

 1

Document Number: DSP0200 2

Date: 2013-05-07 3

Version: 1.4.0a 4

CIM Operations over HTTP 5

Document Type: Specification 6

Document Status: Work in Progress 7

Document Language: en-US 8

 9

Information for Work-in-Progress version:

IMPORTANT: This document is not a standard. It does not necessarily reflect the views of the
DMTF or all of its members. Because this document is a Work in Progress, it may still change,
perhaps profoundly. This document is available for public review and comment until the stated
expiration date.

It expires on: 2013-10-31

Provide any comments through the DMTF Feedback Portal:
http://www.dmtf.org/standards/feedback

http://www.dmtf.org/standards/feedback

CIM Operations over HTTP DSP0200

2 Work in Progress — Not a DMTF Standard Version 1.4.0a

Copyright Notice 10

Copyright © 1999-2013 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

 32

http://www.dmtf.org/about/policies/disclosures.php

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 3

CONTENTS 33

Foreword ... 7 34

Introduction.. 8 35
Requirements .. 8 36

1 Scope .. 11 37

2 Normative References ... 11 38

3 Terms and Definitions ... 12 39

4 Abbreviated Terms and Document Conventions .. 14 40
4.1 Abbreviated Terms .. 14 41
4.2 Document Conventions... 14 42

5 CIM-XML Message Syntax and Semantics ... 14 43
5.1 Well-Formed, Valid, and Loosely Valid Documents ... 15 44
5.2 Operational Semantics.. 15 45
5.3 Operation Correlators ... 17 46

5.3.1 Overview .. 17 47
5.3.2 Representation ... 17 48
5.3.3 Implementation Requirements and Compatibility for Operation Messages 17 49
5.3.4 Implementation Requirements and Compatibility for Export Messages 18 50

5.4 CIM Operation Syntax and Semantics .. 18 51
5.4.1 Method Invocations .. 18 52

5.4.1.1 Simple Operations ... 19 53
5.4.1.2 Multiple Operations ... 19 54
5.4.1.3 Status Codes ... 20 55

5.4.2 Intrinsic Methods .. 22 56
5.4.2.1 GetClass .. 23 57
5.4.2.2 GetInstance ... 24 58
5.4.2.3 DeleteClass ... 26 59
5.4.2.4 DeleteInstance .. 26 60
5.4.2.5 CreateClass ... 27 61
5.4.2.6 CreateInstance .. 28 62
5.4.2.7 ModifyClass ... 29 63
5.4.2.8 ModifyInstance .. 31 64
5.4.2.9 EnumerateClasses .. 33 65
5.4.2.10 EnumerateClassNames .. 34 66
5.4.2.11 EnumerateInstances (DEPRECATED) ... 34 67
5.4.2.12 EnumerateInstanceNames (DEPRECATED) ... 36 68
5.4.2.13 ExecQuery (DEPRECATED) .. 37 69
5.4.2.14 Associators (PARTLY DEPRECATED)... 38 70
5.4.2.15 AssociatorNames (PARTLY DEPRECATED) ... 39 71
5.4.2.16 References (PARTLY DEPRECATED) ... 40 72
5.4.2.17 ReferenceNames (PARTLY DEPRECATED) ... 42 73
5.4.2.18 GetProperty (DEPRECATED) ... 43 74
5.4.2.19 SetProperty (DEPRECATED) ... 43 75
5.4.2.20 GetQualifier ... 44 76
5.4.2.21 SetQualifier .. 45 77
5.4.2.22 DeleteQualifier ... 45 78
5.4.2.23 EnumerateQualifiers ... 46 79
5.4.2.24 Pulled Enumeration Operations .. 46 80

5.4.3 Namespace Manipulation Using the CIM_Namespace Class 66 81
5.4.3.1 Namespace Creation .. 66 82
5.4.3.2 Namespace Deletion ... 67 83
5.4.3.3 Manipulation and Query of Namespace Information............................... 67 84
5.4.3.4 Use of the __Namespace Pseudo Class (DEPRECATED) 67 85

CIM Operations over HTTP DSP0200

4 Work in Progress — Not a DMTF Standard Version 1.4.0a

5.4.4 Functional Profiles ... 68 86
5.4.5 Extrinsic Method Invocation ... 69 87

5.5 CIM Export Syntax and Semantics ... 70 88
5.5.1 Export Method Invocations .. 70 89

5.5.1.1 Simple Export .. 71 90
5.5.1.2 Multiple Export ... 71 91
5.5.1.3 Status Codes ... 71 92

5.5.2 Export Methods .. 72 93
5.5.2.1 ExportIndication... 74 94

5.5.3 Functional Profiles ... 74 95

6 Encapsulation of CIM-XML Messages .. 75 96
6.1 WBEM clients, WBEM servers, and WBEM listeners ... 75 97
6.2 Use of M-POST ... 76 98

6.2.1 Use of the Ext Header ... 76 99
6.2.2 Naming of Extension Headers ... 76 100

6.3 Extension Headers Defined for CIM-XML Message Requests and Responses 77 101
6.3.1 Encoding of CIM Element Names within HTTP Headers and Trailers 77 102
6.3.2 Encoding of CIM Object Paths within HTTP Headers and Trailers 78 103
6.3.3 CIMOperation ... 79 104
6.3.4 CIMExport .. 80 105
6.3.5 CIMProtocolVersion ... 80 106
6.3.6 CIMMethod .. 81 107
6.3.7 CIMObject .. 81 108
6.3.8 CIMExportMethod .. 82 109
6.3.9 CIMBatch ... 83 110
6.3.10 CIMExportBatch ... 84 111
6.3.11 CIMError .. 84 112
6.3.12 CIMRoleAuthenticate ... 85 113
6.3.13 CIMRoleAuthorization .. 85 114
6.3.14 CIMStatusCodeDescription ... 86 115
6.3.15 WBEMServerResponseTime ... 86 116

7 HTTP Requirements and Usage ... 86 117
7.1 HTTP and HTTPS Support ... 86 118
7.2 Use of Standard HTTP Headers ... 87 119

7.2.1 Accept .. 87 120
7.2.2 Accept-Charset .. 87 121
7.2.3 Accept-Encoding .. 87 122
7.2.4 Accept-Language ... 88 123
7.2.5 Accept-Ranges .. 88 124
7.2.6 Allow .. 88 125
7.2.7 Authorization .. 88 126
7.2.8 Cache-Control .. 88 127
7.2.9 Connection ... 89 128
7.2.10 Content-Encoding .. 89 129
7.2.11 Content-Language ... 89 130
7.2.12 Content-Range ... 89 131
7.2.13 Content-Type ... 90 132
7.2.14 Expires ... 90 133
7.2.15 If-Range ... 90 134
7.2.16 Proxy-Authenticate... 90 135
7.2.17 Range .. 90 136
7.2.18 WWW-Authenticate.. 90 137

7.3 Errors and Status Codes .. 90 138
7.4 Security Considerations .. 92 139

7.4.1 Authentication .. 92 140
7.4.2 Message Encryption .. 93 141

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 5

7.5 Determining WBEM server Capabilities.. 93 142
7.5.1 Determining WBEM server Capabilities through CIM Classes 94 143
7.5.2 Determining WBEM server Capabilities through the HTTP Options 95 144

7.5.2.1 CIMSupportedFunctionalGroups ... 96 145
7.5.2.2 CIMSupportsMultipleOperations ... 97 146
7.5.2.3 CIMSupportedQueryLanguages (DEPRECATED) 97 147
7.5.2.4 CIMValidation .. 97 148

7.6 Other HTTP Methods .. 98 149
7.7 Discovery and Addressing .. 98 150
7.8 Internationalization Considerations ... 99 151

ANNEX A (Informative) Examples of Message Exchanges .. 100 152
A.1 Retrieval of a Single Class Definition .. 100 153
A.2 Retrieval of a Single Instance Definition ... 101 154
A.3 Deletion of a Single Class Definition ... 102 155
A.4 Deletion of a Single Instance Definition .. 103 156
A.5 Creation of a Single Class Definition .. 104 157
A.6 Creation of a Single Instance Definition.. 105 158
A.7 Enumeration of Class Names ... 106 159
A.8 Enumeration of Instances ... 107 160
A.9 Retrieval of a Single Property ... 108 161
A.10 Execution of an Extrinsic Method ... 110 162
A.11 Indication Delivery Example ... 111 163
A.12 Subscription Example ... 112 164
A.13 Multiple Operations Example .. 119 165

ANNEX B (informative) LocalOnly Parameter Discussion .. 122 166
B.1 Explanation of the Deprecated 1.1 Interpretation ... 122 167
B.2 Risks of Using the 1.1 Interpretation ... 123 168
B.3 Techniques for Differentiating between the 1.0 Interpretation and 1.1 Interpretation 124 169

ANNEX C (normative) Generic Operations Mapping .. 125 170
C.1 Operations .. 125 171

C.1.1 GetInstance .. 126 172
C.1.2 DeleteInstance ... 127 173
C.1.3 ModifyInstance ... 128 174
C.1.4 CreateInstance ... 128 175
C.1.5 GetClassInstancesWithPath .. 129 176
C.1.6 GetClassInstancePaths ... 130 177
C.1.7 GetAssociatedInstancesWithPath ... 131 178
C.1.8 GetAssociatedInstancePaths ... 132 179
C.1.9 GetReferencingInstancesWithPath .. 132 180
C.1.10 GetReferencingInstancePaths ... 134 181
C.1.11 OpenClassInstancesWithPath ... 135 182
C.1.12 OpenClassInstancePaths .. 136 183
C.1.13 OpenAssociatedInstancesWithPath .. 137 184
C.1.14 OpenAssociatedInstancePaths .. 138 185
C.1.15 OpenReferencingInstancesWithPath... 139 186
C.1.16 OpenReferencingInstancePaths .. 140 187
C.1.17 OpenQueryInstances ... 141 188
C.1.18 PullInstancesWithPath ... 142 189
C.1.19 PullInstancePaths .. 142 190
C.1.20 PullInstances .. 143 191
C.1.21 CloseEnumeration ... 144 192
C.1.22 EnumerationCount ... 144 193
C.1.23 InvokeMethod .. 144 194
C.1.24 InvokeStaticMethod ... 145 195
C.1.25 GetClass .. 146 196

CIM Operations over HTTP DSP0200

6 Work in Progress — Not a DMTF Standard Version 1.4.0a

C.1.26 DeleteClass .. 147 197
C.1.27 ModifyClass ... 147 198
C.1.28 CreateClass ... 148 199
C.1.29 GetTopClassesWithPath ... 148 200
C.1.30 GetTopClassPaths ... 149 201
C.1.31 GetSubClassesWithPath ... 150 202
C.1.32 GetSubClassPaths... 151 203
C.1.33 GetAssociatedClassesWithPath .. 151 204
C.1.34 GetAssociatedClassPaths ... 152 205
C.1.35 GetReferencingClassesWithPath .. 153 206
C.1.36 GetReferencingClassPaths ... 154 207
C.1.37 GetQualifierType .. 155 208
C.1.38 DeleteQualifierType ... 155 209
C.1.39 ModifyQualifierType ... 156 210
C.1.40 CreateQualifierType ... 156 211
C.1.41 EnumerateQualifierTypesWithPath ... 157 212

ANNEX D (informative) Change Log .. 159 213

Bibliography .. 161 214

 215

Tables 216

Table 1 – Status Codes Returned by an <Error> Child element .. 21 217

Table 2 – Mapping of Intrinsic Method Pseudo-Types to XML Elements ... 23 218

Table 3 – Root-Directed Tree of Functional Profile Dependencies .. 69 219

Table 4 – Symbolic Names for Referencing Error Codes ... 72 220

Table 5 – Mapping of Export Method Pseudo-Types to XML Elements ... 74 221

Table 6 – Functional Groups of Export Methods .. 75 222

Table 7 – Comparison of Properties Returned by GetInstance in Versions 1.0 and 1.1 123 223

Table 8 – Comparison of Properties Returned by a Call to GetInstance in Versions 1.0 and 1.1 124 224

