
 1

2

3

4

5

6

7

8

9

10

Document Number: DSP0252

Date: 2010-04-22

Version: 1.0.1

Configuration Management Database (CMDB)
Federation Specification

Document Type: Specification

Document Status: DMTF Standard

Document Language: E

Configuration Management Database (CMDB) Federation Specification DSP0252

2 DMTF Standard Version 1.0.1

Copyright Notice 11

Copyright © 2009-2010 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 12

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php. 32

33

http://www.dmtf.org/about/policies/disclosures.php

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 3

CONTENTS 34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Foreword ... 5
Introduction ... 7
1 Scope .. 11
2 Normative References... 11
3 Terms and Definitions ... 12

3.1 Requirements Terms... 12
3.2 Background Terminology.. 13

4 Symbols and Abbreviated Terms... 15
5 Architecture ... 15

5.1 Overview ... 15
5.2 Roles... 16
5.3 Services Overview .. 17
5.4 Identity Reconciliation... 18
5.5 Data Elements Overview .. 19

6 Query Service.. 22
6.1 Overview ... 22
6.2 GraphQuery Operation Outline... 22
6.3 Content Selection.. 25
6.4 Constraints.. 28
6.5 XPath Expressions and Normalization ... 34
6.6 GraphQuery Response... 36
6.7 GraphQuery Faults ... 39

7 Registration Service .. 41
7.1 Overview ... 41
7.2 Register... 42
7.3 Deregister ... 47

8 Service Metadata .. 49
8.1 Overview ... 49
8.2 Common Service Metadata Elements .. 50
8.3 queryServiceMetadata.. 52
8.4 registrationServiceMetadata ... 56

ANNEX A (normative) URIs and XML Namespaces ... 57
ANNEX B (normative) CMDB Federation XSD and WSDL ... 58
ANNEX C (normative) Fault Binding to SOAP... 59
ANNEX D (informative) Query Examples .. 61

D.1 GraphQuery Example 1 .. 61
D.2 GraphQuery Example 2 .. 63

ANNEX E (informative) Detailed UML Class Diagrams... 68
ANNEX F (informative) Sample WSDL Binding... 69
ANNEX G (informative) Change Log ... 73
Bibliography .. 74

Configuration Management Database (CMDB) Federation Specification DSP0252

4 DMTF Standard Version 1.0.1

Figures 77

78
79
80
81
82
83
84

85

86
87
88
89
90
91
92

Figure 1 – CMDB as the Foundation for IT Management Processes... 7
Figure 2 – Example Aggregate View from a Federated CMDB.. 8
Figure 3 – CMDB Roles and Services .. 16
Figure 4 – Identity Reconciliation.. 18
Figure 5 – Data and Services Overview ... 19
Figure 6 – Record Type Extension Examples... 52

Tables

Table 1 – Service Usage Patterns .. 18
Table 2 – Operators Supported for XSD Built-in Datatypes ... 31
Table C-1 – [Code] Properties .. 59
Table D-1 – "User (ContactInfo)" Data.. 63
Table D-2 – "Computer (ComputerConfig)" Data.. 64
Table D-3 – "Administers" Data .. 64

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 5

Foreword 93

94
95

96
97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112
113

114

115

116

117

118

119

120
121

122

123
124
125
126
127

The Configuration Management Database (CMDB) Federation Specification (DSP0252) was prepared by
the CMDB Federation Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability.

Acknowledgements

The CMDB Federation Working Group wishes to acknowledge the following people.

Authors:

• Forest Carlisle – CA

• Jacob Eisinger – IBM

• Mark Johnson – IBM (Editor)

• Vincent Kowalski – BMC Software

• Jishnu Mukerji – HP

• David Snelling – Fujitsu

• William Vambenepe – Oracle

• Marv Waschke – CA

• Van Wiles – BMC Software

Conventions

This specification uses the following syntax to define outlines for messages:

• The syntax appears as an XML instance, but values in italics indicate data types instead of
literal values.

• The following characters are appended to elements and attributes to indicate cardinality:

– "?" (0 or 1)

– "*" (0 or more)

– "+" (1 or more)

– The absence of any of the above characters indicates the default (exactly 1).

• The character "|" is used to indicate a choice between alternatives.

• The characters "(" and ")" are used to indicate that contained items are to be treated as a group
with respect to cardinality or choice.

• The characters "[" and "]" are used to call out references and property names.

• xs:any and xs:anyAttribute indicate points of extensibility. Additional children or attributes may
be added at the indicated extension points but shall not contradict the semantics of the parent
owner, respectively. By default, if a receiver does not recognize an extension, the receiver
should ignore the extension; exceptions to this processing rule, if any, are clearly indicated
below.

Configuration Management Database (CMDB) Federation Specification DSP0252

6 DMTF Standard Version 1.0.1

• Ellipses (that is, "...") indicate that details are omitted for simplicity, and a further explanation is
provided below.

128
129

130
131

• XML namespace prefixes are used to indicate the namespace of the element being defined or
referenced.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 7

Introduction 132

133
134

135

136

137

138
139
140

Many organizations are striving to base IT management on a Configuration Management Database
(CMDB). A CMDB contains data describing the following entities:

• managed resources, such as computer systems and application software

• process artifacts, such as incident, problem, and change records

• relationships among managed resources and process artifacts

The contents of the CMDB should be managed by a configuration management process and serve as the
foundation for other IT management processes, such as change management and availability
management, as shown in Figure 1.

 141

142

143
144

145
146
147
148
149
150
151
152
153

154
155
156
157
158

Figure 1 – CMDB as the Foundation for IT Management Processes

However, in practice it is challenging to implement such a CMDB because the management data are
scattered across repositories that are poorly integrated or coordinated.

The definition of a CMDB in the context of this specification is based on the definition described in the IT
Infrastructure Library (ITIL): a database that tracks and records configuration items associated with the IT
infrastructure and the relationships between them. Strictly speaking, the ITIL CMDB contains a record of
the expected configuration of the IT environment, as authorized and controlled through the change
management and configuration management processes. The federated CMDB in this specification
extends this base definition to federate any management information that complies with the specification’s
patterns, schema, and interfaces, such as the discovered actual state in addition to the expected state.
Typically, an administrator selects the data to be included in a CMDB by configuring the tool that
implements the CMDB.

The federated CMDB described in this specification is a collection of services and data repositories that
contain configuration and other data records about resources. The term "resource" includes configuration
items (for example, a computer system, an application, or a router), process artifacts (for example, an
incident record or a change record), and relationships between configuration items and process artifacts.
The architecture describes a logical model and does not necessarily reflect a physical manifestation.

Configuration Management Database (CMDB) Federation Specification DSP0252

8 DMTF Standard Version 1.0.1

Objectives 159

160

161

162
163
164
165
166

This section describes the functionality and target IT environment that this specification supports.

Functionality

The federated CMDB that would result from using this specification would provide a single aggregate
view of the data about an IT resource, even if the data is from different heterogeneous data repositories,
as shown in Figure 2. Clients, such as IT processes, management applications, and IT staff would use a
query service defined in the specification to access aggregated or non-aggregated views. Data
repositories would use the services described in the specification to provide the aggregated view.

 167

168

169
170

171
172

173
174

175

176

177

178

179
180

181

182
183

Figure 2 – Example Aggregate View from a Federated CMDB

The federated CMDB could support the following scenarios. (However, the scenarios that a federated
CMDB supports are left entirely to the discretion of each implementation.)

• Maintain an accurate picture of IT inventory from a combination of asset information (finance)
and deployment/configuration information

• Reflect changes to IT resources, including asset and licensing data, across all repositories and
data sources

• Compare expected configuration versus actual configuration

• Enable version awareness, such as in the following examples:

– Coordinate planned configuration changes

– Track change history

• Relate configuration and asset data to other data and data sources, such as incident, problem,
and service levels. The following are some examples:

– Integration of change management and incident management with monitoring information

– SLA incident analysis, by using the service desk and incident information in a dependency
analysis on both configurations and change records

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 9

Target IT Environment 184

185
186

187
188
189

190
191

192
193

194

195
196
197

198
199
200

201

202

203
204

205
206
207
208

209
210

211
212
213

214

215
216

217

218

219

220
221
222
223

This specification is intended to address requirements in IT environments that have the following
characteristics:

• There are strong requirements to consolidate into one or more databases (logical or physical) at
least some key data from the many management data repositories so that IT processes can be
more effective and efficient.

• IT organizations are diverse in terms of their existing tools, process maturity level, usage
patterns, and preferred adoption models.

• There are several (and possibly many) management data repositories (MDRs), each of which
may be considered an authoritative source for some set of data.

• The authoritative data for a resource may be dispersed across multiple MDRs.

• It is often neither practical nor desirable for all management data to be kept in one data
repository, though it may be practical and desirable to consolidate various subsets of the data
into fewer databases.

• Existing management tools will often continue to use their existing data sources. Only after an
extended period of time would it be realistic to expect all of the existing management tools to be
modified to require and utilize new consolidated databases.

Out-of-Scope Implementation Details

The following implementation details are outside the scope of this specification:

• The mechanisms used by each management data repository to acquire data. For example, the
mechanisms could be external instrumentation or proprietary federation and replication function.

• The mechanisms and formats used to store data. The specification is concerned only with the
exchange of data. A possible implementation is a relational database that stores data in tables.
Another possible implementation is a front-end that accesses the data on demand from an
external provider, similar to a commonly used CIMOM/provider pattern.

• The processes used to maintain the data in the federated CMDB. The goal of the specification
is to enable IT processes to manage this data, but not to require or dictate specific processes.

• The mechanisms used to change the actual configuration of the IT resources and their
relationships. The goal of the specification is to provide the means to represent changes as or
after they are made, but not to be the agent that makes the change.

Technological Assumptions

This specification is based on some assumptions with regard to underlying technology and the context of
computing standards that exist at the time of its writing.

Underlying Technology

The technologies behind CMDBs include Web Services and database management systems.

Web Services

Although the interface specification contained herein is generic, it assumes that implementations will be
based on Web Services. Although interfaces based on programming languages such as Java and C#
could be derived from this specification, such interfaces are considered out of scope and are not
addressed here.

Configuration Management Database (CMDB) Federation Specification DSP0252

10 DMTF Standard Version 1.0.1

Database Management Systems 224

225
226
227
228
229
230

In general practice CMDBs are implemented using commercially available database technology. Although
this specification is about how one or more CMDBs federate data using a standard mechanism, no
assumptions are made about how that federated data is stored or persisted. The specification focuses on
the interfaces; their behavior, and the data types they convey. Database technology is clearly a needed
component in the implementation of this specification, but its use is considered to be a hidden detail of
such implementations.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 11

Configuration Management Database (CMDB) Federation
Specification

231

232

234
235
236
237
238
239
240

242
243
244

245

1 Scope 233

This specification describes the architecture and interactions for federating data repositories together to
behave as a data store that satisfies the role of a Configuration Management Database (CMDB), or as
the federated repository that is the heart of a Configuration Management System, as described in the ITIL
best practices, version 3. For brevity, the remainder of the document uses the term CMDB, even when
the term Configuration Management System would be at least as appropriate. The federation provides an
aggregate view of a resource, even though the data and underlying repositories are heterogeneous. A
query interface is defined for external clients to access these data.

2 Normative References 241

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IETC RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999,
http://www.ietf.org/rfc/rfc2616.txt 246

247
248

249

ISO 8601, Third edition, 2004-12-01, Data elements and interchange formats — Information interchange
— Representation of dates and times

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 250

251 ITSMF, ITIL Version 3 Glossary of Terms and Definitions, May 2007,
http://www.itsmf.co.uk/web/FILES/Publications/ITILV3_Glossary_English_v1_2007.pdf 252

253 W3C, Simple Object Access Protocol (SOAP) 1.1, May 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ 254

255 W3C, SOAP Version 1.2 Part 1: Messaging Framework, April 2007,
http://www.w3.org/TR/2006/REC-xml-20060816/ 256

257 W3C, Extensible Markup Language (XML) 1.0 (Fourth Edition), September 2006,
http://www.w3.org/TR/2006/REC-xml-20060816/ 258

259 W3C, XML Schema 1.0 Part 1: Structures (Second Edition), October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 260

261 W3C, XML Schema 1.0 Part 2: Datatypes (Second Edition), October 2004,
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 262

263 W3C, XML Path Language (XPath) 1.0, November 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116 264

265 W3C, XML Path Language (XPath) 2.0, January 2007,
http://www.w3.org/TR/2007/REC-xpath20-20070123/ 266

http://www.ietf.org/rfc/rfc2616.txt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.itsmf.co.uk/web/FILES/Publications/ITILV3_Glossary_English_v1_2007.pdf
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2007/REC-xpath20-20070123/

Configuration Management Database (CMDB) Federation Specification DSP0252

12 DMTF Standard Version 1.0.1

W3C, XQuery 1.0 and XPath 2.0 Functions and Operators, January 2007, http://www.w3.org/TR/xquery-267
operators/ 268

W3C, XSLT 2.0 and XQuery 1.0 Serialization, January 2007, http://www.w3.org/TR/xslt-xquery-269
serialization/ 270

W3C, Web Services Description Language (WSDL) 1.1, March 2001, http://www.w3.org/TR/2001/NOTE-271
wsdl-20010315 272

273 ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 274

276

279
280

282
283

285
286
287

289
290
291

293
294

296
297

299
300

302
303
304

3 Terms and Definitions 275

For the purposes of this document, the following terms and definitions apply.

3.1 Requirements Terms 277

3.1.1 278
can
used for statements of possibility and capability, whether material, physical, or causal

3.1.2 281
cannot
used for statements of possibility and capability, whether material, physical or causal

3.1.3 284
conditional
indicates requirements to be followed strictly in order to conform to the document when the specified
conditions are met

3.1.4 288
mandatory
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.1.5 292
may
indicates a course of action permissible within the limits of the document

3.1.6 295
need not
indicates a course of action permissible within the limits of the document

3.1.7 298
optional
indicates a course of action permissible within the limits of the document

3.1.8 301
shall
indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xquery-operators/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 13

3.1.9 305
shall not 306

307
308

310
311
312

314
315

317
318
319
320
321
322

324
325
326
327
328
329
330
331
332

334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350

indicates requirements to be followed strictly in order to conform to the document and from which no
deviation is permitted

3.1.10 309
should
indicates that among several possibilities, one is recommended as particularly suitable, without
mentioning or excluding others, or that a certain course of action is preferred but not necessarily required

3.1.11 313
should not
indicates that a certain possibility or course of action is deprecated but not prohibited

3.2 Background Terminology 316

This section defines terms used throughout this specification. For the most part, these terms are adopted
from other sources. The terms are defined here to clarify their usage in this specification and, in some
cases, to show their relationship to the use of the terms in other sources. In particular, this specification
shares concepts with Information Technology Infrastructure Library (ITIL). ITIL is not a standard and does
not provide normative definitions of terms. However, the ITIL version 3 glossary is quoted below as
representative of the ITIL position.

3.2.1 323
configuration item
CI
a basic tangible or intangible entity in a configuration management solution such as a CMDB.
ITIL version 3 defines a CI as follows:

"Any Component that needs to be managed in order to deliver an IT Service. Information about
each CI is recorded in a Configuration Record within the Configuration Management System
and is maintained throughout its Lifecycle by Configuration Management. CIs are under the
control of Change Management. CIs typically include IT Services, hardware, software, buildings,
people, and formal documentation such as Process documentation and SLAs."

3.2.2 333
configuration management database
CMDB
ITIL defines a CMDB as follows:

"A database used to store Configuration Records throughout their Lifecycle. The Configuration
Management System maintains one or more CMDBs, and each CMDB stores Attributes of CIs,
and Relationships with other CIs."

A configuration management database (CMDB) is often implemented using standard database
technology and typically persists CI lifecycle data as records (or configuration records) in that database.
Configuration records are managed according to some data or information model of the IT environment.
One of the goals of this specification is to expedite the federated implementation of multiple CMDBs in a
single configuration management system.

3.2.3 345
configuration management system
CMS
ITIL defines (in part) a configuration management system as follows:

"A set of tools and databases that are used to manage an IT Service Provider's Configuration
data. The CMS also includes information about Incidents, Problems, Known Errors, Changes

javascript:void(0)

Configuration Management Database (CMDB) Federation Specification DSP0252

14 DMTF Standard Version 1.0.1

and Releases; and may contain data about employees, Suppliers, locations, Business Units,
Customers and Users."

351
352
353
354
355

357
358
359
360
361
362
363
364
365
366

368
369
370
371
372

374
375
376
377
378
379
380

382
383
384
385

387
388
389
390

392
393
394
395
396
397

A configuration management system is presumed to be a federation of CMDBs and other management
data repositories. The federated CMDB described in this specification is a good match with the database
requirements of a configuration management system.

3.2.4 356
configuration record
ITIL defines a configuration record as follows:

A Record containing the details of a Configuration Item. Each Configuration Record documents
the Lifecycle of a single CI. Configuration Records are stored in a Configuration Management
Database.

For the purposes of this specification, a CI is a tangible or intangible entity treated in the abstract by this
specification, while a configuration record contains concrete data pertaining to a CI. More than one
configuration record may be associated with a given CI. Often configuration records will be from different
data sources or document different points in the lifecycle of a CI. It is possible for configuration records
associated with a single CI to contain data that may appear contradictory and require mediation.

3.2.5 367
federated CMDB
a combination of multiple management data repositories (MDRs), at least one of which federates the
others, into an aggregate view of management data.
NOTE: Whereas "federated CMDB" refers to the combination of all the data repositories, "federating CMDB" is a
specific role performed by a data repository that federates other MDRs.

3.2.6 373
federation
the process of combining information from management data repositories (MDRs) into a single
representation that can be queried in a consistent manner. Federation is often contrasted with extract,
transform, and load (ETL) systems which transfer and store data from one repository to another. This
specification does not exclude ETL activities, especially for caching, but the main purpose of the
specification is to support systems that minimize or eliminate transferring and storing data from MDRs in
federators.

3.2.7 381
graph
a kind of data structure, specifically an abstract data type, that consists of a set of nodes and a set of
edges that establish relationships (connections or links) between the nodes. In this specification the
nodes are items and the edges are relationships.

3.2.8 386
identity
a set of qualities or characteristics that distinguish an entity from other entities of the same or different
types. This set of qualities may be called the "identifying properties" of the real world entity for which the
CMDB contains data.

