snapshots of virtual systems shall be represented by instances of the CIM_VirtualSystemSettingData
class. Each such instance shall be associated with the instance of the CIM_ComputerSystem class that
represents the virtual system that was the source of the snapshot through an instance of the
CIM_SnapshotOfVirtualSystem association.

7.7.3 Designation of the last applied snapshot 881

The provisions in this subclause are conditional.

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the designation of the last applied snapshot is implemented, the provisions in this subclause apply.

If a snapshot was applied to a virtual system, an instance of the CIM_LastAppliedSnapshot association
shall connect the instance of the CIM_ComputerSystem class that represents the virtual system and the
instance of the CIM_VirtualSystemSettingData class that represents the snapshot. The association
instance shall be actualized as different snapshots are applied.

7.7.4 Designation of the most current snapshot in branch 889

The implementation of the representation the most current snapshot in a branch is conditional.

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the designation of the most current snapshot in a branch is implemented, the provisions in this
subclause apply.

A branch of snapshots taken from a virtual system is started in one of two ways:

• A virtual system snapshot is applied to a virtual system.

In this case, the virtual system snapshot becomes the most current snapshot of a newly started
branch.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 27

• A virtual system snapshot is captured from a virtual system. 898

899
900

902

903

904
905

907
908
909
910
911

913

914

915
916
917
918
919

921
922

924

926
927
928
929

In this case, the virtual system snapshot becomes the most current snapshot in the branch. If no
branch exists, a new branch is created.

7.7.5 Virtual system snapshot capabilities 901

The provisions in this subclause are optional.

If virtual system snapshot capabilities are implemented, the provisions in this subclause apply.

This subclause models snapshot related capabilities of a virtual system in terms of the
CIM_VirtualSystemSnapshotCapabilities class.

7.7.5.1 CIM_VirtualSystemSnapshotCapabilities.SnapshotTypesEnabled[] array property 906

An implementation shall use the SnapshotTypesEnabled[] array property to convey information about the
enablement of snapshot types The value set of the SnapshotTypesEnabled[] array property shall desig-
nate those snapshot types that are presently enabled (that is, may be invoked by a client).
NOTE: Elements may be added and removed from the array property as respective snapshot types are enabled for
the virtual system; the conditions for such changes are implementation specific.

7.7.5.2 CIM_VirtualSystemSnapshotCapabilities.GuestOSNotificationEnabled property 912

The implementation of the GuestOSNotificationEnabled property is optional.

If the GuestOSNotificationEnabled property is implemented, the provisions in this subclause apply.

An implementation may use the GuestOSNotificationEnabled property to convey information about the
capability of the guest operating system that is running within a virtual system to receive notifications
about an imminent snapshot operation. The behavior of the guest operating system in response to such a
notification is implementation dependent. For example, the guest operating system may temporarily sus-
pend operations on virtual resources that might interfere with the snapshot operation.

8 Methods 920

This clause defines extrinsic methods and profile conventions for intrinsic methods. The specifications
provided in this clause apply in addition to the descriptions provided in the CIM Schema.

8.1 General behavior of extrinsic methods 923

This subclause models behavior applicable to all extrinsic methods that are specified in this profile.

8.1.1 Resource allocation requests 925

Some methods specify the ResourceSettings[] array parameter. If set to a value other than NULL, each
element of the ResourceSettings[] array parameter shall contain an embedded instance of the CIM_Re-
sourceAllocationSettingData class that describes a resource allocation request for a virtual resource or
coherent set of virtual resources.

The use of the CIM_ResourceAllocationSettingData class as input for operations is specified in DSP1041. 930

931
932
933
934

One instance of the CIM_ResourceAllocationSettingData class may affect one virtual resource or a coher-
ent set of virtual resources. For example, one instance of CIM_ResourceAllocationSettingData that has
the value of the ResourceType property set to 3 (Processor) and the value of the VirtualQuantity property
set to 2 requests the allocation of two virtual processors.

System Virtualization Profile DSP1042

28 DMTF Standard Version 1.0.0

If one or more resources are not available, or not completely available, during the execution of a method
that requests the allocation of persistently allocated resources into a virtual system configuration, the
implementation may deviate from requested values, may ignore virtual resource allocation requests, or
both as long as the resulting virtual system is or remains potentially operational. Otherwise, the
implementation shall fail the method execution.

935
936
937
938
939

941

942
943

944
945

946
947

948

949
950

951
952

953

954
955

956

957
958

959
960
961
962
963

964
965

966
967
968

969
970

972
973

8.1.2 Method results 940

If a particular method is not implemented, a value of 1 (Not Supported) shall be returned.

If synchronous execution of a method succeeds, the implementation shall set a return value of
0 (Completed with No Error).

If synchronous execution of a method fails, the implementation shall set a return value of 2 (Failed) or a
more specific return code as specified with the respective method.

If a method is executed as an asynchronous task, the implementation shall perform all of the following ac-
tions:

• Set a return value of 4096 (Job Started).

• Set the value of the Job output parameter to refer to an instance of the CIM_ConcreteJob class
that represents the asynchronous task.

• Set the values of the JobState and TimeOfLastStateChange properties in that instance to repre-
sent the state and last state change time of the asynchronous task.

In addition, the implementation may present state change indications as task state changes occur.

If the method execution as an asynchronous task succeeds, the implementation shall perform all of the
following actions:

• Set the value of the JobState property to 7 (Completed).

• Provide an instance of the CIM_AffectedJobEntity association with property values set as fol-
lows:

– The value of the AffectedElement property shall refer to the object that represents the top-
level entity that was created or modified by the asynchronous task. For example, for the
DefineSystem() method, this is an instance of the CIM_ComputerSystem class, and for
the CreateSnapshot() method, this is an instance of the CIM_VirtualSystemSettingData
class that represents a snapshot of a virtual system.

– The value of the AffectingElement property shall refer to the instance of the
CIM_ConcreteJob class that represents the completed asynchronous task.

– The value of the first element in the ElementEffects[] array property (ElementEffects[0])
shall be set to 5 (Create) for the DefineSystem() or CreateSnapshot() methods. Other-
wise, this value shall be 0 (Unknown).

If the method execution as an asynchronous task fails, the implementation shall set the value of the
JobState property to 9 (Killed) or 10 (Exception).

8.1.3 Asynchronous processing 971

An implementation may support asynchronous processing of some methods specified in the
CIM_VirtualSystemManagementService class.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 29

8.1.3.1 General requirements 974

All of the following conditions shall be met: 975

976
977
978

979
980
981

982
983

985
986

987
988

989
990

992
993

995

996

997
998

999
1000
1001
1002
1003

1004

1005

• Elements that convey information about which methods of the
CIM_VirtualSystemManagementService class are implemented for asynchronous execution
within an implementation are modeled in 7.4.4.

• Elements that convey information about which methods of the
CIM_VirtualSystemSnapshotService class are implemented for asynchronous execution within
an implementation are modeled in 7.7.1.1.

• Elements that convey information about whether a method is executed asynchronously are
modeled in 8.1.2.

8.1.3.2 Job parameter 984

The implementation shall set the value of the Job parameter as a result of an asynchronous execution of
a method of the CIM_VirtualSystemManagementService as follows:

• If the method execution is performed synchronously, the implementation shall set the value to
NULL.

• If the method execution is performed asynchronously, the implementation shall set the value to
refer to the instance of the CIM_ConcreteJob class that represents the asynchronous task.

8.2 Methods of the CIM_VirtualSystemManagementService class 991

This subclause models virtual system management services in terms of methods of the
CIM_VirtualSystemManagementService class.

8.2.1 CIM_VirtualSystemManagementService.DefineSystem() method 994

The implementation of the DefineSystem() method is conditional.

Condition: The definition and destruction of virtual systems is implemented; see 7.4.6.1.

If the DefineSystem() method is implemented, the provisions in this subclause apply; in addition behavior
applicable to all extrinsic methods is specified in 8.1.2.

The execution of the DefineSystem() method shall effect the creation of a new virtual system definition as
specified through the values of the SystemSettings parameter, the values of elements in the
ResourceSettings[] array parameter and elements of the configuration referred to by the value of the
ReferencedConfiguration parameter, and through default values that are established within the
implementation.

Table 2 contains requirements for parameters of this method.

Table 2 – DefineSystem() method: Parameters

Qualifiers Name Type Description/Values

IN

SystemSettings string See 8.2.1.2.

IN

ResourceSettings[] string See 8.2.1.3.

IN ReferencedConfiguration CIM_VirtualSystemSettingData REF See 8.2.1.4.

OUT ResultingSystem CIM_ComputerSystem REF See 8.2.1.5.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

System Virtualization Profile DSP1042

30 DMTF Standard Version 1.0.0

8.2.1.1 Value preference rules 1006

The DefineSystem() method facilitates the definition of a new virtual system at the host system, based on
client requirements specified through one or more virtual system configurations:

1007
1008

1009

1010
1011
1012
1013

1014

1015
1016
1017

1018
1019
1020

1021
1022

1023
1024
1025

1026
1027
1028

1029

1030
1031
1032
1033
1034
1035

1036

• "Input" virtual system configuration

The "Input" virtual system configuration is prepared locally by the client and provided in the form
of embedded instances of the CIM_VirtualSystemSettingData class in the SystemSettings pa-
rameter and embedded instances of the CIM_ResourceAllocationSettingData class as values
for elements of the ResourceSettings[] array parameter.

• "Reference" virtual system configuration

The "Reference" virtual system configuration is a "Defined" virtual system configuration that al-
ready exists within the implementation; it is referenced by the ReferencedConfiguration
parameter.

An implementation shall define the virtual system based on "Input" and "Reference" configuration. It may
extend a virtual system definition beyond client requirements based on implementation-specific rules and
requirements.

If only the "Reference" virtual system configuration is provided by the client, the implementation shall cre-
ate a copy or cloned configuration of the "Reference" virtual system configuration.

If both configurations are provided by the client, the implementation shall give the "Input" virtual system
configuration preference over the "Reference" configuration. An implementation may support this behavior
at two levels:

• The basic level supports the addition of resource allocations that were not requested by ele-
ments of the ResourceSettings[] array parameter, but that are defined in the "Reference" virtual
system configuration.

• The advanced level, in addition, supports amending incomplete resource requests.

In this case the correlation of instances of the CIM_ResourceAllocationSettingData class in the
"Input" configuration and in the "Reference" configuration shall be established through the value
of the InstanceID parameter. If the value of the InstanceID parameter is identical for an instance
in the "Input" configuration and an instance in the "Reference" configuration, these instances to-
gether describe one virtual resource allocation request, such that non-NULL property values
specified in the "Input" configuration override those specified in the "Reference" configuration.

If no value is specified for a property in the "Input" configuration or in the "Reference" configuration, the
implementation may exhibit an implementation-dependent default behavior. DSP1059 and resource-type-
specific resource allocation DMTF management profiles may specify resource-type-specific behavior.

1037
1038

1039
1040
1041

If the DefineSystem() method is called without input parameters, the implementation may exploit a de-
fault behavior or may fail the method execution.
NOTE: A client may inspect the "Reference" virtual system configuration before invoking the DefineSystem()
method (see respective use cases in DSP1057). 1042

1044
1045
1046
1047

1048
1049

8.2.1.2 SystemSettings parameter 1043

A client should set the value of the SystemSettings parameter with an embedded instance of the
CIM_VirtualSystemSettingData class that describes requested virtual system settings. The client may set
the value of the SystemSettings parameter to NULL, requesting the implementation to select input values
based on the rules specified in 8.2.1.1.

An implementation shall interpret the value of the SystemSettings parameter as the system part of an
"Input" virtual system configuration, and apply the rules specified in 8.2.1.1.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 31

The use of the CIM_VirtualSystemSettingData class as input for operations specified by this profile is
specified in

1050
1051

1053
1054
1055

1056
1057

1059
1060
1061

1062
1063

1065

1066
1067
1068

1069
1070

1072
1073

1074

10.22.

8.2.1.3 ResourceSettings[] array parameter 1052

A client should set the ResourceSettings[] array parameter and apply the specifications given in 8.1.1.
The client may set the value of the ResourceSettings[] array parameter to NULL or provide an empty ar-
ray, requesting the implementation to define a default set of virtual resources (see 8.2.1.1).

An implementation shall interpret the value of the ResourceSettings[] array parameter as the resource
part of an "Input" virtual system configuration, and apply the value preference rules specified in 8.2.1.1.

8.2.1.4 ReferencedConfiguration parameter 1058

A client may set a value of the ReferencedConfiguration parameter to refer to an existing "Defined" virtual
system configuration. A client may set the value of the ReferencedConfiguration parameter to NULL, indi-
cating that a "Reference" configuration shall not be used.

An implementation shall use the "Reference" virtual system configuration according to the rules specified
in 8.2.1.1.

8.2.1.5 ResultingSystem parameter 1064

The implementation shall set the value of the ResultingSystem parameter as follows:

• If the method execution is performed synchronously and is successful, the value is set to refer-
ence the instance of the CIM_ComputerSystem class that represents the newly defined virtual
system.

• If the method execution is performed synchronously and fails, or if the method execution is per-
formed asynchronously, the value is set to NULL.

8.2.1.6 Return codes 1071

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 3.

Table 3 – DefineSystem() method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.2 CIM_VirtualSystemManagementService.DestroySystem() method 1075

The implementation of the DestroySystem() method is conditional. 1076

1077

1078
1079

Condition: The definition and destruction of virtual systems is implemented; see 7.4.6.1.

If the DestroySystem() method is implemented, the provisions in this subclause apply; in addition
behavior applicable to all extrinsic methods is specified in 8.1.2.

System Virtualization Profile DSP1042

32 DMTF Standard Version 1.0.0

The execution of the DestroySystem() method shall effect the destruction of the referenced virtual system
and all related virtual system configurations, including snapshots.

1080
1081

1082

1083

Table 4 contains requirements for parameters of this method.

Table 4 – DestroySystem() method: Parameters

Qualifiers Name Type Description/Values

IN AffectedSystem CIM_ComputerSystem REF See 8.2.2.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.2.1 AffectedSystem parameter 1084

A client shall set a value of the AffectedSystem parameter to refer to the instance of the
CIM_ComputerSystem class that represents the virtual system to be destroyed.

1085
1086

1087
1088

1090
1091

1092

An implementation shall interpret the value of the AffectedSystem parameter to identify the virtual system
that is to be destroyed.

8.2.2.2 Return codes 1089

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 5.

Table 5 – DestroySystem() method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because the system could not be found.

5 Method execution failed because the affected system is in a state in which the implementation
rejects destruction.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.3 CIM_VirtualSystemManagementService.AddResourceSettings() method 1093
(Conditional) 1094

1095

1096
1097

1098
1099

1100
1101
1102

1103

The implementation of the AddResourceSettings() method is conditional.

Condition: The addition and the removal of virtual resources to virtual systems is implemented; see
7.4.6.2.

If the AddResourceSettings() method is implemented, the provisions in this subclause apply; in addition
behavior applicable to all extrinsic methods is specified in 8.1.2.

The execution of the AddResourceSettings() method shall effect the entry of resource allocation requests
or resource allocations provided through the ResourceSettings[] array parameter in the affected virtual
system configuration.

Table 6 contains requirements for parameters of this method.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 33

Table 6 – AddResourceSettings() method: Parameters 1104

Qualifiers Name Type Description/Values

IN AffectedConfiguration CIM_VirtualSystemSettingData REF See 8.2.3.1.

IN ResourceSettings[] string See 8.2.3.2.

OUT ResultingResourceSettings[] CIM_ResourceAllocationSettingData REF See 8.2.3.3.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.3.1 AffectedConfiguration parameter 1105

A client shall set a value of AffectedConfiguration parameter to refer to the instance of the
CIM_VirtualSystemSettingData class that represents the virtual system configuration that receives new
resource allocations.

1106
1107
1108

1109
1110

1112

An implementation shall interpret the value of the AffectedConfiguration parameter to identify the virtual
system configuration that receives new resource allocations.

8.2.3.2 ResourceSettings[] array parameter 1111

A client shall set the ResourceSettings[] parameter containing one or more input instances of the
CIM_ResourceAllocationSettingData class as specified in a profile based on DSP1041 and on DSP1043,
such as for example

1113
DSP1044 or DSP1047. 1114

1115
1116
1117

1118

1120

1121
1122

1123
1124

1126
1127

1128

If the value of the InstanceID property in any of the input CIM_ResourceAllocationSettingData instances
is other than NULL, that value shall be ignored; however, the remaining values of the input instance shall
be respected as defined in the resource type specific resource allocation profile.

An implementation shall apply the specifications given in 8.1.1.

8.2.3.3 ResultingResourceSettings[] array parameter 1119

The implementation shall set the value of the ResultingResourceSettings[] array parameter as follows:

• to an array of references to instances of the CIM_ResourceAllocationSettingData class that
represent resource allocations that were obtained during the execution of the method

• to NULL, if the method is executed synchronously and fails, or if the method is executed
asynchronously

8.2.3.4 Return codes 1125

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 7.