Table 9 – Mapping of generic operations to CIM-XML operations ... 125 225

 226

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 7

Foreword 227

CIM Operations over HTTP (DSP0200) was prepared by the DMTF CIM-XML Working Group. 228

CIM Operations over HTTP DSP0200

8 Work in Progress — Not a DMTF Standard Version 1.4.0a

Introduction 229

This document defines a mapping of CIM-XML messages to the Hypertext Transfer Protocol (HTTP and 230
HTTPS) so that implementations of CIM can operate in an open, standardized manner. It also defines the 231
notion of conformance in the context of this mapping, and it describes the behavior an implementation of 232
CIM shall exhibit to be a conforming CIM implementation. 233

Unless otherwise noted, the term HTTP is used in this document to mean both HTTP and HTTPS. 234

This document is structured as follows: 235

 Clause 5 describes the CIM-XML messages that form the HTTP payload using XML. It specifies 236
the syntax and semantics of the message requests and their corresponding responses. 237

 Clause 6 describes the encapsulation of these messages in HTTP request and response 238
messages, with examples of each. It also describes the extension headers used to convey 239
additional CIM-specific semantics in the HTTP Header. 240

 Clause 7 presents details of other aspects of the encapsulation: 241

– HTTP version support 242

– Use of standard HTTP headers 243

– HTTP error codes 244

– Security considerations 245

Requirements 246

There are many different ways CIM-XML messages can be represented in XML and encapsulated within 247
HTTP messages. To attain interoperability among different implementations of CIM, both the XML 248
representation and the HTTP encapsulation must be standardized. The XML representation is defined in 249
DSP0201. DSP0203 and DSP8044 define the DTD and XSD for that XML representation, for 250
convenience. This document uses that XML representation to define the HTTP encapsulation. 251

The following criteria are applied to the representation of CIM-XML messages in XML using DSP0201: 252

 Each CIM-XML message is completely described in XML; completeness is favored over 253
conciseness. 254

 The set of CIM-XML messages provides enough functionality to enable implementations of CIM 255
to communicate effectively for management purposes. This release of the mapping does not 256
provide a complete set of messages. Rather, the goal is to define the mapping so that it admits 257
straightforward extension (by the addition of further features) in future versions. 258

 The set of CIM-XML messages is classified into functional profiles to accommodate a range of 259
implementations varying from complete support of all messages to support of a minimal subset. 260
The number of functional profiles is kept as small as possible to encourage interoperability, and 261
mechanisms provided by different CIM implementations can declare their level of support. 262

The following criteria are applied to the HTTP encapsulation of CIM-XML messages herein: 263

 In recognition of the large installed base of HTTP/1.0 systems, the encapsulation is designed to 264
support both HTTP/1.0 and HTTP/1.1. However, support for HTTP/1.0 has been deprecated in 265
version 1.4 of this document (see 7.1). 266

 The encapsulation does not introduce requirements that conflict with those stated in HTTP/1.0 267
or HTTP/1.1. 268

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 9

 Use of the encapsulation should be straightforward over the current base HTTP infrastructures. 269
Some features anticipate and exploit enhancements to this base, but no aspects of the 270
encapsulation require such enhancements as mandatory. 271

 The encapsulation avoids the use of pure HTTP tunneling or URL munging (for example, the 272
use of the "?" character) in favor of a mechanism that allows existing HTTP infrastructures to 273
control content safely. 274

 The encapsulation exposes key CIM-XML message information in headers to allow efficient 275
firewall/proxy handling. The information is limited to essentials so that it does not have a 276
significant impact on the size of the header. All CIM-specific information in a header also 277
appears within the CIM-XML message. 278

 There is a clear and unambiguous encapsulation of the CIM-XML message payload within the 279
HTTP message. Conciseness of the encapsulation is of secondary importance. 280

 281

CIM Operations over HTTP DSP0200

10 Work in Progress — Not a DMTF Standard Version 1.4.0a

 282

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 11

CIM Operations over HTTP 283

1 Scope 284

The Common Information Model (CIM) (for details, see DSP0004) is an object-oriented information model 285
defined by the Distributed Management Task Force (DMTF) that provides a conceptual framework for 286
describing management data. 287

The Hypertext Transfer Protocol (HTTP) (RFC1945, RFC2616) is an application-level protocol for 288
distributed, collaborative, hypermedia information systems. This generic stateless protocol can be used 289
for many tasks through extension of its request methods, error codes, and headers. 290

The Hypertext Transfer Protocol Secure (HTTPS) (RFC2818) is the usage of HTTP over secure sockets 291
provided by TLS. It supports encryption of the messages exchanged, secure identification of servers, and 292
secure authentication of clients. 293

NOTE: HTTPS should not be confused with Secure HTTP defined in RFC2660. 294

The Extensible Markup Language (XML) is a simplified subset of SGML that offers powerful and 295
extensible data modeling capabilities. An XML document is a collection of data represented in XML. An 296
XML schema is a grammar that describes the structure of an XML document. 297

This document defines a mapping of CIM-XML messages onto HTTP that allows implementations of CIM 298
to interoperate in an open, standardized manner. It is based on DSP0201 that defines the XML schema 299
for CIM objects and messages. 300

2 Normative References 301

The following referenced documents are indispensable for applying the information in this document while 302
developing an implementation of CIM. For dated references, only the edition cited applies. For undated 303
references, the latest edition applies, including any amendments. 304

DMTF DSP0004, Common Information Model (CIM) Infrastructure 2.7, 305
http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf 306

DMTF DSP0201, Representation of CIM in XML 2.4, 307
http://www.dmtf.org/standards/published_documents/DSP0201_2.4.pdf 308

DMTF DSP0212, Filter Query Language 1.0, 309
http://www.dmtf.org/standards/published_documents/DSP0212_1.0.pdf 310

DMTF DSP0223, Generic Operations 1.1, 311
http://www.dmtf.org/standards/published_documents/DSP0223_1.1.pdf 312

DMTF DSP8016, WBEM Operations Message Registry 1.1, 313
http://www.dmtf.org/standards/published_documents/DSP8016_1.1.xml 314

IETF RFC1766, Tags for the Identification of Languages, March 1995, 315
http://www.ietf.org/rfc/rfc1766.txt 316

IETF RFC1945, Hypertext Transfer Protocol – HTTP/1.0, May 1996, 317
http://www.ietf.org/rfc/rfc1945.txt 318

IETF RFC2246, The TLS Protocol, Version 1.0, January 1999, 319
http://www.ietf.org/rfc/rfc2246.txt 320

http://www.dmtf.org/standards/published_documents/DSP0004_2.7.pdf
http://www.dmtf.org/standards/published_documents/DSP0201_2.4.pdf
http://www.dmtf.org/standards/published_documents/DSP0212_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP0223_1.1.pdf
http://www.dmtf.org/standards/published_documents/DSP8016_1.1.xml
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2246.txt

CIM Operations over HTTP DSP0200

12 Work in Progress — Not a DMTF Standard Version 1.4.0a

IETF RFC2277, IETF Policy on Character Sets and Languages, January 1998, 321
http://www.ietf.org/rfc/rfc2277.txt 322

IETF RFC2279, UTF-8, a transformation format of Unicode and ISO 10646, January 1998, 323
http://www.ietf.org/rfc/rfc2279.txt 324

IETF RFC2376, XML Media Types, July 1998, 325
http://www.ietf.org/rfc/rfc2376.txt 326

IETF RFC2396, Uniform Resource Identifiers (URI): Generic Syntax, August 1998, 327
http://www.ietf.org/rfc/rfc2396.txt 328

IETF RFC2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999, 329
http://www.ietf.org/rfc/rfc2616.txt 330

IETF RFC2617, HTTP Authentication: Basic and Digest Access Authentication, June 1999, 331
http://www.ietf.org/rfc/rfc2617.txt 332

IETF RFC2774, HTTP Extension Framework, February 2000, 333
http://www.ietf.org/rfc/rfc2774.txt 334

IETF RFC2818, HTTP Over TLS, May 2000, 335
http://www.ietf.org/rfc/rfc2818.txt 336

IETF RFC4346, The Transport Layer Security (TLS) Protocol, Version 1.1, April 2006, 337
http://www.ietf.org/rfc/rfc4346.txt 338

IETF RFC5246, The Transport Layer Security (TLS) Protocol, Version 1.2, August 2008, 339
http://www.ietf.org/rfc/rfc5246.txt 340

NIST 800-57 Part 1, Recommendation for Key Management: Part 1: General (Revision 3), July 2012, 341
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf 342

NIST 800-131A, Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and 343
Key Lengths, January 2011, 344
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf 345

W3C Recommendation, Extensible Markup Language (XML), Version 1.0, August 2006, 346
http://www.w3.org/TR/REC-xml-names/ 347

W3C Recommendation, Namespaces in XML, January 1999, 348
http://www.w3.org/TR/1999/REC-xml-names-19990114/ 349

W3C, XML Schema Part 1: Structures, May 2001, 350
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/ 351

W3C, XSL Transformations (XSLT), Version 1.0, November 1999, 352
http://www.w3.org/TR/xslt 353

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 354
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 355

3 Terms and Definitions 356

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 357
are defined in this clause. 358

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"), 359
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 360

http://www.ietf.org/rfc/rfc2277.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xslt
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 13

in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term, 361
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note 362
thatISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional 363
alternatives shall be interpreted in their normal English meaning. 364

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as 365
described in ISO/IEC Directives, Part 2, Clause 5. 366

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 367
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 368
not contain normative content. Notes and examples are always informative elements. 369

The terms defined in DSP0004 and DSP0201 apply to this document. The following additional terms are 370
used in this document. Some additional more detailed terms are defined throughout the subclauses of 371
this document. 372

3.1 373

CIM element 374

one of the following components of the CIM metamodel used to define a schema: Class, instance, 375
property, method, parameter, or qualifier 376

3.2 377

CIM object 378

a namespace, class, instance, or qualifier that is accessible in a WBEM server 379

 380

CIM-XML protocol 381

the WBEM protocol that uses the CIM operations over HTTP defined in this document and the 382
representation of CIM in XML defined in DSP0201 383

3.3 384

WBEM client 385

the client role in the CIM-XML protocol and in other WBEM protocols. See 6.1 for a complete definition. 386

3.4 387

WBEM listener 388

the event listener role in the CIM-XML protocol and in other WBEM protocols. See 6.1 for a complete 389
definition. 390

3.5 391

WBEM protocol 392

a communications protocol between WBEM client, WBEM server and WBEM listener 393

3.6 394

WBEM server 395

the server role in the CIM-XML protocol and in other WBEM protocols. See 6.1 for a complete definition. 396

3.7 397

XML element 398

a component of XML that is defined using the ELEMENT construct in the DTD 399

CIM Operations over HTTP DSP0200

14 Work in Progress — Not a DMTF Standard Version 1.4.0a

4 Abbreviated Terms and Document Conventions 400

4.1 Abbreviated Terms 401

The following symbols and abbreviations are used in this document. 402

 403

CIM 404

Common Information Model 405

 406

DTD 407

Document Type Definition 408

 409

HTTP 410

Hypertext Transfer Protocol 411

 412

XML 413

Extensible Markup Language 414

4.2 Document Conventions 415

This document uses the same notational conventions and basic parsing constructs that are defined in 416
RFC2068. 417

Throughout this document, any deprecated element is indicated by one of the following labels: 418

 The “DEPRECATION NOTE:” label preceding a paragraph indicates that the paragraph 419
explains a deprecated element. 420

 The “DEPRECATED.” label before a list item indicates that the information in that list item is 421
deprecated. 422

 The “(DEPRECATED)” label after a heading applies to the entire clause for that heading. 423

 The “(DEPRECATED)” label at the end of a line in a code fragment or an example indicates that 424
the particular line of the code fragment or example is deprecated. 425

5 CIM-XML Message Syntax and Semantics 426

This document defines all interactions among CIM products as CIM-XML messages. A CIM-XML 427
message is a well-defined request or response data packet for exchanging information among CIM 428
products. The two types of CIM-XML messages are as follows: 429