3.2.9 391
Information Technology Infrastructure Library
ITIL
a framework of best practices for delivering IT services. Two versions of ITIL are commonly in use:
version 2 released in 2000 and version 3 released in 2007. Because ITIL version 3 has not yet
superseded version 2 in practice, both versions have been considered in preparing this specification. A
CMDB is a key component in the ITIL best practices.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 15

4 Symbols and Abbreviated Terms 398

4.1 399
CI 400

401

403
404

406
407

409
410

412
413

415
416

418
419

421
422

424
425

428

429

430

431

432

configuration item

4.2 402
CMDB
configuration management database

4.3 405
CMDBf
configuration management database federation

4.4 408
CMS
configuration management system

4.5 411
ITIL
Information Technology Infrastructure Library

4.6 414
MDR
management data repository

4.7 417
SACM
service asset and configuration management

4.8 420
SLA
service level agreement

4.9 423
WSDL
Web Service Definition Language

5 Architecture 426

5.1 Overview 427

As shown in Figure 3, the architecture defines the following four roles:

• management data repository

• federating CMDB

• client

• administrator

Configuration Management Database (CMDB) Federation Specification DSP0252

16 DMTF Standard Version 1.0.1

These roles implement or use the following two services: 433

434

435

• Query Service

• Registration Service

 436

437

440
441
442
443
444

445
446

448
449
450

451
452
453

Figure 3 – CMDB Roles and Services

5.2 Roles 438

5.2.1 Management Data Repository (MDR) 439

An MDR provides data about managed resources (for example, computer systems, application software,
and buildings), process artifacts (for example, incident records and request for change forms), and the
relationships between them. In this architecture, managed resources and process artifacts are both called
"items". The means by which the MDR acquires data is not specified, but the means can include acquiring
data directly from instrumented resources or indirectly through management tools.

Each MDR has an ID that is unique within (at least) a group of federated MDRs, and preferably globally
unique.

5.2.2 Federating CMDB 447

A federating CMDB is an MDR with additional capabilities. It federates data from MDRs; it may also
contain non-federated data. It provides an aggregate view of an item or relationship, potentially using data
from multiple MDRs. A federating CMDB and all the MDRs together comprise a federated CMDB.

It is possible for one federating CMDB to have its data federated by a second federating CMDB. In this
case, the first federating CMDB would appear to the second federating CMDB to be an MDR. The second
federating CMDB would not be aware of any federation performed by the first federating CMDB.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 17

5.2.3 Client 454

A client is a consumer of management data, either directly from an MDR or through an aggregated view
from a federating CMDB. Examples of clients are IT process workflows, management tools, and IT
administrators. Clients only read data; there are no provisions for a client to update data through an
interface defined in this architecture.

455
456
457
458

460
461
462
463
464

466

468
469

471
472
473
474

476
477
478

480
481

483
484
485
486
487

489
490
491
492
493

5.2.4 Administrator 459

An administrator configures MDRs and federating CMDBs so they can interact with each other.
Administration includes selecting and specifying the data that is federated, describing service endpoints,
and describing which data are managed through each endpoint. Administration is done using interfaces
not defined in this architecture and that may be specific to each tool that acts in the MDR or federating
CMDB role.

5.3 Services Overview 465

The subsequent clauses explain service types, federation modes, and service usage patterns.

5.3.1 Service Types 467

The architecture defines two services: Query Service and Registration Service. A service has an
implementor and a client (caller).

5.3.1.1 Query Service 470

Both MDRs and federating CMDBs may implement the Query Service to make data available to Clients.
Queries may select and return items, relationships, or graphs containing items and relationships, and the
data records associated with each item and relationship. An MDR or a federating CMDB may declare the
data record types that its Query Service supports.

5.3.1.2 Registration Service 475

A federating CMDB may implement the Registration Service. An MDR may call the Registration Service
to register data that it has available for federation. A federating CMDB may declare the data types that its
Registration Service supports. An MDR maps its data to the supported types.

5.3.2 Federation Modes 479

The two modes available to federate data are push mode and pull mode. A federating CMDB shall use at
least one mode and may use both.

5.3.2.1 Push Mode 482

In push mode, the MDR initiates the federation. Typically an administrator configures the MDR by
selecting to federate some data types that are supported by both the MDR and the Registration Service.
The MDR notifies the Registration Service any time this data is added, updated, or deleted. Depending on
the extent of the data types, the registered data may be limited to identification data or it may include
other properties that describe the item or relationship state.

5.3.2.2 Pull Mode 488

In pull mode, the federating CMDB initiates the federation. Typically, an administrator configures the
federating CMDB by selecting the MDR data types that will be federated. The federating CMDB queries
MDRs for instances of this data. Depending on the implementation, the federating CMDB may pass
through queries to MDRs without maintaining any state, or it may cache some set of MDR data, such as
the data used to identify items and relationships.

Configuration Management Database (CMDB) Federation Specification DSP0252

18 DMTF Standard Version 1.0.1

5.3.3 Service Usage Patterns 494

Table 1 lists the service usage patterns for the roles described in 5.2 that implement or use the services. 495

496 Table 1 – Service Usage Patterns

Query Service Registration Service
Pattern (Role + Mode) Implementation Client Implementation Client

Federating CMDB – Push Mode Required Optional Required N/A

Federating CMDB – Pull Mode Required Required N/A N/A

MDR – Push Mode Optional N/A N/A Required

MDR – Pull Mode Required N/A N/A N/A

Client (external) N/A Required N/A N/A

5.4 Identity Reconciliation 497

Managed resources are often identified in multiple ways, depending on the management perspective.
Examples of management perspectives are a change management process and an availability monitoring
tool. Understanding how to identify resources, and reconciling the identifiers across multiple perspectives,
is an important capability of a federating CMDB. The following pattern is typically used for identity
reconciliation:

498
499
500
501
502

503
504
505
506
507
508
509

510
511

512
513

• Each MDR identifies a resource based on one or more identifying properties of the resource.
Identifying properties are physical or logical properties that distinguish unique instances of
resources. Examples are MAC addresses, host names, and serial numbers. Often, more than
one property will be necessary to uniquely distinguish a resource, especially when information is
incomplete. In addition, when two or more MDRs contain data about a single resource,
individual MDRs may choose or have available different identifying properties, which they may
use in their resource identifier for the item or relationship.

• Each MDR knows at least one unique and unambiguous identifier for each item or relationship it
contains or provides access to through the Query Service.

• A federating CMDB attempts to reconcile the item and relationship identification information
from each MDR, recognizing when they refer to the same item or relationship.

 514

515 Figure 4 – Identity Reconciliation

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 19

The federating CMDB performs this identity mapping using any combination of automated analysis and
manual input, as shown in

516
517
518
519
520
521
522
523

525
526

528
529

530
531
532
533
534
535

Figure 4. In a typical implementation the federating CMDB analyzes the
identifying properties to determine the resource identity. As each item or relationship is registered, the
service determines if this item or relationship is already registered or is new. The determination of identity
is seldom absolute and often must rely on heuristics because different MDRs typically know about
different characteristics of an entity and thus establish different sets of identifying properties that
characterize the entities they handle. Further, the determination may change as additional information is
discovered and MDRs add, subtract, or change identifying properties as systems evolve.

5.5 Data Elements Overview 524

Subsequent clauses provide an overview of the elements used to organize the data in MDRs and
federating CMDBs.

5.5.1 Managed Data 527

The architecture defines three elements that organize the data that repositories exchange: item,
relationship, and record.

The data contained in an MDR or federating CMDB is a graph where the items are nodes and the
relationships are links. The graph is not necessarily connected. (In other words, there may not be a
relationship trail from any item to any other item.) The query interface described below allows queries to
be constructed based on aspects of the graph (for example, existence of a relationship between two
items) and based on properties of the items and relationships (for example, requirements for a certain
value of a given record property or a certain type for the item and relationship).

 536

537

539
540
541

542
543

544

Figure 5 – Data and Services Overview

5.5.1.1 Item 538

An item represents a managed resource (for example, computer systems, application software, and
buildings) or a process artifact (for example, an incident record and request for change form). With this
definition, "item" is a superset of the "configuration item" term defined in ITIL. Formally:

• Each item shall have at least one ID that is unique within the scope of the MDR that contains it
and that serves as a key.

• After an ID has been assigned to an item, it may be used in any situation requiring an ID.

Configuration Management Database (CMDB) Federation Specification DSP0252

20 DMTF Standard Version 1.0.1

• After an ID has been assigned to an item, it shall never refer to anything except the original
item.

545
546

547
548
549

550
551
552
553

554
555
556
557

558
559

560
561
562
563
564

566
567
568
569

570
571

572
573
574
575

577
578
579
580

581
582
583
584

586
587

588

• An instance ID of an item is the composition of the unique MDR ID and the unique item ID
assigned by that MDR. The instance ID is therefore unique within the group of federated
repositories.

Examples of when an item might have multiple IDs include when an item is reconciled across several
MDRs and the federating CMDB knows it by all of the IDs that have been assigned by different MDRs;
when two items are thought to be different but are later reconciled to the same item; or when an ID
changes for any other reason.

Given that each MDR has a unique ID within the group of federated repositories, and that each MDR
assigns a unique ID within its own scope, the combination of the MDR ID and the MDR-assigned item ID
results in an instance ID that is unique within the group of federated repositories. This instance ID serves
two purposes:

• It is an unambiguous identifier for the representation of the item held by the MDR that assigned
the instance ID.

• The MDR ID portion of the instance ID identifies the MDR that assigned the instance ID. A client
may introspect the instance ID to extract the MDR ID. The client may then use the MDR ID to
acquire the Query Service address for this MDR. For example, the MDR ID might be the key in
a registry that contains the service addresses for each MDR. The client may then issue a query
to this address to retrieve the representation of the item.

5.5.1.2 Relationship 565

A relationship represents a connection from a source item to a target item. Examples include software
"runs" on an operating system, an operating system is "installed" on a computer system, an incident
record "affects" a computer system, and service "uses" (another) service. Relationships have the
following characteristics:

• A relationship links exactly two items, one the source and one the target, and provides
information pertaining to that relationship.

• A relationship is a subclass of an item (though the relationship XML schema does not formally
extend the item XML schema), and has all the characteristics of an item. For example, each
relationship shall have an ID that is unique within the scope of the MDR that contains it and that
serves as a key, and a reconciled relationship may have more than one ID.

5.5.1.2.1 Relationship Roles 576

The two endpoints of a relationship are not equivalent. In the general case, items at these endpoints play
different roles in the relationship. Some relationships may not have any such semantic distinction
because they are symmetrical (e.g. "sibling"), but this is not the general case. An example of the general
case is an "employment" relationship which links an "employer" to an "employee".

CMDBf designates the endpoints as "source" and "target" to distinguish them. There are no semantics
attached to these terms, other than a convention that when a relationship is represented graphically by an
arrow, the arrow goes from the source to the target. The relationship record type (see 5.5.1.3)
documentation should describe the role semantics of the "source" and "target" endpoints.

5.5.1.3 Record 585

A record contains properties that describe an item or relationship. Records have the following
characteristics:

• A record is associated with exactly one item or relationship.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 21

• A record may contain properties that are useful to identify the item or relationship, or it may
contain other properties that describe the item or relationship.

589
590

591
592

593
594
595
596
597

598
599

600
601

602

603
604

605
606

607
608

609

610
611

612
613
614

615

617
618

619
620

• Several records, possibly of various types, may be associated with the same item or
relationship.

Records may differ from other records for various reasons, including types of data (for example, asset
versus configuration), different sets of properties from different providers, different versions, and expected
versus observed data. A record is similar to a row in a SQL view. It is a projection of properties. The same
property may appear in multiple records for the same item or relationship. The record may have no
properties, in which case it serves as a marker.

Each record may have the following metadata properties that describe the record itself (as opposed to
properties that describe the item or relationship):

• an ID that is unique within the scope of its associated item or relationship and that serves as a
key (optional if there is only one record for the item or relationship)

• the date/time the record was last modified (optional)

• a baseline ID that may be used to indicate the expected (authorized) configuration baseline this
record represents (optional)

• a snapshot ID that may be used to indicate the configuration observations this record
represents (optional)

Each record has exactly one "record type". Note that a record type may extend one or more other record
types, as described in 8.2.2.3. A record type is:

• A characterization of an item or relationship.

• A collection of properties that can be used to describe an item or relationship. The properties
may be simple or complex XML elements.

• A record type may be used in a query to limit the items or relationships returned by a query
operation to instances with a record considered by the query service to be of the requested
type.

A record type may also be the QName of the first child of a record element in a query response.

5.5.2 Common Data Element Types 616

The cmdbf:MdrScopedIdType is used in several places to identify an item or relationship. It is described
here for convenience so other sections of this document may refer to it without repeating the definition.

The <instanceId> element is of the type of cmdbf:MdrScopedIdType. The pseudo-schema of the
<instanceId> element is as follows:
<instanceId> 621
 <mdrId>xs:anyURI</mdrId> 622
 <localId>xs:anyURI</localId> 623
</instanceId> 624

625 This can be abbreviated in a pseudo schema as the following:
<instanceId>cmdbf:MdrScopedIdType</instanceId> 626

627
628
629
630

The cmdbf:MdrScopedIdType is composed of a pair of URIs. The first URI, <mdrId>, is the ID of the
MDR that assigned this instance ID to the instance. The second URI, <localId>, is the ID that uniquely
identifies the instance within the MDR. The combination of these two URIs identifies the instance in a
globally unique way. There is no expectation that these two URIs are able to be de-referenced.

Configuration Management Database (CMDB) Federation Specification DSP0252

22 DMTF Standard Version 1.0.1

Every <record> element has exactly one child element of unrestricted content (which is typically used to
describe the item or relationship with which the record is associated), followed by an optional (if there is
only one record associated with the item or relationship)

631
632
633
634

635

636
637

638
639

640
641

642
643
644

645
646

649
650
651
652
653

654
655
656
657

658
659

661
662
663

664
665
666

667

<recordMetadata> element that contains
common information about the record itself.

The <recordMetadata> element may contain these properties:

• recordId: the unique ID of the record in the MDR. If there is more than one record for an item or
a relationship, the recordId is required.

• lastModified: the time/date the record was last modified in ISO 8601 format. The applicable time
zone or UTC shall be indicated.

• baselineId: the name or other identifier used to group records into a particular baseline
configuration. A value of "0" indicates that this record is not part of any baseline configuration.

• snapshotId: the name or other identifier used to group records observed in a configuration
snapshot (discovery). A value of "0" indicates that this record is not part of any snapshot
configuration.

• extensibility elements: additional metadata elements not defined by the specification may also
be included

6 Query Service 647

6.1 Overview 648

The Query Service can be provided by MDRs and federating CMDBs (see Table 1 – Service Usage
Patterns on page 18). It provides a way to access the items and relationships that the provider (MDR or
federating CMDB) has access to, whether this provider actually holds the data or federates the source of
the data. The Query Service contains a GraphQuery operation that can be used for anything from a
simple instance query to a much more complex topological query.

A GraphQuery request describes the items and relationships of interest in the form of a graph.
Constraints can be applied to the nodes (items) and edges (relationships) in that graph to further refine
them. The GraphQuery response contains the items and relationships that, through their combination,
compose a graph that satisfies the constraints of the graph in the query.

The subsequent subclauses provide a more complete description of the request and response messages
for the GraphQuery operation. Examples are provided in ANNEX D.

6.2 GraphQuery Operation Outline 660

A GraphQuery request consists of a <query> element that contains <itemTemplate> and
<relationshipTemplate> elements. Content selectors and constraints can be used inside
<itemTemplate> or <relationshipTemplate> elements, and have the same form in both.

In addition to constraints, <relationshipTemplate> elements also contain a <sourceTemplate>
and a <targetTemplate> element. These elements each point (using the xs:ID/xs:IDREF mechanism)
to an <itemTemplate>.

The pseudo-schema for the payload of a GraphQuery request is as follows:
<query> 668
 <itemTemplate id="xs:ID" suppressFromResult="xs:boolean" ?> 669
 (<contentSelector ...>...</contentSelector> ? 670
 <instanceIdConstraint>...</instanceIdConstraint> ? 671

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 23

 <recordConstraint> 672
 <recordType ... /> * 673
 <propertyValue ...>...</propertyValue> * 674
 <xpathConstraint>...</xpathConstraint> ? 675
 </recordConstraint> *) 676
 xs:any 677
 </itemTemplate> * 678
 <relationshipTemplate id="xs:ID" suppressFromResult="xs:boolean" ?> 679
 (<contentSelector ...>...</contentSelector> ? 680
 <instanceIdConstraint>...</instanceIdConstraint> ? 681
 <recordConstraint> 682
 <recordType>...</recordType> * 683
 <propertyValue>...</propertyValue> * 684
 <xpathConstraint>...</xpathConstraint> ? 685
 </recordConstraint> *) 686
 <sourceTemplate ref="xs:IDREF" minimum="xs:int"? 687
 maximum="xs:int"?/> ? 688
 <targetTemplate ref="xs:IDREF" minimum="xs:int"? 689
 maximum="xs:int"?/> ? 690
 <depthLimit ... /> ? 691
 xs:any 692
 </relationshipTemplate> * 693
</query> 694

695
696
697
698
699

700

701
702
703
704
705
706
707
708

710

711
712

713
714
715

The syntax and semantics for each constraint element are provided in later clauses (for
<instanceIdConstraint> see 6.4.1, for <propertyValue> see 6.4.2.2, for <recordType> see
6.4.2.1, and for <xpathConstraint> see).6.4.2.3 The evaluation of a constraint on an item or
relationship returns a Boolean expression. If the value of the Boolean expression is true, then the item or
relationship is deemed to satisfy the defined constraint.

Templates are used to identify matching items and relationships to be returned in the graph response.

The optional “suppressFromResult” attribute, if present and set to true, indicates that the items or
relationships that correspond to the template carrying the attribute should be suppressed from the result.
Templates with this attribute set to true are still meaningful in that it may help constrain other templates in
the query. For example, in order to retrieve all items that have a “dependsOn” relationship with application
“foo”, the query may set this attribute to true on the template for the “foo” item and the template for the
“dependsOn” relationship but not on the template for the items on which “foo” depends. Only the latter
items would appear in the response. If the “suppressFromResult” attribute is not present or set to false on
a template, then all the selected instances for this template are returned in the query result.

6.2.1 itemTemplate 709

An item matches an <itemTemplate> if and only if all of the following provisions are true:

• The item satisfies all the constraints defined by the <itemTemplate>. (In effect, an implicit
AND joins the constraints.)

• For every <relationshipTemplate> that points to the <itemTemplate> as its
sourceTemplate, there is a relationship matching this <relationshipTemplate> that has the
item as its source.