Table 7 – AddResourceSettings() method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

System Virtualization Profile DSP1042

34 DMTF Standard Version 1.0.0

8.2.4 CIM_VirtualSystemManagementService.ModifyResourceSettings() method 1129

The implementation of the ModifyResourceSettings() method is conditional. 1130

1131

1132
1133

1134
1135
1136
1137

1138
1139
1140
1141

1142

1143

Condition: The modification of virtual systems and resources is implemented; see 7.4.6.3.

If the ModifyResourceSettings() method is implemented, the provisions in this subclause apply; in
addition behavior applicable to all extrinsic methods is specified in 8.1.2.

If implemented, the execution of the ModifyResourceSettings() method shall effect the modification of re-
source allocation requests that exist, with the implementation using instances of the
CIM_ResourceAllocationSettingData class that are passed in through values of elements of the
ResourceSettings[] array parameter.

The execution of the ModifyResourceSettings() method shall effect the modification of resource alloca-
tions or resource allocation requests, such that non-key and non-NULL values of instances of the
CIM_ResourceAllocationSettingData class provided as values for elements of the ResourceSettings[] ar-
ray parameter override respective values in instances identified through the InstanceID property.

Table 8 contains requirements for parameters of this method.

Table 8 – ModifyResourceSettings() method: Parameters

Qualifiers Name Type Description/Values

IN ResourceSettings[] string See 8.2.4.1.

OUT ResultingResourceSettings[] CIM_ResourceAllocationSettingData
REF

See 8.2.4.2.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.4.1 ResourceSettings[] parameter 1144

The specifications in 8.1.1 apply. 1145

1146
1147
1148

1149
1150

1151
1152
1153
1154
1155
1156
1157

1158
1159
1160
1161
1162

1163
1164
1165
1166

A client shall set the ResourceSettings[] parameter. Any instance of the
CIM_ResourceAllocationSettingData class that is passed in as a value for elements of the
ResourceSettings[] array parameter shall conform to all of the following conditions:

• It shall represent requests for the modification of virtual resource state extensions, virtual re-
source definitions scoped by one particular virtual system, or both.

• It shall have a valid non-NULL value in the InstanceID property that identifies a respective in-
stance of the CIM_ResourceAllocationSettingData class that represents an existing resource
allocation or resource allocation request within the implementation. This should be assured
through the execution of previously executed retrieve operations, such as the execution of
extrinsic methods or intrinsic CIM operations that yield respective instances of the
CIM_ResourceAllocationSettingData class. For example, the client may use the intrinsic
GetInstance() CIM operation.

The client shall modify such instances locally to reflect the desired modifications and finally pass
them back in as elements of the ResourceSettings[] array parameter. Modifications shall not be
applied to the InstanceID property that is the key property of the
CIM_ResourceAllocationSettingData class. Further restriction may apply, such as from re-
source-type-specific resource allocation DMTF management profiles.

An implementation shall apply the specifications given in 8.1.1. The implementation shall ignore any ele-
ment of the ResourceSettings[] array property that does not identify, through the value of the InstanceID
key property, an existing instance of the CIM_ResourceAllocationSettingData class within the
implementation.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 35

8.2.4.2 ResultingResourceSettings[] parameter 1167

The implementation shall set the value of the ResultingResourceSettings[] array parameter as follows: 1168

1169

1170
1171
1172
1173

1174
1175

1177
1178

1179

• If the method was executed asynchronously, the value shall be set to NULL.

• If the method was executed synchronously and one or more resources were successfully modi-
fied, for each successfully modified resource one element in the returned array shall reference
the instance of the CIM_ResourceAllocationSettingData class that represents the modified re-
source allocation or resource allocation request.

• If the method was executed synchronously and failed completely, the value shall be set to
NULL.

8.2.4.3 Return codes 1176

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 9.

Table 9 – ModifyResourceSettings() Method: Return code values

Value Description

0 Method was successfully executed; all modification requests were successfully processed.

1 Method is not supported.

2 Method execution failed, but some modification requests may have been processed.

3 Method execution failed because a timeout condition occurred, but some modification requests
may have been processed.

4 Method execution failed because invalid parameters were specified by the client; no modification
requests were processed.

5 Method execution failed because the implementation does not support modifications on virtual
resource allocations for the present virtual system state of the virtual system scoping virtual
resources affected by this resource allocation modification request.

6 Method execution failed because incompatible parameters were specified by the client; no
modification requests were processed.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

NOTE: Even if the return code indicates a failure, some modification requests may have been successfully executed. In this
case, the set of successfully modified resources is conveyed through the value of the ResultingResourceSettings
parameter.

8.2.5 CIM_VirtualSystemManagementService.ModifySystemSettings() method 1180

The implementation of the ModifySystemSettings() method is conditional. 1181

1182

1183
1184

1185
1186
1187
1188

1189

Condition: The modification of virtual systems and resources is implemented; see 7.4.6.3.

If the ModifySystemSettings() method is implemented, the provisions in this subclause apply; in addition
behavior applicable to all extrinsic methods is specified in 8.1.2.

The execution of the ModifySystemSettings() method shall effect the modification of system settings,
such that non-key and non-NULL values of the instance of the CIM_VirtualSystemSettingData class that
is provided through the SystemSettings parameter override respective values in the instance identified
through the value of the InstanceID property.

Table 10 contains requirements for parameters of this method.

System Virtualization Profile DSP1042

36 DMTF Standard Version 1.0.0

Table 10 – ModifySystemSettings() Method: Parameters 1190

Qualifiers Name Type Description/Values

IN SystemSettings string See 8.2.5.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.5.1 SystemSettings parameter 1191

A client shall set the SystemSettings parameter. Any instance of the CIM_VirtualSystemSettingData class
that is passed in as a value of the SystemSettings parameter shall have a valid non-NULL value in the
InstanceID property that identifies a respective instance of the CIM_VirtualSystemSettingData class
existing within the implementation. A client shall obtain such an instance before invoking the
ModifySystemSettings() method (for example, by using an extrinsic method or intrinsic CIM operation
that yields a respective instance as a result). For example, the client may use the intrinsic GetInstance()
CIM operation. The client shall then modify the instance locally so that it reflects the desired modifications
and finally pass it back in as a value of the SystemSettings parameter.

1192
1193
1194
1195
1196
1197
1198
1199

1200
1201
1202

1204
1205

1206

The implementation shall ignore any value of the SystemSettings parameter that does not identify,
through the value of the InstanceID key property, an existing instance of the
CIM_VirtualSystemSettingData class within the implementation.

8.2.5.2 Return codes 1203

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 11.

Table 11 – ModifySystemSettings() Method: Return code values

Value Description

0 Method was successfully executed.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

5 Method execution failed because the implementation does not support modifications on virtual
system settings for the present virtual system state of the virtual system identified by the input
system settings.

6 Method execution failed because incompatible parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.2.6 CIM_VirtualSystemManagementService.RemoveResourceSettings() method 1207

The implementation of the RemoveResourceSettings() method is conditional. 1208

1209
1210

1211
1212

1213
1214

Condition: The addition and the removal of virtual resources to virtual systems is implemented; see
7.4.6.2.

If the RemoveResourceSettings() method is implemented, the provisions in this subclause apply; in
addition behavior applicable to all extrinsic methods is specified in 8.1.2.

The execution of the RemoveResourceSettings() method shall effect the removal of resource allocation
requests identified by the value of elements of the ResourceSettings[] parameter.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 37

Table 12 contains requirements for parameters of this method. 1215

1216 Table 12 – RemoveResourceSettings() Method: Parameters

Qualifiers Name Type Description/Values

IN ResourceSettings[] CIM_ResourceAllocationSettingData REF See 8.2.6.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.2.6.1 ResourceSettings[] array parameter 1217

A client shall set the ResourceSettings[] array parameter. The value of any element specified in the
ResourceSettings[] array parameter shall represent requests for the removal of virtual resource state
extensions, of virtual resource definitions, or both in the scope of one virtual system.

1218
1219
1220

1222
1223

1224

8.2.6.2 Return codes 1221

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 13.

Table 13 – RemoveResourceSettings() Method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because invalid parameters were specified by the client.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.3 Methods of the CIM_VirtualSystemSnapshotService class 1225

This subclause models virtual system snapshot management in terms of methods of the
CIM_VirtualSystemSnapshotService class.

1226
1227

1229

1230
1231

1232
1233

1234
1235
1236

1237
1238
1239

8.3.1 CIM_VirtualSystemSnapshotService.CreateSnapshot() method 1228

The implementation of the CreateSnapshot() method is conditional.

Condition: The creation, destruction and application of virtual system snapshots is implemented; see
7.7.1.1.

If the CreateSnapshot() method is implemented, the provisions in this subclause apply; in addition
behavior applicable to all extrinsic methods is specified in 8.1.2.

The execution of the CreateSnapshot() method shall effect the creation of a snapshot of the affected vir-
tual system. The snapshot shall have the type that is designated by the value of the SnapshotType
parameter (see 8.3.1.3).

A full snapshot shall contain all information required to restore the complete virtual system and its re-
sources to exactly the situation that existed when the snapshot was created. Other types of snapshots
may contain less information.

System Virtualization Profile DSP1042

38 DMTF Standard Version 1.0.0

If the virtual system is in the "Active" virtual system state, it may continue to perform tasks but may be
temporarily paused as the creation of the snapshot requires the capturing of state information.

1240
1241

1242

1243

Table 14 contains requirements for parameters of this method.

Table 14 – CreateSnapshot() method: Parameters

Qualifiers Name Type Description/Values

IN AffectedSystem CIM_ComputerSystem REF See 8.3.1.1.

IN SnapshotSettings string See 8.3.1.2.

IN SnapshotType uint16 See 8.3.1.3.

OUT ResultingSnapshot CIM_VirtualSystemSettingData REF See 8.3.1.4.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

8.3.1.1 AffectedSystem parameter 1244

A client shall set a value of the AffectedSystem parameter to refer to the instance of the
CIM_ComputerSystem class that represents the virtual system that is the source for the snapshot.

1245
1246

1247
1248

1250
1251
1252
1253

1254
1255

1257
1258
1259

1260
1261
1262
1263
1264

1266

1267
1268
1269

1270
1271

An implementation shall interpret the value of the AffectedSystem parameter to identify the virtual system
that is the source for the snapshot.

8.3.1.2 SnapshotSettings parameter 1249

A client may set a value of the SnapshotSettings parameter with an embedded instance of a
CIM_SettingData class. It is assumed that an implementation-specific class derived from
CIM_SettingData contains additional implementation-specific properties that enable some control over
characteristics of the snapshot process.

An implementation shall use the value of the SnapshotSettings parameter to control the characteristics of
the snapshot process.

8.3.1.3 SnapshotType parameter 1256

A client shall set the value of the SnapshotType parameter to designate the intended type of snapshot.
The value shall be one of the values set in the SnapshotTypesSupported[] array property in the instance
of the CIM_VirtualSystemSnapshotServiceCapabilities class that is related to the snapshot service.

An implementation shall use the value of the SnapshotType parameter to determine the requested type of
snapshot. If a value is not specified or is not one of the values set in the SnapshotTypesSupported[] array
property in the instance of the CIM_VirtualSystemSnapshotServiceCapabilities class that is related to the
snapshot service, an implementation shall fail the method execution and set a return code of 6 (Invalid
Type).

8.3.1.4 ResultingSnapshot parameter 1265

The implementation shall set the value of the ResultingSnapshot parameter as follows:

• If the method execution is performed synchronously and is successful, the value shall be set to
reference the instance of the CIM_VirtualSystemSettingData class that represents the newly
created virtual system snapshot.

• If the method execution is performed synchronously and fails, or if the method execution is per-
formed asynchronously, the value shall be set to NULL.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 39

• If the method execution is performed asynchronously and is successful, see 8.1.2 to locate the
instance of the CIM_VirtualSystemSettingData class that represents the newly created virtual
system snapshot.

1272
1273
1274

1276
1277

1278

8.3.1.5 Return codes 1275

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 15.

Table 15 – CreateSnapshot() method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because an invalid parameter was specified.

5 Method execution failed because the affected system is in a state in which the implementation
rejects capturing a snapshot.

6 Method execution failed because no snapshot or an unsupported type of snapshot was re-
quested.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.3.2 VirtualSystemSnapshotService.DestroySnapshot() method 1279

The implementation of the DestroySnapshot() method is conditional. 1280

1281

1282
1283

1284
1285
1286
1287
1288
1289
1290
1291

1292

1293

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the DestroySnapshot() method is implemented, the provisions in this subclause apply; in addition
behavior applicable to all extrinsic methods is specified in 8.1.2.

The execution of the DestroySnapshot() method shall effect the destruction of the affected virtual system
snapshot. Dependency relationships from other snapshots to the affected snapshot shall be updated so
that the affected snapshot is no longer referenced. If the snapshot was persistently established to be used
during virtual system activation, the implementation may assign a different snapshot to be used for subse-
quent virtual system activations, or may fall back to the "Default" virtual system configuration to be used
for future activations. If a virtual system was activated using the snapshot and is still in a state other than
the "Defined" virtual system state, the active virtual system shall not be affected by the execution of the
DestroySnapshot() method.

Table 16 contains requirements for parameters of this method.

Table 16 – DestroySnapshot() method: Parameters

Qualifiers Name Type Description/Values

IN AffectedSnapshot CIM_VirtualSystemSettingData REF See 8.3.2.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

System Virtualization Profile DSP1042

40 DMTF Standard Version 1.0.0

8.3.2.1 AffectedSnapshot parameter 1294

A client shall set a value of the AffectedSnapshot parameter to refer to the instance of the
CIM_VirtualSystemSettingData class that represents a snapshot.

1295
1296

1297
1298

1300
1301

1302

An implementation shall interpret the value of the AffectedSnapshot parameter to identify the snapshot
that is to be destroyed.

8.3.2.2 Return codes 1299

An implementation shall indicate the result of the method execution using the return code values specified
by Table 17.

Table 17 – DestroySnapshot() method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because an invalid parameter was specified.

5 Method execution failed because the affected snapshot is in a state in which the implementation
rejects destroying a snapshot.

6 Method execution failed because the affected snapshot is of a type that is not destroyable.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.3.3 VirtualSystemSnapshotService.ApplySnapshot() method 1303

The implementation of the ApplySnapshot() method is conditional. 1304

1305

1306
1307

1308
1309
1310

1311

1312

1313

1314

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the ApplySnapshot() method is implemented, the provisions in this subclause apply; in addition
behavior applicable to all extrinsic methods is specified in 8.1.2.

The execution of the ApplySnapshot() method shall indicate that the snapshot is used for the next
activation of the associated virtual system (the virtual system that was the source for the snapshot). The
method execution shall have one or both of the following effects:

• The snapshot is persistently established to be used for subsequent activations.

• The virtual system is immediately activated or recycled, using the snapshot.

Table 18 contains requirements for parameters of this method.

Table 18 – ApplySnapshot() method: Parameters

Qualifiers Name Type Description/Values

IN Snapshot CIM_VirtualSystemSettingData REF See 8.3.3.1.

OUT Job CIM_ConcreteJob REF See 8.1.3.2.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 41

8.3.3.1 Snapshot parameter 1315

A client shall set a value of the Snapshot parameter to refer to the instance of the
CIM_VirtualSystemSettingData class that represents a snapshot.

1316
1317

1318
1319

1321
1322

1323

An implementation shall interpret the value of the Snapshot parameter to identify the snapshot that is to
be applied.

8.3.3.2 Return codes 1320

An implementation shall indicate the result of the method execution by using the return code values speci-
fied in Table 19.

Table 19 – ApplySnapshot() method: Return code values

Value Description

0 Method execution was successful.

1 Method is not supported.

2 Method execution failed.

3 Method execution failed because a timeout condition occurred.

4 Method execution failed because an invalid parameter was specified.

5 Method execution failed because the affected system is in a state where snapshots cannot be
applied.

6 Method execution failed because the type of the affected system does not support the
application of a snapshot.

4096 Method execution is performed asynchronously. The specifications given in 8.1.3 apply.

8.4 Profile conventions for operations 1324

The default list of operations for all classes is: 1325

1326

1327

1328

1329

1330

1331

1332

1333

GetInstance()

EnumerateInstances()

EnumerateInstanceNames()

For classes that are referenced by an association, the default list also includes

Associators()

AssociatorNames()

References()

ReferenceNames()

8.4.1 CIM_AffectedJobElement 1334

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1335
1336 NOTE Related profiles may define additional requirements on operations for the profile class.