 CIM-XML operation message. This type of message is used between WBEM client and WBEM 430
server to invoke an operation on the WBEM server. 431

 CIM-XML export message. This type of message is used between WBEM server and WBEM 432
listener to communicate information (typically an event) to a WBEM listener. 433

This clause describes the syntax and semantics of CIM-XML messages independently of their 434
encapsulation within a particular protocol such as HTTP. XML is used as the basis for this description, 435
and in particular the CIM Representation in XML (DSP0201). 436

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 15

Note that "CIM message" (etc.) was used for the term "CIM-XML message" (etc.) before version 1.4 of 437
this document. 438

5.1 Well-Formed, Valid, and Loosely Valid Documents 439

In this discussion, any reference to well-formed or valid XML documents has the standard meaning 440
defined in Extensible Markup Language (XML). 441

XML document type definitions (DTDs) are restricted to be either well-formed or valid. However, this 442
document also uses the term loosely valid to apply to XML that removes any attributes or elements in the 443
XML document that do not appear in the CIM XML DTD. The resulting document is valid with respect to 444
the CIM XML DTD and is therefore loosely valid. 445

In effect, a loosely valid document is valid with respect to the CIM XML DTD apart from having additional 446
attributes or elements not defined by that DTD. The concept is very similar to that of an open content 447
model as defined by the working draft on XML Schemas, expressed within the more limited scope of 448
DTDs. One corollary of this definition is that any XML document that is valid with respect to the CIM XML 449
DTD is also loosely valid. 450

The motivation for introducing the loosely valid class of XML documents is to relax the restrictions on a 451
WBEM client, WBEM server, or WBEM listener when parsing received XML documents defined within the 452
scope of this mapping. Not all clients (including their respective WBEM servers or WBEM listeners) 453
should be required to validate each received CIM-XML message response (or its respective CIM-XML 454
message request) because such a requirement would place too heavy a processing burden on the 455
validating entity at the expense of footprint and performance, most notably in communication between 456
robust and conformant implementations of this mapping. 457

Instead, the following requirements are set forth in this document. In all cases, a WBEM client has a 458
respective alternative WBEM server or WBEM listener, and a received CIM-XML message response has 459
a respective alternative CIM-XML message request: 460

 A WBEM client may include a DOCTYPE element in a CIM-XML message request. If so, an 461
external declaration should be used. In-lining of the complete DTD within a message is 462
discouraged. 463

 A WBEM client may elect to validate a received CIM-XML message response. 464

 If a WBEM client elects not to validate a received CIM-XML message, then loose validation 465
shall be enforced. 466

The behavior of a WBEM server or WBEM listener with respect to a received CIM-XML message request 467
is covered in detail in 7.3. 468

5.2 Operational Semantics 469

The CIM Representation in XML (DSP0201) defines a child element under the root <CIM> XML element 470
called <MESSAGE>, which contains one of the following XML child elements: 471

 CIM-XML operation message child elements 472

– <SIMPLEREQ> 473

– <SIMPLERSP> 474

– <MULTIREQ> 475

– <MULTIRSP> 476

 CIM-XML export message child elements 477

– <SIMPLEXPREQ> 478

CIM Operations over HTTP DSP0200

16 Work in Progress — Not a DMTF Standard Version 1.4.0a

– <SIMPLEXPRSP> 479

– <MULTIEXPREQ> 480

– <MULTIEXPRSP> 481

In the remainder of this document, the following terms denote an XML document that is loosely valid with 482
respect to the CIM XML DTD: 483

 Operation request message. Contains under the root <CIM> node a <MESSAGE> child 484
element that has a <MULTIREQ> or <SIMPLEREQ> child element under it. 485

 Operation response message. Contains under the root <CIM> node a <MESSAGE> child 486
element that has a <MULTIRSP> or <SIMPLERSP> child element under it. 487

 Export request message. Contains under the root <CIM> node a <MESSAGE> child element 488
that has a <MULTIEXPREQ> or <SIMPLEEXPREQ> child element under it. 489

 Export response message. Contains under the root <CIM> node a <MESSAGE> child element 490
that has a <MULTIEXPRSP> or <SIMPLEEXPRSP> child element under it. 491

The phrase "CIM-XML message request" refers to either an operation request message or an export 492
request message. The phrase "CIM-XML message response" refers to either an operation response 493
message or an export response message. 494

A CIM-XML message request shall contain a non-empty value for the ID attribute of the <MESSAGE> 495
element. The corresponding CIM-XML message response shall supply the same value for that attribute. 496
Clients should employ a message ID scheme that minimizes the chance of receiving a stale CIM-XML 497
message response. 498

Any CIM-XML message conforming to this document shall have a minimum value of "1.0" and a 499

maximum value that is equal to the latest version of this document for the PROTOCOLVERSION attribute of 500

the <MESSAGE> element. 501

An operation response message sent in response to an operation request message shall specify the 502

same value for the ID attribute of the <MESSAGE> element that appears in the request message and 503

contain one of the following: 504

– A <MULTIRSP> child element, if the operation request message contains a <MULTIREQ> 505
child element. 506

– A <SIMPLERSP> child element, if the operation request message contains a 507
<SIMPLEREQ> child element. 508

A simple operation request is an operation request message that contains a <SIMPLEREQ> child 509
element. A simple operation response is an Operation Response Message that contains a 510
<SIMPLERSP> child element. 511

A multiple operation request is an operation request message that contains a <MULTIREQ> child 512
element. A multiple operation response is an operation response message that contains a <MULTIRSP> 513
child element. 514

An export response message sent in response to an export request message shall specify the same 515
value for the ID attribute of the <MESSAGE> element that appears in the export request message and 516
shall contain one of the following: 517

– A <MULTIEXPRSP> child element if the export request message contained a 518
<MULTIEXPREQ> child element, or 519

– A <SIMPLEEXPRSP> child element if the export request message contained a 520
<SIMPLEEXPREQ> child element. 521

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 17

A simple export request is an export request message that contains a <SIMPLEEXPREQ> child element. 522
A simple export response is an export response message that contains a <SIMPLEEXPRSP> child 523
element. 524

A multiple export request is an export request message that contains a <MULTIEXPREQ> child element. 525
A multiple export response is an export response message that contains a <MULTIEXPRSP> child 526
element. 527

5.3 Operation Correlators 528

5.3.1 Overview 529

WBEM servers may support maintaining a log to record certain aspects of operations requested by 530
clients. The log data can provide a record of access, activity, configuration changes or audit related 531
information. The purpose of audit related information is to identify what was done when servicing the 532
operation, when it was done, and on behalf of which end user the operation was requested. In some 533
environments, providing such audit information is a matter of regulatory compliance. 534

The credentials used for authentication with a WBEM server are not necessarily associated with the 535
identity of an end user. For example, when the client application is a management server handling 536
multiple end users, it is not uncommon to use the credentials of a system user (e.g. user "root" on Linux 537
or UNIX systems) for authentication with the WBEM server. In such environments, a log on the WBEM 538
server can only record the identity of the system user that was used for authentication, but not the identity 539
of the end user on behalf of which the operation was requested. 540

Version 1.4 of this document introduced the concept of operation correlators which are named values that 541
can be included by WBEM clients in operation request messages so that a WBEM server can add these 542
correlators to any logs it maintains. To maintain symmetry, export request messages can also include 543
operation correlators for use in any logs a WBEM listener may maintain. 544

The meaning of operation correlators is defined by the originator of the message and does not need to be 545
understood by the receiver of the message; the receiver only stores the operation correlator along with 546
any log entries about the message. 547

5.3.2 Representation 548

Operation correlators are represented in the CIM-XML protocol using the CORRELATOR element. Each 549
occurence of a CORRELATOR element represents one operation correlator. For details, see DSP0201. 550

Zero or more operation correlators may be specified in simple operation request messages and in simple 551
extrinsic request messages. Since the operations in a multiple operation may not have any semantic 552
relationship within each other, the operation correlators are specified only at the level of simple operations 553
within the multipe operation; operation correlators cannot be specified at the level of multiple operations. 554

This document defines no requirements on the number, content or meaning of operation correlators. 555

5.3.3 Implementation Requirements and Compatibility for Operation Messages 556

Supporting operation correlators for WBEM clients is optional. If a WBEM client implements support for 557
operation correlators, it may include zero or more operation correlators in a simple operation request 558
message. The number, content and meaning of operation correlators may be different in each operation. 559

Supporting operation correlators for WBEM servers for its operation messages is optional. If a WBEM 560
server implements support for operation correlators for its operation messages, it shall store the operation 561
correlators specified in a simple operation request message along with any log information about the 562
operation. If the operation itself is not logged on the server, the correlator also does not need to be 563

CIM Operations over HTTP DSP0200

18 Work in Progress — Not a DMTF Standard Version 1.4.0a

logged. In order to avoid vulnerabilities by specification of excessive amounts of operation correlators, 564
WBEM servers may implement limits on operation correlators. 565

Since participants in the protocol defined by this document are required to ignore any unknown XML 566
elements in messages they receive, introducing support for operation correlators in WBEM clients is 567
compatible for WBEM servers that do not support them. 568

5.3.4 Implementation Requirements and Compatibility for Export Messages 569

Supporting operation correlators for WBEM servers for its export messsages is optional. If a WBEM 570
server implements support for operation correlators for its export messsages, it may include zero or more 571
operation correlators in a simple export request message. The number, content and meaning of operation 572
correlators may be different in each export message. 573

Supporting operation correlators for WBEM listeners is optional. If a WBEM listener implements support 574
for operation correlators, it shall store the operation correlators specified in a simple export request 575
message along with any log information about the export message. If the export message itself is not 576
logged on the listener, the correlator also does not need to be logged. In order to avoid vulnerabilities by 577
specification of excessive amounts of operation correlators, WBEM listeners may implement limits on 578
operation correlators. 579

Since participants in the protocol defined by this document are required to ignore any unknown XML 580
elements in messages they receive, introducing support for operation correlators in WBEM servers for its 581
export messsages is compatible for WBEM listeners that do not support them. 582

5.4 CIM Operation Syntax and Semantics 583

This clause describes method invocations, intrinsic methods, and namespace manipulation. 584

5.4.1 Method Invocations 585

All CIM-XML operation requests defined for this CIM-to-HTTP mapping are defined as invocations of one 586
or more methods. A method can be either: 587

 An intrinsic method, which is defined for the purposes of modeling a CIM operation. 588

 An extrinsic method, which is defined on a CIM class in a schema. 589

In addition, intrinsic methods are made against a CIM namespace. Extrinsic methods are invoked on a 590
CIM class (if static) or instance otherwise. Intrinsic methods are defined in 5.4.2. 591

An extrinsic method call is represented in XML by the <METHODCALL> element, and the response to 592
that call is represented by the <METHODRESPONSE> element. 593

An intrinsic method call is represented in XML by the <IMETHODCALL> element, and the response to 594
that call is represented by the <IMETHODRESPONSE> element. An input parameter has an IN qualifier 595

(with a value of true) in the method definition, and an output parameter has an OUT qualifier (with a 596

value of true). A parameter can be both an input and an output parameter. 597

The <METHODCALL> or <IMETHODCALL> element names the method to be invoked and supplies any 598
input parameters to the method call. Note the following rules about parameters: 599

 Each input parameter shall be named using the name assigned in the method definition. 600

 Input parameters may be supplied in any order. 601

 Each input parameter of the method, and no others, shall be present in the call, unless it is 602
optional. 603

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 19

The <METHODRESPONSE> or <IMETHODRESPONSE> element defines either an <ERROR> or an 604
optional return value and output parameters if it is decorated with the OUT qualifier in the method 605
definition. In the latter case, the following rules about parameters apply: 606

 Each output parameter shall be named using the name assigned in the method definition. 607

 Output parameters may be supplied in any order. 608

 Each output parameter of the method, and no others, shall be present in the response, unless it 609
is optional. 610