Configuration Management Database (CMDB) Federation Specification DSP0252

24 DMTF Standard Version 1.0.1

• For every <relationshipTemplate> that points to the <itemTemplate> as its
targetTemplate, there is a relationship matching this <relationshipTemplate> that has the
item as its target.

716
717
718

719
720
721

722

724
725

726
727

728
729

730
731

732
733

734
735

736

738
739
740

741
742

743
744
745
746
747

748
749

751
752
753
754

An item can match more than one <itemTemplate> inside a given query. When this is the case, the
item appears in the response once for each matching <itemTemplate> (unless suppressed by the
"suppressFromResult" attribute).

An item template will not return relationship instances.

6.2.2 relationshipTemplate 723

A relationship matches a <relationshipTemplate> if and only if all of the following provisions are
true:

• The relationship meets all the constraints in the <relationshipTemplate>. (In effect, an
implicit AND joins the constraints.)

• The source item of the relationship matches the <itemTemplate> referenced as
<sourceTemplate> by the <relationshipTemplate>.

• The target item of the relationship matches the <itemTemplate> referenced as
<targetTemplate> by the <relationshipTemplate>.

• The cardinality conditions on the <sourceTemplate> and <targetTemplate> elements are
satisfied, as defined by the @minimum and @maximum attributes defined 6.2.2.1.

• The depth, or the number of edges between source and target nodes in the graph, satisfies the
<depthLimit> condition defined in 6.2.2.2.

Items, which do not have a source or target, cannot match a <relationshipTemplate>.

6.2.2.1 relationshipTemplate/sourceTemplate and relationshipTemplate/targetTemplate 737

The <sourceTemplate> and <targetTemplate> elements each refer to an <itemTemplate>
element using the required @ref attribute. The value of the @ref attribute shall match the value of the @id
attribute of an <itemTemplate> element in the query.

Additionally, <sourceTemplate> and <targetTemplate> elements may have the following optional
attributes:

@minimum – If n is the value of the @minimum attribute, there shall be at least n relationships
matching the <relationshipTemplate> that share the same source or target item. For example,
a query to find computers that at least five services depend upon might specify minimum="5" on a
<sourceTemplate> that selects services, combined with a <targetTemplate> that selects
computers and other constraints that select a 'dependsOn' relationship.

@maximum – If n is the value of the @maximum attribute, there may be at most n relationships
matching the <relationshipTemplate> that share the same source or target item.

6.2.2.2 relationshipTemplate/depthLimit 750

The <depthLimit> element is used to extend the relationship template to traverse multiple edges and
nodes. For example, this element may be used to find all the components of an aggregate system, or all
the dependencies of a business service, even if these items are not directly related to the item in
question. This extended relationship is also called a "relationship chain."

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 25

The pseudo-schema of the <depthLimit> element is as follows: 755
<depthLimit maxIntermediateItems="xs:positiveInteger" ? 756
 intermediateItemTemplate="xs:IDREF" /> 757

758
759
760
761

762
763
764
765

767
768
769
770

771
772
773
774
775

776

@maxIntermediateItems – The maximum number of intermediate items in the relationship chain
between source and target items. A value of 1 indicates that the <relationshipTemplate> can
traverse one intermediate item between the source item and target item. This attribute is optional. If it
is not present, then the number of intermediate items between the source and the target is unlimited.

@intermediateItemTemplate – The value of the intermediateItemTemplate corresponds to the @id
attribute of an <itemTemplate> element that is used as a prototype for intermediate items in the
relationship chain. The value of the @intermediateItemTemplate attribute is also used to represent
the intermediate items in the <nodes> element of the query response.

6.3 Content Selection 766

The <contentSelector> element determines how instances matching the template are returned in the
response. If a template does not contain a <contentSelector> element, all matching instances and
associated records are returned in the response. The term "instance" means either an item or a
relationship.

If a template contains a <contentSelector> element, the records and properties returned for the
instances that match this template are limited to those explicitly selected. Records and properties are
explicitly selected by specifying their namespace and local name in the <selectedRecordType>
element or an XPath expression in the <xpathSelector> element. The use of
<selectedRecordType> and <xpathSelector> are mutually exclusive per content selector.

The pseudo-schema of the <contentSelector> element is as follows:
<contentSelector> 777
 (<selectedRecordType namespace="xs:anyURI" localName="xs:NCName" > 778
 <selectedProperty namespace="xs:anyURI" localName="xs:NCName" /> * 779
 </selectedRecordType> * | 780
 <xpathSelector dialect="xs:anyURI"> 781
 <prefixMapping prefix="xs:NCName" namespace="xs:anyURI"/> * 782
 <expression>xs:string</expression> 783
 </xpathSelector> ?) 784
</contentSelector> 785

787
788

789

790
791

793
794

795
796

6.3.1 contentSelector 786

The use of the <contentSelector> element affects the contents of the matching instances in the
response as follows:

• <contentSelector /> (empty element)

The instances matching this template are returned with no record content in the response. This may
be useful if all that is required is the instanceId of instances matching this template.

6.3.1.1 contentSelector/selectedRecordType 792

If <selectedRecordType> is used without any <selectedProperty> child elements, all properties
(child elements) of all records of the selected type are returned in the response.

At the discretion of the query service, the response may contain a record type that is an extension (as
described in 8.2.2.3) of the selected record type. For example, the following query limits the response to

Configuration Management Database (CMDB) Federation Specification DSP0252

26 DMTF Standard Version 1.0.1

records with a record type with namespace=" "http://example.com/models and 797
798 localName="Computer".

<query> 799
 <itemTemplate id="computers"> 800
 <contentSelector> 801
 <selectedRecordType namespace="http://example.com/models" 802
 localName="Computer"> 803
 </selectedRecordType> 804
 </contentSelector> 805
 </itemTemplate> 806
</query> 807

808
809
810
811

813
814
815
816

A valid response to this query could contain records with a record type of
namespace=" "http://example.com/models and localName="LinuxComputer", as long as the
record type with localName="LinuxComputer" is defined as an extension of the record type with
localName="Computer" using the mechanism described in 8.2.2.3.

6.3.1.1.1 contentSelector/selectedRecordType/selectedProperty 812

If <selectedProperty> elements are included in a <selectedRecordType> element, only the
selected properties of the selected record types are returned in the response.
EXAMPLE: In the following example, only the "name" and "telephone" properties in the
http://example.com/models/people namespace get returned for the items that match the "user" <itemTemplate>.

<query> 817
 <itemTemplate id="user"> 818
 <contentSelector> 819
 <selectedRecordType namespace="http://example.com/models" 820
 localName="people"> 821
 <selectedProperty namespace="http://example.com/models/people" 822
 localName="name"/> 823
 <selectedProperty namespace="http://example.com/models/people" 824
 localName="telephone"/> 825
 </selectedRecordType> 826
 </contentSelector> 827
 ... 828
 </itemTemplate> 829
</query> 830

831
832
833

Whether or not individual properties are selected, the contents of an item or relationship in the response
are always in the form of <record> elements, as follows, or in a <propertySet>element, which is
described in 6.6.1:
<record> 834
 <recordTypeQName> 835
 <propertyQName>xs:any</propertyQName> * 836
 </recordTypeQName> 837
 <recordMetadata> 838
 <recordId>xs:any</recordId> 839
 ... 840
 </recordMetadata> 841
</record> * 842

http://example.com/models
http://example.com/models

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 27

A record type may extend multiple record types, as shown in the example on the right hand side of 843
844
845
846
847
848
849
850
851

853
854

Figure 6 in 8.2.2.3. For each record of an item, regardless of how many record types may describe a
subset of the record properties and regardless of how many
<contentSelector>/<selectedRecordType> elements select all or part of this record, the query
response shall contain at most one record or property set (see 6.6.1 for a description of a property set).
The record type of the returned record or property set shall be a record type that contains all the
properties to be returned. Using the same example on the right hand side of Figure 6, a query that selects
the faxNumber property of FaxMachine could be satisfied by returning either a FaxMachine or
MultiFunctionPrinter record or property set.

6.3.1.2 contentSelector/xpathSelector 852

The use of the <xpathSelector> element may be used to selects parts of complex models or for
complex selection criteria. For example, an item template has matched an item with the following record:
<record> 855
 <ex:ComputerSystem xmlns:ex=”http://www.example.org/cs”> 856
 ... 857
 <ex:NetworkInterfaces> 858
 <ex:ip>1.2.3.4</ex:ip> 859
 <ex:ip>2.3.4.5</ex:ip> 860
 </ex:NetworkInterfaces> 861
 ... 862
 </ex:ComputerSystem> 863
 ... 864
</record> 865

866 If the <xpathSelector> is as follows:
<xpathSelector 867
 dialect=”http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1”> 868
 <prefixMapping prefix=”ex” namespace=”http://www.example.org/cs” /> 869
 <expression> 870
 /ex:ComputerSystem/ex:NetworkInterfaces/ex:ip 871
 </expression> 872
</xpathSelector> 873

874 The record returned would be:
<record> 875
 <ex:ip>1.2.3.4</ex:ip> 876
 <ex:ip>2.3.4.5</ex:ip> 877
</record> 878

880
881

883
884
885
886
887

6.3.1.2.1 contentSelector/xpathSelector/@dialect 879

The dialect corresponds to a particular version or profile of XPath represented by the URI value. See 6.5
for more information on XPath dialects.

6.3.1.2.2 contentSelector/xpathSelector/prefixMapping 882

Each <prefixMapping> child element of the <xpathConstraint> element defines a namespace
declaration for the XPath evaluation. The prefix for this declaration is provided by the
<prefixMapping>/@prefix attribute and the namespace URI is provided by the
<prefixMapping>/@namespace attribute. These prefix-namespace pairings shall be added to the
namespace declarations of the XPath processor.

Configuration Management Database (CMDB) Federation Specification DSP0252

28 DMTF Standard Version 1.0.1

6.3.1.2.3 contentSelector/xpathSelector/expression 888

The <expression> element contains an XPath expression to be evaluated according to the chosen
dialect against each

889
890
891
892

893
894

896
897

899
900

<record> element contained in an item or relationship that has satisfied all of the
constraints. The evaluation result is then transformed and normalized into a single DOM node according
to the mechanism prescribed by the dialect. See 6.5 for more information on XPath normalization.

If that response DOM node has any children, then the record is selected and those children are appended
to the <record> element.

6.4 Constraints 895

Constraints are used to restrict the instances returned based on properties of the instances and
associated records.

6.4.1 instanceIdConstraint 898

The <instanceIdConstraint> element is used to point to specific instances by instance ID. The
pseudo-schema of this element is as follows:
<instanceIdConstraint> 901
 <instanceId>cmdbf:MdrScopedIdType</instanceId> + 902
</instanceIdConstraint> 903

904
905

906
907
908

909
910

912
913

914

There can be at most one <instanceIdConstraint> in an <itemTemplate> or a
<relationshipTemplate> element.

More than one instance ID may be attached to one instance. For example, a federating CMDB may know,
for a given reconciled instance, instance IDs provided by each of the MDRs that have content about the
instance, plus possibly an additional instance ID for the instance assigned by the federating CMDB itself.

The constraint is satisfied if one of the known instance IDs for the instance matches one of the requested
values (that is, if both the <mdrId> and the <localId> match using string comparison).

6.4.2 recordConstraint 911

The <recordConstraint> element is used to point to specific record types and related properties to be
evaluated.

The pseudo-schema of this element is as follows:
<recordConstraint> 915
 <recordType namespace="xs:anyURI" 916
 localName="xs:NCName"/> * 917
 <propertyValue> ... </propertyValue> * 918
 <xpathConstraint> ... </xpathConstraint> ? 919
 xs:any 920
</recordConstraint> 921

922
923

925
926

The <recordConstraint> element can appear any number of times inside an <itemTemplate> or a
<relationshipTemplate>.

6.4.2.1 recordConstraint/recordType 924

The <recordType> element can appear any number of times inside a <recordConstraint>
element.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 29

One way for this constraint to be satisfied is if the instance has a record of that type. More specifically, if
the instance contains a record element that has, as the first child element, an element in the namespace
corresponding to the value of the

927
928
929
930
931
932

934
935
936
937

938

939

<recordType>/@namespace attribute and where the local name of
that first child element is the value of the <recordType>/@localName attribute. The constraint could
also be satisfied by an instance with a record that is an extension of that QName, as described in 8.2.2.3.
(For example, comp:Linux might be defined as an extension of comp:OperatingSystem.)

6.4.2.2 recordConstraint/propertyValue 933

Each instance is associated with zero or more records. These records contain properties whose values
are accessible through an XML representation of the instance. The <propertyValue> element can only
be used on properties that have a type that is a subtype of the xs:anySimpleType type. While the type
must be known, it is not required that an XML schema definition of the property be available.

The <propertyValue> element is not applicable to properties that are defined as a complex type.

The pseudo-schema of this element is as follows:
<propertyValue namespace="xs:anyURI" 940
 localName="xs:NCName" 941
 recordMetadata="xs:boolean" ? 942
 matchAny="xs:boolean" ? > 943
 <equal caseSensitive="xs:boolean"? negate="xs:boolean"? > 944
 xs:anySimpleType 945
 </equal> * 946
 <less negate="xs:boolean"? >xs:anySimpleType</less> ? 947
 <lessOrEqual negate="xs:boolean"? >xs:anySimpleType</lessOrEqual> ? 948
 <greater negate="xs:boolean"? >xs:anySimpleType</greater> ? 949
 <greaterOrEqual negate="xs:boolean"?> 950
 xs:anySimpleType 951
 </greaterOrEqual> ? 952
 <contains caseSensitive="xs:boolean"? negate="xs:boolean"? > 953
 xs:string 954
 </contains> * 955
 <like caseSensitive="xs:boolean"? negate="xs:boolean"? > 956
 xs:string 957
 </like> * 958
 <isNull negate="xs:boolean"? /> ? 959
 xs:any 960
</propertyValue> 961

962
963
964
965
966

967
968
969

The <propertyValue> element can appear any number of times in <recordConstraint>. Its
namespace and localName attributes define the QName of the property being tested. If there are one or
more <recordType> elements in the enclosing <recordConstraint>, they define the record types
against which to evaluate the constraint. If there are no <recordType> elements, the
<propertyValue> element is evaluated against all record types.

The child elements of <propertyValue> are called operators. A <propertyValue> constraint is
considered to be satisfied if the operators return a positive (true) result for one or more records
associated with the instance (logical OR across the records).

The operators are largely defined in terms of XPath 2.0 comparison operators. This does not require that
an

970
XPath 2.0 implementation be used but only that the operators be evaluated in a way that is consistent

with the
971

XPath 2.0 definitions, as described in 6.4.2.3. 972

Configuration Management Database (CMDB) Federation Specification DSP0252

30 DMTF Standard Version 1.0.1

@recordMetadata – The value of this attribute indicates that the property to be evaluated is in the 973
974

975
976
977
978
979
980
981
982

<recordMetadata> element of the record.

@matchAny – The value of this attribute defines whether the operators inside that element are
logically AND-ed or OR-ed. The default value for the matchAny attribute is false. If the value of the
matchAny attribute is false, the constraint returns a positive result for an instance if the instance has
a record that contains the property identified by the QName and if the value of that property satisfies
all the operators in the constraint (logical AND). If the value of the matchAny attribute is true, the
constraint returns a positive result for an instance if the instance has a record that contains the
property identified by the QName and if the value of that property satisfies at least one of the
operators in the constraint (logical OR).

6.4.2.2.1 recordConstraint/propertyValue/equal 983

This operator is defined in terms of the XPath 2.0 value comparison operator "eq". To evaluate, the
operand on the left is the property value from the record and the operand on the right is the value of the
constraint from the query. The type of the value of the constraint shall be interpreted to be of the same
type as the value from the property in the record. This operator is valid for properties of any simple type.
A list of comparison behaviors is available in

984
985
986
987

XPath 2.0, "Appendix B.2 – Operator Mappings". 988

990
991
992

6.4.2.2.2 recordConstraint/propertyValue/less, 989
recordConstraint/propertyValue/lessOrEqual,
recordConstraint/propertyValue/greater, and
recordConstraint/propertyValue/greaterOrEqual

These operators are defined in terms of the XPath 2.0 value comparison operators "lt", "le", "gt", and "ge",
respectively. To evaluate, the operand on the left is the property value from the record and the operand
on the right is the value of the constraint from the query. The type of the value of the constraint shall be
interpreted to be of the same type as the value from the property in the record. These operators are valid
only for properties that are numerals, dates, and strings. A list of comparison behaviors is available in

993
994
995
996
997

XPath 2.0, "Appendix B.2 – Operator Mappings". For example, if a property is of type date, the operator
<less>2000-01-01T00:00:00</less> returns true if the property value is a date before the year
2000. If the property value is a string, then "2000-01-01T00:00:00" is interpreted as a string and
compared with the property value using string comparison.

998
999

1000
1001

6.4.2.2.3 recordConstraint/propertyValue/contains 1002

This operator is mapped to the XPath 2.0 function fn:contains(). It is valid only for properties of type string
and used to test whether the property value contains the specified string as a substring. The result of the
contains operator is as if the fn:contains() function were executed with the first parameter being the
property value and the second parameter being the string specified.

1003
1004
1005
1006

1008
1009

1010

1011

1012
1013
1014
1015

6.4.2.2.4 recordConstraint/propertyValue/like 1007

This operator is similar in functionality to the SQL LIKE clause. The operator works like the equal operator
with the inclusion of the following two special characters:

• The underscore character ("_ ") acts as a wild card for any single character.

• The percent sign ("% ") acts as a wild card for zero or more characters.

To escape the wild cards, the backslash ("\ ") can be used. For example,
<like>Joe_Smith%</like> tests whether the property value starts with the string "Joe_Smith" and
would match values such as "Joe_Smith", "Joe_Smith123", and "Joe_Smith_JR". It would not match
"JoeHSmith123". A double backslash ("\\") represents the single backslash string ("\").

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 31

6.4.2.2.5 recordConstraint/propertyValue/isNull 1016

This operator tests whether the element corresponding to the property is "nilled". It is equivalent to the
result of applying the

1017
XPath 2.0 "fn:nilled" function on the element corresponding to the property. 1018

1020

1021
1022
1023

6.4.2.2.6 Additional Attributes 1019

The following additional attributes are defined for operator elements:

@caseSensitive – This is an optional attribute for the equal, contains, and like operators. The
default value is true. If the property value of the record is an instance of xs:string and the
caseSensitive attribute is false, the string comparison is case-insensitive. More precisely, the result
of the comparison is as if the XPath 2.0 function fn:upper-case() was called on both the property
value and the string value before comparison. If the property value of the record is not an instance of
a xs:string, the caseSensitive attribute has no impact on the comparison.