System Virtualization Profile DSP1042

42 DMTF Standard Version 1.0.0

8.4.2 CIM_ComputerSystem 1337

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1338
1339 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.3 CIM_ConcreteJob 1340

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1341
1342 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.4 CIM_Dependency 1343

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1344
1345 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.5 CIM_ElementCapabilities 1346

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1347
1348 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.6 CIM_ElementConformsToProfile 1349

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1350
1351 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.7 CIM_HostedDependency 1352

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1353
1354 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.8 CIM_HostedService 1355

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1356
1357 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.9 CIM_LastAppliedSnapshot 1358

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1359
1360 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.10 CIM_MostCurrentSnapshotInBranch 1361

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1362
1363 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.11 CIM_ReferencedProfile 1364

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1365
1366 NOTE Related profiles may define additional requirements on operations for the profile class.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 43

8.4.12 CIM_RegisteredProfile 1367

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1368
1369 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.13 CIM_ServiceAffectsElement 1370

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1371
1372 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.14 CIM_SnapshotOfVirtualSystem 1373

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1374
1375 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.15 CIM_System 1376

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1377
1378 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.16 CIM_VirtualSystemManagementCapabilities 1379

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1380
1381 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.17 CIM_VirtualSystemManagementService 1382

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1383
1384 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.18 CIM_VirtualSystemSnapshotService 1385

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1386
1387 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.19 CIM_VirtualSystemSnapshotCapabilities 1388

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1389
1390 NOTE Related profiles may define additional requirements on operations for the profile class.

8.4.20 CIM_VirtualSystemSnapshotServiceCapabilities 1391

All operations in the default list in 8.4 shall be implemented as defined in DSP0200. 1392
1393

1395

1396
1397

NOTE Related profiles may define additional requirements on operations for the profile class.

9 Use Cases 1394

This clause contains informative text only.

The following use cases and object diagrams illustrate use of this profile. They are for informational pur-
poses only and do not introduce behavioral requirements for implementations of the profile.

System Virtualization Profile DSP1042

44 DMTF Standard Version 1.0.0

9.1 General assumptions 1398

For all use cases, it is assumed that a client performs intrinsic CIM operations, extrinsic CIM operations,
or both.

1399
1400

1401

1402

1403

For all use cases except the use case described in 9.2.1, the following conditions are implicitly assumed:

• The client knows the URL of a WBEM service that exposes an implementation of this profile.

• The client is able to communicate with the WBEM service through a specified CIM protocol. An
example is the use of the http protocol as described in DSP0200. The client may use a facility
like a CIM client API to perform the encoding and decoding of CIM messages.

1404
1405

1407
1408
1409

9.2 Discovery, localization, and inspection 1406

This set of use cases describes how a client obtains access to an implementation, detects the central and
scoped instances, and analyzes information available through these instances. Figure 3 outlines a sample
situation that is referenced by some of the use-case descriptions in subsequent subclauses.

DSP1042 System Virtualization Profile

RegisteredOrganization = 2 (DMTF)
RegisterdName = "System Virtualization"
RegisteredVersion = "1.0.0"

SVP_1 : RegisteredProfile

Name = "DE24672408670001"
HOST_1 : System

VSMS_1 : VirtualSystemManagementService

HostedService

RegisteredOrganization = 2 (DMTF)
RegisterdName = "Processor Resource Allocation"
RegisteredVersion = "1.0.0"

PROC_RAP : RegisteredProfile

ReferencedProfile

Interop
Namespace

VirtualSystemTypesSupported = {"Default"}
SynchronousMethodsSupported = {"1","3","5","6","7"}
AsynchronousMethodsSupported = {"2"}
IndicationsSupported = NULL

VSMC_1 : VirtualSystemManagementCapabilities

ElementCapabilities

InstanceID = "DE24672408680001"
PoolID = "PROC_POOL1"
Primordial = True
Capacity = 6
Reserved = 2
ResourceType = 3 (Processor)
ResourceSubType = "Dedicated Proc."
AllocationUnits = "Processor"

PROC_POOL1 : ResourcePool

HostedResourcePool

Implementation
Namespace

RegisteredOrganization = 2 (DMTF)
RegisterdName = "Memory Resource Allocation"
RegisteredVersion = "1.0.0"

MEM_RAP : RegisteredProfile

RegisteredOrganization = 2 (DMTF)
RegisterdName = "Generic Device Resource Allocation"
RegisteredVersion = "1.0.0"

GEN_RAP : RegisteredProfile

ResourceType = 3 (Processor)
SharingMode = 3 (Shared)

CAP_PROC2 : AllocationCapabilities

InstanceID = "DE24672408682"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 1
Weight = 100

CAP_DEF : RASD

ValueRole = 0 (Default)
ValueRange = 0 (Point)
PropertyPolicy = 0 (Independent)

P2SDCD : SettingsDefineCapabilities

ElementCapabilities

PROC0 : Processor PROC1 : Processor PROC2 : Processor

PROC3 : Processor PROC4 : Processor PROC5 : Processor

PROC6 : Processor PROC7 : Processor PROC8 : Processor

HostedDevice

ElementConformsToProfile

ConcreteComponent

ValueRole = 3 (Supported)
ValueRange = 2 (Minimums)
PropertyPolicy = 0 (Independent)

P2SDCN : SettingsDefineCapabilities
InstanceID = "DE24672408683"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 1
Weight = 100

CAP_MIN : RASD

ValueRole = 3 (Supported)
ValueRange = 3 (Maximums)
PropertyPolicy = 0 (Independent)

P2SDCX : SettingsDefineCapabilities InstanceID = "DE24672408684"
PoolID = "PROC_POOL2"
ResourceType = 2 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 4
Weight = 1000

CAP_MAX : RASD

InstanceID = "DE24672408680002"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Primordial = True

PROC_POOL2 : ResourcePool

InstanceID = "DE24672408690001"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Primordial = True

MEM_POOL : ResourcePool

InstanceID = "DE24672408720001"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Primordial = True

DISK_POOL : ResourcePool

VSSS_1 : VirtualSystemSnapshotService

VSSSC_1 : VirtualSystemSnapshotServiceCapabilities

 1410

1411

1413

1414
1415
1416
1417

Figure 3 – System Virtualization Profile instance diagram: Discovery, localization, and inspection

9.2.1 SLP-Based discovery of CIM object managers hosting implementations of this 1412
Profile

The service location protocol (SLP) is used to locate WBEM services. A WBEM service that implements
SLP as a discovery mechanism is required to register with SLP all instances of the CIM_RegisteredProfile
class that reside in the Interop namespace. An SLP service type is used to identify entities that are
registered with SLP. An SLP service type is a structured string variable.

Version 1.0.0 DMTF Standard 45

System Virtualization Profile DSP1042

46 DMTF Standard Version 1.0.0

Assumption: This profile is registered by at least one WBEM service that maintains a registration with an
SLP Directory Agent. The registration includes information about registered DMTF management profiles.
The client is able to make SLP calls.

1418
1419
1420

1421

1422

1423

1424
1425

1426

1428
1429

1430
1431

1432

1433
1434

1435

1436

1437

1438
1439

1440
1441

1443
1444

1445

1446

1447
1448

1449
1450

1451
1452

1454
1455

1456

• The client invokes the SLPFindSrvs() SLP function as follows:

– The value of the srvtype parameter is set to "service:wbem".

– The value of the scopelist parameter is set to "default".

– The value of the filter parameter is set to "(RegisteredProfilesSupported=DMTF:System
Virtualization)".

Result: Each URL in a list of URLs identifies a WBEM service where this profile is implemented.

9.2.2 Locate conformant implementations using the EnumerateInstances() operation 1427

Assumption: The client knows the URL of a WBEM service hosting implementations of this profile (see
9.2.1).

1) Using the URL, the client invokes the intrinsic EnumerateInstances() CIM operation with the
value of the ClassName input parameter set to "CIM_RegisteredProfile".

The result is a list of instances of the CIM_RegisteredProfile class.

2) The client iterates over the list of instances of the CIM_RegisteredProfile class and selects in-
stances where

– the RegisteredOrganization property has a value of 2 (DMTF)

– the RegisteredName property has a value of "System Virtualization"

– the RegisteredVersion property has a value equal to or greater than "1.0.0"

Result: The client knows a set of instances of the CIM_RegisteredProfile class, each representing an im-
plementation of this profile.

In the example shown in Figure 3, one instance of the CIM_RegisteredProfile class represents an imple-
mentation of this profile; it is tagged SVP_1.

9.2.3 Locate conformant implementations using the ExecuteQuery() operation 1442

Assumption: The client knows the URL of a WBEM service hosting implementations of this profile (see
9.2.1).

• Using the URL, the client invokes the intrinsic ExecuteQuery() CIM operation as follows:

– The value of the QueryLanguage input parameter is set to "CIM:CQL".

– The value of the Query input parameter is set to "SELECT * FROM CIM_RegisteredProfile
WHERE RegisteredName = ‘System Virtualization’ AND RegisteredVersion >= ‘1.0.0’".

Result: The client knows a set of instances of the CIM_RegisteredProfile class, each representing an im-
plementation of this profile.

In the example shown in Figure 3, one instance of the CIM_RegisteredProfile class represents an imple-
mentation of this profile; it is tagged SVP_1.

9.2.4 Locate host systems represented by central instances of this profile 1453

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that
represents an implementation of this profile (see 9.2.2 or 9.2.3).

• The client invokes the intrinsic AssociatorNames() CIM operation as follows:

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 47

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_RegisteredProfile class.

1457
1458

1459

1460

1461
1462

1463
1464

1466
1467

1468
1469

1470
1471

1472

1473

1474
1475

1476
1477
1478

1479
1480

1481
1482

1483
1484
1485
1486

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile".

– The value of the ResultClass parameter is set to "CIM_System".

Result: The client knows a set of references to instances of the CIM_System class that represent host
systems that are central and scoping instances of this profile.

In the example shown in Figure 3, one instance of the CIM_RegisteredProfile class represents a host sys-
tem that is a central and scoping instance of this profile; it is tagged HOST_1.

9.2.5 Locate implementations of scoped resource allocation profiles 1465

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that
represents an implementation of this profile (see 9.2.2 or 9.2.3).

1) The client invokes the intrinsic Associators() CIM operation to obtain a the list of scoped DMTF
management profiles, as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_RegisteredProfile class.

– The value of the AssocClass parameter is set to "CIM_ReferencedProfile".

– The value of the ResultClass parameter is set to "CIM_RegisteredProfile".

The result is a set of instances of the CIM_RegisteredProfile class that each represent an imple-
mentation of a DMTF management profile that is scoped by this profile.

2) For each instance of the CIM_RegisteredProfile class, the client determines whether the value
of the RegisteredName property matches the registered name of one of the scoped resource
allocation DMTF management profiles as specified by Table 1.

If the value does not match any name of a resource allocation DMTF management profile
scoped by this profile, the client ignores that instance of the CIM_RegisteredProfile class.

Result: The client knows a set of instances of the CIM_RegisteredProfile class that each represent an im-
plementation of a resource allocation DMTF management profile that is scoped by this profile.

In the example shown in Figure 3, three instances of the CIM_RegisteredProfile class are associated with
the instance of the CIM_RegisteredProfile class that is tagged SVP_1 and represents a central instance
of this profile. These instances represent implementations of scoped resource allocation DMTF
management profiles:

• The instance tagged PROC_RAP represents an implementation of DSP1044. 1487

• The instance tagged GEN_RAP represents an implementation of DSP1059. 1488

• The instance tagged MEM_RAP represents an implementation of DSP1045. 1489

1491
1492

1493

1494
1495

1496

1497

9.2.6 Locate virtual system management service 1490

Assumption: The client knows a reference to an instance of the CIM_System class that represents a
host system that is a central instance of this profile (see 9.2.4).

• The client invokes the intrinsic AssociatorNames() CIM operation as follows:

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System
class.

– The value of the AssocClass parameter is set to "CIM_HostedService".

– The value of the ResultClass parameter is set to "CIM_VirtualSystemManagementService".

System Virtualization Profile DSP1042

48 DMTF Standard Version 1.0.0

Result: The client knows a reference to the instance of the CIM_VirtualSystemManagementService class
that represents the virtual system management service that serves the host system. If the operation is
successful, the size of the result set is 1.

1498
1499
1500

1501
1502

1504
1505

1506

1507
1508

1509

1510
1511

1512
1513

1514

1515
1516

1517
1518
1519

1520
1521
1522

1523
1524

1525
1526

1527
1528

1529
1530
1531

1532
1533
1534
1535
1536
1537
1538

1539
1540
1541

In the example shown in Figure 3, one instance of the CIM_VirtualSystemManagementService class
serves the host system; it is tagged VSMS_1.

9.2.7 Determine the capabilities of an implementation 1503

Assumption: The client knows a reference to an instance of the CIM_System class that represents a
host system that is a central instance of this profile (see 9.2.4).

1) The client invokes the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System
class.

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities".

– The value of the ResultClass parameter is set to
"CIM_VirtualSystemManagementCapabilities".

The result is a list of instances of the CIM_VirtualSystemManagementCapabilities class. If the
operation is successful, the size of the result set is 1.

2) The client analyzes the instance of the CIM_VirtualSystemManagementCapabilities class.

– The VirtualSystemTypesSupported[] array property lists identifiers of virtual system types
that the implementation supports.

– The SynchronousMethodsSupported[] array property lists identifiers of methods of the
CIM_VirtualSystemManagementService class that are implemented with synchronous
method execution only.

– The AsynchronousMethodsSupported[] array property lists identifiers of methods of the
CIM_VirtualSystemManagementService class that are implemented with synchronous and
asynchronous method execution.

– The IndicationsSupported[] array property lists identifiers of types of indications that the
implementation supports.

Result: The client knows the capabilities of the host system in terms of properties of the
CIM_VirtualSystemManagementCapabilities class.

In the example shown in Figure 3, one instance of the CIM_VirtualSystemManagementCapabilities class
is associated with the host system; it is tagged VSMC_1.

• The VirtualSystemTypesSupported[] array property lists one element with the value "Default",
which indicates that the implementation supports one virtual system type named "Default". The
semantics are implementation specific.

• The SynchronousMethodsSupported[] array property lists enumerated values:
{ 1 (AddResourceSettingsSupported), 3 (DestroySystemSupported),
5 (ModifyResourceSettingsSupported), 6 (ModifySystemSettingsSupported), and
7 (RemoveResourcesSupported) }, which indicates that the AddResources() method, the
DestroySystem() method, the ModifyResourceSettings() method, and the
RemoveResourceSettings() method are implemented by the implementation with synchronous
execution.

• The AsynchronousMethodsSupported[] array property lists the enumerated value
{ 2 (DefineSystemSupported) }, which indicates that the DefineSystem() method is
implemented by the implementation with synchronous or asynchronous execution.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 49

• The value of the IndicationsSupported[] array property is NULL, which indicates that indications
are not implemented by the implementation.

1542
1543

1545
1546

1547

1548
1549

1550

1551

1552

1553
1554

1555
1556

1557
1558

9.2.8 Locate hosted resource pools of a particular resource type 1544

Assumption: The client knows a reference to an instance of the CIM_System class that represents a
host system that is a central instance of this profile (see 9.2.4).

1) The client invokes the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System
class.

– The value of the AssocClass parameter is set to "CIM_HostedResourcePool".

– The value of the ResultClass parameter is set to "CIM_ResourcePool".

The result is a list of instances of the CIM_ResourcePool class.

2) For each instance of CIM_ResourcePool, the client determines whether the value of the
ResourceType property matches the requested resource type.

If the value does not match the requested resource type, the client drops that instance of the
CIM_ResourcePool class from the list.

Result: The client knows a set of instances of the CIM_ResourcePool class, each representing a hosted
resource pool of the requested resource type.

9.2.9 Obtain a set of central instances of scoped resource allocation profiles 1559

Resource allocation DMTF management profiles are based on DSP1041 that defines the
CIM_ResourcePool class as the central class. The procedure for the determination of central instances of
scoped DMTF management profiles depends on the profile advertisement methodology applied by the
respective implementations.

1560
1561
1562
1563

1564
1565

1566
1567
1568

1569
1570

1571

1572

1573

1574
1575
1576

1577
1578
1579

1580
1581

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that
represents an implementation of a scoped DMTF management profile (see 9.2.5).

• The client invokes the intrinsic Associators() CIM operation to obtain the list of instances of the
CIM_ResourcePool class that are central instances of the scoped DMTF management profiles,
as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_RegisteredProfile class

– The value of the AssocClass parameter is set to "CIM_ElementConformsToProfile".

– The value of the ResultClass parameter is set to "CIM_ResourcePool".

The result is a list of instances of the CIM_ResourcePool class; the list may be empty.

– If the list is not empty, the central class profile implementation advertisement methodology
is applied by the implementation for the scoped resource allocation DMTF management
profile. In this case, the list is the result for this use case.

– If the list is empty, the scoping class profile implementation advertisement methodology is
applied by the implementation for the scoped resource allocation DMTF management pro-
file. In this case, the client

– needs to know the resource type associated with the scoped resource allocation
DMTF management profile

System Virtualization Profile DSP1042

50 DMTF Standard Version 1.0.0

– applies use case 9.2.8 to obtain a list of instances of the CIM_ResourcePool class
that each represent a resource pool of that particular resource type.