 The method invocation process can be thought of as the binding of the input parameter values 611
specified as child elements of the <METHODCALL> or <IMETHODCALL> element to the input 612
parameters of the method. This binding is followed by an attempt to execute the method using 613
the bound input parameters with one of the following results: 614

– If the attempt to call the method is successful, the return value and output parameters are 615
bound to the child elements of the <METHODRESPONSE> or <IMETHODRESPONSE> 616
element. 617

– If the attempt to call the method is unsuccessful, an error code and optional human-618
readable description of that code is bound to the <METHODRESPONSE> or 619
<IMETHODRESPONSE> element. 620

5.4.1.1 Simple Operations 621

A simple operation invokes a single method. A simple operation request is represented by a 622
<SIMPLEREQ> element, and a simple operation response is represented by a <SIMPLERSP> element. 623

If the method is intrinsic, then the <SIMPLEREQ> element shall contain an <IMETHODCALL> element, 624
which in turn contains a <LOCALNAMESPACEPATH> child element identifying the local CIM namespace 625
against which the method is to execute. If the method is extrinsic, then the <SIMPLEREQ> element shall 626
contain a <METHODCALL> element that in turn contains one of the following child elements: 627

 A <LOCALCLASSPATH> child element identifying the CIM class on which the method is to be 628
invoked if the method is static. 629

 A <LOCALINSTANCEPATH> child element identifying the CIM instance on which the method is 630
otherwise to be invoked. 631

5.4.1.2 Multiple Operations 632

A multiple operation requires the invocation of more than one method. A multiple operation request is 633
represented by a <MULTIREQ> element, and a multiple operation response is represented by a 634
<MULTIRSP> element. 635

A <MULTIREQ> (or its respective <MULTIRSP>) element is a sequence of two or more <SIMPLEREQ> 636
(or their respective <SIMPLERSP>) elements. 637

A <MULTIRSP> element shall contain a <SIMPLERSP> element for every <SIMPLEREQ> element in the 638
corresponding multiple operation response. These <SIMPLERSP> elements shall be in the same order 639
as their <SIMPLEREQ> counterparts so that the first <SIMPLERSP> in the response corresponds to the 640
first <SIMPLEREQ> in the request, and so forth. 641

Multiple operations conveniently allow multiple method invocations to be batched into a single HTTP 642
message. Batching reduces the number of roundtrips between a WBEM client and a WBEM server and 643
allows the WBEM server to make internal optimizations if it chooses. Note that multiple operations do not 644
confer any transactional capabilities in processing the request. For example, the WBEM server does not 645
have to guarantee that the constituent method calls either all fail or succeed, only that the entity make a 646
"best effort" to process the operation. However, servers shall finish processing each operation in a 647

CIM Operations over HTTP DSP0200

20 Work in Progress — Not a DMTF Standard Version 1.4.0a

batched operation before executing the next one. Clients shall recognize that the order of operations 648
within a batched operation is significant. 649

Not all WBEM servers support multiple operations; the way they declare support for this feature is defined 650
in 7.5. 651

5.4.1.3 Status Codes 652

This clause defines the status codes and detailed error information that a conforming WBEM server 653
application can return. The value of an <ERROR> child element within a <METHODRESPONSE> or 654
<IMETHODRESPONSE> element includes the following parts: 655

 a mandatory status code 656

 an optional human-readable description of the status code 657

 zero or more CIM_Error instances 658

Table 1 defines the status codes that a conforming WBEM server application can return as the value of 659
the CODE attribute of an <ERROR> child element. In addition to a status code, a conforming WBEM 660
server may return zero or more <INSTANCE> child elements as part of an <ERROR> element. Each 661
<INSTANCE> child element shall be an instance of CIM_Error. For each instance of CIM_Error, the value 662
of CIMStatusCode shall comply with the definition of expected error codes for the CIM-XML operation 663
request. A WBEM client may ignore any <INSTANCE> child elements. 664

The symbolic names defined in Table 1 do not appear on the wire. They are used here solely for 665
convenient reference to an error in other parts of this document. 666

Not all methods are expected to return all the status codes listed in Table 1. For intrinsic methods, the 667
relevant clause on each method in this document defines the error codes expected to be returned. For 668
extrinsic methods, 5.4.5 specifies which of the codes in Table 1 can be used. 669

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 21

Table 1 – Status Codes Returned by an <Error> Child element 670

Symbolic Name Code Definition

CIM_ERR_FAILED 1 A general error occurred that is not
covered by a more specific error
code.

CIM_ERR_ACCESS_DENIED 2 Access to a CIM resource is not
available to the client.

CIM_ERR_INVALID_NAMESPACE 3 The target namespace does not
exist.

CIM_ERR_INVALID_PARAMETER 4 One or more parameter values
passed to the method are not valid.

CIM_ERR_INVALID_CLASS 5 The specified class does not exist.

CIM_ERR_NOT_FOUND 6 The requested object cannot be
found. The operation can be
unsupported on behalf of the WBEM
server in general or on behalf of an
implementation of a management
profile.

CIM_ERR_NOT_SUPPORTED 7 The requested operation is not
supported on behalf of the WBEM
server, or on behalf of a provided
class. If the operation is supported
for a provided class but is not
supported for particular instances of
that class, then CIM_ERR_FAILED
shall be used.

CIM_ERR_CLASS_HAS_CHILDREN 8 The operation cannot be invoked on
this class because it has subclasses.

CIM_ERR_CLASS_HAS_INSTANCES 9 The operation cannot be invoked on
this class because one or more
instances of this class exist.

CIM_ERR_INVALID_SUPERCLASS 10 The operation cannot be invoked
because the specified superclass
does not exist.

CIM_ERR_ALREADY_EXISTS 11 The operation cannot be invoked
because an object already exists.

CIM_ERR_NO_SUCH_PROPERTY 12 The specified property does not
exist.

CIM_ERR_TYPE_MISMATCH 13 The value supplied is not compatible
with the type.

CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED 14 The query language is not
recognized or supported.

CIM_ERR_INVALID_QUERY 15 The query is not valid for the
specified query language.

CIM_ERR_METHOD_NOT_AVAILABLE 16 The extrinsic method cannot be
invoked.

CIM_ERR_METHOD_NOT_FOUND 17 The specified extrinsic method does
not exist.

CIM Operations over HTTP DSP0200

22 Work in Progress — Not a DMTF Standard Version 1.4.0a

Symbolic Name Code Definition

CIM_ERR_NAMESPACE_NOT_EMPTY 20 The specified namespace is not
empty.

CIM_ERR_INVALID_ENUMERATION_CONTEXT 21 The enumeration identified by the
specified context cannot be found, is
in a closed state, does not exist, or
is otherwise invalid.

CIM_ERR_INVALID_OPERATION_TIMEOUT 22 The specified operation timeout is
not supported by the WBEM server.

CIM_ERR_PULL_HAS_BEEN_ABANDONED 23 The Pull operation has been
abandoned due to execution of a
concurrent CloseEnumeration
operation on the same enumeration.

CIM_ERR_PULL_CANNOT_BE_ABANDONED 24 The attempt to abandon a
concurrent Pull operation on the
same enumeration failed. The
concurrent Pull operation proceeds
normally.

CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 25 Using a a filter query in pulled
enumerations is not supported by
the WBEM server.

CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 26 The WBEM server does not support
continuation on error.

CIM_ERR_SERVER_LIMITS_EXCEEDED 27 The WBEM server has failed the
operation based upon exceeding
server limits.

CIM_ERR_SERVER_IS_SHUTTING_DOWN 28 The WBEM server is shutting down
and cannot process the operation.

5.4.2 Intrinsic Methods 671

This clause describes the Intrinsic methods defined outside the schema for CIM operations. These 672
methods can only be called on a CIM namespace, rather than on a CIM class or instance. 673

The notation used in the following subclauses to define the signatures of the intrinsic methods is a 674
pseudo-MOF notation that extends the standard MOF BNF (DSP0004) for describing CIM methods with 675
several pseudo-parameter types enclosed within angle brackets (< and >). 676

This notation decorates the parameters with pseudo-qualifiers (IN, OUT, OPTIONAL, and NULL) to define 677
their invocation semantics. These qualifiers are for description purposes only within the scope of this 678
document; in particular, a WBEM client shall not specify them in intrinsic method invocations. 679

This notation uses the IN qualifier to denote that the parameter is an input parameter. 680

This notation uses the OUT qualifier to denote that the parameter is an output parameter. 681

A WBEM client may omit an optional parameter by not specifying an <IPARAMVALUE> element for that 682
parameter if the required value is the specified default. It shall not omit a parameter that is not marked as 683
optional. A WBEM server may omit support for an optional parameter. Any attempt to call a method with 684
an optional parameter that is not supported shall return either CIM_ERR_NOT_SUPPORTED or 685
CIM_ERR_INVALID_PARAMETER. 686

This notation uses the NULL qualifier for parameters whose values can be specified as NULL in a method 687
call. A NULL (unassigned) value for a parameter is specified by an <IPARAMVALUE> or 688

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 23

<PARAMVALUE> element with no child element. For parameters without the NULL qualifier, the WBEM 689
client shall specify a value by including a suitable child element for the <IPARAMVALUE> or 690
<PARAMVALUE> element. 691

All parameters shall be uniquely named and shall correspond to a valid parameter name for that method 692
as described by this document. The order of the parameters is not significant. 693

The non-NULL values of intrinsic method parameters or return values modeled as standard CIM types 694
(such as string and Boolean or arrays thereof) are represented as follows: 695

 Simple values use the <VALUE> child element within an <IPARAMETER> element for method 696
parameters or within an <IRETURNVALUE> element for method return values. 697

 Array values use the <VALUE.ARRAY> child element within an <IPARAMETER> element for 698
method parameters or within an <IRETURNVALUE> element for method return values. 699

Table 2 shows how each pseudo-type used by the intrinsic methods shall be mapped to an XML element 700
described in DSP0201 in the context of both a parameter value (child element of <IPARAMVALUE>) and 701
a return value (child element of <IRETURNVALUE>). 702

Table 2 – Mapping of Intrinsic Method Pseudo-Types to XML Elements 703

Type XML Element

<object> (VALUE.OBJECT|VALUE.OBJECTWITHLOCALPATH|VALUE.OBJECTWITHPATH)

<class> CLASS

<instance> INSTANCE

<className> CLASSNAME

<namedInstance> VALUE.NAMEDINSTANCE

<instanceName> INSTANCENAME

<instancePath> INSTANCEPATH

<objectWithPath> VALUE.OBJECTWITHPATH

<instanceWithPath> VALUE.INSTANCEWITHPATH

<objectName> (CLASSNAME|INSTANCENAME)

<objectPath> OBJECTPATH

<propertyValue> (VALUE|VALUE.ARRAY|VALUE.REFERENCE)

<qualifierDecl> QUALIFIER.DECLARATION

5.4.2.1 GetClass 704

The GetClass operation returns a single CIM class from the target namespace: 705

<class> GetClass (706

 [IN] <className> ClassName, 707

 [IN,OPTIONAL] boolean LocalOnly = true, 708

 [IN,OPTIONAL] boolean IncludeQualifiers = true, 709

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 710

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 711
) 712

The ClassName input parameter defines the name of the class to be retrieved. 713

CIM Operations over HTTP DSP0200

24 Work in Progress — Not a DMTF Standard Version 1.4.0a

If the LocalOnly input parameter is true, any CIM elements (properties, methods, and qualifiers), 714

except those added or overridden in the class as specified in the classname input parameter, shall not be 715
included in the returned class. If it is false, no additional filtering is defined. 716

If the IncludeQualifiers input parameter is true, all qualifiers for that class (including qualifiers on 717

the class and on any returned properties, methods, or method parameters) shall be included as 718