1024
1025
1026

1027
1028

1029
1030

1031

@negate – This is an optional attribute for all operators. The default value is false. When the negate
attribute is true, the result of the comparison is negated.

Table 2 summarizes which operators are supported for the various XSD built-in datatypes. Unless
explicitly specified, the caseSensitive attribute is not supported.

Table 2 – Operators Supported for XSD Built-in Datatypes

Built-in Datatypes equal isNull

less,
lessOrEqual,
greater,
greaterOrEqual contains like

"String-related types"
(String, anyURI, and
types derived from string)

Yes, including
the optional
caseSensitive
attribute

Yes Yes Yes, including
the optional
caseSensitive
attribute

Yes, including
the optional
caseSensitive
attribute

"Time-related and
numeric types" (duration,
dateTime, time, date,
gYearMonth, gYear,
gMonthDay, gDay,
gMonth, float, double,
decimals, and all types
derived from decimals)

Yes Yes Yes No No

"Others" (Boolean,
QName, NOTATION,
base64Binary, and
hexBinary)

Yes Yes No No No

If more than one property uses the same QName, the comparison has to hold true for only one of the
property values.

1032
1033
1034 EXAMPLE 1: Consider the following example for a computer with three IP addresses:

<comp:ComputerConfig xmlns:comp="http://example.com/computers"> 1035
 ... 1036
 <comp:ip>1.2.3.4</comp:ip> 1037
 <comp:ip>1.2.3.5</comp:ip> 1038
 <comp:ip>1.2.3.6</comp:ip> 1039
 ... 1040
</comp:ComputerConfig> 1041

Configuration Management Database (CMDB) Federation Specification DSP0252

32 DMTF Standard Version 1.0.1

The following property constraint would return a positive result: 1042
<recordConstraint> 1043
 <propertyValue namespace="http://example.com/computers" 1044
 localName="ip"> 1045
 <equal>1.2.3.5</equal> 1046
 </propertyValue> 1047
</recordConstraint> 1048

1049
1050
1051
1052

When the negate attribute is used on a list of properties, the negation is taken after the operator
executes. When negating the equal operator, a positive result is returned when none of the properties are
equal to the given value.
EXAMPLE 2: For example, on the same computer with three IP addresses:

<recordConstraint> 1053
 <propertyValue namespace="http://example.com/computers" 1054
 localName="ip"> 1055
 <equal negate="true">1.2.3.5</equal> 1056
 </propertyValue> 1057
</recordConstraint> 1058

1059
1060

1061
1062
1063
1064
1065

1066
1067
1068

The property constraint would remove the item above from the result set because the equality comparison matches
one IP address in the list.

Similarly, <less negate="true">12</less> is equivalent to
<greaterOrEqual>12</greaterOrEqual> if there is only one instance of the property being tested.
But if there is more than one instance of the property, then the first operator is true if all of the instances
have a value of more than 12, while the second one is true if at least one of the instances has a value of
more than 12.

EXAMPLE 3: The following is a simple example of using <propertyValue>. "Manufacturer" is a property defined
in the "http://example.com/Computer" namespace. The constraint is testing whether the instance has a record
containing this property and where the value of the property is "HP".

<recordConstraint> 1069
 <propertyValue namespace="http://example.com/Computer" 1070
 localName="Manufacturer" > 1071
 <equal>HP</equal> 1072
 </propertyValue> 1073
</recordConstraint> 1074

1075
1076
1077
1078

EXAMPLE 4: The following is a more complex example. The <itemTemplate> matches any item that has a
CPUCount greater than or equal to 2, for which the OSName property contains "Linux" (with that exact mix of upper
and lower case letters), and for which the OSName property also contains either "ubuntu" or "debian" (irrespective of
case).

<itemTemplate id="linuxMachine"> 1079
 <recordConstraint> 1080
 <propertyValue namespace="http://example.com/computers" 1081
 localName="CPUCount"> 1082
 <greaterOrEqual>2</greaterOrEqual> 1083
 </propertyValue> 1084
 <propertyValue namespace="http://example.com/computers" 1085
 localName="OSName"> 1086
 <contains>Linux</contains> 1087
 </propertyValue> 1088
 <propertyValue namespace="http://example.com/computers" 1089

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 33

 localName="OSName" 1090
 matchAny="true"> 1091
 <contains caseSensitive="false">ubuntu</contains> 1092
 <contains caseSensitive="false">debian</contains> 1093
 </propertyValue> 1094
 <recordConstraint/> 1095
</itemTemplate> 1096

1098
1099

6.4.2.3 recordConstraint/xpathConstraint 1097

The <xpathConstraint> element provides an alternate mechanism to constrain items and
relationships. The pseudo-schema of this element is as follows:
<xpathConstraint dialect="xs:anyURI"> 1100
 <prefixMapping prefix="xs:NCName" namespace="xs:anyURI"/> * 1101
 <expression>xs:string</expression> 1102
</xpathConstraint> 1103

1104
1105
1106
1107
1108
1109
1110
1111
1112

1114
1115

1117
1118
1119
1120
1121

1123
1124

1125
1126
1127
1128
1129
1130

The <xpathConstraint> element may appear once inside a <recordConstraint> inside an
<itemTemplate> or <relationshipTemplate> element. It can only be used in conjunction with a
<propertyValue> constraint if the <propertyValue> constraint in question applies to record
metadata. In other words, if a <recordConstraint> contains a <xpathConstraint> then it can only
contain <propertyValue> elements, which have the recordMetadata attribute set to true. When
such metadata-related <propertyValue> elements are used together with a <xpathConstraint>
element, they are all ANDed together: to be selected, an item or relationship shall have a record for which
the metadata meets all the constraints in the <propertyValue> elements and the record content
satisfies the XPath constraint.

6.4.2.3.1 recordConstraint/xpathConstraint/@dialect 1113

The dialect corresponds to a particular version or profile of XPath represented by the URI value. See 6.5
for more information on XPath dialects.

6.4.2.3.2 recordConstraint/xpathConstraint /prefixMapping 1116

Each <prefixMapping> child element of the <xpathConstraint> element defines a namespace
declaration for the XPath evaluation. The prefix for this declaration is provided by the
<prefixMapping>/@prefix attribute and the namespace URI is provided by the
<prefixMapping>/@namespace attribute. These prefix-namespace pairings shall be added to the
namespace declarations of the XPath processor.

6.4.2.3.3 recordConstraint/xpathConstraint/expression 1122

The <expression> element contains an XPath expression to be evaluated according to the specified
dialect.

The <xpathConstraint> is satisfied if the evaluation result’s boolean value is true. The boolean value
of the evaluation result is the same result as running the XPath 1 function boolean() on the results of a
XPath 1 evaluation or the XPath 2 function fn:boolean() on the results of a XPath 2 evaluation.
EXAMPLE: In the following example, "name" is a property defined in the "http://example.com/people" namespace.

The constraint tests whether the instance has a record containing this property where the value of the
property is "Pete the Lab Tech". In this example, no metadata is selected by the expression.

<itemTemplate> 1131
 <recordConstraint> 1132
 <xpathConstraint 1133

Configuration Management Database (CMDB) Federation Specification DSP0252

34 DMTF Standard Version 1.0.1

 dialect=" http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1"> 1134
 <prefixMapping prefix="hr" value="http://example.com/people"/> 1135
 <expression>/hr:ContactInfo[hr:name = "Pete the Lab Tech"] 1136
 </expression> 1137
 </xpathConstraint> 1138
 </recordConstraint> 1139
</itemTemplate> 1140

1142
1143
1144
1145
1146

6.5 XPath Expressions and Normalization 1141

XPath may be used as a more flexible way to constrain what items/relationships are matched in a query
and/or to select the record content returned for selected items/relationships. When used as a selector and
a constraint, the client and server need to have a common understanding of how they will interpret and
process the XPath expression. This is done through specifying an XPath dialects and a corresponding
URI. This specification defines two dialects that may be used as either a selector or as a constraint:

• “http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1” indicates that the expression
corresponds to an XPath 1.0 expression.

1147
1148

• “http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2” indicates that the expression
corresponds to an XPath 2.0 expression.

1149
1150

1151

1152

1153
1154
1155
1156
1157

1158
1159
1160
1161
1162

Other dialects may be defined in future versions of this specification or in other specifications.

Implementations are free to provide its own URI for a dialect that is not defined in the specification.

To enable serialization and to simplify the processing of the XPath selector, the XPath selector evaluation
result is run through a transformation and then a normalization process. The transformation process
transforms attribute nodes into element nodes; this allows them to be serialized later on. Next, this result
is run through the normalization process which creates a single DOM node with the selection result nodes
as children.

The normalization process shall throw a cmdbf:XPathSerializationFault fault if there is unsupported
serialization input from the transformation process. For the XPath 1.0 normalization process, the
serialization input shall either be a simple value or a nodeset made up of only element nodes. For the
XPath 2.0 normalization process, the serialization input shall not contain any namespace, comment, or
processing instruction nodes.

6.5.1 XPath 1.0 Dialect 1163

This dialect indicated by the URI of http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1 is specified for
XPath 1.0 support, subject to the conditions described in

1164
1165

1166

6.5.3 and 6.5.4.

The XPath expression is evaluated in the following context:

Component Value

Context Node The first child of the <record> element

Context Position 1

Context Size 1

Variable Binding None

Function Libraries Core function library

Namespace Declarations Prefixes bound via <prefixMapping> element

http://www.dmtf.org/cmdbf/W3C-xpath-19991116
http://www.dmtf.org/cmdbf/W3C-xpath-20070123
http://www.dmtf.org/cmdbf/W3C-xpath-19991116

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 35

6.5.2 XPath 2.0 Dialect 1167

This dialect indicated by the URI of http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2 is specified for
XPath 2.0 support, subject to the conditions described in

1168
1169

1170

6.5.3 and 6.5.5.

The XPath expression is evaluated in the following context:

Component Value

XPath 1.0 Compatibility Mode False

Statically known namespaces Prefixes bound via <prefixMapping> element

Default element/type
namespace

None

Default function namespace None

In-scope variables None

Context item static type element([namespace of this specification], record)

Function signatures Functions defined in XQuery 1.0 and XPath 2.0 Functions and Operators

Context item The first child of the <record> element

Context position 1

Context size 1

Current date and time Time on server when request was made

6.5.3 XPath Selector Transformation 1171

The transformation allows for selecting XML attributes. This is done through mapping an XML attribute to
a

1172
1173

1174

1175

1176

1177

<attributeNode> element:

• The XML attribute value is mapped to the @value of the <attributeNode>.

• The XML attribute local name is mapped to the @localName of the <attributeNode>.

• The XML attribute namespace is mapped to the @namespace of the <attributeNode>.

The pseudo schem of <attributeNode> looks like:
<cmdbf:attributeNode namespace="xs:anyUri" 1178
 localName="xs:NCName" value="xs:anySimpleType" /> 1179

1180 The result is as if the following XSLT template was matched to the selection result:
<xsl:template match="@*"> 1181
 <cmdbf:attributeNode> 1182
 <xsl:attribute name="namespace"> 1183
 <xsl:value-of select="namespace-uri(.)" /></xsl:attribute> 1184
 <xsl:attribute name="localName"> 1185
 <xsl:value-of select="local-name(.)" /></xsl:attribute> 1186
 <xsl:attribute name="value"> 1187
 <xsl:value-of select="." /></xsl:attribute> 1188
 </cmdbf:attributeNode> 1189
</xsl:template> 1190

Configuration Management Database (CMDB) Federation Specification DSP0252

36 DMTF Standard Version 1.0.1

The “xsl” prefix is bound to XSL 1.0 or 2.0 depending on whether an XPath 1 or XPath 2 evaluation result
was input.

1191
1192

1193 Here's an example of how an attribute would be mapped. If the record is:
<hr:ContactInfo xmlns:hr="http://example.com/hr" changeby="jsmith"> 1194
... 1195
</hr:ContactInfo> <cmdbf:attributeNode> 1196

1197
1198

The result of the content selector with an XPath selector with the expression "hr:ContactInfo/@changeby"
would be:
<cmdbf:attributeNode namespace="" 1199
 localName="changeby" 1200
 value="jsmith" /> 1201

1203

1204

1205
1206
1207
1208
1209

1210
1211

1212

1214

6.5.4 XPath 1.0 Normalization 1202

The selection evaluation result set for XPath 1.0 is then normalized:

Create a new sequence S.

If the result set is empty, then add a zero length string to the sequence S. If the result set contains a
string, a number, or a boolean, run the XPath string() on the item to get the string value and add this
string value to the sequence S. If the result set is a node set and contains any node other then a element
node, throw a cmdbf:XPathSerializationFault; if the result is a node set and only contains nodes of type
element, then add these nodes to the sequence S.

Create a new DocumentFragment named DF. For each item in S, if the item is a string, create a text node
and add the text node to DF. Or, if the item is an element node, add the element node to DF.

The result of this normalization process is a DocumentFragment named DF.

6.5.5 XPath 2.0 Normalization 1213

The selection result set for XPath 2.0 results is then normalized as defined in Section 2 "Sequence
Normalization" of the XSLT 2.0 and XQuery 1.0 Serialization specification. If the serialization input
contains any namespace, comment, or processing instruction nodes, or any other serialization error
occurs, cmdbf:XPathSerializationFault shall be thrown. The serialization error definition is from

1215
1216
1217

http://www.w3.org/TR/xslt-xquery-serialization/#serial-err. 1218

1220

6.6 GraphQuery Response 1219

The pseudo-schema for the GraphQuery response message is as follows:
<queryResult> 1221
 <nodes templateId="xs:ID"> 1222
 <item> 1223
 <record> 1224
 xs:any 1225
 | 1226
 <propertySet namespace="xs:anyURI" localName="xs:NCName" > 1227
 xs:any * 1228
 </propertySet> 1229
 <recordMetadata> 1230
 <recordId>...</recordId> ? 1231
 <lastModified>...</lastModified> ? 1232

http://www.w3.org/TR/xslt-xquery-serialization/#serial-err

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 37

 <baselineId>...</baselineId> ? 1233
 <snapshotId>...</snapshotId> ? 1234
 xs:any 1235
 </recordMetadata> ? 1236
 </record> * 1237
 <instanceId> 1238
 <mdrId>xs:anyURI</mdrId> 1239
 <localId>xs:anyURI</localId> 1240
 </instanceId> + 1241
 <additionalRecordType namespace="xs:anyURI" 1242
 localName="xs:NCName"/> * 1243
 </item> + 1244
 </nodes> * 1245
 <edges templateId="xs:ID"> 1246
 <relationship> 1247
 <source> 1248
 <mdrId>xs:anyURI</mdrId> 1249
 <localId>xs:anyURI</localId> 1250
 </source> 1251
 <target> 1252
 <mdrId>xs:anyURI</mdrId> 1253
 <localId>xs:anyURI</localId> 1254
 </target> 1255
 <record> 1256
 xs:any 1257
 <recordMetadata> 1258
 <recordId>...</recordId> ? 1259
 <lastModified>...</lastModified> ? 1260
 <baselineId>...</baselineId> ? 1261
 <snapshotId>...</snapshotId> ? 1262
 </recordMetadata> ? 1263
 </record> * 1264
 <instanceId> 1265
 <mdrId>xs:anyURI</mdrId> 1266
 <localId>xs:anyURI</localId> 1267
 </instanceId> + 1268
 <additionalRecordType namespace="xs:anyURI" 1269
 localName="xs:NCName"/> * 1270
 </relationship> + 1271
 </edges> * 1272
</queryResult> 1273

1274
1275
1276
1277
1278
1279
1280
1281

Each time an item matches an <itemTemplate>, an <item> element appears inside a <nodes>
element in the <queryResult> (unless the itemTemplate has the attribute "suppressFromResults" set to
true). Note that for an item to "match" an <itemTemplate> it needs to not just meet the conditions inside
the <itemTemplate> but also any <relationshipTemplate> that references the
<itemTemplate> as described in 6.2.2. The templateId attribute of the response <nodes> element
containing the item has the same value as the id attribute of the corresponding <itemTemplate> in the
original request. If the item matches more than one <itemTemplate>, the <item> will be contained in
the <nodes> for each <itemTemplate> matched by the item that doesn't have the

Configuration Management Database (CMDB) Federation Specification DSP0252

38 DMTF Standard Version 1.0.1

"suppressFromResults" attribute set to true (each <nodes> element with the appropriate value for its
templateId attribute).

1282
1283

1284
1285
1286
1287
1288
1289

1290
1291

1292
1293
1294
1295
1296
1297

1298
1299
1300
1301
1302

1303
1304

1305
1306

1308
1309
1310
1311
1312

1313

Similarly, each time a relationship matches a <relationshipTemplate>, a <relationship>
element appears inside an <edges> element in the <queryResult>. The templateId attribute of this
element contains the same value as the ID attribute of the <relationshipTemplate> in the original
request. If the relationship matches more than one <relationshipTemplate>, the <relationship>
is contained in the <edges> for each <relationshipTemplate> matched by the relationship (each
one with the appropriate value for its templateId attribute).

If no item is part of the response, there are no <nodes> elements. If no relationship is part of the
response, there are no <edges> elements.

Items and relationships can contain any number of records. Each is represented by a <record> element.
Each record element contains one or two child elements. The first child is an element whose QName is a
recordType supported by the Query Service or a <propertySet> element (see 6.6.1), which would
contain a subset of the properties of the recordType.. The children of that child are the properties
associated with the record. The optional second child is a <recordMetadata> element that contains
information about the record itself.

Items and relationships shall contain at least one <instanceId> element. The instance ID, through a
combination of two URIs (<mdrId> to represent the MDR that assigned the ID and <localId> to
uniquely represent the item or relationship inside this MDR), uniquely and globally identifies the item or
relationship. There can be more than one <instanceId> element, in the case where the item or
relationship has been reconciled from a more fragmented view.

The <source> child element of a relationship identifies the item that is the source of the relationship. The
format of this element matches the format of the <instanceId> element on the item.

The <target> child element of a relationship identifies the item that is the target of the relationship. The
format of this element matches the format of the <instanceId> element on the item.

6.6.1 propertySet 1307

A query may use <contentSelector>/<selectedRecordType>/<selectedProperty> or
<contentSelector>/<xpathSelector> to request a subset of the properties of a record type. If the
subset omits any mandatory properties, the resulting XML element would not be valid according to its
schema. In this case, the query processor shall place the requested properties inside a <propertySet>
element to avoid schema violations.