1582
1583

1584

1585
1586

1588
1589

1590
1591

1592
1593

1594
1595
1596

1597
1598

1599
1600
1601

1602

1603
1604

1605
1606

1607
1608
1609

The resulting list is the result for this use case.

Result: The client knows a list of instances of the CIM_ResourcePool class, each representing a central
instance of a scoped resource allocation DMTF management profile.

9.2.10 Determine implemented resource types 1587

Assumption: The client knows a reference to an instance of the CIM_RegisteredProfile class that
represents an implementation of this profile (see 9.2.2 or 9.2.3).

1) The client locates implementations of DMTF management profiles that are scoped by this profile
(see 9.2.5).

The result is a list of references to instances of the CIM_RegisteredProfile class that represent
implementations of DMTF management profiles that are scoped by this profile.

2) For each instance of CIM_RegisteredProfile, the client obtains the set of instances of the
CIM_ResourcePool class that are central instances of the respective scoped resource allocation
DMTF management profiles and represent a conformant resource pool (see 9.2.9).

The result is a list of instances of the CIM_ResourcePool class that are central instances of
scoped resource allocation DMTF management profiles.

3) The client creates an initially empty list of integer values. For each instance that is a result from
step 2), the client determines whether the value of property ResourceType is already repre-
sented in the list:

– If that value is already contained in the list, the client ignores the element.

– If that value is not yet contained in the list, the client adds a new element to the list with
that value.

Result: The client knows a list of integer values, each designating a resource type that is supported by
the implementation.

In the example shown in Figure 3, three instances of the CIM_RegisteredProfile class are associated with
the instance of the CIM_RegisteredProfile class that represents the implementation of this profile. These
instances are central instances of scoped resource allocation DMTF management profiles:

• The instance tagged PROC_RAP represents an implementation of DSP1044. 1610

• The instance tagged GEN_RAP represents an implementation of DSP1059. 1611

• The instance tagged MEM_RAP represents an implementation of DSP1045. 1612

1613
1614

1615
1616
1617

1618
1619
1620

1621
1622
1623

These instances are all associated with respective instances of the CIM_ResourcePool class, indicating
that in this example in all cases the central class profile advertisement methodology is in use:

• The instance tagged PROC_RAP is associated with two instances that represent resource
pools for the allocation of processors. They show a value of 3 (Processor) for the ResourceType
property and are tagged PROC_POOL1 and PROC_POOL2.

• The instance tagged GEN_RAP is associated with one instance that represents a resource pool
for the allocation of virtual disks. It shows a value of 19 (Storage Extent) for the ResourceType
property and is tagged DISK_POOL.

• The instance tagged MEM_RAP is associated with one instance that represents a resource pool
for the allocation of memory. It shows a value of 4 (Memory) for the ResourceType property and
is tagged MEM_POOL.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 51

The resulting list of integer values is {"3","4","19"} and designates the implemented resource types
3 (Processor), 4 (Memory), and 19 (Storage Extent).

1624
1625

1627
1628

1629
1630

1631
1632

1633

1634

1635

1636
1637

1638
1639
1640
1641

1642
1643

1644
1645

1646

1647
1648

1649
1650

1651

1652
1653

1654
1655

1656
1657

1658
1659

1660

1661

1662

1663
1664

9.2.11 Determine the default resource pool for a resource type 1626

Assumption: The client knows a reference to an instance of the CIM_System class that represents a
host system that is a central instance of this profile (see 9.2.4).

1) The client invokes the intrinsic Associators() CIM operation for a list of allocation capabilities
associated with resource pools hosted by the host system, as follows:

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System
class.

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities".

– The value of the ResultClass parameter is set to "CIM_AllocationCapabilities".

The result is a list of instances of the CIM_AllocationCapabilities class.

2) The client drops instances from the result list of step 1) that have a value for the ResourceType
property that does not match the requested resource type.

The purpose of the following two steps is to further limit the result set from step 2) to those in-
stances of the CIM_AllocationCapabilities class that describe default settings. Default settings
are flagged in the connecting instance of the CIM_ElementCapabilities association that has a
value of 2 (Default) for the Characteristics property.

3) For each instance of the list resulting from step 2), the client invokes the intrinsic References()
CIM operation for a list of association instances that refer to the resource pool:

– The value of the ObjectName parameter refers the instance of the CIM_ResourcePool
class.

– The value of the ResultClass parameter is set to "CIM_AllocationCapabilities".

The result is a list of instances of the CIM_ElementCapabilities association that associate an in-
stance of the CIM_ResourcePool class that is taken from the result of step 2).

4) From the list obtained in step 3), the client drops all elements that meet either of the following
conditions:

– have a value other than 2 (Default) for the Characteristics property

– do not refer to the instance of the CIM_System class that represents the host system
through the ManagedElement property

The list should now contain one instance of the CIM_AllocationCapabilities class that represents
default allocation capabilities for the resource type in question.

5) The client invokes the intrinsic Associators() CIM operation to resolve association for the re-
source pool, as follows:

– The value of the ObjectName parameter refers to the instance of the
CIM_AllocationCapabilities class selected in step 4).

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities".

– The value of the ResultClass parameter is set to "CIM_ResourcePool".

The result is a list of instances of the CIM_ResourcePool class. The size of the list is 1.

Result: The client knows the instance of the CIM_ResourcePool class that represents the default re-
source pool for the requested resource type.

System Virtualization Profile DSP1042

52 DMTF Standard Version 1.0.0

In the example shown in Figure 3, allocation capabilities are depicted only for the virtual processor pool.
In the subsequent description, it is assumed that the client looks for the default resource pool for proces-
sors:

1665
1666
1667

1668
1669

• With step 1) of this use case, the client resolves the CIM_ElementCapabilities association from
the instance of the CIM_System class that represents the host system (tagged HOST_1) to in-
stances of the CIM_AllocationCapabilities class. A conformant implementation of DSP1043
shows only one associated element for each resource type.

1670
1671

1672
1673

1674
1675
1676

1677
1678
1679

1681

1682
1683

1684
1685

1686
1687

1688

1689

1690

1691
1692

1694
1695

1696

1697
1698

1699

1700

1701

1702
1703

1704

1705

• With step 2), the client reduces the result set to the one element that describes allocation
capabilities processors. This instance is tagged CAP_PROC1.

• With steps 3) and 4), the client further reduces the result set to the one instance of the
CIM_AllocationCapabilities class that represents the system’s default capabilities for resource
type 3 (Processor).

• With step 5), the client resolves the CIM_ElementCapabilities association in order to obtain the
instance of the CIM_ResourcePool class that represents the default resource pool for
processors. This instance is tagged PROC_POOL2.

9.2.12 Determine the resource pool for a resource allocation request or an allocated 1680
resource

Assumption: The client knows a reference to an instance of the CIM_ResourceAllocationSettingData
class that represents a resource allocation request or allocated resource.

• The client invokes the intrinsic Associators() CIM operation for a list of allocation capabilities
associated with resource pools hosted by the host system, as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_ResourceAllocationSettingData class.

– The value of the AssocClass parameter is set to "CIM_ResourceAllocationFromPool".

– The value of the ResultClass parameter is set to "CIM_ResourcePool".

The result is a list of instances of the CIM_ResourcePool class containing one element.

Result: The client knows the instance of the CIM_ResourcePool class that represents the resource pool
for the resource allocation request or allocated resource.

9.2.13 Determine valid settings for a resource type 1693

This use case describes the determination of valid settings for a resource type in the context of either the
system as a whole or one resource pool.

Assumption: The client knows a reference to either of the following instances:

• an instance of the CIM_ResourcePool class that represents a resource pool that is a central in-
stance of a resource allocation DMTF management profile

• an instance of the CIM_System class that represents a host system

The sequence of activities is as follows:

1) The client invokes the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_ResourcePool class or the CIM_System class.

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities".

– The value of the ResultClass parameter is set to "CIM_AllocationCapabilities".

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 53

The result is a list of instances of the CIM_AllocationCapabilities class that describe the
capabilities of the input instance.

1706
1707

1708
1709
1710

1711
1712
1713

1714
1715
1716
1717

1718
1719

1720

1721

1722
1723
1724

1725

1726

2) The client drops from the result of step 1) those instances in which the ResourceType property
designates a resource type other than the requested resource type. This step is required only if
the starting point of the use case was an instance of the CIM_System class.

At this point the client has a list of instances of the CIM_AllocationCapabilities class that de-
scribe allocation capabilities. The value of the SharingMode property allows a distinction
between shared and dedicated resources.

3) The client invokes the intrinsic References() CIM operation for a set of instances of the
CIM_SettingsDefineCapabilities association that each associate one instance of the
CIM_ResourceAllocationSettingData class that describes a limiting aspect (min/max/increment),
as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_AllocationCapabilities class.

– The value of the ResultClass parameter is set to "CIM_SettingsDefineCapabilities".

The result is a list of instances of the CIM_SettingsDefineCapabilities association.

4) For each instance that is a result from step 3), the client analyzes the values of the
PropertyPolicy property and the ValueRange property. The value of the ValueRole property is
irrelevant in this case.

The property values have the following impact:

– The value of the PropertyPolicy property is 0 (Independent) for a conformant
implementation of DSP1043 in association instances that connect a min/max/increment
limiting setting.

1727
1728

1729
1730

1731
1732
1733

1734
1735
1736

1737
1738
1739

1740
1741
1742
1743

1744
1745

1746

1748
1749
1750
1751

– The value of the ValueRange property allows determining the designation of the associated
setting:

– A value of 1 (Minimums) indicates that the referenced instance of the
CIM_ResourceAllocationSettingData class represents a lower limit for the allocation of
resources of the respective resource type.

– A value of 2 (Maximums) indicates that the referenced instance of the
CIM_ResourceAllocationSettingData class represents an upper limit for the allocation
of resources of the respective resource type.

– A value of 3 (Increments) indicates that the referenced instance of the
CIM_ResourceAllocationSettingData class represents an increment for the allocation
of resources of the respective resource type.

5) For each association instance obtained in step 4), the client invokes the intrinsic GetInstance()
CIM operation for the instance of the CIM_ResourceAllocationSettingData class that describes
the respective limitation. The value of InstanceName parameter is set to the value of the
PartComponent property in the association instance obtained in step 4).

In each case, the result is an instance of the CIM_ResourceAllocationSettingData class that
represents a limiting setting.

Result: The client knows the valid resource settings for the requested resource type.

9.2.14 Determine implementation class specifics 1747

This profile specifies the use of classes derived from the CIM_SettingData class, namely the
CIM_VirtualSystemSettingData class and the CIM_ResourceAllocationSettingData class. Instances of
these classes are used to describe requirements on virtual systems and virtual resources as these are
created or modified. An implementation may provide platform-specific implementation classes that extend

System Virtualization Profile DSP1042

54 DMTF Standard Version 1.0.0

these classes (or, for the CIM_ResourceAllocationSettingData class, that extend resource-type-specific
extensions specified in a resource-type-specific resource allocation DMTF management profile).

1752
1753

1754
1755
1756

1757

1758
1759

1760
1761

1762

1763
1764

1765

1766

1767

1768

1769

1770

A client should be prepared to deal with these extensions. A client should obtain class information for all
derived classes it deals with, in particular focusing on all class qualifiers and all property qualifiers,
namely

• the Description qualifier that provides a description of the subclass or property

• the DisplayName qualifier that provides a name for each subclass or property that is potentially
known to end-users

Assumption: The client knows a reference to an instance of the class for which the client wants to obtain
class-specific information.

1) The client extracts the class name from the reference.

2) The client invokes the intrinsic GetClass() CIM operation to obtain a formal class description,
as follows:

– The value of the ClassName parameter is set to the name of the class.

– The value of the LocalOnly parameter is set to "false".

– The value of the IncludeQualifiers parameter is set to "true".

– The value of the IncludeClassOrigin parameter is set to "true".

The result is a description of a CIM class.

Result: The client has a description of the class. The format depends on the CIM client used to issue the
request and is based on the XML class data structure that describes a CIM class as defined in DSP0201.
The description contains the class’s qualifiers, its properties with property qualifiers, and its methods with
method qualifiers. Inspection of the class description enables the client to create local instances of the
respective implementation class.

1771
1772
1773
1774

1776
1777

1778
1779
1780
1781

1782

1783
1784
1785
1786

1788
1789

1790
1791

1792
1793

9.2.15 Determine the implementation class for a resource type 1775

Assumption: The client knows a list of references to instances of the CIM_ResourcePool class that
represent resource pools available at a host system.

1) The client applies use case 9.2.13 to obtain a reference to an instance of the
CIM_ResourceAllocationSettingData class that is associated with an instance of the
CIM_ResourcePool class of the requested type through an instance of the
CIM_SettingsDefineCapabilities association with the ValueRole property set to "DEFAULT".

2) The client applies use case 9.2.14 to obtain class information about that instance.

Result: The client has an implementation class descriptor, which allows the client to analyze the
implementation class for its qualifiers, its properties and their qualifiers, and its methods and their
qualifiers. Further, the client can create local instances of the returned class that may be used as input on
methods of the CIM_VirtualSystemManagementService class.

9.2.16 Locate virtual systems hosted by a host system 1787

Assumption: The client knows a reference to an instance of the CIM_System class that is the central in-
stance of this profile and represents a host system (see 9.2.4).

• The client invokes the intrinsic AssociatorNames() CIM operation for the list of virtual systems,
as follows:

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System
class.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 55

– The value of the AssocClass parameter is set to "CIM_HostedSystem". 1794

1795

1796

1797
1798

1800
1801
1802

1804
1805

1807

1808
1809

1810
1811

1812
1813

1814
1815

1816
1817
1818

1819
1820

1821
1822

1823
1824

– The value of the ResultClass parameter is set to "CIM_ComputerSystem".

The result is a list of references to instances of the CIM_ComputerSystem class.

Result: The client knows a set of references to instances of the CIM_ComputerSystem class that
represent virtual systems that are hosted by the host system.

9.3 Virtual system definition, modification, and destruction 1799

General assumption: The client knows a reference to an instance of the
CIM_VirtualSystemManagementService class that represents the virtual system management services of
a host system (see 9.2.6).

9.3.1 Virtual system definition 1803

Virtual system definition is performed using a client-provided configuration, a configuration of an existing
virtual system, a configuration that is stored within the implementation, or combinations of these.

9.3.1.1 Define virtual system based on input and reference virtual system configuration 1806

Assumption: No assumption is made beyond the general assumption specified in 9.3.

1) The client invokes the DefineSystem() method (see 8.2.1) on the virtual system management
service, as follows.

– The value of the SystemSettings parameter is set to an embedded instance of the
CIM_VirtualSystemSettingData class.

– The value of the ResourceSettings[] array parameter is set to an array of embedded in-
stances of the CIM_ResourceAllocationSettingData class.

– The value of the ReferenceConfiguration parameter is set to refer to a "Reference" virtual
system configuration.

2) The implementation executes the DefineSystem() method. The configuration of the new virtual
system is created according to the client’s requirements. The new virtual system is in the
"Defined" virtual system state.

The value returned in the ResultingSystem parameter refers to an instance of the
CIM_ComputerSystem class.

Result: The client knows a reference to an instance of the CIM_ComputerSystem class that represents
the new virtual system.

Figure 4 shows the representation of a virtual system that was defined using an "Input" virtual system and
a "Reference" virtual system configuration.

System Virtualization Profile DSP1042

InstanceID = "DE24672409A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_DEF_VSSD : VirtualSystemSettingData

InstanceID = "DE24672408A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 1
Weight = 100

VS2_PROC_DEF_RASD : RASD

VS2 : ComputerSystem

InstanceID = "DE24672408A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_DEF_RASD : RASD

C
on

cr
et

eC
om

po
ne

nt

S
ys

te
m

D
ev

ic
e

VS2DISK1 : LogicalDisk

InstanceID = "DE24672419A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_STA_VSSD : VirtualSystemSettingData

InstanceID = "DE24672418A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_STA_RASD : RASD

C
on

cr
et

eC
om

po
ne

nt

Name = "DE24672408670001"
HOST1 : System

SettingsDefineState

HostedDependency

InstanceID = "DE24672408720001"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Primordial = True

DISK_POOL : ResourcePool

H
os

te
dR

es
ou

rc
eP

oo
l

ResourceAllocationFromPool

ElementAllocatedFromPool SettingsDefineState

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

$: ElementSettingData

InstanceID = "DE24672408A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_DEF_RASD : RASDVS2DISK2 : LogicalDisk
InstanceID = "DE24672418A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_STA_RASD : RASD

ResourceAllocationFromPool

Implementation
Space

Client
Space

InstanceID = "DE24672408A10023"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 4096
Weight = 100

VS2_MEM_DEF_RASD : RASD

InstanceID = NULL
VirtualSystemIdentifier = "VS.*"
VirtualSystemType = NULL

INPUT_VSSD : VirtualSystemSettingData

InstanceID = NULL
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

INPUT_DISK2_RASD : RASD

InstanceID = NULL
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 4096
Weight = 100

INPUT_MEM_RASD : RASD

 1825

1826
1827

1828
1829
1830
1831
1832

1833

1834

1835

Figure 4 – Virtual system configuration based on input virtual system configurations and
implementation defaults

The new virtual system is represented by an instance of the CIM_ComputerSystem class that is tagged
VS2. The right side of Figure 4 shows the "Defined" virtual system configuration for the new virtual sys-
tem. It is based on the "Input" virtual system configuration shown at the top of Figure 4. In this example, it
is assumed that the ReferenceConfiguration parameter refers to a virtual system configuration that con-
tains requests for the following resources:

• a virtual processor

• virtual memory of 1024 MB

• a virtual disk of 1024 MB

56 DMTF Standard Version 1.0.0

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 57

The "Input" virtual system configuration does not request the allocation of a processor, but because the
"Reference" virtual configuration does, the resulting virtual system definition contains a request for a
processor as well.