<QUALIFIER> XML elements in the response. If it is false, no <QUALIFIER> XML elements are present 719

in the returned class. 720

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 721

all appropriate elements in the returned class. If it is false, no CLASSORIGIN attributes are present in 722

the returned class. 723

If the PropertyList input parameter is not NULL, the members of the array define one or more property 724

names. The returned class shall not include any properties missing from this list. Note that if LocalOnly 725

is specified as true, it acts as an additional filter on the set of properties returned. For example, if 726

property A is included in PropertyList but LocalOnly is set to true and A is not local to the 727

requested class, it is not included in the response. If the PropertyList input parameter is an empty 728

array, no properties are included in the response. If the PropertyList input parameter is NULL, no 729

additional filtering is defined. 730

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 731

process the request normally. If PropertyList contains property names that are invalid for the target 732

class, the WBEM server shall ignore them but otherwise process the request normally. 733

If GetClass is successful, the return value is a single CIM class that shall include all CIM elements 734
(properties, methods, and qualifiers) defined in or inherited by that class, reduced by any elements 735

excluded as a result of using the LocalOnly or PropertyList filters. 736

If GetClass is unsuccessful, this method shall return one of the following status codes, where the error 737
returned is the first applicable error in the list, starting with the first element and working down. Any 738
additional method-specific interpretation of the error is enclosed in parentheses: 739

 CIM_ERR_ACCESS_DENIED 740

 CIM_ERR_INVALID_NAMESPACE 741

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise 742
incorrect parameters) 743

 CIM_ERR_NOT_FOUND (The request CIM class does not exist in the specified namespace.) 744

 CIM_ERR_FAILED (Some other unspecified error occurred.) 745

5.4.2.2 GetInstance 746

The GetInstance operation returns a single CIM instance from the target namespace: 747

<instance> GetInstance (748

 [IN] <instanceName> InstanceName, 749

 [IN,OPTIONAL] boolean LocalOnly = true, (DEPRECATED) 750

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 751

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 752

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 753

) 754

The InstanceName input parameter defines the name of the instance to be retrieved. 755

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 25

DEPRECATION NOTE: With version 1.2 of this document, the LocalOnly parameter is DEPRECATED. 756

LocalOnly filtering, as defined in 1.1, will not be supported in the next major revision of this document. 757

In version 1.1 of this document, the definition of the LocalOnly parameter was incorrectly modified. This 758

change introduced a number of interoperability and backward compatibility problems for WBEM clients 759

using the LocalOnly parameter to filter the set of properties returned. The DMTF strongly recommends 760

that WBEM clients set LocalOnly to false and do not use this parameter to filter the set of properties 761

returned. To minimize the impact of this recommendation on WBEM clients, a WBEM server may choose 762

to treat the value of the LocalOnly parameter as false for all requests. A WBEM server shall 763

consistently support a single interpretation of the LocalOnly parameter. Refer to ANNEX B for additional 764

details. 765

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 766

be removed in a future version of this document. The IncludeQualifiers parameter definition is 767

ambiguous and when it is set to true, WBEM clients cannot be assured that any qualifiers will be 768

returned. A WBEM client should always set IncludeQualifiers to false. To minimize the impact of 769

this recommendation on WBEM clients, a WBEM server may choose to treat the value of the 770

IncludeQualifiers parameter as false for all requests. The preferred behavior is to use the class 771

operations to receive qualifier information and not depend on any qualifiers existing in this response. If 772

the IncludeQualifiers input parameter is true, all qualifiers for that instance (including qualifiers on 773

the instance and on any returned properties) shall be included as <QUALIFIER> XML elements in the 774

response. If it is false, no <QUALIFIER> XML elements are present. 775

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 776

all appropriate elements in the returned instance. If it is false, no CLASSORIGIN attributes are present. 777

If the PropertyList input parameter is not NULL, the members of the array define one or more property 778

names. The returned instance shall not include any properties missing from this list. Note that if 779

LocalOnly is true, this acts as an additional filter on the set of properties returned. For example, if 780

property A is included in PropertyList but LocalOnly is set to true and A is not local to the 781

requested instance, it is not included in the response. If the PropertyList input parameter is an empty 782

array, no properties are included in the response. If the PropertyList input parameter is NULL, no 783

additional filtering is defined. 784

If PropertyList contains duplicate property names, the WBEM server shall ignore the duplicates but 785

otherwise process the request normally. If PropertyList contains property names that are invalid for 786

the target instance, the WBEM server shall ignore them but otherwise process the request normally. 787

Properties with the NULL value may be omitted from the response, even if the WBEM client has not 788

requested the exclusion of the property through the LocalOnly or PropertyList filters. The WBEM 789

client shall interpret such omitted properties as NULL. Note that the WBEM client cannot make any 790

assumptions about properties omitted as a result of using LocalOnly or PropertyList filters. 791

If GetInstance is successful, the return value is a single CIM instance with all properties defined in and 792

inherited by its class reduced by any properties excluded as a result of using the LocalOnly or 793

PropertyList filters and further reduced by any NULL valued properties omitted from the response. 794

If GetInstance is unsuccessful, the method shall return one of the following status codes where the error 795
returned is the first applicable error in the list, starting with the first element and working down. Any 796
additional method-specific interpretation of the error is enclosed in parentheses: 797

 CIM_ERR_ACCESS_DENIED 798

 CIM_ERR_INVALID_NAMESPACE 799

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 800
incorrect parameters) 801

CIM Operations over HTTP DSP0200

26 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 802

 CIM_ERR_NOT_FOUND (The CIM class does exist, but the requested CIM instance does not 803
exist in the specified namespace.) 804

 CIM_ERR_FAILED (some other unspecified error occurred) 805

5.4.2.3 DeleteClass 806

The DeleteClass operation deletes a single CIM class from the target namespace: 807

void DeleteClass (808

 [IN] <className> ClassName 809

) 810

The ClassName input parameter defines the name of the class to be deleted. 811

If DeleteClass is successful, the WBEM server removes the specified class, including any subclasses and 812
any instances. The operation shall fail if any one of these objects cannot be deleted. 813

If DeleteClass is unsuccessful, this method shall return one of the following status codes, where the error 814
returned is the first applicable error in the list, starting with the first element and working down. Any 815
additional method-specific interpretation of the error is enclosed in parentheses: 816

 CIM_ERR_ACCESS_DENIED 817

 CIM_ERR_NOT_SUPPORTED 818

 CIM_ERR_INVALID_NAMESPACE 819

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 820
incorrect parameters) 821

 CIM_ERR_NOT_FOUND (The CIM class to be deleted does not exist.) 822

 CIM_ERR_CLASS_HAS_CHILDREN (The CIM class has one or more subclasses that cannot 823
be deleted.) 824

 CIM_ERR_CLASS_HAS_INSTANCES (The CIM class has one or more instances that cannot 825
be deleted.) 826

 CIM_ERR_FAILED (Some other unspecified error occurred.) 827

5.4.2.4 DeleteInstance 828

The DeleteInstance operation deletes a single CIM instance from the target namespace. 829

void DeleteInstance (830

 [IN] <instanceName> InstanceName 831

) 832

The InstanceName input parameter defines the name (model path) of the instance to be deleted. 833

Deleting the instance may or may not cause the automatic deletion of additional instances. For example, 834
the deletion of an instance may cause the automatic deletion of all associations that reference that 835
instance. Or the deletion of an instance may cause the automatic deletion of instances (and their 836
associations) that have a Min(1) relationship to that instance. 837

If DeleteInstance is successful, the WBEM server removes the specified instance. 838

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 27

If DeleteInstance is unsuccessful, this method shall return one of the following status codes, where the 839
error returned is the first applicable error in the list, starting with the first element and working down. Any 840
additional method-specific interpretation of the error is enclosed in parentheses. 841

 CIM_ERR_ACCESS_DENIED 842

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 843

 CIM_ERR_INVALID_NAMESPACE 844

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 845
incorrect parameters) 846

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 847

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 848
instance, if provided.) 849

 CIM_ERR_NOT_FOUND (The CIM class does exist, but the requested CIM instance does not 850
exist in the specified namespace.) 851

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 852
unspecified error occurred.) 853

5.4.2.5 CreateClass 854

The CreateClass operation creates a single CIM class in the target namespace. The class shall not 855
already exist: 856

void CreateClass (857

 [IN] <class> NewClass 858

) 859

The NewClass input parameter defines the new class. The proposed definition shall be a correct class 860

definition according to DSP0004. 861

In processing the creation of the new class, the WBEM server shall conform to the following rules: 862

 The server shall ignore any CLASSORIGIN and PROPAGATED XML attributes in the new 863
class. 864

 If the new class has no superclass, the NewClass parameter defines a new superclass. The 865

server shall ensure that all properties and methods of the new class have a CLASSORIGIN 866
attribute whose value is the name of the new class. 867

 If the new class has a superclass, the NewClass parameter defines a new subclass of that 868

superclass. The superclass shall exist. The server shall ensure that the following conditions are 869
met: 870

– Any properties, methods, or qualifiers in the subclass not defined in the superclass are 871
created as new elements of the subclass. In particular, the server shall set the 872
CLASSORIGIN XML attribute on the new properties and methods to the name of the 873
subclass and ensure that all others preserve their CLASSORIGIN attribute value from that 874
defined in the superclass. 875

– If a property is defined in the superclass and in the subclass, the value assigned to that 876
property in the subclass (including NULL) becomes the default value of the property for the 877
subclass. 878

– If a property or method of the superclass is not specified in the subclass, then it is inherited 879
without modification by the subclass. 880

CIM Operations over HTTP DSP0200

28 Work in Progress — Not a DMTF Standard Version 1.4.0a

– Any qualifiers defined in the superclass with a TOSUBCLASS attribute value of true shall 881

appear in the resulting subclass. Qualifiers in the superclass with a TOSUBCLASS 882

attribute value of false shall not be propagated to the subclass. 883

– Any qualifier propagated from the superclass cannot be modified in the subclass if the 884

OVERRIDABLE attribute of that qualifier is set to false in the superclass. It is a client 885

error to specify such a qualifier in the new class with a definition different than that in the 886
superclass (where definition encompasses the name, type, and flavor attribute settings of 887
the <QUALIFIER> XML element and the value of the qualifier). 888

If CreateClass is successful, the WBEM server creates the specified class. 889

If CreateClass is unsuccessful, this method shall return one of the following status codes, where the error 890
returned is the first applicable error in the list, starting with the first element and working down. Any 891
additional method-specific interpretation of the error is enclosed in parentheses. 892

 CIM_ERR_ACCESS_DENIED 893

 CIM_ERR_NOT_SUPPORTED 894

 CIM_ERR_INVALID_NAMESPACE 895

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 896
incorrect parameters) 897

 CIM_ERR_ALREADY_EXISTS (The CIM class already exists.) 898

 CIM_ERR_INVALID_SUPERCLASS (The putative CIM class declares a non-existent 899
superclass.) 900

 CIM_ERR_FAILED (Some other unspecified error occurred.) 901

5.4.2.6 CreateInstance 902

The CreateInstance operation creates a single CIM Instance in the target namespace. The instance shall 903
not already exist: 904

<instanceName> CreateInstance (905

 [IN] <instance> NewInstance 906

) 907

DEPRECATION NOTE: The use of qualifiers on instances is DEPRECATED and may be removed in a 908
future version of this document. A WBEM client cannot rely on any qualifiers included in the 909

NewInstance to have any impact on the operation. It is recommended that the WBEM server ignore any 910

qualifiers included in the instance. The NewInstance input parameter defines the new instance. The 911

proposed definition shall be a correct instance definition for the underlying CIM class according to 912
DSP0004. 913

In creating the new instance, the WBEM server shall conform to the following rules and ensure that they 914
are applied: 915

 The server shall ignore any CLASSORIGIN and PROPAGATED XML attributes in the 916

NewInstance. 917

 DEPRECATED. Any qualifiers in the instance not defined in the class are created as new 918
elements of the instance. 919

 All properties of the instance preserve their CLASSORIGIN attribute value from that defined in 920
the class. 921

 The designated initial value for any property in the CIM instance to be created shall be the 922

property value (including NULL) specified in the NewInstance parameter, or if the property is 923