The pseudo-schema of this element is as follows:
<propertySet namespace="xs:anyURI" localName="xs:NCName"> 1314
 xs:any * 1315
</propertySet> 1316

1317

1318

1319

1320
1321

The attributes are:

@namespace – The namespace of the QName of the record type.

@localName – The localName of the QName of the record type.

The child elements of <propertySet> are each child elements of the record type whose QName is
constructed from the namespace and localName attributes.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 39

6.7 GraphQuery Faults 1322

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault-handling rules defined by the Web service
binding.

1323
1324
1325

1326

1327

1328

1329

1330

1332
1333
1334

1335

1336

1337

1338

The definitions of faults in this section use the following properties:

• [Code] The fault code.

• [Subcode] The fault subcode.

• [Reason] The English language reason element.

• [Detail] The detail element. If absent, no detail element is defined for the fault.

6.7.1 Unknown Template ID 1331

This fault occurs when a <relationshipTemplate> includes an ID that refers to a
<sourceTemplate>, <targetTemplate>, or <intermediateItemTemplate> that was not included
in the query.

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:UnknownTemplateIDFault

• [Reason] The graph template ID was not declared.

• [Detail] <cmdbf:graphId> xs:ID </cdmbf:graphId> 1339

1341
1342
1343
1344

1345

1346

1347

1348

6.7.2 Property Type Mismatch 1340

This fault occurs when the value in a constraint is invalid for the type of the property as defined by the
schema for the property. For example, this fault occurs when the property is a date and the query
includes a parameter to compare to the date that is a string that cannot be cast to a date, such as
"foobar."

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:InvalidPropertyTypeFault

• [Reason] The property value being compared is not valid.

• [Detail] <cmdbf:propertyName namespace="xs:anyURI" localname="xs:NCName" /> 1349

6.7.3 XPath Processing Error 1350

This fault occurs when the XPath expression processing results in an error. See XPath 2.0 for details on
the cmdbf:xpathErrorCode.

1351
1352

1353

1354

1355

1356

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:XPathErrorFault

• [Reason] The XPath expression was not processed successfully.

Configuration Management Database (CMDB) Federation Specification DSP0252

40 DMTF Standard Version 1.0.1

• [Detail] <cmdbf:expression> xs:string </cmdbf:expression> 1357
 <cmdbf:xpathErrorCode> [xpath error code] </cmdbf:xpathErrorCode> 1358

1360

1361

1362

1363

1364

6.7.4 Unsupported Constraint 1359

A constraint element in the template was specified that is not supported by this MDR.

The properties are as follows:

• [Code] Receiver

• [Subcode] cmdbf:UnsupportedConstraintFault

• [Reason] The constraint specified is unsupported.

• [Detail] <cmdbf:constraint namespace="xs:anyURI" localname="xs:NCName" /> 1365

1367

1368

1369

1370

1371

6.7.5 Unsupported Selector 1366

A selector element in the template was specified that is not supported by this MDR.

The properties are as follows:

• [Code] Receiver

• [Subcode] cmdbf:UnsupportedSelectorFault

• [Reason] The selector specified is unsupported.

• [Detail] <cmdbf:selector namespace="xs:anyURI" localname="xs:NCName" /> 1372

1374
1375
1376

1377

1378

1379

1380
1381

6.7.6 Expensive Query Error 1373

The query was valid, but the server determined that the query is too expensive to execute or that it would
return a result set that is too large to return. The requestor is invited to retry, using a simpler and/or more
constrained query. What constitutes “too expensive” or “too large” is determined by the server.

The properties are as follows:

• [Code] Receiver

• [Subcode] cmdbf:ExpensiveQueryErrorFault

• [Reason] The query in the request is too expensive for the server to process or returns a
 result set that is too large to return.

• [Detail] xs:any 1382

1384
1385

1386

1387

1388

1389

6.7.7 Query Error 1383

The query was valid, but there was an error while performing the query. When the query includes an
XPath expression, this error may be used to indicate that the specific XPath dialect is not supported.

The properties are as follows:

• [Code] Receiver

• [Subcode] cmdbf:QueryErrorFault

• [Reason] An error occurred while processing the request.

• [Detail] xs:any 1390

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 41

7 Registration Service 1391

7.1 Overview 1392

The Registration Service is used in push mode federation, as described in 5.3.2.1. 1393

1394

1395
1396
1397
1398

1399
1400

1401
1402
1403
1404
1405

1406
1407
1408
1409
1410

1411
1412
1413

1414
1415

1416

1417

1418

1419
1420
1421
1422
1423
1424

1425
1426

1427

1428

1429
1430
1431

1432
1433
1434

The fundamentals of push mode federation are:

• The MDR invokes the Register operation for items or relationships that it wishes to register.
Each item or relationship shall be associated with at least one record type supported by the
Registration Service. The MDR may register a subset of the data records it has about any item
or relationship.

• The Registration Service responds with the registration status for each item or relationship
named in the Register operation. The status is either accepted or declined.

– If the return status is accepted, the Registration Service returns the ID that identifies the
item or relationship within the Registration Service. For accepted data, the MDR is
expected to update the Registration Service whenever any of the registered data changes.
This specification does not stipulate how soon after the data changes the update must
occur — this would typically be determined by local policy.

– If the return status is declined, the Registration Service presumably does not maintain the
registration data and no updates to that data are accepted. For previously accepted data, a
return status of declined indicates that the Registration Service no longer wishes to be
updated about this item. The client would typically deregister the item's ID or attempt to re-
register the item, perhaps with new data.

• This specification does not stipulate what the Registration Service should or shall do with the
registered data. The semantics of accepted and declined have meaning only with respect to the
obligations of the MDR to update the Registration Service when the data changes.

• The MDR also uses the Register operation to update registered data. An update may consist of
any combination of the following actions:

– Changing existing data, such as a property value

– Registering an additional record type for this item or relationship

– Deregistering a previously registered record type for this item or relationship

– The MDR uses the Deregister operation to remove an existing registration for an item or
relationship. For example, if the item or relationship is deleted, the MDR would typically
delete its own records and deregister the previous registration. Another example of when
Deregister would be used is if an administrator decides to stop federating the data about
this item or relationship, even though the item or relationship still exists and the MDR still
maintains data about it.

– This specification does not stipulate what the Registration Service should or shall do after a
Deregister operation.

EXAMPLE:

The following examples show how the Registration Service might handle a deregister operation:

– If the Registration Service has the same data from another MDR that this MDR deregisters,
it might disassociate the data with the deregistering MDR, while maintaining the existing
data.

– If the Registration Service has data from another MDR about the deregistered item or
relationship, it might delete the deregistered data while maintaining the data from the other
MDR.

Configuration Management Database (CMDB) Federation Specification DSP0252

42 DMTF Standard Version 1.0.1

– If the Registration Service has the same data from another MDR, but it considers the
deregistering MDR the authoritative source, it might mark the item or relationship as
deleted.

1435
1436
1437

1438
1439

1441
1442

1444

– If the deregistering MDR is the only source of data about the item or relationship, it might
delete all knowledge of the item or relationship.

7.2 Register 1440

The Register operation is used by an MDR to notify a Registration Service that new items have been
discovered or updated and data is now available in the MDR.

7.2.1 Register Operation 1443

The pseudo-schema for the Register operation is as follows:
<registerRequest> 1445
 <mdrId>xs:anyURI</mdrId> 1446
 <itemList> 1447
 <item> 1448
 <record> 1449
 xs:any 1450
 <recordMetadata>...</recordMetadata> ? 1451
 </record> * 1452
 <instanceId>cmdbf:MdrScopedIdType</instanceId> + 1453
 <additionalRecordType namespace="xs:anyURI" 1454
 localName="xs:NCName"/> * 1455
 </item> + 1456
 <itemList> ? 1457
 <relationshipList> 1458
 <relationship> 1459
 <source>cmdbf:MdrScopedIdType</source> 1460
 <target>cmdbf:MdrScopedIdType</target> 1461
 <record> 1462
 xs:any 1463
 <recordMetadata>...</recordMetadata> ? 1464
 </record> * 1465
 <instanceId>cmdbf:MdrScopedIdType</instanceId> + 1466
 <additionalRecordType namespace="xs:anyURI" 1467
 localName="xs:NCName"/> * 1468
 </relationship> + 1469
 <relationshipList> ? 1470
</registerRequest> 1471

1472

1474
1475

The following subclauses describe additional constraints on the Register operation pseudo-schema.

7.2.1.1 mdrId 1473

The <mdrID> element is the ID of the MDR registering its data. This ID shall be unique among all of the
MDRs and federating CMDBs that are federated together.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 43

7.2.1.2 itemList 1476

The <itemList> element lists the items being registered. The list contains any number of <item>
elements. However, if the list contains zero

1477
1478
1479

1481

1483
1484
1485

1487

1488
1489
1490

1491

1492
1493

1494
1495
1496
1497
1498

1500
1501
1502
1503
1504
1505

1506
1507
1508
1509

1511
1512
1513

<item> elements, including the <itemList> element serves
no purpose. An <item> should not be repeated in the list.

7.2.1.3 itemList/item 1480

The <item> element indicates some or all of the contents of an <item>.

7.2.1.4 itemList/item/instanceId 1482

The <instanceId> serves as a unique key for the <item>. There shall be at least one for each
<item>. The <instanceId> shall contain the values that would select the <item> in a query using an
<instanceIdConstraint>.

7.2.1.5 itemList/item/record 1486

Each <item> contains any number of <record> elements.

The <record> element shall contain exactly one child element of unrestricted type, followed by a
<recordMetadata> element. The namespace and local name of the first child element together are the
record type.

The <record> type shall be supported by the Registration Service.

The MDR may support queries for <record> types that it chooses to not federate through the
Registration Service.

There may be multiple <record> elements. The set of passed elements will be considered a complete
replacement if the Registration Service already has data from this MDR about this <item>. For example,
if the MDR had previously registered this <item> with ComputerConfiguration and ComputerAsset
records, and another registration call is made for the same item with only the ComputerConfiguration
record, then it will be treated as a deletion of the ComputerAsset record from the federation.

7.2.1.6 itemList/item/additionalRecordType 1499

An MDR may support through its query interface record types for an item that are not included in the
registerRequest message. If so, it may indicate the record types for the item by including one or more
<additionalRecordType> elements. The <additionalRecordType>/@namespace and
<additionalRecordType>/@localName attributes together represent the record type. In each
<item> the same record type should not appear in both an <additionalRecordType> and a
<record> element.

EXAMPLE: For queries, the MDR may support ComputerIdentification, ComputerConfiguration, and ComputerAsset
records. If the registerRequest message includes only the ComputerIdentification record contents in the
<record> element, the MDR may provide in <additionalRecordType> elements the localName
and namespace URIs for the ComputerConfiguration and ComputerAsset records.

7.2.1.7 relationshipList 1510

The <relationshipList> item indicates the list of relationships being registered. The list contains any
number of <relationship> elements. However, if the list contains zero <relationship> elements,
including the <relationshipList> element serves no purpose.

Configuration Management Database (CMDB) Federation Specification DSP0252

44 DMTF Standard Version 1.0.1

7.2.1.8 relationshipList/relationship 1514

The <relationship> element includes some or all of the contents of a <relationship>. 1515

1517
1518
1519

1521
1522
1523
1524

1526
1527
1528
1529

1531
1532

1533
1534

1535
1536

1537
1538
1539

1541
1542
1543
1544
1545
1546

1548

7.2.1.9 relationshipList/relationship/instanceId 1516

The <instanceId> serves as a unique key for the <relationship>. There shall be at least one
<instanceId> for each <relationship> element. The <instanceId> shall contain the values that
would select the <relationship> in a query using an <instanceIdConstraint>.

7.2.1.10 relationshipList/relationship/source 1520

The <source> element is the <instanceId> that serves as a unique key for the <item> referenced by
the source side of a relationship. There shall be exactly one <instanceId> for each
<relationship>. The <instanceId> shall contain one of the values that would select the source
<item> in a query using an <instanceIdConstraint>.

7.2.1.11 relationshipList/relationship/target 1525

The <target> element is the <instanceId> that serves as a unique key for the <item> referenced by
the target side of a relationship. There shall be exactly one <instanceId> for each <relationship>.
The <instanceId> shall contain one of the values that would select the target <item> in a query using
an <instanceIdConstraint>.

7.2.1.12 relationshipList/relationship/record 1530

Each <relationship> contains any number of <record> elements. The <record> type shall be
supported by the Registration Service.

The MDR may support queries for <record> types that it chooses not to federate through the
Registration Service.

There may be multiple <record> elements. The set of passed elements will be considered a complete
replacement if the Registration Service already has data from this MDR about this <relationship>.

EXAMPLE: If the MDR had previously registered this <relationship> with a RunsOn and DependsOn record,
and another registration call is made for the same item with only the RunsOn record, then it will be
treated as a deletion of the DependsOn record from the federation.

7.2.1.13 relationshipList/relationship/additionalRecordType 1540

An MDR may support through its query interface more record types for a relationship than it federates
through the Registration Service. If so, it may indicate the record types per relationship instance by
including one or more <additionalRecordType> elements. The
<additionalRecordType>/@namespace and <additionalRecordType/@localName attributes
together represent the record type. The MDR should not include an <additionalRecordType> if for
the same record type it includes a <record>.

7.2.2 Register Response 1547

The pseudo-schema for the response to a Register operation is as follows:
<registerResponse> 1549
 <RegisterInstanceResponse> 1550
 <instanceId>cmdbf:MdrScopedIdType</instanceId> 1551
 <accepted> 1552
 <alternateInstanceId> 1553

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 45

 cmdbf:MdrScopedIdType 1554
 </alternateInstanceId> * 1555
 </accepted> ? 1556
 <declined> 1557
 <reason>xs:string</reason> * 1558
 </declined> ? 1559
 <RegisterInstanceResponse> * 1560
</registerResponse> 1561

1562

1564
1565
1566
1567

1569

1571

1572

1574
1575
1576

1578

1579

1581
1582

1584
1585
1586

1587

1588

1589

The following subclauses describe additional constraints on the Register response pseudo-schema.

7.2.2.1 registerInstanceResponse 1563

The <registerInstanceResponse> element indicates the action taken for one item or relationship in
the Register request. There can be any number of <registerInstanceResponse> elements. There
should be exactly one <registerInstanceResponse> element per item or relationship in the Register
request.

7.2.2.2 registerInstanceResponse/instanceId 1568

The <instanceId> element is one of the elements from the Register request for an item or relationship.

7.2.2.3 registerInstanceResponse/accepted 1570

The <accepted> element indicates that the item or relationship instance was accepted.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.2.2.4 registerInstanceResponse/accepted/alternateInstanceId 1573

The <alternateInstanceId> element indicates zero or more elements that contain other IDs by
which the item or relationship is known, each one of which is acceptable as a key to select the item or
relationship in a query.

7.2.2.5 registerInstanceResponse/declined 1577

The <declined> element indicates that the item or relationship instance was declined.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.2.2.6 registerInstanceResponse/declined/reason 1580

The <reason> element is zero or more strings that contain the reasons why the registration was
declined.

7.2.3 Register Operation Faults 1583

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault-handling rules defined by the Web service
binding.

The definitions of faults in this section use the following properties:

• [Code] The fault code.

• [Subcode] The fault subcode.

Configuration Management Database (CMDB) Federation Specification DSP0252

46 DMTF Standard Version 1.0.1

• [Reason] The English language reason element. 1590

1591

1593
1594
1595

1596

1597

1598

1599

• [Detail] The detail element. If absent, no detail element is defined for the fault.

7.2.3.1 Invalid Record 1592

The record does not correspond to the schema specifying the data model. This fault occurs when a
required property does not exist, an extension property is used when the data model does not allow for
extensions, and so on.

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:InvalidRecordFault

• [Reason] The record is invalid.

• [Detail] <cmdbf:recordId> xs:anyURI </cmdbf:recordId> 1600

1602

1603

1604

1605

1606

7.2.3.2 Unsupported Record Type 1601

A record of an unsupported record type was attempted to be registered.

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:UnsupportedRecordTypeFault

• [Reason] The record type is not supported.

• [Detail] <cmdbf:recordType namespace="xs:anyURI" localname="xs:NCName" /> 1607

1609

1610

1611

1612

1613

7.2.3.3 Invalid MDR ID 1608

The MDR ID specified on an item is not recognized.

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:InvalidMDRFault

• [Reason] The MDR is not registered.

• [Detail] <cmdbf:mdrId> xs:anyURI </cmdbf:mdrId> 1614

1616

1617

1618

1619

1620

7.2.3.4 Registration Error 1615

There was a problem with registering the items or relationships.

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:RegistrationErrorFault

• [Reason] An error occurred while registering.

• [Detail] <cmdbf:recordId> xs:anyURI </cmdbf:recordId> 1621

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 47

7.3 Deregister 1622

The Deregister operation is used by an MDR to notify the Registration Service that the data that an MDR
has about an item or relationship will no longer be registered. Each item or relationship needs to be
deregistered only once, regardless of the number of

1623
1624
1625
1626

1628

<instanceId> elements provided in the register
request.

7.3.1 Deregister Operation 1627

The pseudo-schema for the Deregister operation is as follows:
<deregisterRequest> 1629
 <mdrId>xs:anyURI</mdrId> 1630
 <itemIdList> 1631
 <instanceId>cmdbf:MdrScopedIdType</instanceId> * 1632
 <itemIdList> ? 1633
 <relationshipIdList> 1634
 <instanceId>cmdbf:MdrScopedIdType</instanceId> * 1635
 <relationshipIdList> ? 1636
</deregisterRequest> 1637

1638

1640
1641

1643
1644
1645

1647
1648
1649

1651
1652
1653

1655
1656
1657

1659

The following subclauses describe additional constraints on the Deregister operation pseudo-schema.

7.3.1.1 mdrId 1639

The <mdrId> is the ID of the MDR deregistering its data. This ID shall be the ID used when the data was
registered using the Register request.

7.3.1.2 itemIdList 1642

The <itemIdList> element lists items being deregistered. The list contains any number of
<instanceId> elements. However, if the list contains zero <instanceId> elements, including the
<itemIdList> element serves no purpose.

7.3.1.3 itemIdList/instanceId 1646

The <instanceId> serves as a key for the <item>. The <instanceId> shall be either the
<instanceId> from the Register request or an <alternateInstanceId> from a
<registerResponse>. An <instanceId> should not be repeated in the list.

7.3.1.4 relationshipIdList 1650

The <relationshipIdList> element lists the relationships being deregistered. The list contains any
number of <instanceId> elements. However, if the list contains zero <instanceId> elements,
including the <relationshipIdList> element serves no purpose.