1836
1837
1838

1839
1840

1841
1842

1844

1845
1846
1847
1848
1849

1850
1851
1852
1853
1854

1855
1856
1857

1859

1861
1862

1863
1864

The input virtual system configuration requests 4096 MB of memory. That value is given preference over
the value of 1024 that is specified in the "Reference" configuration.

The input virtual system configuration requests a virtual disk in addition to the one requested by the
"Reference" configuration, resulting in two virtual disks allocated for the new virtual system.

9.3.1.2 Define virtual system with implementation-specific properties 1843

Assumption: No assumption is made beyond the general assumption specified in 9.3.

• The client performs use case 9.3.1.1 using an input configuration only. While preparing the input
virtual system configuration, the client applies use case 9.2.14 to determine the implementation
class of the CIM_VirtualSystemSettingData class and use case 9.2.15 to determine the various
implementation classes for the CIM_ResourceAllocationSettingData class for the required
resource types.

The implementation classes may specify additional properties beyond the set that is defined in
the respective base classes. The client may use the description information about each of these
properties that is obtained with the respective class descriptions to request appropriate values
from end users in order to create valid instances of the implementation class (thereby defining
implementation-specific resource requirements).

Result: The value of the DefinedSystem output parameter refers to an instance of the
CIM_ComputerSystem class that represents the newly created virtual system. The new system is in the
"Defined" state.

9.3.2 Virtual system modification 1858

This clauses describes a set of usecases that modify virtual systems or virtual system configurations.

9.3.2.1 Modify virtual system state or definition 1860

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that
represents a virtual system.

1) The client obtains the instance of the CIM_VirtualSystemSettingData class that represents the
state or definition of virtual aspects of the affected virtual system (respective use cases are de-
scribed in DSP1057). 1865

1866
1867

1868
1869
1870

1871
1872

1873

1875
1876

1877
1878

2) The client makes conformant changes to the instance of the CIM_VirtualSystemSettingData
class. In particular, the client must not modify key properties.

3) The client invokes the ModifySystemSettings() method (see 8.2.5) on the virtual system
management service. The value of the SystemSettings parameter is the modified instance from
step 2).

4) The implementation executes the ModifySystemSettings() method, and the configuration of the
virtual system is modified according to the clients requirements.

Result: The requested modification is applied to the state or definition of the virtual system.

9.3.2.2 Add virtual resources 1874

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class
that represents a virtual system configuration.

1) The client locally prepares one or more instances of the CIM_ResourceAllocationSettingData
class to represent the resource allocation requests for the new virtual resources.

System Virtualization Profile DSP1042

58 DMTF Standard Version 1.0.0

2) The client invokes the AddResourceSettings() method (see 8.2.3) on the virtual system
management service, as follows:

1879
1880

1881
1882
1883

1884
1885

1886
1887

1888
1889

1891
1892

1893
1894
1895
1896

1897
1898

1899
1900

1901

1902

1903
1904

 1905
1906
1907

1908
1909

1910
1911

1912

1913
1914

1915
1916
1917
1918

1919
1920
1921
1922

1923
1924

– The value of the AffectedConfiguration parameter is set to refer to the instance of the
CIM_VirtualSystemSettingData class that represents the virtual system configuration that
receives new resources allocations.

– The value of the ResourceSettings[] array parameter is set with each element as one
embedded instance of the CIM_ResourceAllocationSettingData class prepared in step 1).

3) The implementation executes the AddResourceSettings() method, adding the requested re-
source allocations and resource allocation requests to the virtual system configuration.

Result: The requested resource allocations or resource allocation requests are configured into the refer-
enced virtual system configuration.

9.3.2.3 Modify virtual resource state extension or virtual resource definition 1890

Assumption: The client knows references to one or more instances of the CIM_LogicalDevice class that
represent one or more virtual resources.

Alternatively the client knows the reference to an instance of the CIM_ResourceAllocationSettingData
class that represents the virtual resource state extensions or virtual resource definitions. In this case, the
client would obtain the referenced instance by using the intrinsic GetInstance() CIM operation and pro-
ceed with step 4).

1) The client invokes the intrinsic Associators() CIM operation for the virtual resource state exten-
sion as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_LogicalDevice class.

– The value of the AssocClass parameter is set to "CIM_SettingsDefineState".

– The value of the ResultClass parameter is set to "CIM_ResourceAllocationSettingData".

The result is a list of instances of the CIM_ResourceAllocationSettingData class. The size of the
list is expected to be 1, and that element represents the virtual resource state extension. If the
client intends to modify the virtual resource state extension, the client skips steps 2) and 3), and
proceeds with step 4). If the client intends to modify the virtual resource definition, the client
continues with step 2).

2) The client invokes the intrinsic References() CIM operation for the association instances that
connect the virtual resource definition, as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_ResourceAllocationSettingData class that was obtained in step 1).

– The value of the ResultClass parameter is set to "CIM_ElementSettingData".

The result is a list of instances of the CIM_ElementSettingData association that connect various
settings to the virtual resource state extension.

3) The client selects from the result set of step 2) the instance in which the IsDefault property has
a value of 1 (Is Default). In that instance, the value of the SettingData property refers to the in-
stance of the CIM_ResourceAllocationSettingData class that represents the virtual resource
definition.

4) The client invokes the intrinsic GetInstance() CIM operation for the setting that represents the
resource allocation definition. The value of the InstanceName parameter is set to the value of
the SettingData property from the instance of the CIM_ElementSettingData association selected
in step 3).

The result is the instance of the CIM_ResourceAllocationSettingData class that represents the
virtual resource definition.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 59

5) The client makes conformant changes to the instance of the
CIM_ResourceAllocationSettingData class. In particular, the client must not modify key proper-
ties.

1925
1926
1927

1928
1929

1930
1931
1932
1933

1934
1935
1936

1937
1938

1939
1940
1941
1942
1943
1944
1945

1946
1947

Eventually the client executes steps 1) to 5) repetitively, preparing a set of resource allocation
change requests that subsequently are applied as one atomic operation.

6) The client invokes the ModifyResourceSettings() method (see 8.2.4) on the virtual system man-
agement service. The values of elements of the ResourceSettings parameter are the modified
instances of the CIM_ResourceAllocationSettingData class that were prepared through repeti-
tive execution of steps in steps 1) to 5).

7) The implementation executes the ModifyResourceSettings() method, causing the requested re-
source allocation changes being applied to resource allocation state extensions or resource
allocation definitions.

Result: The requested resource modifications are applied to virtual resource state extensions or virtual
resource definitions.

Figure 5 shows the representation of a virtual system. Initially the virtual system was instantiated accord-
ing to the "Defined" virtual system configuration that is show on the right side. During the activation of the
virtual system, required resources were allocated. Virtual resources are represented by instances of sub-
classes of the CIM_LogicalDevice class (CIM_Processor, CIM_Memory, or CIM_LogicalDisk in this case),
with their "State" extensions in the "State" virtual system configuration. Related elements in the virtual
system representation and the "State" virtual system configuration are associated through instances of
the CIM_SettingsDefineState association.

Entities that are shown in blue color in Figure 5 are involved in the example of a processor resource
modification that is described following the figure.

System Virtualization Profile DSP1042

InstanceID = "DE24672409A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_DEF_VSSD : VirtualSystemSettingData

VS2 : ComputerSystem

InstanceID = "DE24672408A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_DEF_RASD : RASD

C
on

cr
et

eC
om

po
ne

nt

S
ys

te
m

D
ev

ic
e

VS2DISK1 : LogicalDisk

InstanceID = "DE24672419A10022"
VirtualSystemIdentifier = "VS2"
VirtualSystemType = "Default"

VS2_STA_VSSD : VirtualSystemSettingData

InstanceID = "DE24672418A10024"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2DISK1_STA_RASD : RASD

C
on

cr
et

eC
om

po
ne

nt

Name = "DE24672408670001"
HOST1 : System

SettingsDefineState

HostedDependency

H
os

te
dR

es
ou

rc
eP

oo
l

ResourceAllocationFromPool

InstanceID = "DE24672408A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_DEF_RASD : RASDVS2DISK2 : LogicalDisk
InstanceID = "DE24672418A10025"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Reservation = 2048
Weight = 100

VS2DISK2_STA_RASD : RASD

ResourceAllocationFromPool

Implementation
Space

Client
Space

InstanceID = "DE24672408720001"
PoolID = "DISK_POOL"
ResourceType = 19 (Storage Extent)
ResourceSubType = NULL
Primordial = True

DISK_POOL : ResourcePool

InstanceID = "DE24672408680002"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Primordial = True

PROC_POOL2 : ResourcePool

InstanceID = "DE24672408690001"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Primordial = True

MEM_POOL : ResourcePool VS2MEM : Memory

VS2PROC2 : Processor

VS2PROC1 : Processor

InstanceID = "DE24672418A10023"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2_MEM_STA_RASD : RASD
InstanceID = "DE24672408A10023"
PoolID = "MEM_POOL"
ResourceType = 4 (Memory)
ResourceSubType = NULL
Reservation = 1024
Weight = 100

VS2_MEM_DEF_RASD : RASD

InstanceID = "DE24672408A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc"
Reservation = 1
Weight = 100

VS2_PROC_DEF_RASD : RASD
InstanceID = "DE24672418A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 2
Weight = 200

VS2_PROC_STA_RASD : RASD

InstanceID = "DE24672418A10022"
PoolID = "PROC_POOL2"
ResourceType = 3 (Processor)
ResourceSubType = "Virt. Proc."
Reservation = 2
Weight = 200

VS2_PROC_STA_RASD : RASD

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

Object1 : ElementSettingData

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

Object2 : ElementSettingData

 1948

1949

1950
1951
1952
1953
1954
1955
1956
1957

Figure 5 – Virtual system resource modification

Next, the client applied a resource modification on the allocated processor resource within the virtual sys-
tem’s "State" configuration. The "State" configuration is shown to the left of the "Defined" virtual system
configuration. The client obtained a local copy of the instance of the CIM_ResourceAllocationSettingData
class that is tagged VS2_PROC_STA_RASD. In that local copy, the client modified the value of the
Reservation property to 2 and the value of the Weight property to 200. Then the client called the
ModifyResourceSettings() method with the modified instance as the only element value for the
ResourceSettings[] array parameter. The execution of that method resulted in another virtual processor
being allocated to the virtual system.

60 DMTF Standard Version 1.0.0

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 61

NOTE: Because a change applied to the "State" virtual system configuration is temporary in nature, a recycling of
the virtual system will nullify the change and result in a new "State" virtual system configuration based on the
"Defined" virtual system configuration.

1958
1959
1960

1962
1963

9.3.2.4 Delete virtual resources or virtual resource definitions 1961

Assumption: The client has references to one or more instances of the
CIM_ResourceAllocationSettingData class that refer to elements of the "State" or "Defined" virtual system
configuration of one virtual system. See DSP1057, clause 9, for respective use cases. 1964

1965
1966
1967

1968
1969

1970

1972
1973

1974
1975
1976

1977

1978
1979
1980
1981
1982
1983

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994
1995

1) The client invokes the RemoveResourceSettings() method (see 8.2.6) on the virtual system
management service. The value of the ResourceSettings[] array parameter is set with each
element referring to one instance of the CIM_ResourceAllocationSettingData class.

2) The implementation executes the RemoveResourceSettings() method. Either all requested re-
source allocations or resource allocation requests are removed, or none at all.

Result: The referenced virtual resources are removed from their respective virtual system configurations.

9.3.3 Destroy virtual system 1971

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that repre-
sents a virtual system (see 9.2.16).

1) The client invokes the DestroySystem() method on the virtual system management service.
The value of the AffectedSystem parameter is set to refer to the instance of the
CIM_ComputerSystem class that represents the virtual system.

2) The implementation executes the DestroySystem() method.

Result: The affected virtual system and its virtual resources (together with their definition) are removed
from the implementation. If the virtual system was in the "Active" state, the "Paused" state, or in the
"Suspended" state, the running instance of the virtual system and its virtual resources are removed before
the definition of the virtual system is removed.
NOTE: Dependencies may exist that may prevent the destruction of a virtual system. For example, if definitions or
instances of other virtual systems refer to elements of the virtual system to be destroyed, the destruction may fail.

9.4 Snapshot-related activities 1984

This set of use cases describes activities such as the following:

• discovering a virtual system snapshot service

• inspecting the capabilities of a virtual system snapshot service

• creating a snapshot from a virtual system

• applying a snapshot to a virtual system

• analyzing a virtual snapshot

• analyzing dependencies among snapshots

• locating the most recently captured snapshot

• destroying a snapshot

Figure 6 depicts the CIM representation of a virtual system VS1 and of configurations that are associated
with the virtual system at time T3. In the example, it is assumed that the implementation applies the
"Single-Configuration Implementation Approach" as described in DSP1057. 1996

1997 The sequence of events that yield the situation shown in Figure 6 is as follows:

System Virtualization Profile DSP1042

62 DMTF Standard Version 1.0.0

1) At time T0, the virtual system VS1 is defined. The initial virtual system definition contains virtual
resource allocation requests for one memory extent, one virtual processor, and one virtual disk.

1998
1999

2000

2001
2002
2003

2004
2005

2006
2007

2008
2009
2010
2011

2012
2013

2014
2015

2016
2017
2018

2019

2020
2021
2022

2) At a time after T0 but before T1, the virtual system is activated.

3) At time T1, a full snapshot S1 is captured of the virtual system. Virtual system definition and
state are copied into the snapshot. A full snapshot includes the "content" of virtual memory and
of virtual disks; a disk snapshot would contain the "content" of virtual disks only.

4) The virtual system remains active after the snapshot is captured. The virtual system configura-
tion and the "content" of memory and of virtual disks may change in that interval.

5) At a time after T1 but before T2, snapshot S1 is applied to the virtual system, causing definition
and state to be restored to the situation at time T1.

6) Still at a time before T2, a second virtual disk is dynamically added to the virtual system. Be-
cause in this example the implementation applies the "Single-Configuration Implementation
Approach," this change in effect applies to both virtual system definition and virtual system in-
stance and is visible through the "Single" VS configuration.

7) At time T2, snapshot S2 is captured of the virtual system. Because at time T2 the virtual system
snapshot S1 is the last applied snapshot, snapshot S2 depends on snapshot S1.

8) The virtual system remains active after the snapshot is captured. The virtual system configura-
tion and the "content" of memory and of virtual disks may change in that interval.

9) At a time after T2 but before T3, snapshot S2 is applied to the virtual system, causing definition
and state to be restored to the situation at time T2, thereby nullifying changes that were applied
to the virtual system after T2.

10) At time T3, the situation is as shown in Figure 6.

General assumption: The client knows the reference to an instance of the
CIM_VirtualSystemSnapshotService class that represents the virtual system snapshot of a host system
(see 9.2.6).