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 29

not specified in the NewInstance parameter, the default value (including NULL) defined in the 924

property declaration, or if the property does not define a default value, there is no designated 925
initial value for the property. 926

If there is a designated initial value for a property, the server shall either initialize the property to 927
that value, or reject the request. If there is no designated initial value for a property, the server 928
may initialize the property to any value (including NULL). Further considerations for accepting or 929
rejecting creation requests based on the properties requested to be initialized are out of scope 930
for this document; CIM model definitions are expected to cover that. 931

 If the NewInstance parameter specifies properties that are not exposed by the class specified 932

in the NewInstance parameter, the server shall reject the request. 933

 DEPRECATION NOTE: Use of the TOINSTANCE attribute is DEPRECATED. Servers may 934
choose to ignore TOINSTANCE. Servers that do not ignore TOINSTANCE shall interpret it so 935

that any qualifiers defined in the class with a TOINSTANCE attribute value of true appear in 936

the instance. Qualifiers in the class with a value of false shall not be propagated to the 937

instance. 938

 DEPRECATED. Any Qualifier propagated from the class cannot be modified in the instance if 939

the OVERRIDABLE attribute of that qualifier is set to false in the class. It is a client error to 940

specify such a qualifier in the NewInstance with a definition different than that in the class 941

(where definition encompasses the name, type, and flavor attribute settings of the 942
<QUALIFIER> XML element and the value of the qualifier). 943

If CreateInstance is successful, the new CIM instance has been created as described in this subclause, 944
and the return value defines the object path of the new CIM instance relative to the target namespace 945
created by the WBEM server (that is, the model path as defined by DSP0004). It is returned if one or 946
more of the new keys of the instance are dynamically allocated during creation rather than specified in the 947
request. 948

If CreateInstance is unsuccessful, this method shall return one of the following status codes, where the 949
error returned is the first applicable error in the list, starting with the first element and working down. Any 950
additional method-specific interpretation of the error is enclosed in parentheses. 951

 CIM_ERR_ACCESS_DENIED 952

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 953

 CIM_ERR_INVALID_NAMESPACE 954

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 955
incorrect parameters) 956

 CIM_ERR_INVALID_CLASS (The CIM class for the new instance does not exist.) 957

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 958
instance, if provided.) 959

 CIM_ERR_ALREADY_EXISTS (The CIM instance already exists.) 960

 CIM_ERR_FAILED (This operation is not supported for the specified instance or some other 961
unspecified error occurred.) 962

5.4.2.7 ModifyClass 963

The ModifyClass operation modifies an existing CIM class in the target namespace. The class shall 964
already exist: 965

void ModifyClass (966

 [IN] <class> ModifiedClass 967

CIM Operations over HTTP DSP0200

30 Work in Progress — Not a DMTF Standard Version 1.4.0a

) 968

The ModifiedClass input parameter defines the set of changes to be made to the current class 969

definition, which shall be correct amendments to the CIM class as defined by DSP0004. 970

In modifying the class, the WBEM server shall conform to the following rules: 971

 The WBEM server shall ignore any CLASSORIGIN and PROPAGATED XML attributes in the 972

ModifiedClass. 973

 If the modified class has no superclass, the ModifiedClass parameter defines modifications to a 974
superclass. The server shall ensure that the following conditions are met: 975

– All properties and methods of the modified class have a CLASSORIGIN attribute whose 976
value is the name of this class. 977

– Any properties, methods, or qualifiers in the existing class definition that do not appear in 978

the ModifiedClass parameter are removed from the resulting modified class. 979

 If the modified class has a superclass, the ModifiedClass parameter defines modifications to 980

a subclass of that superclass. The superclass shall exist, and the client shall not change the 981
name of the superclass in the modified subclass. The server shall ensure that the following 982
conditions are met: 983

– Any properties, methods, or qualifiers in the subclass not defined in the superclass are 984
created as elements of the subclass. In particular, the server shall set the CLASSORIGIN 985
attribute on the new properties and methods to the name of the subclass and shall ensure 986
that all other others preserve their CLASSORIGIN attribute value from that defined in the 987
superclass. 988

– Any property, method, or qualifier previously defined in the subclass but not defined in the 989

superclass, and which is not present in the ModifiedClass parameter, is removed from 990

the subclass. 991

– If a property is specified in the ModifiedClass parameter, the value assigned to that 992

property (including NULL) becomes the default value of the property for the subclass. 993

– If a property or method of the superclass is not specified in the subclass, then the subclass 994
inherits it without modification. Any previous changes to such an element in the subclass 995
are lost. 996

– If a qualifier in the superclass is not specified in the subclass and the qualifier is defined in 997

the superclass with a TOSUBCLASS attribute value of true, then the qualifier shall still be 998

present in the resulting modified subclass. A propagated qualifier cannot be removed from 999
a subclass. 1000

– Any qualifier propagated from the superclass cannot be modified in the subclass if the 1001

OVERRIDABLE attribute of that qualifier is set to false in the superclass. It is a client 1002

error to specify such a qualifier in the ModifiedClass with a definition different than that in 1003
the superclass (where definition encompasses the name, type, and flavor attribute settings 1004
of the <QUALIFIER> XML element and the value of the qualifier). 1005

– Any qualifiers defined in the superclass with a TOSUBCLASS attribute value of false 1006

shall not be propagated to the subclass. 1007

If ModifyClass is successful, the WBEM server updates the specified class. The request to modify the 1008
class shall fail if the server cannot consistently update any existing subclasses or instances of that class. 1009

If ModifyClass is unsuccessful, this method shall return one of the following status codes, where the error 1010
returned is the first applicable error in the list, starting with the first element and working down. Any 1011
additional method-specific interpretation of the error is enclosed in parentheses. 1012

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 31

 CIM_ERR_ACCESS_DENIED 1013

 CIM_ERR_NOT_SUPPORTED 1014

 CIM_ERR_INVALID_NAMESPACE 1015

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1016
incorrect parameters) 1017

 CIM_ERR_NOT_FOUND (The CIM class does not exist.) 1018

 CIM_ERR_INVALID_SUPERCLASS (The putative CIM class declares a non-existent or 1019
incorrect superclass.) 1020

 CIM_ERR_CLASS_HAS_CHILDREN (The modification could not be performed because the 1021
subclasses of the class could not be updated consistently.) 1022

 CIM_ERR_CLASS_HAS_INSTANCES (The modification could not be performed because the 1023
instances of the class could not be updated consistently.) 1024

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1025

5.4.2.8 ModifyInstance 1026

The ModifyInstance operation modifies an existing CIM instance in the target namespace. The instance 1027
shall already exist: 1028

void ModifyInstance (1029

 [IN] <namedInstance> ModifiedInstance, 1030

 [IN, OPTIONAL] boolean IncludeQualifiers = true, (DEPRECATED) 1031

 [IN, OPTIONAL, NULL] string PropertyList[] = NULL 1032

) 1033

The ModifiedInstance input parameter identifies the name of the instance to be modified and 1034

provides the new property values. 1035

DEPRECATION NOTE: Use of the IncludeQualifiers parameter is DEPRECATED, and it may be 1036

removed in a future version of this document. The behavior of the IncludeQualifiers parameter is 1037

not specified. A WBEM client cannot rely on IncludeQualifiers to have any impact on the operation. 1038

It is recommended that the WBEM server ignore any qualifiers included in ModifiedInstance. If the 1039

IncludeQualifiers input parameter is true, the qualifiers are modified as specified in 1040

ModifiedInstance. If the parameter is false, qualifiers in ModifiedInstance are ignored and no 1041

qualifiers are explicitly modified. 1042

The set of properties designated to be modified shall be determined as follows: 1043

If the PropertyList input parameter is not NULL, the members of the array define one or more 1044

property names. The properties specified in PropertyList are designated to be modified. Properties of 1045

the ModifiedInstance that are missing from PropertyList are not designated to be modified. If 1046

PropertyList is an empty array, no properties are designated to be modified. If PropertyList is 1047

NULL, the properties of ModifiedInstance with values different from the current values in the instance 1048

are designated to be modified. 1049

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1050

process the request normally. If PropertyList contains property names that are invalid for the instance 1051

to be modified, the WBEM server shall reject the request. 1052

If a property is designated to be modified, the WBEM server shall either modify the property, or reject the 1053
request. The server shall reject modification requests for key properties. Further considerations for 1054
accepting or rejecting modification requests based on the properties requested to be modified are out of 1055

CIM Operations over HTTP DSP0200

32 Work in Progress — Not a DMTF Standard Version 1.4.0a

scope for this document; CIM model definitions are expected to cover that. Note that the WRITE qualifier 1056
on a property is considered to be in the area of CIM models; specifically, a value of True for the WRITE 1057
qualifier does not guarantee modifiability of that property, and a value of False does not prevent 1058
modifiability. 1059

If a property is not designated to be modified, the server shall not modify its value. However, note that 1060
properties may change their values as a result of other changes. 1061

In modifying the instance, the WBEM server shall conform to the following rules and ensure their 1062
application: 1063

 The server shall ignore any CLASSORIGIN and PROPAGATED attributes in the 1064
ModifiedInstance. 1065

 The class shall exist, and the client shall not change its name in the instance to be modified. 1066

 DEPRECATED. Any qualifiers in the instance not defined in the class are created as new 1067

elements of the instance if IncludeQualifiers is true. 1068

 All properties of the instance to be modified preserve their CLASSORIGIN attribute value from 1069
that defined in the class. 1070

 DEPRECATED. Any qualifier previously defined in the instance to be modified but not defined 1071

in the class, and which is not present in the ModifiedInstance parameter, is removed from 1072

the instance if IncludeQualifiers is true. 1073

 If a property is to be modified as previously defined, the designated new value for that property 1074
in the CIM instance shall be the property value (including NULL) specified in the 1075

ModifiedInstance parameter, or if the property is not specified in the ModifiedInstance 1076

parameter, the default value (including NULL) defined in the property declaration, or if the 1077
property does not define a default value, there is no designated new value for the property. 1078

If there is a designated new value for a property, the server shall either update the property to 1079
that value, or reject the request. If there is no designated new value for a property, the server 1080
may update the property to any value (including NULL). Further determinations about this 1081
decision are out of scope for this document; CIM model definitions are expected to cover that.. 1082

 DEPRECATION NOTE: The use of the TOINSTANCE qualifier attribute is DEPRECATED. 1083
Servers may choose to ignore TOINSTANCE. Servers that do not ignore TOINSTANCE shall 1084
interpret it so that any qualifiers defined in the class with a TOINSTANCE attribute value of true 1085
appear in the instance. A propagated qualifier cannot be removed from an instance. qualifiers in 1086

the class with a TOINSTANCE attribute value of false shall not be propagated to the instance 1087

 DEPRECATED. Any qualifier propagated from the class cannot be modified in the instance if 1088
the OVERRIDABLE attribute of that qualifier is set to false in the class. It is a client error to 1089

specify such a qualifier in ModifiedInstance with a definition different than that in the class 1090

(where definition encompasses the name, type, and flavor attribute settings of the 1091
<QUALIFIER> XML element and the value of the qualifier). 1092

If ModifyInstance is successful, the specified CIM instance has been updated as described in this 1093
subclause. 1094

If ModifyInstance is unsuccessful, the specified Instance is not updated, and the method shall return one 1095
of the following status codes, where the error returned is the first applicable error in the list, starting with 1096
the first element and working down. Any additional interpretation of the error is enclosed in parentheses. 1097

 CIM_ERR_ACCESS_DENIED 1098

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1099

 CIM_ERR_INVALID_NAMESPACE 1100

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 33

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1101
incorrect parameters and invalid properties to be modified) 1102

 CIM_ERR_INVALID_CLASS (The CIM class of the instance to be modified does not exist.) 1103

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1104
instance, if provided.) 1105

 CIM_ERR_NOT_FOUND (The CIM instance to be modified does not exist.) 1106

 CIM_ERR_FAILED (This operation is not supported for the specified instance or some other 1107
unspecified error occurred, including a request for non-writable properties to be modified or a 1108
property that cannot be modified at this time.) 1109