7.3.1.5 relationshipIdList/instanceId 1654

The <instanceId> serves as a key for the <relationship>. The <instanceId> shall be either the
<instanceId> from the Register request or an <alternateInstanceId> from a
<registerResponse>. An <instanceId> should not be repeated in the list.

7.3.2 Deregister Response 1658

The pseudo-schema for the response to a Deregister operation is as follows:

Configuration Management Database (CMDB) Federation Specification DSP0252

48 DMTF Standard Version 1.0.1

<deregisterResponse> 1660
 <deregisterInstanceResponse> 1661
 <instanceId>cmdbf:MdrScopedIdType</instanceId> 1662
 <accepted /> ? 1663
 <declined> 1664
 <reason>xs:string</reason> * 1665
 </declined> ? 1666
 <deregisterInstanceResponse> * 1667
</deregisterResponse> 1668

1669

1671
1672
1673
1674

1676

1678

1679

1681
1682
1683

1684

1686
1687

1689
1690
1691

1692

1693

1694

1695

1696

The following subclauses describe additional constraints on the Deregister response pseudo-schema.

7.3.2.1 deregisterInstanceResponse 1670

The <deregisterInstanceResponse> element indicates the action taken for one item or relationship
in the Deregister request. There can be any number of <deregisterInstanceResponse> elements.
There should be exactly one <deregisterInstanceResponse> element per item or relationship in the
Register request.

7.3.2.2 deregisterInstanceResponse/instanceId 1675

The <instanceId> element provides the ID from the Deregister request for an item or relationship.

7.3.2.3 deregisterInstanceResponse/accepted 1677

The <accepted> element indicates that the item or relationship instance was accepted.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.3.2.4 deregisterInstanceResponse/declined 1680

The <declined> element indicates that the deregistration of the item or relationship instance was
declined. An example of when a Deregister request might be declined is when the Registration Service
does not recognize <instanceId> in the Deregister request.

Exactly one of either the <accepted> or <declined> elements shall be present.

7.3.2.5 deregisterInstanceResponse/declined/reason 1685

The <reason> element includes zero or more strings that contain the reasons that the deregistration was
declined.

7.3.3 Deregister Operation Faults 1688

The faults defined in this section are generated if the condition stated in the preamble is met. Faults are
targeted at a destination endpoint according to the fault-handling rules defined by the Web service
binding.

The definitions of faults in this section use the following properties:

• [Code] The fault code.

• [Subcode] The fault subcode.

• [Reason] The English language reason element.

• [Detail] The detail element. If absent, no detail element is defined for the fault.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 49

7.3.3.1 Invalid MDR Id 1697

The MDR ID specified on an item is not recognized. 1698

1699

1700

1701

1702

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:InvalidMDRFault

• [Reason] The MDR is not registered.

• [Detail] <cmdbf:mdrId> xs:anyURI </cmdbf:mdrId> 1703

1705

1706

1707

1708

1709

7.3.3.2 Deregistration Error 1704

There was a problem with deregistering the items or relationships.

The properties are as follows:

• [Code] Sender

• [Subcode] cmdbf:DeregistrationErrorFault

• [Reason] An error occurred while deregistering.

• [Detail] <cmdbf:recordId> xs:anyURI </cmdbf:recordId> 1710

1713
1714
1715
1716
1717
1718

1719
1720
1721
1722
1723

1724
1725

1726
1727

1728
1729
1730

8 Service Metadata 1711

8.1 Overview 1712

The register and query operations defined in this specification have a set of optional features that may be
supported by a particular implementation. There are also a number of extensibility points in the
specification that allow for the anticipated variability in implementations. One key point of variation is the
data model or models supported for record types at a given MDR. Prior to sending register or query
messages to an MDR, it may be necessary to inspect the capabilities and data models supported by that
particular MDR.

The schema defined in this section includes two elements, <queryServiceMetadata> and
<registrationServiceMetadata>, that can be used to indicate which optional features and data
models (or record types) are supported by a particular implementation. It is recommended that each MDR
implementation include an instance of the appropriate <queryServiceMetadata> and/or
<registrationServiceMetadata> elements as part of the policies describing the implementation.

An example of how these elements can be incorporated into a WS-Policy <policy> element and then
associated with the implementation’s WSDL binding is provided in ANNEX F.

The subclauses in this section describe the service metadata schema elements
<queryServiceMetadata> and <registrationServiceMetadata> and their contents.

Any MDR supporting the GraphQuery operation shall support an <itemTemplate> with
<instanceIdConstraint> query at a minimum. Other query capabilities are optional. The service
metadata for the MDR should indicate which optional query capabilities are supported.

Configuration Management Database (CMDB) Federation Specification DSP0252

50 DMTF Standard Version 1.0.1

8.2 Common Service Metadata Elements 1731

Both <queryServiceMetadata> and <registrationServiceMetadata> elements have common 1732
1733
1734

1736
1737
1738
1739

1740

<serviceDescription> and <recordTypeList> child elements to describe the service and list the
record types supported by the service. These are described here for later reference.

8.2.1 serviceDescription 1735

The required <serviceDescription> element is used to associate the service metadata with the MDR
that is implementing this service. The <mdrId> is the only required element in the
<serviceDescription>. The other optional elements in the <serviceDescription>, including an
extensibility element, allow for further description of the service implementation.

The pseudo-schema of the contents of a <serviceDescription> element is as follows:
<serviceDescription> 1741
 <mdrId>xs:anyURI</mdrId> 1742
 <serviceId>xs:anyURI</serviceId> ? 1743
 <description xml:lang=”xs:language” xs:string</description> * 1744
 xs:any * 1745
</serviceDescription> 1746

1748

1750
1751
1752

1754
1755
1756

1758
1759
1760

1761

8.2.1.1 serviceDescription/mdrId 1747

The required <mdrId> is the ID of the MDR that is providing this service.

8.2.1.2 serviceDescription/serviceId 1749

<serviceId> is optional if there is only one instance of this service type (possible service types are
query or registration) for each MDR ID. If there is more than one instance of a service type for an MDR
ID, <serviceId> is mandatory so metadata can be correctly associated with the instance.

8.2.1.3 serviceDescription/description 1753

The optional <description> element(s) may be used to describe the service in the languages of choice
for human consumption. The xml:lang attribute is required. If there are multiple <description>
elements, it is expected that each will have a different value for xml:lang.

8.2.2 recordTypeList 1757

The <recordTypeList> is used to enumerate the elements that are considered valid for use as records
in the implementation of this service. This list of supported record types may change over time and should
be kept current by the implementation.

The pseudo-schema of the contents of a <recordTypeList> element is as follows:
<recordTypeList> 1762
 <recordTypes namespace="xs:anyURI" schemaLocation="xs:anyURI" ? > 1763
 <recordType localName="xs:NCName" appliesTo="xs:string"> 1764
 <superType namespace="..." localName="..."/> * 1765
 xs:any * 1766
 </recordType> * 1767
 </recordTypes> * 1768
</recordTypeList> 1769

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 51

8.2.2.1 recordTypeList/recordTypes 1770

For each different namespace that contains record types supported by the implementation, a 1771
1772
1773
1774

1775
1776

1777
1778
1779

1781
1782
1783

1784
1785

1786
1787
1788

1790
1791
1792

1793
1794
1795
1796

1797
1798
1799

<recordTypes> element should be included in the metadata that includes the namespace,
schemaLocation if appropriate, and the list of the element names from that namespace which are
supported by the implementation as <recordType> elements.

@namespace – This mandatory attribute gives the namespace of the data model that includes XML
elements that correspond to record types supported by the implementation.

@schemaLocation – This optional attribute should be included when there is a URI that can be
resolved to an XML schema representation of the elements belonging to the namespace listed in the
namespace attribute.

8.2.2.2 recordTypeList/recordTypes/recordType 1780

A <recordType> element identifies an element that is supported as a record type in the implementation.
Each <recordType> element shall be from the namespace identified in the containing <recordTypes>
element.

@localName – The value of this attribute corresponds to the localName of a supported XML
element that is a valid record type for the implementation.

@appliesTo – This attribute shall be one of three values indicating whether this element is valid as a
record in a relationship, item, or both. The values for this attribute are from the enumeration,
"relationship", "item", or "both".

8.2.2.3 recordTypeList/recordTypes/recordType/superType 1789

Record types are often extensions of other record types. A record type is an extension of another record
type if it has all the properties of the other record type or is the source or target of a relationship that does
not apply to the other record type. Figure 6 shows two examples of extensions.

In the left example LinuxComputerSystem is an extension of ComputerSystem, which in turn is an
extension of ManagedElement. LinuxComputerSystem has all the properties of ComputerSystem plus
adds some other properties specific to Linux. Alternatively or in addition, LinuxComputerSystem could be
the source or target of a relationship that does not apply to all ComputerSystem instances.

In the right example MultiFunctionPrinter is an extension of both FaxMachine and Printer because it has
all the properties of FaxMachine and Printer. FaxMachine and Printer are both extensions of IODevice
because they both have the one property in IODevice.

Configuration Management Database (CMDB) Federation Specification DSP0252

52 DMTF Standard Version 1.0.1

ManagedElement

ComputerSystem

LinuxComputerSystem

IODevice

– description

FaxMachine

– description
– faxNumber

Printer

– description
– printSpeed

MultiFunctionPrinter

– description
– faxNumber
– printSpeed

 1800

1801

1802
1803
1804

1805
1806

1807

1808

1809

1810

1811

1812

1813

1815
1816
1817

1818

Figure 6 – Record Type Extension Examples

The response to a query for a record type X may contain instances of X or instances of any subtype of X,
i.e., any type that declares X to be a super type. A record type is considered a subtype of another record
type if all the following are true:

• its definition contains all the properties of the super type, and each of these is identically named
and typed,

• it is valid as the source or target of any relationship that is valid for the super type,

• the characterization of the super type applies to the subtype.

A subtype may contain other properties. A record type may have multiple super types.

The <superType> element may be used to indicate an extension relationship between record types.

The attributes are:

@namespace – The namespace of the QName of the super type.

@localName – The localName of the QName of the super type.

8.3 queryServiceMetadata 1814

An instance of the <queryServiceMetadata> includes the description of the MDR, including the ID of
the MDR implementing the Query Service, the supported query capabilities and the supported records, or
data model, for the given implementation being modeled.

The pseudo-schema of the contents of a <queryServiceMetadata> element is as follows:
<queryServiceMetadata> 1819
 <serviceDescription> ... </serviceDescription> 1820
 <supportedOptionSet>xs:anyURI</supportedOptionSet> * 1821
 <queryCapabilities> 1822
 <relationshipTemplateSupport depthLimit="xs:boolean" 1823
 minimumMaximum="xs:boolean" 1824

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 53

 xs:anyAttribute /> ? 1825
 <contentSelectorSupport recordTypeSelector="xs:boolean" 1826
 propertySelector="xs:boolean" 1827
 xs:anyAttribute /> ? 1828
 <recordConstraintSupport ...> ... </recordConstraintSupport> ? 1829
 <xpathSupport> 1830
 <dialect>xs:anyURI</dialect>* 1831
 </xpathSupport> ? 1832
 xs:any * 1833
 </queryCapabilities> ? 1834
 <recordTypeList> ... </recordTypeList> 1835
 xs:any * 1836
</queryServiceMetadata> 1837

1839
1840

1842
1843
1844
1845
1846

1847
1848
1849
1850
1851

1852
1853
1854

1855

8.3.1 queryServiceMetadata/serviceDescription 1838

The required <serviceDescription> element is used to identify this implementation of the Query
Service, as previously described.

8.3.2 queryServiceMetadata/supportedOptionSet 1841

An option set is a predefined set of query capabilities supported by the service. Each option set is
identified by a URI. Listing an option set URI in a <supportedOptionSet> element means that the
service supports all the capabilities that are part of this option set. It doesn’t imply that the service does
not support additional capabilities, just that those that are part of the option set are guaranteed to be
supported.

If the <queryServiceMetadata> element also contains a <queryCapabilities> section, the
content of the <queryCapabilities> should list a superset of all the capabilities in all the advertised
option sets. However, the mere presence of a <supportedOptionSet> element is sufficient to
advertise the corresponding capabilities, even if a follow-on <queryCapabilities> element fails to list
them.

In other words, the set of capabilities advertised by the query service is the union of all the capabilities
that are part of all the listed option sets (using <supportedOptionSet>) and all the capabilities listed in
the <queryCapabilities> section.

This specification only defines two option sets, described below.

8.3.2.1 Complete Option Set 1856

The URI for this option set is http://schemas.dmtf.org/cmdbf/1/optionSet/query-complete. 1857

1858
1859

The complete option set indicate that all query features described in this specification are supported. It is
equivalent to the following <queryCapabilities> element:
<queryCapabilities> 1860
 <relationshipTemplateSupport depthLimit="true" 1861
 minimumMaximum="true" /> 1862
 <contentSelectorSupport recordTypeSelector="true" 1863
 propertySelector="true" /> 1864
 <recordConstraintSupport recordTypeConstraint="true" 1865
 propertyValueConstraint="true"> 1866
 <propertyValuesOperators equal="true" less="true" 1867

http://schemas.dmtf.org/cmdbf/1/optionSet/query-complete

Configuration Management Database (CMDB) Federation Specification DSP0252

54 DMTF Standard Version 1.0.1

 lessOrEqual="true" greater="true" 1868
 greaterOrEqual="true" contains="true" 1869
 like="true" isNull="true" /> 1870
 </recordConstraintSupport> 1871
 <xpathSupport> 1872
 <dialect>http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1</dialect> 1873
 <dialect>http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2</dialect> 1874
 </xpathSupport> 1875
</queryCapabilities> 1876

1878

1879
1880

1881
1882

1883

1884

1885

8.3.2.2 Base Option Set 1877

The URI for this option set is http://schemas.dmtf.org/cmdbf/1/optionSet/query-basic.

The base option set indicates that all features listed in this specification are supported with the following
exceptions:

• The @depthLimit attribute is not supported on relationship templates (relationships need to be
traversed hop by hop).

• The @minimum and @maximum attributes on relationship template are not supported.

• Xpath constraints on item templates and relationship templates are not supported.

This option set is equivalent to the following <queryCapabilities> element:
<queryCapabilities> 1886
 <relationshipTemplateSupport depthLimit="false" 1887
 minimumMaximum="false" /> 1888
 <contentSelectorSupport recordTypeSelector="true" 1889
 propertySelector="true" /> 1890
 <recordConstraintSupport recordTypeConstraint="true" 1891
 propertyValueConstraint="true"> 1892
 <propertyValuesOperators equal="true" less="true" 1893
 lessOrEqual="true" greater="true" 1894
 greaterOrEqual="true" contains="true" 1895
 like="true" isNull="true" /> 1896
 </recordConstraintSupport> 1897
 <xpathSupport/> 1898
</queryCapabilities> 1899

1901
1902
1903
1904

8.3.3 queryServiceMetadata/queryCapabilities 1900

The <queryCapabilities> element indicates which query techniques described in this specification
are supported by this particular implementation of the query operation. The <queryCapabilities>
element includes an extensibility element for representing that query extensions beyond the scope of this
specification are supported by the implementation.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 55

8.3.4 queryServiceMetadata/queryCapabilities/relationshipTemplateSupport 1905

When present, the <relationshipTemplateSupport> element indicates that the query operation of
the implementation supports queries that include

1906
1907

1908
1909
1910

1911
1912
1913
1914

1916
1917

1918
1919
1920

1921
1922
1923

1925
1926
1927

<relationshipTemplate> elements.

@depthLimit – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with a <depthLimit> element in a
<relationshipTemplate>.

@minimumMaximum – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries based on the cardinality of relationships as specified by a
@minimum or @maximum attribute on a <sourceTemplate> or <targetTemplate> element of
a <relationshipTemplate>.

8.3.5 queryServiceMetadata/queryCapabilities/contentSelectorSupport 1915

When present, the <contentSelectorSupport> element indicates that the query operation of the
implementation supports queries that include <contentSelector> elements.

@recordTypeSelector – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with <selectedRecordType> specified in the
<contentSelector> of an <itemTemplate> or <relationshipTemplate>.

@propertyTypeSelector – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with <selectedProperty> specified in the
<contentSelector> of an <itemTemplate> or <relationshipTemplate>.

8.3.6 queryServiceMetadata/queryCapabilities/recordConstraintSupport 1924

The <recordConstraintSupport> element indicates whether the query implementation will process
queries that use constraints in the <itemTemplate> or <relationshipTemplate>. The complete
pseudo-schema of this element is as follows:
<recordConstraintSupport recordTypeConstraint="xs:boolean" 1928
 propertyValueConstraint="xs:boolean" xs:anyAttribute > 1929
 <propertyValuesOperators equal="xs:boolean" less="xs:boolean" 1930
 lessOrEqual="xs:boolean" greater="xs:boolean" 1931
 greaterOrEqual="xs:boolean" contains="xs:boolean" 1932
 like="xs:boolean" isNull="xs:boolean" xs:anyAttribute />? 1933
</recordConstraintSupport> 1934

1935
1936
1937

1938
1939
1940
1941
1942

1944
1945
1946

@recordTypeConstraint – The Boolean value of this attribute indicates whether the Query Service
implementation will process queries with <recordType> constraints in an <itemTemplate> or
<relationshipTemplate>.

@propertyValueConstraint – The Boolean value of this attribute indicates whether the Query
Service implementation will process queries with <propertyValue> constraints in an
<itemTemplate> or <relationshipTemplate>. When <propertyValue> constraints are
supported the metadata should also indicate which operators are supported by including the
<propertyValueOperators> element.

8.3.7 recordConstraintSupport/propertyValueOperators 1943

The <propertyValueOperators> element is used to indicate which operators are supported by the
query implementation. There is a mandatory attribute for each operator defined by this specification and
an extensibility attribute for other operators not defined by this specification.

Configuration Management Database (CMDB) Federation Specification DSP0252

56 DMTF Standard Version 1.0.1

The Boolean value of each of the following attributes indicates whether the Query Service implementation
will process queries with a property value operator of the same name as the attribute: @equal, @less,
@lessOrEqual, @greater, @greaterOrEqual, @contains, @like, and @isNull.

1947
1948
1949

1951
1952

1954
1955

1956

1957
1958

1960
1961

1963
1964
1965

1966

8.3.8 queryServiceMetadata/queryCapabilities/xpathSupport 1950

The <xpathSupport> element is used to indicate that the query implementation supports the dialects of
XPath represented by the contained <dialect> elements.