DSP1042 System Virtualization Profile

VS1 : ComputerSystem VS1_S : VirtualSystemSettingData

VS1_Memory_S : ResourceAllocationSettingDataVS1_Memory : Memory

VS1_Processor : Processor VS1_Processor_S : ResourceAllocationSettingData

“Dual” VS configuration
(representing virtualization specific state
and definition)

VS representation
(representing VS instance) IsDefault = 1 (Is Default)

IsNext = 2 (Is Not Next)

VS1_ESD_D : ESD

Snapshot S1 of “Single” VS config
(Configuration plus state information)T1

T2

VS1_Disk1 : LogicalDisk VS1_Disk1_S : ResourceAllocationSettingData

Snapshot S1

Snapshot S2

Current Time: T3 > T2 > T1 > T0

VS1_Disk2 : LogicalDisk VS1_Disk2_S : ResourceAllocationSettingData

VS1_S1 : VirtualSystemSettingData

VS1_Memory_S1 : ResourceAllocationSettingData

VS1_Processor_S1 : ResourceAllocationSettingData

VS1_Disk1_S1 : ResourceAllocationSettingData

VS1_S2 : VirtualSystemSettingData

VS1_Memory_S2 : ResourceAllocationSettingData

VS1_Processor_S2 : ResourceAllocationSettingData

VS1_Disk1_S2 : ResourceAllocationSettingData

VS1_Disk2_S2 : ResourceAllocationSettingData

Time

Time

Snapshot S2 of “Single” VS Config
(Configuration plus state information)

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

VS1_ESD_D1 : ESD

IsDefault = 1 (Is Default)
IsNext = 2 (Is Not Next)

VS1_ESD_D2 : ESD

S
na

ps
ho

tO
fV

irt
ua

lS
ys

te
m

La
st

A
pp

lie
dS

na
ps

ho
t

M
os

tC
ur

re
nt

S
na

ps
ho

tIn
B

ra
nc

h

D
ep

en
de

nc
y

 2023

2024 Figure 6 – System Virtualization Profile: Snapshot example

Version 1.0.0 DMTF Standard 63

System Virtualization Profile DSP1042

64 DMTF Standard Version 1.0.0

9.4.1 Locate virtual system snapshot service 2025

Assumption: The client knows a reference to an instance of the CIM_System class that represents a
host system that is a central instance of this profile; see

2026
2027

2028

2029
2030

2031

2032

2033
2034
2035

2036
2037

2039
2040

2041

2042
2043

2044

2045
2046

2047
2048

2049

2050
2051
2052

2053
2054
2055

2056
2057

2058
2059

2060
2061

9.2.4.

• The client invokes the intrinsic AssociatorNames() CIM operation as follows:

– The value of the ObjectName parameter is set to refer to the instance of the CIM_System
class.

– The value of the AssocClass parameter is set to "CIM_HostedService".

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSnapshotService".

Result: The client knows a reference to the instance of the CIM_VirtualSystemSnapshotService class
that represents the virtual system snapshot service serving the host system. If the operation is successful,
the size of the result set is 1.

In the example shown in Figure 3, one instance of the CIM_VirtualSystemSnapshotService class serves
the host system; it is tagged VSSS_1.

9.4.2 Determine capabilities of a virtual system snapshot service 2038

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSnapshotService
class that represents the virtual system snapshot service serving a host system (see 9.4.1).

1) The client invokes the intrinsic Associators() CIM operation as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_VirtualSystemSnapshotService class.

– The value of the AssocClass parameter is set to "CIM_ElementCapabilities".

– The value of the ResultClass parameter is set to
"CIM_VirtualSystemSnapshotServiceCapabilities".

The result is a list of instances of the CIM_VirtualSystemSnapshotServiceCapabilities class. If
the operation is successful, the size of the result set is 1.

2) The client analyzes the instance of the CIM_VirtualSystemSnapshotServiceCapabilities class.

– The SynchronousMethodsSupported[] array property lists identifiers of methods of the
CIM_VirtualSystemSnapshotServiceCapabilities class that are implemented with
synchronous method execution only.

– The AsynchronousMethodsSupported[] array property lists identifiers of methods of the
CIM_VirtualSystemSnapshotServiceCapabilities class that are implemented with
synchronous and asynchronous method execution.

– The SnapshotTypesSupported[] array property lists identifiers designating snapshot types
that are supported by the implementation.

Result: The client knows the virtual-system-snapshot-related capabilities of the host system in terms of
properties of the CIM_VirtualSystemSnapshotServiceCapabilities class.

In the example shown in Figure 3, one instance of the CIM_VirtualSystemSnapshotServiceCapabilities
class is associated with the host system; it is tagged VSSSC_1.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 65

9.4.3 Create snapshot 2062

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that repre-
sents a virtual system hosted by a host system (see

2063
2064

2065
2066

2067
2068

2069

2070

2071
2072

2073
2074

2075
2076
2077
2078

2080
2081

2082

2083
2084

2085

2086

2087

2088
2089

2090
2091

2093
2094

2095
2096

2097
2098

2099

2100

2101
2102

9.2.16). The virtual system is active.

1) The client invokes the CreateSnapshot() method on the virtual system snapshot service, as fol-
lows:

– The value of the AffectedSystem parameter is set to refer to the instance of the
CIM_ComputerSystem class that represents the virtual system.

– The value of the SnapshotType parameter is set to 2 (Full Snapshot).

2) The implementation executes the CreateSnapshot() method.

The value returned in the ResultingSnapshot parameter refers to an instance of the
CIM_VirtualSystemSettingData class that represents the new snapshot.

Result: The client knows a reference to the instance of the CIM_VirtualSystemSettingData class that
represents the created virtual system snapshot.

In the example shown in Figure 6, two instances of the CIM_VirtualSystemSettingData class represent
virtual system snapshots S1 and S2 taken at times T1 and T2. Although the situation captured in Figure 6
shows the situation at T3, a snapshot taken at T3 would look identical to S2 (because the current system
at time T3 is unchanged with respect to S2).

9.4.4 Locate snapshots of a virtual system 2079

Assumption: The client knows a reference to an instance of the CIM_ComputerSystem class that
represents a virtual system (see 9.2.16).

• The client invokes the intrinsic Associators() CIM operation for the list of snapshots, as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_ComputerSystem class.

– The value of the AssocClass parameter is set to "CIM_SnapshotOfVirtualSystem".

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData".

The result is a list of instances of the CIM_VirtualSystemSettingData class.

Result: The client knows a set of instances of the CIM_VirtualSystemSettingData class, each represent-
ing a virtual system snapshot taken from the virtual system.

In the example shown in Figure 6, the instances tagged VS_S1 and VS1_S2 of the
CIM_VirtualSystemSettingData class represent snapshots S1 and S2.

9.4.5 Locate the source virtual system of a snapshot 2092

Assumption: The client knows the reference to an instance of the CIM_VirtualSystemSettingData class
that represents a virtual system snapshot.

• The client invokes the intrinsic AssociatorNames() CIM operation for the source virtual system
as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_VirtualSystemSettingData class.

– The value of the AssocClass parameter is set to "CIM_ElementSettingData".

– The value of the ResultClass parameter is set to "CIM_ComputerSystem".

The result is a list of references to instances of the CIM_ComputerSystem class. The size of the
list is 1.

System Virtualization Profile DSP1042

66 DMTF Standard Version 1.0.0

Result: The client knows a reference to an instance of the CIM_ComputerSystem class that represents
the virtual system that was the source for the snapshot.

2103
2104
2105
2106

2107
2108
2109

2111
2112

2113
2114

2115
2116

2117

2118

2119
2120

2121
2122

2123
2124
2125
2126

2128
2129

2130
2131

2132
2133

2134

2135

2136

2137

2138

2139
2140
2141

2142
2143

NOTE: At this time the present configuration of the virtual system may be completely different from the configuration
that was captured in the snapshot.

In the example shown in Figure 6, the instance of class CIM_ComputerSystem tagged VS1 is the source
of snapshots S1 and S2, represented by instances of the CIM_VirtualSystemSettingData class tagged
VS_S1 and VS_S2.

9.4.6 Locate the most current snapshot in a branch of snapshots 2110

Assumption: The client knows an instance of the CIM_ComputerSystem class that represents a virtual
system (see 9.2.16).

• The client invokes the intrinsic Associators() CIM operation for the most current snapshot in the
current branch of virtual snapshots, as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_ComputerSystem class.

– The value of the AssocClass parameter is set to "CIM_MostCurrentSnapshotInBranch".

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData".

The result is a list of instances of the CIM_VirtualSystemSettingData class. The size of the list is
1.

Result: The client knows an instance of the CIM_VirtualSystemSettingData class that represents the vir-
tual system snapshot that is the most current snapshot in the current branch of snapshots.

In the example shown in Figure 6, the instance of the CIM_VirtualSystemSettingData class that is tagged
VS1_2 represents the most current snapshot in the current branch of snapshots. This is the case because
that snapshot was applied most recently to the virtual system and no other snapshot was applied to or
created from the virtual system since then.

9.4.7 Locate dependent snapshots 2127

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class
that represents a virtual system snapshot (see 9.4.4).

• The client invokes the intrinsic AssociatorNames() CIM operation for the list of dependent snap-
shots as follows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_VirtualSystemSettingData class.

– The value of the AssocClass parameter is set to "CIM_Dependency".

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData".

– The value of the Role parameter is set to "Antecedent".

– The value of the ResultRole parameter is set to "Dependent".

The result is a list of references to instances of the CIM_VirtualSystemSettingData class.

Result: The client knows a set of instances of the CIM_VirtualSystemSettingData class that represent vir-
tual system snapshots that depend on the input virtual system snapshot. The set may be empty, indicating
that no dependent snapshots exist.

In the example shown in Figure 6, the instance tagged VS_S2 represents snapshot S2, which is depend-
ent on snapshot S1, which is represented by the instance tagged VS_S1.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 67

9.4.8 Locate parent snapshot 2144

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class
that represents a virtual system snapshot (see

2145
2146

2147
2148

2149
2150

2151

2152

2153

2154

2155
2156

2157
2158
2159

2160
2161

2163
2164
2165
2166

2167
2168
2169

2170

2171
2172

2173
2174

2175
2176
2177

2178
2179
2180

2181

2182
2183

9.4.4).

• The client invokes the intrinsic AssociatorNames() CIM operation for the parent snapshot as fol-
lows:

– The value of the ObjectName parameter is set to refer to the instance of the
CIM_VirtualSystemSettingData class that represents the virtual system snapshot.

– The value of the AssocClass parameter is set to "CIM_Dependency".

– The value of the ResultClass parameter is set to "CIM_VirtualSystemSettingData".

– The value of the Role parameter is set to "Dependent".

– The value of the ResultRole parameter is set to "Antecedent".

The result is a list of references to instances of the CIM_VirtualSystemSettingData class that
represent virtual system snapshots. The list has a size of 1 or 0.

Result: The client knows the instance of the CIM_VirtualSystemSettingData class that represents the par-
ent virtual system snapshot of the input virtual system snapshot. The set may be empty, indicating that no
parent snapshots exist.

In the example shown in Figure 6, the instance tagged VS_S1 represents snapshot S1, which is the par-
ent of snapshot S2, which is represented by the instance tagged VS_S2.

9.4.9 Apply snapshot 2162

Assumption: The client knows a reference to an instance of the CIM_VirtualSystemSettingData class
that represents a virtual system snapshot (see 9.4.3 or 9.4.4). The client knows a reference to the in-
stance of the CIM_ComputerSystem class that represents the virtual system that was the source for the
snapshot (see 9.4.5). The virtual system is active.

1) The client invokes the ApplySnapshot() method on the virtual system snapshot service. The
value of the Snapshot parameter is set to refer to the instance of the
CIM_VirtualSystemSettingData class that represents the snapshot.

2) The snapshot is applied into the active virtual system as follows:

a) The virtual system is deactivated. This implies a disruptive termination of the software that
may be active in the instance of the virtual system.

b) The virtual system is reconfigured according to the virtual system snapshot. For a disk
snapshot, this applies to the disk resources only.

c) If the applied snapshot is a full snapshot, all stateful resources like memory and disk are
restored to the situation that was captured in the snapshot. If the applied snapshot is a disk
snapshot, only disk resources are restored.

d) The virtual system is activated. If the applied snapshot is a full snapshot, the virtual system
starts from the situation that was captured by the full snapshot. If the applied snapshot was
a disk snapshot, a normal virtual system activation occurs.

Result: The virtual system is restored to the situation that was in place when the snapshot was taken.

In the example shown in Figure 6, the situation is depicted at time T3, immediately after the activation of
snapshot S2 within virtual system VS1.

System Virtualization Profile DSP1042

68 DMTF Standard Version 1.0.0

9.4.10 Destroy snapshot 2184

Assumption: The client knows the reference to an instance of the CIM_VirtualSystemSettingData class
that represents a virtual system snapshot (see

2185
2186

2187
2188
2189

2190

2191

2193
2194
2195

2196

2197

9.2.16).

1) The client invokes the DestroySnapshot() method on the virtual system management service.
The value of the Snapshot parameter is set to refer to the instance of the
CIM_VirtualSystemSettingData class that represents the snapshot.

2) The snapshot is removed from the implementation.

Result: The snapshot no longer exists within the implementation.

10 CIM elements 2192

Table 20 lists CIM elements that are defined or specialized for this profile. Each CIM element shall be
implemented as described in Table 20. The CIM Schema descriptions for any referenced element and its
sub-elements apply.

Clauses 7 ("Implementation") and 8 ("Methods") may impose additional requirements on these elements.

Table 20 – CIM Elements: System Virtualization Profile

Element Name Requirement Description

CIM_AffectedJobElement Conditional See 10.1.

CIM_ConcreteJob Conditional See 10.2.

CIM_Dependency Conditional See 10.3.

CIM_ElementCapabilities (Host system) Mandatory See 10.4.

CIM_ElementCapabilities (Virtual system management service) Mandatory See 10.5.

CIM_ElementCapabilities (Virtual system snapshot service) Conditional See 10.6.

CIM_ElementCapabilities (Snapshots of virtual systems) Conditional See 10.7.

CIM_ElementConformsToProfile Mandatory See 10.8.

CIM_HostedDependency Mandatory See 10.9.

CIM_HostedService (Virtual system management service) Conditional See 10.10.

CIM_HostedService (Virtual system snapshot service) Conditional See 10.11.

CIM_LastAppliedSnapshot Conditional See 10.12.

CIM_MostCurrentSnapshotInBranch Conditional See 10.13.

CIM_ReferencedProfile Conditional See 10.14.

CIM_RegisteredProfile Mandatory See 10.15.

CIM_ServiceAffectsElement (Virtual system management service) Conditional See 10.16.

CIM_ServiceAffectsElement (Virtual system snapshot service) Conditional See 10.17.

CIM_SnapshotOfVirtualSystem Conditional See 10.18.

CIM_System Mandatory See 10.19.

CIM_VirtualSystemManagementCapabilities Mandatory See 10.20.

CIM_VirtualSystemManagementService Conditional See 10.21.

CIM_VirtualSystemSettingData (Input) Conditional See 10.22.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 69

Element Name Requirement Description

CIM_VirtualSystemSettingData (Snapshot) Conditional See 10.23.

CIM_VirtualSystemSnapshotCapabilities Conditional See 10.24.

CIM_VirtualSystemSnapshotService Optional See 10.25.

CIM_VirtualSystemSnapshotServiceCapabilities Conditional See 10.26.

10.1 CIM_AffectedJobElement 2198

The implementation of the CIM_AffectedJobElement association is conditional. 2199

2200
2201

2202

2203
2204
2205

2206

2207

Condition: A non-NULL value for at least one element of the AsynchronousMethodsSupported[] array
property of the CIM_VirtualSystemManagementCapabilities class is implemented.

If the CIM_AffectedJobElement association is implemented, the provisions in this subclause apply.

An implementation shall use the CIM_AffectedJobElement association to associate an instance of the
CIM_ConcreteJob class that represents an asynchronous task and an instance of the
CIM_ComputerSystem class that represents a virtual system that is affected by its execution.

Table 21 contains the requirements for elements of this association.

Table 21 – Association: CIM_AffectedJobElement

Elements Requirement Notes

AffectedElement Mandatory Key: See 8.1.2.

Cardinality: *

AffectingElement Mandatory Key: See 8.1.2.

Cardinality: 1

ElementEffects[] Mandatory See 8.1.2.

10.2 CIM_ConcreteJob 2208

The implementation of the CIM_ConcreteJob class is conditional. 2209

2210
2211

2212

2213
2214

2215

2216

Condition: A non-NULL value for at least one element of the AsynchronousMethodsSupported[] array
property of the CIM_VirtualSystemManagementCapabilities class is implemented.

If the CIM_ConcreteJob class is implemented, the provisions in this subclause apply.

An implementation shall use an instance of the CIM_ConcreteJob class to represent an asynchronous
task.

Table 22 contains requirements for elements of this class.

Table 22 – Class: CIM_ConcreteJob

Elements Requirement Notes

InstanceID Mandatory Key

JobState Mandatory See 8.1.2.

TimeOfLastStateChange Mandatory See 8.1.2.

System Virtualization Profile DSP1042

70 DMTF Standard Version 1.0.0

10.3 CIM_Dependency 2217

The implementation of the CIM_Dependency association is conditional. 2218

2219

2220

2221
2222
2223

2224

2225

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_Dependency association class is implemented, the provisions in this subclause apply.

An implementation shall use an instance of the CIM_Dependency association to associate an instance of
the CIM_VirtualSystemSettingData class that represents a parent snapshot and an instance of the
CIM_VirtualSystemSettingData class that represents a dependent snapshot.

Table 23 contains requirements for elements of this class.