5.4.2.9 EnumerateClasses 1110

The EnumerateClasses operation enumerates subclasses of a CIM class in the target namespace: 1111

<class>* EnumerateClasses (1112

 [IN,OPTIONAL,NULL] <className> ClassName=NULL, 1113

 [IN,OPTIONAL] boolean DeepInheritance = false, 1114

 [IN,OPTIONAL] boolean LocalOnly = true, 1115

 [IN,OPTIONAL] boolean IncludeQualifiers = true, 1116

 [IN,OPTIONAL] boolean IncludeClassOrigin = false 1117

) 1118

The ClassName input parameter defines the class that is the basis for the enumeration. 1119

If the DeepInheritance input parameter is true, all subclasses of the specified class should be 1120

returned. If the ClassName input parameter is absent, this implies that all classes in the target 1121

namespace should be returned. If DeepInheritance is false, only immediate child subclasses are 1122

returned. If the ClassName input parameter is NULL, this implies that all top-level classes (that is, 1123

classes with no superclass) in the target namespace should be returned. This definition of 1124

DeepInheritance applies only to the EnumerateClasses and EnumerateClassName operations. 1125

If the LocalOnly input parameter is true, any CIM elements (properties, methods, and qualifiers) 1126

except those added or overridden in the class as specified in the classname input parameter shall not be 1127

included in the returned class. If it is false, this parameter defines no additional filtering. 1128

If the IncludeQualifiers input parameter is true, all qualifiers for each class (including qualifiers on 1129

the class and on any returned properties, methods, or method parameters) shall be included as 1130

<QUALIFIER> XML elements in the response. If it is false, no <QUALIFIER> XML elements are 1131

present. 1132

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 1133

all appropriate elements in each returned class. If it is false, no CLASSORIGIN attributes are present. 1134

If EnumerateClasses is successful, the method returns zero or more classes that meet the required 1135
criteria. These classes shall include all CIM elements (properties, methods, and qualifiers) defined in or 1136

inherited by each class, reduced by any elements excluded as a result of using the LocalOnly filter. 1137

If EnumerateClasses is unsuccessful, this method shall return one of the following status codes, where 1138
the error returned is the first applicable error in the list, starting with the first element and working down. 1139
Any additional method-specific interpretation of the error is enclosed in parentheses. 1140

 CIM_ERR_ACCESS_DENIED 1141

 CIM_ERR_NOT_SUPPORTED 1142

CIM Operations over HTTP DSP0200

34 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM_ERR_INVALID_NAMESPACE 1143

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1144
incorrect parameters) 1145

 CIM_ERR_INVALID_CLASS (The CIM class for this enumeration does not exist.) 1146

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1147

5.4.2.10 EnumerateClassNames 1148

The EnumerateClassNames operation enumerates the names of subclasses of a CIM class in the target 1149
namespace: 1150

<className>* EnumerateClassNames (1151

 [IN,OPTIONAL,NULL] <className> ClassName = NULL, 1152

 [IN,OPTIONAL] boolean DeepInheritance = false 1153

) 1154

The ClassName input parameter defines the class that is the basis for the enumeration. 1155

If the DeepInheritance input parameter is true, the names of all subclasses of the specified class 1156

should be returned. If the ClassName input parameter is absent, this implies that the names of all classes 1157

in the target namespace should be returned. If DeepInheritance is false, only the names of immediate 1158

child subclasses are returned. If the ClassName input parameter is NULL, this implies that the names of 1159

all top-level classes (that is, classes with no superclass) in the target namespace should be returned. This 1160

definition of DeepInheritance applies only to the EnumerateClasses and EnumerateClassName 1161

operations. 1162

If EnumerateClassNames is successful, the method returns zero or more names of classes that meet the 1163
requested criteria. 1164

If EnumerateClassNames is unsuccessful, this method returns one of the following status codes, where 1165
the error returned is the first applicable error in the list, starting with the first element and working down. 1166
Any additional method-specific interpretation of the error is enclosed in parentheses. 1167

 CIM_ERR_ACCESS_DENIED 1168

 CIM_ERR_NOT_SUPPORTED 1169

 CIM_ERR_INVALID_NAMESPACE 1170

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1171
incorrect parameters) 1172

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1173
exist.) 1174

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1175

5.4.2.11 EnumerateInstances (DEPRECATED) 1176

The EnumerateInstances operation enumerates instances of a CIM class in the target namespace, 1177
including instances in the class and any subclasses in accordance with the polymorphic nature of CIM 1178
objects: 1179

<namedInstance>* EnumerateInstances (1180

 [IN] <className> ClassName, 1181

 [IN,OPTIONAL] boolean LocalOnly = true, (DEPRECATED) 1182

 [IN,OPTIONAL] boolean DeepInheritance = true, 1183

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 1184

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 35

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 1185

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 1186

) 1187

DEPRECATION NOTE: The EnumerateInstances operation has been deprecated in version 1.4 of this 1188
document. Use OpenEnumerateInstances instead (see 5.4.2.24.3). 1189

The ClassName input parameter defines the class that is the basis for the enumeration. 1190

DEPRECATION NOTE: With version 1.2of this document, the LocalOnly parameter is DEPRECATED. 1191

LocalOnly filtering, as defined in 1.1, will not be supported in the next major revision of this document. 1192

In version 1.1of this document, the definition of the LocalOnly parameter was incorrectly modified. This 1193

change introduced a number of interoperability and backward compatibility problems for WBEM clients 1194

using the LocalOnly parameter to filter the set of properties returned. The DMTF strongly recommends 1195

that WBEM clients set LocalOnly to false and do not use this parameter to filter the set of properties 1196

returned. To minimize the impact of this recommendation on WBEM clients, a WBEM server may choose 1197

to treat the value of the LocalOnly parameter as false for all requests. A WBEM server shall 1198

consistently support a single interpretation of the LocalOnly parameter. Refer to ANNEX B for details. 1199

If the DeepInheritance input parameter is false, each returned instance shall not include any 1200

properties added by subclasses of the specified class. If it is true, no additional filtering is defined. 1201

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 1202

be removed in a future version of this document. The definition of IncludeQualifiers is ambiguous 1203

and when this parameter is set to true, WBEM clients cannot be assured that any qualifiers will be 1204

returned. A WBEM client should always set this parameter to false. To minimize the impact of this 1205

recommendation on WBEM clients, a WBEM server may choose to treat the value of 1206

IncludeQualifiers as false for all requests. The preferred behavior is to use the class operations to 1207

receive qualifier information and not depend on any qualifiers in this response. If the 1208

IncludeQualifiers input parameter is true, all qualifiers for the instance, (including qualifiers on the 1209

instance and on any returned properties, shall be included as <QUALIFIER> XML elements in the 1210

response. If it is false, no <QUALIFIER> XML elements are present in the returned instance. 1211

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 1212

all appropriate elements in each returned Instance. If it is false, no CLASSORIGIN attributes are 1213

present. 1214

If the PropertyList input parameter is not NULL, the members of the array define one or more 1215

property names of the designated class. This definition may include inherited property names or property 1216
names explicitly defined in the designated class. However, it may not include property names added in 1217
subclasses of the designated class. Each returned instance shall not include any properties missing from 1218

this list. Note that PropertyList acts as an additional filter on the properties defined by the LocalOnly 1219

and DeepInheritance input parameters; if PropertyList includes a property name that is not in the 1220

set defined by the LocalOnly and DeepInheritance combination, the element for the property shall 1221

not be included in the returned instances. If PropertyList is an empty array, no properties are included 1222

in the returned instances. If PropertyList is NULL, no additional filtering is defined. 1223

If PropertyList contains duplicate property names, the WBEM server shall ignore the duplicates but 1224

otherwise process the request normally. If PropertyList contains property names that are invalid for a 1225

target instance, the WBEM server shall ignore them for that instance but otherwise process the request 1226
normally. 1227

Properties with the NULL value may be omitted from the response, even if the WBEM client has not 1228

requested the exclusion of the property through the LocalOnly, DeepInheritance, or PropertyList 1229

filters. The WBEM client shall interpret such omitted properties as NULL. Note that the WBEM client 1230

CIM Operations over HTTP DSP0200

36 Work in Progress — Not a DMTF Standard Version 1.4.0a

cannot make any assumptions about properties omitted as a result of using any LocalOnly, 1231

DeepInheritance, or PropertyList filters. 1232

If EnumerateInstances is successful, the method returns zero or more <namedInstance> items 1233

representing named instances that meet the required criteria. These instances shall have all properties 1234
defined in and inherited by their respective classes, reduced by any properties excluded as a result of 1235

using the LocalOnly, DeepInheritance, or PropertyList filters and further reduced by any NULL-1236

valued properties omitted from the response. 1237

If EnumerateInstances is unsuccessful, this method shall return one of the following status codes, where 1238
the error returned is the first applicable error in the list, starting with the first element and working down. 1239
Any additional method-specific interpretation of the error is enclosed in parentheses. 1240

 CIM_ERR_ACCESS_DENIED 1241

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1242

 CIM_ERR_INVALID_NAMESPACE 1243

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1244
incorrect parameters) 1245

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1246
exist.) 1247

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the specified class and all 1248
of its subclasses, if provided.) 1249

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1250

5.4.2.12 EnumerateInstanceNames (DEPRECATED) 1251

The EnumerateInstanceNames operation enumerates the names (model paths) of the instances of a CIM 1252
class in the target namespace, including instances in the class and any subclasses in accordance with 1253
the polymorphic nature of CIM objects: 1254

<instanceName>* EnumerateInstanceNames (1255

 [IN] <className> ClassName 1256

) 1257

DEPRECATION NOTE: The EnumerateInstanceNames operation has been deprecated in version 1.4 of 1258
this document. Use OpenEnumerateInstancePaths instead (see 5.4.2.24.4). 1259

The ClassName input parameter defines the class that is the basis for the enumeration. 1260

If EnumerateInstanceNames is successful, the method returns zero or more <instanceName> items 1261

representing instance names (referred to in DSP0004 as a model path) that meet the requested criteria. 1262

The <instanceName> items shall specify the class from which the instance is instantiated, not any of its 1263

superclasses. Note that this class may be different from the class specified as input. 1264

If EnumerateInstanceNames is unsuccessful, this method shall return one of the following status codes, 1265
where the error returned is the first applicable error in the list, starting with the first element and working 1266
down. Any additional method-specific interpretation of the error is enclosed in parentheses. 1267

 CIM_ERR_ACCESS_DENIED 1268

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1269

 CIM_ERR_INVALID_NAMESPACE 1270

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1271
incorrect parameters) 1272

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 37

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1273
exist.) 1274

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the specified class and all 1275
of its subclasses, if provided.) 1276

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1277

5.4.2.13 ExecQuery (DEPRECATED) 1278

The ExecQuery operation executes a query against the target namespace: 1279

<object>* ExecQuery (1280

 [IN] string QueryLanguage, 1281

 [IN] string Query 1282

) 1283

DEPRECATION NOTE: The ExecQuery operation has been deprecated in version 1.4 of this document. 1284
Use OpenQueryInstances instead (see 5.4.2.24.14). 1285

The QueryLanguage input parameter defines the query language in which the query parameter is 1286

expressed. 1287

The Query input parameter defines the query to be executed. The results of the query shall be 1288

constrained to contain only CIM classes that exist in the target namespace or CIM instances whose 1289
classes exist in the target namespace. Note that any instances in the result set may or may not exist in 1290
any namespace. Note that for query languages supporting select-lists and from-clauses, this implies that 1291
all select-list entries resolve to disjoint properties exposed by one CIM class named in the from-clause. 1292
This rule does not prevent such queries from using joins. 1293

Neither the query language nor the format of the query is defined by this document. It is anticipated that 1294
query languages will be submitted to the DMTF as separate proposals. 1295

WBEM servers can declare which query languages they support (if any) using a mechanism defined in 1296
7.5. 1297