8.3.9 queryServiceMetadata/queryCapabilities/xpathSupport/dialect 1953

The <dialect> elements indicate which dialects of XPath will be processed by the query
implementation. The URI used as the value of the dialect should be either of the following:

• one of the URIs listed in this specification for XPath dialects

• a URI defined by another specification to represent an XPath dialect appropriate for use in the
query operation defined in this specification

8.3.10 queryServiceMetadata/recordTypeList 1959

The <recordTypeList> is used to list the record types that can be returned by the Query Service, as
previously described.

8.4 registrationServiceMetadata 1962

An instance of the <registrationServiceMetadata> includes the description of the MDR
implementing the Registration Service, including the ID of the MDR, and the supported records, or data
model, for the given implementation being modeled.

The pseudo-schema for the contents of a <registrationServiceMetadata> element is as follows:
<registrationServiceMetadata> 1967
 <serviceDescription> ... </serviceDescription> 1968
 <recordTypeList> ... </recordTypeList> 1969
 xs:any * 1970
</registrationServiceMetadata> 1971

1973
1974

1976
1977

8.4.1 registrationServiceMetadata/serviceDescription 1972

The required <serviceDescription> element is used to identify this implementation of the
Registration Service, as previously described.

8.4.2 registrationServiceMetadata/recordTypeList 1975

The <recordTypeList> is used to list the record types that can be accepted by the Registration
Service, as previously described.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 57

ANNEX A
(normative)

URIs and XML Namespaces

1978
1979
1980
1981

1982 This annex lists the XML namespaces and other URIs defined in this specification.

URI Description

http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath1 Represents an XPath 1 dialect that can be used in
queries (see 6.5.1).

http://schemas.dmtf.org/cmdbf/1/dialect/query-xpath2 Represents an XPath 2 dialect that can be used in
queries (see 6.5.2).

http://schemas.dmtf.org/cmdbf/1/optionSet/query-complete Represents the set of query service options that
contains all possible capabilities (see 8.3.2.1).

http://schemas.dmtf.org/cmdbf/1/optionSet/query-basic Represents a set of query service options that
provide basic functionality for a variety of query
expressions (see 8.3.2.2).

http://schemas.dmtf.org/cmdbf/1/action/fault Represents an action in the SOAP binding for faults.

http://schemas.dmtf.org/cmdbf/1/tns/serviceData Represents the target namespace of the XML
schema used by the CMDBf Query and Registration
services.

http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata Represents the target namespace of the CMDBf
Service Description XML schema.

http://schemas.dmtf.org/cmdbf/1/tns/query Represents the target namespace in the WSDL for
the query service.

http://schemas.dmtf.org/cmdbf/1/tns/registration Represents the target namespace in the WSDL for
the registration service.

 1983

Configuration Management Database (CMDB) Federation Specification DSP0252

58 DMTF Standard Version 1.0.1

ANNEX B
(normative)

CMDB Federation XSD and WSDL

1984
1985
1986
1987

1988
1989

Normative copies of the XML schemas for this version of this specification may be retrieved by resolving
the URLs below.
http://schemas.dmtf.org/cmdbf/1/tns/serviceData/dsp8040_1.0.0.xsd 1990
http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata/dsp8041_1.0.0.xsd 1991

1992
1993

Normative copies of the XML schemas for the current version of this specification (which is this version
unless it is superseded) may be retrieved by resolving the URLs below.
http://schemas.dmtf.org/cmdbf/1/tns/serviceData/dsp8040.xsd 1994
http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata/dsp8041.xsd 1995

1996
1997

1998
1999

Any xs:documentation content in XML schemas for this specification is informative and provided only
for convenience.

Normative copies of the WSDL for the query and registration services described in this version of this
specification may be retrieved by resolving the URLs below.
http://schemas.dmtf.org/cmdbf/1/tns/query/dsp8043_1.0.0.wsdl 2000
http://schemas.dmtf.org/cmdbf/1/tns/registration/dsp8042_1.0.0.wsdl 2001

2002
2003
2004

Normative copies of the WSDL for the query and registration services described in the current version of
this specification (which is this version unless it is superseded) may be retrieved by resolving the URLs
below.
http://schemas.dmtf.org/cmdbf/1/tns/query/dsp8043.wsdl 2005
http://schemas.dmtf.org/cmdbf/1/tns/registration/dsp8042.wsdl 2006

2007

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 59

ANNEX C
(normative)

Fault Binding to SOAP

2008
2009
2010
2011

Faults may be generated for any CMDBf operation. The bindings of faults for both SOAP 1.1 and 2012
SOAP 1.2 are described in this annex. 2013

2014

2015

2016

2017

2018
2019

2020
2021

2022

The definitions of faults use the following properties:

• [Code] The fault code.

• [Subcode] The fault subcode.

• [Reason] A language-localized readable description of the error.

• [Detail] Optional detail elements. If more than one detail element is defined for a fault,
implementations shall include the elements in the order that they are specified.

Services that generate CMDBf faults shall set the [Code] property to either "Sender" or "Receiver". These
properties are serialized into text XML as shown in Table C-1.

Table C-1 – [Code] Properties

SOAP Version Sender Receiver

SOAP 1.1 S11:Client S11:Server

SOAP 1.2 S:Sender S:Receiver

The properties in Table C-1 bind to a SOAP 1.2 fault as follows: 2023
<S:Envelope> 2024
 <S:Header> 2025
 <wsa:Action> 2026
 http://schemas.dmtf.org/cmdbf/1/action/fault 2027
 </wsa:Action> 2028
 <!-- Headers elided for brevity. --> 2029
 </S:Header> 2030
 <S:Body> 2031
 <S:Fault> 2032
 <S:Code> 2033
 <S:Value> [Code] </S:Value> 2034
 <S:Subcode> 2035
 <S:Value> [Subcode] </S:Value> 2036
 </S:Subcode> 2037
 </S:Code> 2038
 <S:Reason> 2039
 <S:Text xml:lang="en"> [Reason] </S:Text> 2040
 </S:Reason> 2041
 <S:Detail> 2042
 [Detail] 2043
 ... 2044

Configuration Management Database (CMDB) Federation Specification DSP0252

60 DMTF Standard Version 1.0.1

 </S:Detail> 2045
 </S:Fault> 2046
 </S:Body> 2047
</S:Envelope> 2048

The properties in Table C-1 bind to a SOAP 1.1 fault as follows when the fault is generated as a result of
processing a CMDBf request message:

2049
2050

<S11:Envelope> 2051
 <S11:Header> 2052
 <cmdbf:fault> 2053
 <cmdbf:faultCode> [Subcode] </cmdbf:faultCode> 2054
 <cmdbf:detail> [Detail] </cmdbf:detail> 2055
 ... 2056
 </cmdbf:fault> 2057
 <!-- Headers elided for brevity. --> 2058
 </S11:Header> 2059
 <S11:Body> 2060
 <S11:Fault> 2061
 <S11:faultcode> [Code] </S11:faultcode> 2062
 <S11:faultstring> [Reason] </S11:faultstring> 2063
 </S11:Fault> 2064
 </S11:Body> 2065
</S11:Envelope> 2066

2067
2068

When binding to a CMDBf operation that supports WS-Addressing, the fault message shall include the
following action URI as the [action] property:

http://schemas.dmtf.org/cmdbf/1/action/fault 2069

Fault handling rules for operations using WS-Addressing are defined in section 6 of WS-Addressing 2070
SOAP Binding. 2071

2072

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 61

ANNEX D
(informative)

Query Examples

2073
2074
2075
2076

2077

2079
2080
2081

This annex contains two extended GraphQuery examples.

D.1 GraphQuery Example 1 2078

Let us assume that an MDR contains two types of items (people and computers) and one type of
relationship (a person "uses" a computer). The following simple query request selects all computers that
are used by a person located in California:
<query> 2082
 <itemTemplate id="user"> 2083
 <recordConstraint> 2084
 <recordType namespace="http://example.com/people" 2085
 localName="person"/> 2086
 <propertyValue namespace="http://example.com/people" 2087
 localName="state"> 2088
 <equal>CA</equal> 2089
 </propertyValue> 2090
 </recordConstraint> 2091
 </itemTemplate> 2092
 2093
 <itemTemplate id="computer"> 2094
 <recordConstraint> 2095
 <recordType namespace="http://example.com/computer" 2096
 localName="computer"/> 2097
 </recordConstraint> 2098
 </itemTemplate> 2099
 2100
 <relationshipTemplate id="usage"> 2101
 <recordConstraint> 2102
 <recordType namespace="http://example.com/computer" 2103
 localName="uses"/> 2104
 </recordConstraint> 2105
 <sourceTemplate ref="user"/> 2106
 <targetTemplate ref="computer"/> 2107
 </relationshipTemplate> 2108
 2109
</query> 2110

2111
2112

2113

2114
2115

2116

The detailed syntax and semantics of the XML elements were described in the body of this specification,
but the following summary describes the items and relationships that are returned by this query:

The <itemTemplate> called "user" (line 02) matches all items that:

• have a record with a property called "state" (in the http://example.com/people namespace) for
which the value is "CA"

• have a record named "person" (defined in the namespace "http://example.com/people")

Configuration Management Database (CMDB) Federation Specification DSP0252

62 DMTF Standard Version 1.0.1

• are the source of a relationship that matches the <relationshipTemplate> called "usage"
(line 11)

2117
2118

2119

2120

2121
2122

2123

2124

2125

2126

2127
2128

2129

The <itemTemplate> called "computer" (line 08) matches all items that:

• have a record named "computer" (defined in the namespace "http://example.com/computer")

• are the target of a relationship that matches the <relationshipTemplate> called "usage"
(line 11)

The <relationshipTemplate> called "usage" (line 11) matches all relationships that:

• have a record named "uses" (defined in the namespace "http://example.com/computer")

• have a source that matches the <itemTemplate> called "user" (line 02)

• have a target that matches the <itemTemplate> called "computer" (line 08)

As a result, if a user item does not "use" a computer, it will not be part of the response, whether or not the
user is located in California.

The following is a graphical representation of the query:

“user” itemTemplate
-State=“CA”
-Type=“person”

“computer” itemTemplate
-Type=“computer”

“usage”
relationshipTemplate

 2130

2131
2132
2133

A user in California who happens to "use" two computers is represented in the response by three items
(one for the user and one for each computer) and two relationships (from the user to each of his or her
computers). The following is a graphical representation of this response:

“user” item
<person>

<name>Joe</name>
<state>CA</state>
<city>Palo Alto</city>

</person>

“computer” item #1
<computer>

<manuf>HP</manuf>
<serial>123456789</serial>

</computer>

“usage”
relationship #1

“computer” item #2
<computer>

<manuf>Dell</manuf>
<serial>987654321</serial>

</computer>

“usage”
relationship #2

 2134

2135
2136
2137
2138

2139
2140
2141
2142

In effect, the response contains two graphs (each made of a user, a computer, and the relationship
between the two) that both meet the constraints of the query graph. In this example, the two graphs in the
response happen to overlap (they share the same "user"), but in another example they could be disjoint
(for example, if the second computer were instead "used" by another user also located in California).

If the <relationshipTemplate> element (line 11) were not part of the query, the semantics of the
query would be very different. The query would return all the items of type "person" that are in California
and all the items of type "computer". It would not return the relationships between users and computers.
The existence of these relationships would have no bearing on what items are returned.

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 63

The GraphQuery operation can also use relationships to qualify instances, even when the result of the
query does not include relationships. In the previous example, suppose that we are interested only in the
computers used by people in California, not the users themselves. We can add suppressFromResult=true
to the "user" and "usage" templates in the previous query. The query result is simply the two computers
listed above.

2143
2144
2145
2146
2147

<query> 2148
 <itemTemplate id="user" suppressFromResult="true"> 2149
 <recordConstraint> 2150
 <recordType namespace="http://example.com/people" 2151
 localName="person"/> 2152
 <propertyValue namespace="http://example.com/people" 2153
 localName="state"> 2154
 <equal>CA</equal> 2155
 </propertyValue> 2156
 </recordConstraint> 2157
 </itemTemplate> 2158
 <itemTemplate id="computer"> 2159
 <recordConstraint> 2160
 <recordType namespace="http://example.com/computer" 2161
 localName="computer"/> 2162
 </recordConstraint> 2163
 </itemTemplate> 2164
 <relationshipTemplate id="usage" suppressFromResult="true"> 2165
 <recordConstraint> 2166
 <recordType namespace="http://example.com/computer" 2167
 localName="uses"/> 2168
 </recordConstraint> 2169
 <sourceTemplate ref="user"/> 2170
 <targetTemplate ref="computer"/> 2171
 </relationshipTemplate> 2172
</query> 2173

2175
2176
2177

2178
2179
2180

2181

2182

D.2 GraphQuery Example 2 2174

In this example, the data model contains item records of type ContactInfo and ComputerConfig and
relationship records of type "administers". ComputerConfigs are related to ContactInfo through the
"administers" relationship to allow for modeling logic, such as "UserA administers ComputerB."

This example queries the graph of the computers that are administered by "Pete the Lab Tech" and
returns all items and relationships involved in this graph. The response shows two computers
administrated by one user.

The data the query is executed against are as follows:

Table D-1 – "User (ContactInfo)" Data

Name Phone employeeNumber

Pete the Lab Tech 111-111-1111 109

Joe the Manager 111-111-4567 12

Frank the CEO 111-111-9999 1

Configuration Management Database (CMDB) Federation Specification DSP0252

64 DMTF Standard Version 1.0.1

Table D-2 – "Computer (ComputerConfig)" Data 2183

Name primaryMACAddress CPUType assetTag

LabMachineA 00A4B49D2F41 AMD Athlon 64 XYZ9753

LabMachineB 00A4B49D2F42 AMD Athlon 64 XYZ9876

LabMachineC 00A4B49D2H11 Intel Pentium 4 XYZ9900

LabMachineD 00A4B49D2H53 Intel Pentium 4 XYZ9912

Table D-3 – "Administers" Data 2184

"User" Name "Computer" Name adminSupportHours

Pete the Lab Tech LabMachineA 24/7

Pete the Lab Tech LabMachineB business hours only

Joe the Manager LabMachineD 24/7

The following example involves a relationship traversal: 2185
<query> 2186
 <itemTemplate id="user"> 2187
 <recordConstraint> 2188
 <recordType namespace=http://example.com/people 2189
 localName="ContactInfo"/> 2190
 <propertyValue namespace=http://example.com/people 2191
 localName="name"> 2192
 <equal>Pete the Lab Tech</equal> 2193
 </propertyValue> 2194
 </recordConstraint> 2195
 </itemTemplate> 2196
 <itemTemplate id="computer"> 2197
 <recordConstraint> 2198
 <recordType 2199
 namespace=http://example.com/computerModel 2200
 localName="ComputerConfig"/> 2201
 </recordConstraint> 2202
 </itemTemplate> 2203
 <relationshipTemplate id="administers"> 2204
 <recordConstraint> 2205
 <recordType 2206
 namespace=http://example.com/computerModel 2207
 localName="administers"/> 2208
 </recordConstraint> 2209
 <sourceTemplate ref="user"/> 2210
 <targetTemplate ref="computer"/> 2211
 </relationshipTemplate> 2212
</query> 2213

http://example.com/people
http://example.com/people
http://example.com/people
http://example.com/people
http://example.com/computerModel
http://example.com/computerModel
http://example.com/computerModel
http://example.com/computerModel

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 65

The following is a response to the GraphQuery: 2214
<queryResult> 2215
 <nodes templateId="user"> 2216
 <item> 2217
 <record xmlns:hr="http://example.com/people"> 2218
 <hr:ContactInfo> 2219
 <hr:name>Pete the Lab Tech</hr:name> 2220
 <hr:phone>111-111-1111</hr:phone> 2221
 <hr:employeeNumber>109</hr:employeeNumber> 2222
 </hr:ContactInfo> 2223
 <recordMetadata> 2224
 <recordId>http://example.com/109/Current</recordId> 2225
 </recordMetadata> 2226
 </record> 2227
 <instanceId> 2228
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2229
 <localId>http://example.com/PeteTheLabTech</localId> 2230
 </instanceId> 2231
 </item> 2232
 </nodes> 2233
 <nodes templateId="computer"> 2234
 <item> 2235
 <record xmlns:comp="http://example.com/computerModel"> 2236
 <comp:ComputerConfig> 2237
 <comp:CPUType>AMD Athlon 64</comp:CPUType> 2238
 <comp:assetTag>XYZ9753</comp:assetTag> 2239
 <comp:primaryMACAddress> 2240
 00A4B49D2F41 2241
 </comp:primaryMACAddress> 2242
 <comp:name>LabMachineA</comp:name> 2243
 ... 2244
 </comp:ComputerConfig> 2245
 <recordMetadata> 2246
 <recordId> 2247
 http://example.com/machines/XYZ9753/scanned 2248
 </recordId> 2249
 </recordMetadata> 2250
 </record> 2251
 <instanceId> 2252
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2253
 <localId>http://example.com/machines/XYZ9753</localId> 2254
 </instanceId> 2255
 </item> 2256
 <item> 2257
 <record xmlns:comp="http://example.com/computerModel"> 2258
 <comp:ComputerConfig> 2259
 <comp:CPUType>AMD Athlon 64</comp:CPUType> 2260
 <comp:assetTag>XYZ9876</comp:assetTag> 2261
 <comp:primaryMACAddress> 2262

Configuration Management Database (CMDB) Federation Specification DSP0252

66 DMTF Standard Version 1.0.1

 00A4B49D2F42 2263
 </comp:primaryMACAddress> 2264
 <comp:name>LabMachineB</comp:name> 2265
 ... 2266
 </comp:ComputerConfig> 2267
 <recordMetadata> 2268
 <recordId> 2269
 http://example.com/machines/XYZ9876/scanned 2270
 </recordId> 2271
 </recordMetadata> 2272
 </record> 2273
 <instanceId> 2274
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2275
 <localId>http://example.com/machines/XYZ9876</localId> 2276
 </instanceId> 2277
 </item> 2278
 </nodes> 2279
 <edges templateId="administers"> 2280
 <relationship> 2281
 <source> 2282
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2283
 <localId>http://example.com/PeteTheLabTech</localId> 2284
 </source> 2285
 <target> 2286
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2287
 <localId>http://example.com/machines/XYZ9876</localId> 2288
 </target> 2289
 <record xmlns:foo="http://example.com/computerModel"> 2290
 <foo:administers> 2291
 <foo:adminSupportHours> 2292
 business hours only 2293
 </foo:adminSupportHours> 2294
 </foo:administers> 2295
 <recordMetadata> 2296
 <recordId>adm10001</recordId> 2297
 </recordMetadata> 2298
 </record> 2299
 <instanceId> 2300
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2301
 <localId> 2302
 http://example.com/administers/PeteTheLabTechToLabMachineB 2303
 </localId> 2304
 </instanceId> 2305
 </relationship> 2306
 <relationship> 2307
 <source> 2308
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2309
 <localId>http://example.com/PeteTheLabTech</localId> 2310
 </source> 2311

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 67

 <target> 2312
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2313
 <localId>http://example.com/machines/XYZ9753</localId> 2314
 </target> 2315
 <record xmlns:foo="http://example.com/computerModel"> 2316
 <foo:administers> 2317
 <foo:adminSupportHours>24/7</foo:adminSupportHours> 2318
 </foo:administers> 2319
 <recordMetadata> 2320
 <recordId>adm10002</recordId> 2321
 </recordMetadata> 2322
 </record> 2323
 <instanceId> 2324
 <mdrId>http://testSystem.com/DiscoveryMdr</mdrId> 2325
 <localId> 2326
 http://example.com/administers/PeteTheLabTechToLabMachineA 2327
 </localId> 2328
 </instanceId> 2329
 </relationship> 2330
 </edges> 2331
</queryResult> 2332

2333

Configuration Management Database (CMDB) Federation Specification DSP0252

68 DMTF Standard Version 1.0.1

ANNEX E
(informative)

Detailed UML Class Diagrams

2334
2335
2336
2337

 2338

2339 Figure E-1 – UML Class Diagrams

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 69

ANNEX F
(informative)

Sample WSDL Binding

2340
2341
2342
2343

2344
2345
2346

The following example illustrates how the interfaces defined in this specification should be described in a
Web service binding that implements the interfaces. This example also illustrates how the CMDBf service
metadata should be associated with a particular implementation of a CMDBf interface.