Table 23 – Class: CIM_Dependency Class

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temSettingData class that represents a parent snapshot

Cardinality: 0..1

Dependent Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temSettingData class that represents a dependent
snapshot

Cardinality: 0..1

10.4 CIM_ElementCapabilities (Host system) 2226

An implementation shall use an instance of the CIM_ElementCapabilities association to associate an in-
stance of the CIM_System class that represents a host system with an instance of the
CIM_VirtualSystemManagementCapabilities class that describes the virtual system management capabili-
ties of the host system.

2227
2228
2229
2230

2231

2232

Table 24 contains requirements for elements of this association.

Table 24 – Association: CIM_ElementCapabilities (Host System)

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to instance of the CIM_System class
that represents a host system

Cardinality: 1

Capabilities Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temManagementCapabilities class that describes the
capabilities of a host system

Cardinality: 1

10.5 CIM_ElementCapabilities (Virtual system management service) 2233

The implementation of the CIM_ElementCapabilities association for the virtual system management
service is conditional.

2234
2235

2236

2237

Condition: Any of the following is implemented:

• Virtual system definition and destruction (see 7.4.6.1)

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 71

• Virtual resource addition and removal (see 7.4.6.2) 2238

2239

2240
2241

2242
2243
2244
2245

2246

2247

• Virtual system and resource modification (see 7.4.6.3)

If the CIM_ElementCapabilities association is implemented for the virtual system management service,
the provisions in this subclause apply.

An implementation shall use an instance of the CIM_ElementCapabilities association to associate an in-
stance of the CIM_VirtualSystemManagementService class that represents a virtual system management
service with an instance of the CIM_VirtualSystemManagementCapabilities that describes the capabilities
of the virtual system management service.

Table 25 contains requirements for elements of this association.

Table 25 – Association: CIM_ElementCapabilities (Virtual system management)

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to instance of the
CIM_VirtualSystemManagementService class

Cardinality: 0..1

Capabilities Mandatory Key: Reference to an instance of the
CIM_VirtualSystemManagementCapabilities class

Cardinality: 1

10.6 CIM_ElementCapabilities (Virtual system snapshot service) 2248

The implementation of the CIM_ElementCapabilities association for the virtual system snapshot service is
conditional.

2249
2250

2251

2252
2253

2254
2255
2256
2257

2258

2259

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_ElementCapabilities association is implemented for the virtual system snapshot service, the
provisions in this subclause apply.

An implementation shall use an instance of the CIM_ElementCapabilities association to associate an in-
stance of the CIM_VirtualSystemSnapshotService class that represents a virtual system snapshot service
with an instance of the CIM_VirtualSystemSnapshotServiceCapabilities class that describes the capabili-
ties of the virtual system snapshot service.

Table 26 contains requirements for elements of this association.

Table 26 – Association: CIM_ElementCapabilities (Snapshot service)

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSnapshotService class that repre-
sents a virtual system snapshot service

Cardinality: 1

Capabilities Mandatory Key: Reference to the instance of the
CIM_VirtualSystemSnapshotServiceCapabilities class
that represents the capabilities of the virtual system
snapshot service

Cardinality: 1

System Virtualization Profile DSP1042

72 DMTF Standard Version 1.0.0

10.7 CIM_ElementCapabilities (Snapshots of virtual systems) 2260

The implementation of the CIM_ElementCapabilities association for the virtual systems snapshots is
conditional.

2261
2262

2263

2264
2265

2266
2267
2268

2269

2270

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_ElementCapabilities association is implemented for virtual systems snapshots, the provisions
in this subclause apply.

The implementation shall use an instance of the CIM_ElementCapabilities association to associate in-
stances of the CIM_VirtualSystemSnapshotCapabilities class with those instances of the
CIM_ComputerSystem class that represent a virtual system to which the capabilities apply.

Table 27 contains requirements for elements of this association.

Table 27 – Association: CIM_ElementCapabilities (Snapshots of virtual systems)

Elements Requirement Notes

ManagedElement Mandatory Key: Reference to an instance of the
CIM_ComputerSystem class that represents a virtual
system

Cardinality: *

Capabilities Mandatory Key: Reference to the instance of the
CIM_VirtualSystemSnapshotCapabilities class that de-
scribes the current applicability of snapshot related
services to the virtual system

Cardinality: 1

10.8 CIM_ElementConformsToProfile 2271

An implementation shall use an instance of the CIM_ElementConformsToProfile association to associate
an instance of the CIM_RegisteredProfile class that represents an implementation of this profile with
instances of the CIM_System class that represent a host system that is a central and scoping instance of
this profile.

2272
2273
2274
2275

2276

2277

Table 28 contains requirements for elements of this association.

Table 28 – Association: CIM_ElementConformsToProfile

Elements Requirement Notes

ConformantStandard Mandatory Key: Reference to an instance of the CIM_Registered-
Profile class that represents an implementation of this
profile

Cardinality: 1

ManagedElement Mandatory Key: Reference to an instance of the CIM_ System
class that represents a host system

Cardinality: *

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 73

10.9 CIM_HostedDependency 2278

An implementation shall use an instance of the CIM_HostedDependency association to associate an
instance of the CIM_System class that represents a host system with each instance of the CIM_Comput-
erSystem class that represents a virtual system hosted by the host system.

2279
2280
2281

2282

2283

Table 29 contains requirements for elements of this association.

Table 29 – Association: CIM_HostedDependency

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_System
class that represents a host system

Cardinality: 1

Dependent Mandatory Key: Reference to an instance of the
CIM_ComputerSystem class that represents a virtual
system

Cardinality: *

10.10 CIM_HostedService (Virtual system management service) 2284

The implementation of the CIM_HostedService association for the virtual system management service is
conditional:

2285
2286

2287

2288

2289

2290

2291
2292

2293
2294
2295
2296

2297

2298

Condition: Any of the following is implemented:

• Virtual system definition and destruction (see 7.4.6.1)

• Vvirtual resource addition and removal (see 7.4.6.2)

• Virtual system and resource modification (see 7.4.6.3)

If the CIM_HostedService association is implemented for the virtual system management service, the
provisions in this subclause apply.

The implementation shall use an instance of the CIM_HostedService association to associate an instance
of the CIM_System class that represents a host system and the instance of the CIM_VirtualSystem-
ManagementService class that represents the virtual system management service that is hosted by a
host system.

Table 30 contains requirements for elements of this association.

Table 30 – Association: CIM_HostedService (Virtual system management service)

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_System
class that represents a host system

Cardinality: 1

Dependent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemManagementService class that
represents a virtual system management service

Cardinality: 0..1

System Virtualization Profile DSP1042

74 DMTF Standard Version 1.0.0

10.11 CIM_HostedService (Virtual system snapshot service) 2299

The implementation of the CIM_HostedService association is conditional. 2300

2301

2302
2303

2304
2305
2306

2307

2308

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_HostedService association is implemented for the virtual system snapshot service, the
provisions in this subclause apply.

The implementation shall use an instance of the CIM_HostedService association to associate an instance
of the CIM_ComputerSystem class that represents a host system and the instance of the
CIM_VirtualSystemSnapshotService class that represents the virtual system snapshot service.

Table 31 contains requirements for elements of this association.

Table 31 – Association: CIM_HostedService (Virtual system snapshot service)

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the CIM_System
class that represents a host system

Cardinality: 1

Dependent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSnapshotService class that repre-
sents a virtual system snapshot service

Cardinality: 0..1

10.12 CIM_LastAppliedSnapshot 2309

The implementation of the CIM_LastAppliedSnapshot association is conditional. 2310

2311

2312

2313
2314
2315
2316

2317

2318

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_LastAppliedSnapshot association is implemented, the provisions in this subclause apply.

An implementation shall use an instance of the CIM_LastAppliedSnapshot association to associate an in-
stance of the CIM_ComputerSystem class that represents a virtual system and the instance of the
CIM_VirtualSystemSettingData class that represents the virtual system snapshot that was last applied to
the virtual system.

Table 32 contains requirements for elements of this association.

Table 32 – Association: CIM_LastAppliedSnapshot

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSettingData class that represents a
virtual system snapshot

Cardinality: 0..1

Dependent Mandatory Key: Reference to the instance of the
CIM_ComputerSystem class that represents the virtual
system

Cardinality: 0..1

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 75

10.13 CIM_MostCurrentSnapshotInBranch 2319

The implementation of the CIM_MostCurrentSnapshotInBranch association is conditional. 2320

2321

2322
2323

2324
2325
2326
2327
2328

2329

2330

2331

2332

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_MostCurrentSnapshotInBranch association is implemented, the provisions in this subclause
apply.

An implementation shall use an instance of the CIM_MostCurrentSnapshotInBranch association to
associate an instance of the CIM_ComputerSystem class that represents a virtual system and the
instance of the CIM_VirtualSystemSettingData class that represents the most current snapshot in a
branch of virtual system snapshots. The most current snapshot in a branch of snapshots related to an in-
stance of a virtual system is the younger of the following snapshots:

• the snapshot that was most recently captured from the virtual system instance

• the snapshot that was last applied to the instance

Table 33 contains requirements for elements of this association.

Table 33 – Association: CIM_MostCurrentSnapshotInBranch

Elements Requirement Notes

Antecedent Mandatory Key: Reference to the instance of the
CIM_ComputerSystem class that represents the virtual
system

Cardinality: 0..1

Dependent Mandatory Key: Reference to an instance of the
CIM_VirtualSystemSettingData class that represents a
virtual system snapshot

Cardinality: 0..1

10.14 CIM_ReferencedProfile 2333

The implementation of the CIM_ReferencedProfile association is conditional. 2334

Condition: Resource virtualization profiles such as DSP1059 are implemented as scoped profiles. 2335

2336

2337
2338
2339
2340
2341

2342

2343

If the CIM_ReferencedProfile association is implemented, the provisions in this subclause apply.

An implementation shall use an instance of the CIM_ReferencedProfile association to associate an in-
stance of the CIM_RegisteredProfile class that represents an implementation of this profile and any
instance of the CIM_RegisteredProfile class that represents an implementation of a resource allocation
DMTF management profile that describes virtual resource allocation that is implemented by the
implementation.

Table 34 contains requirements for elements of this association.

Table 34 – Association: CIM_ReferencedProfile

Elements Requirement Notes

Antecedent Mandatory Key: Reference to an instance of the
CIM_RegisteredProfile that represents an implementa-
tion of this profile

Cardinality: 1

System Virtualization Profile DSP1042

76 DMTF Standard Version 1.0.0

Elements Requirement Notes

Dependent Mandatory Key: Reference to an instance of the
CIM_RegisteredProfile class that represents an imple-
mentation of a resource allocation profile

Cardinality: *

10.15 CIM_RegisteredProfile 2344

An implementation shall use an instance of the CIM_RegisteredProfile class to represent an
implementation of this profile.

2345
2346

2347

2348

Table 35 contains requirements for elements of this class.

Table 35 – Class: CIM_RegisteredProfile

Elements Requirement Notes

InstanceID Mandatory Key

RegisteredOrganization Mandatory Shall be set to "DMTF".

RegisteredName Mandatory Shall be set to "System Virtualization".

RegisteredVersion Mandatory Shall be set to the version of this profile ("1.0.0").

10.16 CIM_ServiceAffectsElement (Virtual system management service) 2349

The implementation of the CIM_ServiceAffectsElement association for the virtual system management
service is conditional.

2350
2351

2352

2353

2354

2355

2356
2357

2358
2359
2360
2361

2362

Condition: Any of the following is implemented:

• Virtual system definition and destruction (see 7.4.6.1)

• Virtual resource addition and removal (see 7.4.6.2)

• Virtual system and resource modification (see 7.4.6.3)

If the CIM_ServiceAffectsElement association is implemented for the virtual system management service,
the provisions in this subclause apply.

The implementation shall use an instance of the CIM_ServiceAffectsElement association to associate an
instance of the CIM_VirtualSystemManagementService class that represents a virtual system manage-
ment service and any instance of the CIM_ComputerSystem class that represents a virtual system that is
managed by that virtual system management service.

Table 36 contains requirements for elements of this association.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 77

Table 36 – Association: CIM_ServiceAffectsElement (Virtual system management service) 2363

Elements Requirement Notes

AffectedElement Mandatory Key: Reference to instance of the CIM_ComputerSys-
tem class that represents a managed virtual system

Cardinality: *

AffectingElement Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temManagementService class that represents a virtual
system management service

Cardinality: 0..1

10.17 CIM_ServiceAffectsElement (Virtual system snapshot service) 2364

The implementation of the CIM_ServiceAffectsElement association is conditional. 2365

2366

2367
2368

2369
2370
2371

2372
2373

2374
2375

2376

2377

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_ServiceAffectsElement association is implemented for the virtual system snapshot service, the
provisions in this subclause apply.

The implementation shall use an instance of the CIM_ServiceAffectsElement association to associate an
instance of the CIM_VirtualSystemSnapshotService class that represents a virtual system management
service with the following instances:

• any instance of the CIM_ComputerSystem class that represents a virtual system that is man-
aged by that virtual system management service

• any instance of the CIM_VirtualSystemSettingData class that represents a virtual system snap-
shot

Table 37 contains requirements for elements of this association.

Table 37 – Association: CIM_ServiceAffectsElement

Elements Requirement Notes

AffectedElement Mandatory Key: Reference to instance of the CIM_ComputerSys-
tem class that represents a virtual system or the
CIM_VirtualSystemSettingData class that represents a
managed snapshot

Cardinality: *

AffectingElement Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temManagementService class that represents a virtual
system snapshot service

Cardinality: 0..1

10.18 CIM_SnapshotOfVirtualSystem 2378

The implementation of the CIM_SnapshotOfVirtualSystem association is conditional. 2379

2380

2381

2382
2383

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_SnapshotOfVirtualSystem association is implemented, the provisions in this subclause apply.

An implementation shall use an instance of the CIM_SnapshotOfVirtualSystem association to associate
an the instance of the CIM_ComputerSystem class that represents the virtual system that was the source

System Virtualization Profile DSP1042

78 DMTF Standard Version 1.0.0

for the virtual system snapshot and the instance of the CIM_VirtualSystemSettingData class that repre-
sents a snapshot of the virtual system

2384
2385

2386

2387

Table 38 contains requirements for elements of this association.

Table 38 – Association: CIM_SnapshotOfVirtualSystem

Elements Requirement Notes

Antecedent Mandatory Key: Reference to the instance of the CIM_Computer-
System class that represents the source virtual system

Cardinality: 0..1

Dependent Mandatory Key: Reference to an instance of the CIM_VirtualSys-
temSettingData class that represents a virtual system
snapshot

Cardinality: *

10.19 CIM_System 2388

An implementation shall use an instance of a concrete subclass of the CIM_System class to represent a
host system.

2389
2390

2391

2392

Table 39 contains requirements for elements of this class.

Table 39 – Class: CIM_VirtualSystemManagementCapabilities

Elements Requirement Notes

CreationClassName Mandatory Key

Name Mandatory Key

10.20 CIM_VirtualSystemManagementCapabilities 2393

An implementation shall use an instance of the CIM_VirtualSystemManagementCapabilities class to
represent the virtual system management capabilities of a host system.

2394
2395

2396

2397

Table 40 contains requirements for elements of this class.

Table 40 – Class: CIM_VirtualSystemManagementCapabilities

Elements Requirement Notes

InstanceID Mandatory Key

VirtualSystemTypesSupported[] Optional See 7.4.2.

SynchronousMethodsSupported[] Optional See 7.4.3.

AsynchronousMethodsSupported[] Optional See 7.4.4.

IndicationsSupported[] Optional See 7.4.5.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 79

10.21 CIM_VirtualSystemManagementService 2398

The implementation of the CIM_VirtualSystemManagementService class is conditional. 2399

2400

2401

2402

2403

2404
2405

2406
2407

2408

2409

Condition: Any of the following is implemented:

• Virtual system definition and destruction (see 7.4.6.1)

• Virtual resource addition and removal (see 7.4.6.2)

• Virtual system and resource modification (see 7.4.6.3)

If the CIM_VirtualSystemManagementService class is implemented, the provisions in this subclause
apply.

An implementation shall use an instance of the CIM_VirtualSystemManagementService class to
represent the virtual system management service provided by one host system.

Table 41 contains requirements for elements of this class.

Table 41 – Class: CIM_VirtualSystemManagementService

Elements Requirement Notes

CreationClassName Mandatory Key

Name Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

AddResourceSettings() Conditional See 8.2.3.

DefineSystem() Conditional See 8.2.1.

DestroySystem() Conditional See 8.2.2.

ModifyResourceSettings() Conditional See 8.2.4.

ModifySystemSettings() Conditional See 8.2.5.

RemoveResourceSettings() Conditional See 8.2.6.

10.22 CIM_VirtualSystemSettingData (Input) 2410

The implementation of the CIM_VirtualSystemSettingData class for input is conditional. 2411

2412

2413

2414

2415

2416
2417

2418
2419

2420

Condition: Any of the following is implemented:

• Virtual system definition and destruction (see 7.4.6.1)

• Virtual resource addition and removal (see 7.4.6.2)

• Virtual system and resource modification (see 7.4.6.3)

If the CIM_VirtualSystemSettingData class is implemented for input, the provisions in this subclause
apply.

An instance of the CIM_VirtualSystemSettingData class shall be used to represent input data for a virtual
system’s definitions and modifications.

Table 42 contains requirements for elements of this class.

System Virtualization Profile DSP1042

80 DMTF Standard Version 1.0.0

Table 42 – Class: CIM_VirtualSystemSettingData (Input) 2421

Elements Requirement Notes

InstanceID Mandatory Key (Input): See 7.5.1.

ElementName Optional See 7.5.2.

VirtualSystemIdentity Optional See 7.5.3.

VirtualSystemType Optional See 7.5.4.

10.23 CIM_VirtualSystemSettingData (Snapshot) 2422

The implementation of the CIM_VirtualSystemSettingData class for the representation of snapshots of vir-
tual systems is conditional.

2423
2424

2425

2426
2427

2428
2429

2430

2431

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_VirtualSystemSettingData class is implemented for the representation of snapshots, the
provisions in this subclause apply.

An instance of the CIM_VirtualSystemSettingData class shall be used to represent snapshots of virtual
systems.

Table 43 contains requirements for elements of this class.

Table 43 – Class: CIM_VirtualSystemSettingData (Snapshot)

Elements Requirement Notes

InstanceID Mandatory Key

Caption Optional See CIM Schema.

Description Optional See CIM Schema.

ElementName Optional See CIM Schema.

VirtualSystemIdentifier Optional See CIM Schema.

VirtualSystemType Optional See CIM Schema.

Notes Optional See CIM Schema.

CreationTime Mandatory The value shall reflect the creation time of the snapshot.

ConfigurationID Optional See CIM Schema.

ConfigurationDataRoot Optional See CIM Schema.

ConfigurationFile Mandatory This element shall have a value of NULL.

SnapshotDataRoot Mandatory This element shall have a value of NULL.

SuspendDataRoot Optional See CIM Schema.

SwapFileDataRoot Mandatory This element shall have a value of NULL.

LogDataRoot Optional See CIM Schema.

AutomaticStartupAction Mandatory This element shall have a value of NULL.

AutomaticStartupActionDelay Mandatory This element shall have a value of NULL.

AutomaticStartupActionSequen
ceNumber

Mandatory This element shall have a value of NULL.

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 81

Elements Requirement Notes

AutomaticShutdownAction Mandatory This element shall have a value of NULL.

AutomaticRecoveryAction Mandatory This element shall have a value of NULL.

RecoveryFile Mandatory This element shall have a value of NULL.

NOTE: Elements marked as mandatory but with a required value of NULL shall in effect not be implemented. Respective
information applies to the virtual system as a whole, not just to a particular snapshot, and is covered by the instance of
the CIM_VirtualSystemSettingData class in the "State" and the "Defined" virtual system configuration.

10.24 CIM_VirtualSystemSnapshotCapabilities 2432

The implementation of the CIM_VirtualSystemSnapshotCapabilities class is optional. 2433

2434
2435

2436
2437

2438
2439

2440

2441

If the CIM_VirtualSystemSnapshotCapabilities class is implemented, the provisions in this subclause
apply.

The implementation of the optional CIM_VirtualSystemSnapshotCapabilities class is specified only if vir-
tual system snapshots are implemented; see 7.7.1.1.

An instance of the CIM_VirtualSystemSnapshotCapabilities class may be used to represent the current
applicability of snapshot-related services to one virtual system.

Table 44 contains requirements for elements of this class.

Table 44 – Class: CIM_VirtualSystemSnapshotCapabilities

Elements Requirement Notes

InstanceID Mandatory Key

SnapshotTypesEnabled[] Mandatory See 7.7.5.1.

GuestOSNotificationEnabled[] Optional See 7.7.5.2.

10.25 CIM_VirtualSystemSnapshotService 2442

The implementation of the CIM_VirtualSystemSnapshotService class is optional. 2443

2444

2445
2446

2447
2448

2449

2450

If the CIM_VirtualSystemSnapshotService class is implemented, the provisions in this subclause apply.

If the CIM_VirtualSystemSnapshotService class is implemented, this indicates the presence of the sup-
port of virtual system snapshots (see 7.7.1.1).

An instance of the CIM_VirtualSystemSnapshotService class shall be used to represent the virtual system
snapshot service available at a host system.

Table 45 contains requirements for elements of this class.

Table 45 – Class: CIM_VirtualSystemSnapshotService

Elements Requirement Notes

CreationClassName Mandatory Key

Name Mandatory Key

SystemCreationClassName Mandatory Key

SystemName Mandatory Key

System Virtualization Profile DSP1042

82 DMTF Standard Version 1.0.0

Elements Requirement Notes

CreateSnapshot() Conditional See 8.3.1.

DestroySnapshot() Conditional See 8.3.2.

ApplySnapshot() Conditional See 8.3.3.

10.26 CIM_VirtualSystemSnapshotServiceCapabilities 2451

The implementation of the CIM_VirtualSystemSnapshotServiceCapabilities class is conditional. 2452

2453

2454
2455

2456
2457

2458

2459

Condition: Virtual system snapshots are implemented; see 7.7.1.1.

If the CIM_VirtualSystemSnapshotServiceCapabilities class is implemented, the provisions in this
subclause apply.

An instance of the CIM_VirtualSystemSnapshotServiceCapabilities class shall be used to represent the
capabilities of a virtual system snapshot service.

Table 46 contains requirements for elements of this class.

Table 46 – Class: CIM_VirtualSystemSnapshotServiceCapabilities

Elements Requirement Notes

InstanceID Mandatory Key

SynchronousMethodsSupported[] Conditional See 7.7.1.2.

AsynchronousMethodsSupported[] Conditional See 7.7.1.2.

SnapshotTypesSupported[] Mandatory See 7.7.1.2.

 2460

DSP1042 System Virtualization Profile

Version 1.0.0 DMTF Standard 83

ANNEX A
(Informative)

Change Log

2461
2462
2463
2464

Version Date Description

1.0.0a 2007-08-03 Released as preliminary standard

1.0.0 2010-04-22 Released as DMTF Standard

 2465

2466

	Foreword
	Acknowledgments

	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviated terms
	5 Synopsis
	6 Description
	6.1 Profile relationships
	6.2 System virtualization class schema
	6.3 Virtual system configurations
	6.4 Resource allocation
	6.5 Snapshots

	7 Implementation
	7.1 Host system
	7.2 Profile registration
	7.2.1 This profile
	7.2.2 Scoped resource allocation profiles

	7.3 Representation of hosted virtual systems
	7.3.1 Profile conformance for hosted virtual systems
	7.3.2 CIM_VirtualSystemSettingData.VirtualSystemType property

	7.4 Virtual system management capabilities
	7.4.1 CIM_VirtualSystemManagementCapabilities class
	7.4.2 CIM_VirtualSystemManagementCapabilities.VirtualSystemTypesSupported[] array property
	7.4.3 CIM_VirtualSystemManagementCapabilities.SynchronousMethodsSupported[] array property
	7.4.4 CIM_VirtualSystemManagementCapabilities.AsynchronousMethodsSupported[] array property
	7.4.5 CIM_VirtualSystemManagementCapabilities.IndicationsSupported[] array property
	7.4.6 Grouping Rules for implementations of methods of the CIM_VirtualSystemManagementService class
	7.4.6.1 Virtual system definition and destruction
	7.4.6.2 Virtual resource addition and removal
	7.4.6.3 Virtual system and resource modification

	7.5 Virtual system definition and modification
	7.5.1 CIM_VirtualSystemSettingData.InstanceID property
	7.5.2 CIM_VirtualSystemSettingData.ElementName property
	7.5.3 CIM_VirtualSystemSettingData.VirtualSystemIdentifier property
	7.5.4 CIM_VirtualSystemSettingData.VirtualSystemType property

	7.6 Virtual resource definition and modification
	7.7 Virtual system snapshots
	7.7.1 Virtual system snapshot service and capabilities
	7.7.1.1 Virtual system snapshots
	7.7.1.2 CIM_VirtualSystemSnapshotServiceCapabilities class

	7.7.2 Virtual system snapshot representation
	7.7.3 Designation of the last applied snapshot
	7.7.4 Designation of the most current snapshot in branch
	7.7.5 Virtual system snapshot capabilities
	7.7.5.1 CIM_VirtualSystemSnapshotCapabilities.SnapshotTypesEnabled[] array property
	7.7.5.2 CIM_VirtualSystemSnapshotCapabilities.GuestOSNotificationEnabled property

	8 Methods
	8.1 General behavior of extrinsic methods
	8.1.1 Resource allocation requests
	8.1.2 Method results
	8.1.3 Asynchronous processing
	8.1.3.1 General requirements
	8.1.3.2 Job parameter

	8.2 Methods of the CIM_VirtualSystemManagementService class
	8.2.1 CIM_VirtualSystemManagementService.DefineSystem() method
	8.2.1.1 Value preference rules
	8.2.1.2 SystemSettings parameter
	8.2.1.3 ResourceSettings[] array parameter
	8.2.1.4 ReferencedConfiguration parameter
	8.2.1.5 ResultingSystem parameter
	8.2.1.6 Return codes

	8.2.2 CIM_VirtualSystemManagementService.DestroySystem() method
	8.2.2.1 AffectedSystem parameter
	8.2.2.2 Return codes

	8.2.3 CIM_VirtualSystemManagementService.AddResourceSettings() method (Conditional)
	8.2.3.1 AffectedConfiguration parameter
	8.2.3.2 ResourceSettings[] array parameter
	8.2.3.3 ResultingResourceSettings[] array parameter
	8.2.3.4 Return codes

	8.2.4 CIM_VirtualSystemManagementService.ModifyResourceSettings() method
	8.2.4.1 ResourceSettings[] parameter
	8.2.4.2 ResultingResourceSettings[] parameter
	8.2.4.3 Return codes

	8.2.5 CIM_VirtualSystemManagementService.ModifySystemSettings() method
	8.2.5.1 SystemSettings parameter
	8.2.5.2 Return codes

	8.2.6 CIM_VirtualSystemManagementService.RemoveResourceSettings() method
	8.2.6.1 ResourceSettings[] array parameter
	8.2.6.2 Return codes

	8.3 Methods of the CIM_VirtualSystemSnapshotService class
	8.3.1 CIM_VirtualSystemSnapshotService.CreateSnapshot() method
	8.3.1.1 AffectedSystem parameter
	8.3.1.2 SnapshotSettings parameter
	8.3.1.3 SnapshotType parameter
	8.3.1.4 ResultingSnapshot parameter
	8.3.1.5 Return codes

	8.3.2 VirtualSystemSnapshotService.DestroySnapshot() method
	8.3.2.1 AffectedSnapshot parameter
	8.3.2.2 Return codes

	8.3.3 VirtualSystemSnapshotService.ApplySnapshot() method
	8.3.3.1 Snapshot parameter
	8.3.3.2 Return codes

	8.4 Profile conventions for operations
	8.4.1 CIM_AffectedJobElement
	8.4.2 CIM_ComputerSystem
	8.4.3 CIM_ConcreteJob
	8.4.4 CIM_Dependency
	8.4.5 CIM_ElementCapabilities
	8.4.6 CIM_ElementConformsToProfile
	8.4.7 CIM_HostedDependency
	8.4.8 CIM_HostedService
	8.4.9 CIM_LastAppliedSnapshot
	8.4.10 CIM_MostCurrentSnapshotInBranch
	8.4.11 CIM_ReferencedProfile
	8.4.12 CIM_RegisteredProfile
	8.4.13 CIM_ServiceAffectsElement
	8.4.14 CIM_SnapshotOfVirtualSystem
	8.4.15 CIM_System
	8.4.16 CIM_VirtualSystemManagementCapabilities
	8.4.17 CIM_VirtualSystemManagementService
	8.4.18 CIM_VirtualSystemSnapshotService
	8.4.19 CIM_VirtualSystemSnapshotCapabilities
	8.4.20 CIM_VirtualSystemSnapshotServiceCapabilities

	9 Use Cases
	9.1 General assumptions
	9.2 Discovery, localization, and inspection
	9.2.1 SLP-Based discovery of CIM object managers hosting implementations of this Profile
	9.2.2 Locate conformant implementations using the EnumerateInstances() operation
	9.2.3 Locate conformant implementations using the ExecuteQuery() operation
	9.2.4 Locate host systems represented by central instances of this profile
	9.2.5 Locate implementations of scoped resource allocation profiles
	9.2.6 Locate virtual system management service
	9.2.7 Determine the capabilities of an implementation
	9.2.8 Locate hosted resource pools of a particular resource type
	9.2.9 Obtain a set of central instances of scoped resource allocation profiles
	9.2.10 Determine implemented resource types
	9.2.11 Determine the default resource pool for a resource type
	9.2.12 Determine the resource pool for a resource allocation request or an allocated resource
	9.2.13 Determine valid settings for a resource type
	9.2.14 Determine implementation class specifics
	9.2.15 Determine the implementation class for a resource type
	9.2.16 Locate virtual systems hosted by a host system

	9.3 Virtual system definition, modification, and destruction
	9.3.1 Virtual system definition
	9.3.1.1 Define virtual system based on input and reference virtual system configuration
	9.3.1.2 Define virtual system with implementation-specific properties

	9.3.2 Virtual system modification
	9.3.2.1 Modify virtual system state or definition
	9.3.2.2 Add virtual resources
	9.3.2.3 Modify virtual resource state extension or virtual resource definition
	9.3.2.4 Delete virtual resources or virtual resource definitions

	9.3.3 Destroy virtual system

	9.4 Snapshot-related activities
	9.4.1 Locate virtual system snapshot service
	9.4.2 Determine capabilities of a virtual system snapshot service
	9.4.3 Create snapshot
	9.4.4 Locate snapshots of a virtual system
	9.4.5 Locate the source virtual system of a snapshot
	9.4.6 Locate the most current snapshot in a branch of snapshots
	9.4.7 Locate dependent snapshots
	9.4.8 Locate parent snapshot
	9.4.9 Apply snapshot
	9.4.10 Destroy snapshot

	10 CIM elements
	10.1 CIM_AffectedJobElement
	10.2 CIM_ConcreteJob
	10.3 CIM_Dependency
	10.4 CIM_ElementCapabilities (Host system)
	10.5 CIM_ElementCapabilities (Virtual system management service)
	10.6 CIM_ElementCapabilities (Virtual system snapshot service)
	10.7 CIM_ElementCapabilities (Snapshots of virtual systems)
	10.8 CIM_ElementConformsToProfile
	10.9 CIM_HostedDependency
	10.10 CIM_HostedService (Virtual system management service)
	10.11 CIM_HostedService (Virtual system snapshot service)
	10.12 CIM_LastAppliedSnapshot
	10.13 CIM_MostCurrentSnapshotInBranch
	10.14 CIM_ReferencedProfile
	10.15 CIM_RegisteredProfile
	10.16 CIM_ServiceAffectsElement (Virtual system management service)
	10.17 CIM_ServiceAffectsElement (Virtual system snapshot service)
	10.18 CIM_SnapshotOfVirtualSystem
	10.19 CIM_System
	10.20 CIM_VirtualSystemManagementCapabilities
	10.21 CIM_VirtualSystemManagementService
	10.22 CIM_VirtualSystemSettingData (Input)
	10.23 CIM_VirtualSystemSettingData (Snapshot)
	10.24 CIM_VirtualSystemSnapshotCapabilities
	10.25 CIM_VirtualSystemSnapshotService
	10.26 CIM_VirtualSystemSnapshotServiceCapabilities
	ANNEX A (Informative)Change Log

	Word Bookmarks
	Reference_DMTF_DSP0004
	Name_DMTF_DSP0004
	Version_DMTF_DSP0004
	Reference_DMTF_DSP0200
	Name_DMTF_DSP0200
	Version_DMTF_DSP0200
	Reference_DMTF_DSP0201
	Reference_DMTF_DSP1001
	Name_DMTF_DSP1001
	Version_DMTF_DSP1001
	DSP1012
	BCP
	V_BCP
	DSP1022
	CPP
	DSP1027
	PSM
	Name_DMTF_DSP1033
	Reference_DMTF_DSP1033
	Version_DMTF_DSP1033
	DSP1041
	RAP
	V_RAP
	Name_DMTF_DSP1043
	Reference_DMTF_DSP1043
	Version_DMTF_DSP1043
	CPU
	DSP1044
	V_CPU
	DSP1045
	MRP
	BRV
	DSP1047
	CSP
	DSP1052
	V_CSP
	Name_DMTF_DSP1053
	Reference_DMTF_DSP1053
	Version_DMTF_DSP1053
	DSP1057
	V_VSP
	VSP
	DSP1059
	GDP
	Reference_ISOIEC_Directives_Part2
	OLE_LINK1