As shown below, this query implementation uses SOAP 1.1 over HTTP as the protocol and supports the
use of WS-Addressing if the message sender uses WS-Addressing for an asynchronous
request/response. Because this specification does not define specific WS-Addressing actions, the action
header values for WS-Addressing are determined according to the defaults described in the

2347
2348
2349
2350

WS-Addressing 1.0 – WSDL Binding specification. 2351

2352
2353
2354
2355

2356
2357

2358
2359
2360

The queryServiceMetadata element is included in a WS-Policy expression which is included by reference
in the WSDL binding to the query port type. This particular sample is of a Query Service that supports the
complete set of record constraint and selector operators defined in the specification. The metadata in the
sample also shows that XPath1 and XPath 2 are supported by the service.

The metadata for the service also includes the two record types that may be queried at this service, an
"R_ComputerSystem" data type, and a "CIM_CommonDatabase" data type.

The approach to including metadata as a policy in the WSDL is a recommended approach to creating the
WSDL documentation for the binding implementation as it allows for the file containing the WSDL binding
to completely describe the interface to the service and the options allowed by this specification.
<?xml version='1.0' encoding='UTF-8' ?> 2361
<!-- 2362
Copyright © 2009 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 2363
DMTF is a not-for-profit association of industry members dedicated to promoting 2364
enterprise and systems management and interoperability. Members and non-members may 2365
reproduce DMTF specifications and documents provided that correct attribution is 2366
given. As DMTF specifications may be revised from time to time, the particular version 2367
and release date should always be noted. Implementation of certain elements of this 2368
standard or proposed standard may be subject to third party patent rights, including 2369
provisional patent rights (herein "patent rights"). DMTF makes no representations to 2370
users of the standard as to the existence of such rights, and is not responsible to 2371
recognize, disclose, or identify any or all such third party patent right, owners or 2372
claimants, nor for any incomplete or inaccurate identification or disclosure of such 2373
rights, owners or claimants. DMTF shall have no liability to any party, in any manner 2374
or circumstance, under any legal theory whatsoever, for failure to recognize, 2375
disclose, or identify any such third party patent rights, or for such partyâ€™s 2376
reliance on the standard or incorporation thereof in its product, protocols or testing 2377
procedures. DMTF shall have no liability to any party implementing such standard, 2378
whether such implementation is foreseeable or not, nor to any patent owner or 2379
claimant, and shall have no liability or responsibility for costs or losses incurred 2380
if a standard is withdrawn or modified after publication, and shall be indemnified and 2381
held harmless by any party implementing the standard from any and all claims of 2382
infringement by a patent owner for such implementations. For information about patents 2383
held by third-parties which have notified the DMTF that, in their opinion, such patent 2384
may relate to or impact implementations of DMTF standards, visit 2385
http://www.dmtf.org/about/policies/disclosures.php. 2386
--> 2387
 2388
<wsdl:definitions 2389

Configuration Management Database (CMDB) Federation Specification DSP0252

70 DMTF Standard Version 1.0.1

 targetNamespace="http://schemas.dmtf.org/cmdbf/1/tns/query" 2390
 xmlns:cmdbfPort="http://schemas.dmtf.org/cmdbf/1/tns/query" 2391
 xmlns:cmdbfMetadata="http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata" 2392
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 2393
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 2394
 xmlns:wsp="http://www.w3.org/ns/ws-policy" 2395
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" 2396
 xmlns:xs="http://www.w3.org/2001/XMLSchema"> 2397
 2398
 <wsdl:import location="query.wsdl" 2399
 namespace="http://schemas.dmtf.org/cmdbf/1/tns/query"> 2400
 </wsdl:import> 2401
 2402
 <!-- Subject supports WS-Addressing --> 2403
 <wsp:Policy xml:Id="SupportsWSAddressing"> 2404
 <wsam:Addressing wsp:Optional="true"> 2405
 <wsp:Policy /> 2406
 </wsam:Addressing> 2407
 </wsp:Policy> 2408
 2409
 2410
 <!-- Subject supports the referenced data model in the operations --> 2411
 <wsp:Policy xml:Id="SupportedMetadata"> 2412
 <queryServiceMetadata 2413
 xmlns="http://schemas.dmtf.org/cmdbf/1/tns/serviceMetadata"> 2414
 <serviceDescription> 2415
 <mdrId>CMDBf12345</mdrId> 2416
 </serviceDescription> 2417
 <queryCapabilities> 2418
 <contentSelectorSupport propertySelector="true" 2419
 recordTypeSelector="true" /> 2420
 <recordConstraintSupport recordTypeConstraint="true" 2421
 propertyValueConstraint="true"> 2422
 <propertyValueOperators equal="true" less="true" 2423
 greater="true" lessOrEqual="true" 2424
 greaterOrEqual="true" 2425
 contains="true" 2426
 like="false" 2427
 isNull="false" /> 2428
 </recordConstraintSupport> 2429
 <xpathSupport> 2430
 <dialect> 2431
 http://www.w3.org/TR/1999/REC-xpath-19991116 2432
 </dialect> 2433
 <dialect> 2434
 http://www.w3.org/TR/2007/REC-xpath-20070123 2435
 </dialect> 2436
 </xpathSupport> 2437
 </queryCapabilities> 2438

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 71

 2439
 <recordTypeList> 2440
 <recordTypes namespace="http://cmdbf.org" 2441
 schemaLocation="http://cmdbf.org/common_schemas/R_ComputerSystem.xsd"> 2442
 <recordType localName="R_ComputerSystem" /> 2443
 </recordTypes> 2444
 <recordTypes 2445
 namespace="http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_CommonDatabase" 2446
 schemaLocation="http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_CommonDatabase.xsd"> 2447
 <recordType localName="CIM_CommonDatabase" /> 2448
 </recordTypes> 2449
 </recordTypeList> 2450
 2451
 </queryServiceMetadata> 2452
 </wsp:Policy> 2453
 2454
 <!-- Sample Binding for SOAP 1.1 with WS-Addressing support 2455
 --> 2456
 <wsdl:binding name="QueryBinding" type="cmdbfPort:QueryPortType"> 2457
 <soap:binding style="document" 2458
 transport="http://schemas.xmlsoap.org/soap/http" /> 2459
 <wsp:PolicyReference URI="SupportsWSAddressing" /> 2460
 <wsp:PolicyReference URI="SupportedMetadata" /> 2461
 <wsdl:operation name="GraphQuery"> 2462
 <wsdl:input> 2463
 <soap:body use="literal" /> 2464
 </wsdl:input> 2465
 <wsdl:output> 2466
 <soap:body use="literal" /> 2467
 </wsdl:output> 2468
 <wsdl:fault name="UnknownTemplateID"> 2469
 <soap:fault name="UnknownTemplateID" use="literal" /> 2470
 </wsdl:fault> 2471
 <wsdl:fault name="InvalidPropertyType"> 2472
 <soap:fault name="InvalidPropertyType" use="literal" /> 2473
 </wsdl:fault> 2474
 <wsdl:fault name="XPathError"> 2475
 <soap:fault name="XPathError" use="literal" /> 2476
 </wsdl:fault> 2477
 <wsdl:fault name="UnsupportedConstraint"> 2478
 <soap:fault name="UnsupportedConstraint" use="literal" /> 2479
 </wsdl:fault> 2480
 <wsdl:fault name="UnsupportedSelector"> 2481
 <soap:fault name="UnsupportedSelector" use="literal" /> 2482
 </wsdl:fault> 2483
 <wsdl:fault name="QueryError"> 2484
 <soap:fault name="QueryError" use="literal" /> 2485
 </wsdl:fault> 2486
 </wsdl:operation> 2487

Configuration Management Database (CMDB) Federation Specification DSP0252

72 DMTF Standard Version 1.0.1

 </wsdl:binding> 2488
 2489
</wsdl:definitions> 2490

DSP0252 Configuration Management Database (CMDB) Federation Specification

Version 1.0.1 DMTF Standard 73

ANNEX G
(informative)

Change Log

2491
2492
2493
2494

Version Date Description

1.0.0 2009-06-22 DMTF Standard Release

1.0.1 2010-04-22 DMTF Standard Release – Fixed errors in sections 6.6.1 and 6.7.1

 2495

2496

Configuration Management Database (CMDB) Federation Specification DSP0252

74 DMTF Standard Version 1.0.1

Bibliography 2497

2498 W3C, Web Services Addressing (WS-Addressing) 1.0: Core, May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/ 2499

2500 W3C, Web Services Addressing 1.0 – SOAP Binding, May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509 2501

2502 W3C, Web Services Addressing 1.0 – WSDL Binding, May 2006,
http://www.w3.org/TR/ws-addr-wsdl/ 2503

2504

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509
http://www.w3.org/TR/ws-addr-wsdl/

	Foreword
	Acknowledgements
	Conventions

	Introduction
	Objectives

	Functionality
	Target IT Environment
	Out-of-Scope Implementation Details
	Technological Assumptions

	Underlying Technology
	Web Services
	Database Management Systems

	1 Scope
	2 Normative References
	3 Terms and Definitions
	3.1 Requirements Terms
	3.2 Background Terminology

	4 Symbols and Abbreviated Terms
	5 Architecture
	5.1 Overview
	5.2 Roles
	5.2.1 Management Data Repository (MDR)
	5.2.2 Federating CMDB
	5.2.3 Client
	5.2.4 Administrator

	5.3 Services Overview
	5.3.1 Service Types
	5.3.1.1 Query Service
	5.3.1.2 Registration Service

	5.3.2 Federation Modes
	5.3.2.1 Push Mode
	5.3.2.2 Pull Mode

	5.3.3 Service Usage Patterns

	5.4 Identity Reconciliation
	5.5 Data Elements Overview
	5.5.1 Managed Data
	5.5.1.1 Item
	5.5.1.2 Relationship
	5.5.1.2.1 Relationship Roles

	5.5.1.3 Record

	5.5.2 Common Data Element Types

	6 Query Service
	6.1 Overview
	6.2 GraphQuery Operation Outline
	6.2.1 itemTemplate
	6.2.2 relationshipTemplate
	6.2.2.1 relationshipTemplate/sourceTemplate and relationshipTemplate/targetTemplate
	6.2.2.2 relationshipTemplate/depthLimit

	6.3 Content Selection
	6.3.1 contentSelector
	6.3.1.1 contentSelector/selectedRecordType
	6.3.1.1.1 contentSelector/selectedRecordType/selectedProperty

	6.3.1.2 contentSelector/xpathSelector
	6.3.1.2.1 contentSelector/xpathSelector/@dialect
	6.3.1.2.2 contentSelector/xpathSelector/prefixMapping
	6.3.1.2.3 contentSelector/xpathSelector/expression

	6.4 Constraints
	6.4.1 instanceIdConstraint
	6.4.2 recordConstraint
	6.4.2.1 recordConstraint/recordType
	6.4.2.2 recordConstraint/propertyValue
	6.4.2.2.1 recordConstraint/propertyValue/equal
	6.4.2.2.2 recordConstraint/propertyValue/less,recordConstraint/propertyValue/lessOrEqual,recordConstraint/propertyValue/greater, and recordConstraint/propertyValue/greaterOrEqual
	6.4.2.2.3 recordConstraint/propertyValue/contains
	6.4.2.2.4 recordConstraint/propertyValue/like
	6.4.2.2.5 recordConstraint/propertyValue/isNull
	6.4.2.2.6 Additional Attributes

	6.4.2.3 recordConstraint/xpathConstraint
	6.4.2.3.1 recordConstraint/xpathConstraint/@dialect
	6.4.2.3.2 recordConstraint/xpathConstraint /prefixMapping
	6.4.2.3.3 recordConstraint/xpathConstraint/expression

	6.5 XPath Expressions and Normalization
	6.5.1 XPath 1.0 Dialect
	6.5.2 XPath 2.0 Dialect
	6.5.3 XPath Selector Transformation
	6.5.4 XPath 1.0 Normalization
	6.5.5 XPath 2.0 Normalization

	6.6 GraphQuery Response
	6.6.1 propertySet

	6.7 GraphQuery Faults
	6.7.1 Unknown Template ID
	6.7.2 Property Type Mismatch
	6.7.3 XPath Processing Error
	6.7.4 Unsupported Constraint
	6.7.5 Unsupported Selector
	6.7.6 Expensive Query Error
	6.7.7 Query Error

	7 Registration Service
	7.1 Overview
	7.2 Register
	7.2.1 Register Operation
	7.2.1.1 mdrId
	7.2.1.2 itemList
	7.2.1.3 itemList/item
	7.2.1.4 itemList/item/instanceId
	7.2.1.5 itemList/item/record
	7.2.1.6 itemList/item/additionalRecordType
	7.2.1.7 relationshipList
	7.2.1.8 relationshipList/relationship
	7.2.1.9 relationshipList/relationship/instanceId
	7.2.1.10 relationshipList/relationship/source
	7.2.1.11 relationshipList/relationship/target
	7.2.1.12 relationshipList/relationship/record
	7.2.1.13 relationshipList/relationship/additionalRecordType

	7.2.2 Register Response
	7.2.2.1 registerInstanceResponse
	7.2.2.2 registerInstanceResponse/instanceId
	7.2.2.3 registerInstanceResponse/accepted
	7.2.2.4 registerInstanceResponse/accepted/alternateInstanceId
	7.2.2.5 registerInstanceResponse/declined
	7.2.2.6 registerInstanceResponse/declined/reason

	7.2.3 Register Operation Faults
	7.2.3.1 Invalid Record
	7.2.3.2 Unsupported Record Type
	7.2.3.3 Invalid MDR ID
	7.2.3.4 Registration Error

	7.3 Deregister
	7.3.1 Deregister Operation
	7.3.1.1 mdrId
	7.3.1.2 itemIdList
	7.3.1.3 itemIdList/instanceId
	7.3.1.4 relationshipIdList
	7.3.1.5 relationshipIdList/instanceId

	7.3.2 Deregister Response
	7.3.2.1 deregisterInstanceResponse
	7.3.2.2 deregisterInstanceResponse/instanceId
	7.3.2.3 deregisterInstanceResponse/accepted
	7.3.2.4 deregisterInstanceResponse/declined
	7.3.2.5 deregisterInstanceResponse/declined/reason

	7.3.3 Deregister Operation Faults
	7.3.3.1 Invalid MDR Id
	7.3.3.2 Deregistration Error

	8 Service Metadata
	8.1 Overview
	8.2 Common Service Metadata Elements
	8.2.1 serviceDescription
	8.2.1.1 serviceDescription/mdrId
	8.2.1.2 serviceDescription/serviceId
	8.2.1.3 serviceDescription/description

	8.2.2 recordTypeList
	8.2.2.1 recordTypeList/recordTypes
	8.2.2.2 recordTypeList/recordTypes/recordType
	8.2.2.3 recordTypeList/recordTypes/recordType/superType

	8.3 queryServiceMetadata
	8.3.1 queryServiceMetadata/serviceDescription
	8.3.2 queryServiceMetadata/supportedOptionSet
	8.3.2.1 Complete Option Set
	8.3.2.2 Base Option Set

	8.3.3 queryServiceMetadata/queryCapabilities
	8.3.4 queryServiceMetadata/queryCapabilities/relationshipTemplateSupport
	8.3.5 queryServiceMetadata/queryCapabilities/contentSelectorSupport
	8.3.6 queryServiceMetadata/queryCapabilities/recordConstraintSupport
	8.3.7 recordConstraintSupport/propertyValueOperators
	8.3.8 queryServiceMetadata/queryCapabilities/xpathSupport
	8.3.9 queryServiceMetadata/queryCapabilities/xpathSupport/dialect
	8.3.10 queryServiceMetadata/recordTypeList

	8.4 registrationServiceMetadata
	8.4.1 registrationServiceMetadata/serviceDescription
	8.4.2 registrationServiceMetadata/recordTypeList
	ANNEX A (normative)URIs and XML Namespaces
	ANNEX B (normative)CMDB Federation XSD and WSDL
	ANNEX C (normative)Fault Binding to SOAP
	ANNEX D (informative)Query Examples
	D.1 GraphQuery Example 1
	D.2 GraphQuery Example 2
	ANNEX E (informative)Detailed UML Class Diagrams
	ANNEX F (informative)Sample WSDL Binding
	ANNEX G (informative)Change Log

	Bibliography
	Word Bookmarks
	rfc2616
	ITSMF
	SOAP11
	SOAP12
	XML_1
	XML1_p1
	XML1_p2
	XPath_1
	XPath_2
	Xquery10Xpath20_Funct_Ops
	XSLT2XQuery1
	WSDL11
	ISOp2
	S4
	OLE_LINK1
	OLE_LINK2
	S5
	WS_Addressing
	WS_Addressing_SOAP
	WS_Addressing_WSDL_Binding