If ExecQuery is successful, the method returns zero or more <object> items representing CIM classes 1298

or instances that correspond to the results of the query. 1299

If ExecQuery is unsuccessful, the method shall return one of the following status codes, where the error 1300
returned is the first applicable error in the list, starting with the first element and working down. Any 1301
additional method-specific interpretation of the error is enclosed in parentheses. 1302

 CIM_ERR_ACCESS_DENIED 1303

 CIM_ERR_NOT_SUPPORTED 1304

 CIM_ERR_INVALID_NAMESPACE 1305

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1306
incorrect parameters) 1307

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested query language is not 1308
recognized.) 1309

 CIM_ERR_INVALID_QUERY (The query is not a valid query in the specified query language.) 1310

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1311

CIM Operations over HTTP DSP0200

38 Work in Progress — Not a DMTF Standard Version 1.4.0a

5.4.2.14 Associators (PARTLY DEPRECATED) 1312

The Associators operation enumerates CIM objects (classes or instances) associated with a particular 1313
source CIM object: 1314

<objectWithPath>* Associators (1315

 [IN] <objectName> ObjectName, 1316

 [IN,OPTIONAL,NULL] <className> AssocClass = NULL, 1317

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1318

 [IN,OPTIONAL,NULL] string Role = NULL, 1319

 [IN,OPTIONAL,NULL] string ResultRole = NULL, 1320

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 1321

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 1322

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 1323

) 1324

DEPRECATION NOTE: The Associators operation for instances has been deprecated in version 1.4 of 1325
this document. Use OpenAssociatorInstances instead (see 5.4.2.24.7). The Associators operation for 1326
classes remains undeprecated. 1327

The ObjectName input parameter defines the source CIM object whose associated objects are to be 1328

returned. This may be either a class name or instance name (model path). 1329

The AssocClass input parameter, if not NULL, shall be a valid CIM association class name. It acts as a 1330

filter on the returned set of objects by mandating that each returned object shall be associated to the 1331
source object through an instance of this class or one of its subclasses. 1332

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1333

returned set of objects by mandating that each returned object shall be either an instance of this class (or 1334
one of its subclasses) or be this class (or one of its subclasses). 1335

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1336

set of objects by mandating that each returned object shall be associated with the source object through 1337
an association in which the source object plays the specified role. That is, the name of the property in the 1338
association class that refers to the source object shall match the value of this parameter. 1339

The ResultRole input parameter, if not NULL, shall be a valid property name. It acts as a filter on the 1340

returned set of objects by mandating that each returned object shall be associated to the source object 1341
through an association in which the returned object plays the specified role. That is, the name of the 1342
property in the association class that refers to the returned object shall match the value of this parameter. 1343

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 1344

be removed in a future version of this document. The preferred behavior is to use the class operations to 1345

receive qualifier information and not depend on any qualifiers in this response. If IncludeQualifiers 1346

is true, all qualifiers for each object (including qualifiers on the object and on any returned properties) 1347

shall be included as <QUALIFIER> XML elements in the response. If it is false, no <QUALIFIER> XML 1348

elements are present. 1349

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 1350

all appropriate elements in each returned object. If it is false, no CLASSORIGIN attributes are present. 1351

If the PropertyList input parameter is not NULL, the members of the array define one or more 1352

property names. Each returned object shall not include any properties missing from this list. If 1353

PropertyList is an empty array, no properties are included in each returned object. If it is NULL, no 1354

additional filtering is defined. 1355

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 39

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1356

process the request normally. If PropertyList contains property names that are invalid for a target 1357

object, the WBEM server shall ignore them for that object but otherwise process the request 1358

normally.Clients should not explicitly specify properties in the PropertyList parameter unless they 1359

specify a non-NULL value for the ResultClass parameter. 1360

If instances are returned, properties with the NULL value may be omitted from the response, even if the 1361

WBEM client has not requested the exclusion of the through the PropertyList filter. The WBEM client 1362

shall interpret such omitted properties as NULL. Note that the WBEM client cannot make any 1363

assumptions about properties omitted as a result of using the PropertyList filter. If classes are 1364

returned, the WBEM server cannot make this choice, and only the WBEM client can cause properties to 1365

be excluded by using the PropertyList filter. 1366

If Associators is successful, the method returns zero or more <objectWithPath> items representing 1367

CIM classes or instances meeting the requested criteria. Because it is possible for CIM objects from 1368
different hosts or namespaces to be associated, each returned object includes location information. If the 1369

ObjectName refers to a class, then classes are returned. These classes shall have all CIM elements 1370

(properties, methods, and qualifiers) defined in and inherited by that class, reduced by any properties 1371

excluded as a result of using the PropertyList filter. If the ObjectName refers to an instance, then 1372

instances are returned. These instances shall have all properties defined in and inherited by its class, 1373

reduced by any properties excluded as a result of using the PropertyList filter and further reduced by 1374

any NULL valued properties omitted from the response. 1375

If Associators is unsuccessful, this method shall return one of the following status codes, where the error 1376
returned is the first applicable error in the list, starting with the first element and working down. Any 1377
additional method-specific interpretation of the error is enclosed in parentheses. 1378

 CIM_ERR_ACCESS_DENIED 1379

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1380

 CIM_ERR_INVALID_NAMESPACE 1381

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1382
incorrect parameters) 1383

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1384
instance, if provided.) 1385

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1386
unspecified error occurred.) 1387

5.4.2.15 AssociatorNames (PARTLY DEPRECATED) 1388

The AssociatorNames operation enumerates the names of CIM Objects (classes or instances) that are 1389
associated with a particular source CIM object: 1390

<objectPath>* AssociatorNames (1391

 [IN] <objectName> ObjectName, 1392

 [IN,OPTIONAL,NULL] <className> AssocClass = NULL, 1393

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1394

 [IN,OPTIONAL,NULL] string Role = NULL, 1395

 [IN,OPTIONAL,NULL] string ResultRole = NULL 1396

) 1397

DEPRECATION NOTE: The AssociatorNames operation has been deprecated in version 1.4 of this 1398
document. Use OpenAssociatorInstancePaths instead (see 5.4.2.24.8). The AssociatorNames operation 1399
for classes remains undeprecated. 1400

CIM Operations over HTTP DSP0200

40 Work in Progress — Not a DMTF Standard Version 1.4.0a

The ObjectName input parameter defines the source CIM object whose associated names are to be 1401

returned. This is either a class or instance name (model path). 1402

The AssocClass input parameter, if not NULL, shall be a valid CIM association class name. It acts as a 1403

filter on the returned set of names by mandating that each returned name identify an object that shall be 1404
associated to the source object through an instance of this class or one of its subclasses. 1405

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1406

returned set of names by mandating that each returned name identify an object that shall be either an 1407
instance of this class (or one of its subclasses) or be this class (or one of its subclasses). 1408

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1409

set of names by mandating that each returned name identify an object that shall be associated to the 1410
source object through an association in which the source object plays the specified role. That is, the 1411
name of the property in the association class that refers to the source object shall match the value of this 1412
parameter. 1413

The ResultRole input parameter, if not NULL, shall be a valid property name. It acts as a filter on the 1414

returned set of names by mandating that each returned name identify an object that shall be associated 1415
to the source object through an association in which the named returned object plays the specified role. 1416
That is, the name of the property in the association class that refers to the returned object shall match the 1417
value of this parameter. 1418

If AssociatorNames is successful, the method returns zero or more <objectPath> items representing 1419

CIM class paths or instance paths meeting the requested criteria. Because CIM objects from different 1420
hosts or namespaces can be associated, each returned object includes location information. If the 1421

ObjectName refers to a class path, then class paths are returned. Otherwise, the ObjectName refers to 1422

an instance path, and instance paths are returned. 1423

If AssociatorNames is unsuccessful, one of the following status codes shall be returned by this method, 1424
where the first applicable error in the list (starting with the first element of the list, and working down) is 1425
the error returned. Any additional method-specific interpretation of the error is given in parentheses. 1426

 CIM_ERR_ACCESS_DENIED 1427

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1428

 CIM_ERR_INVALID_NAMESPACE 1429

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise 1430
incorrect parameters) 1431

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1432
instance, if provided.) 1433

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1434
unspecified error occurred.) 1435

5.4.2.16 References (PARTLY DEPRECATED) 1436

The References operation enumerates the association objects that refer to a particular target CIM object 1437
(class or instance). 1438

<objectWithPath>* References (1439

 [IN] <objectName> ObjectName, 1440

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1441

 [IN,OPTIONAL,NULL] string Role = NULL, 1442

 [IN,OPTIONAL] boolean IncludeQualifiers = false, (DEPRECATED) 1443

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 1444

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 41

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL 1445

) 1446

DEPRECATION NOTE: The References operation has been deprecated in version 1.4 of this document. 1447
Use OpenReferenceInstances instead (see 5.4.2.24.5). The References operation for classes remains 1448
undeprecated. 1449

The ObjectName input parameter defines the target CIM object whose referring objects are to be 1450

returned. This is either a class or instance name (model path). 1451

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1452

returned set of objects by mandating that each returned object shall be an instance of this class (or one of 1453
its subclasses) or this class (or one of its subclasses). 1454

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1455

set of objects by mandating that each returned object shall refer to the target object through a property 1456
with a name that matches the value of this parameter. 1457

DEPRECATION NOTE: The use of the IncludeQualifiers parameter is DEPRECATED and it may 1458

be removed in a future version of this document. The preferred behavior is to use the class operations to 1459

receive qualifier information and not depend on any qualifiers in this response. If IncludeQualifiers 1460

is true, all qualifiers for each object (including qualifiers on the object and on any returned properties) 1461

shall be included as <QUALIFIER> XML elements in the response. If this parameter is false, no 1462

<QUALIFIER> XML elements are present in each returned Object. 1463

If the IncludeClassOrigin input parameter is true, the CLASSORIGIN attribute shall be present on 1464

all appropriate elements in each returned object. If it is false, no CLASSORIGIN attributes are present. 1465

If the PropertyList input parameter is not NULL, the members of the array define one or more 1466

property names. Each returned object shall not include any properties missing from this list. If 1467

PropertyList is an empty array, no properties are included in each returned object. If PropertyList 1468

is NULL, no additional filtering is defined. 1469

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1470

process the request normally. If PropertyList contains property names that are invalid for a target 1471

object, the WBEM server shall ignore them for that object but otherwise process the request normally. 1472

Clients should not explicitly specify properties in the PropertyList parameter unless they specify a 1473

non-NULL value for the ResultClass parameter. 1474

If instances are returned, properties with the NULL value may be omitted from the response, even if the 1475

WBEM client has not requested the exclusion of the property through the PropertyList filter. The 1476

WBEM client must interpret such omitted properties as NULL. Note that the WBEM client cannot make 1477

any assumptions about properties omitted as a result of using the PropertyList filter. If classes are 1478

returned, the WBEM server cannot make this choice, and only the WBEM client can cause properties to 1479

be excluded by using the PropertyList filter. 1480

If References is successful, the method returns zero or more <objectWithPath> items representing 1481

CIM classes or instances meeting the requested criteria. Because CIM objects from different hosts or 1482

namespaces can be associated, each returned object includes location information. If the ObjectName 1483

refers to a class, then classes are returned. These classes shall have all CIM elements (properties, 1484
methods, and qualifiers) defined in and inherited by that class, reduced by any properties excluded as a 1485

result of using the PropertyList filter. If the ObjectName refers to an instance, then instances are 1486

returned. These instances shall have all properties defined in and inherited by their respective classes, 1487

reduced by any properties excluded as a result of using the PropertyList filter and further reduced by 1488

any NULL valued properties omitted from the response. 1489

CIM Operations over HTTP DSP0200

42 Work in Progress — Not a DMTF Standard Version 1.4.0a

If References is unsuccessful, this method shall return one of the following status codes, where the error 1490
returned is the first applicable error in the list, starting with the first element and working down. Any 1491
additional method-specific interpretation of the error is enclosed in parentheses. 1492

 CIM_ERR_ACCESS_DENIED 1493

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1494

 CIM_ERR_INVALID_NAMESPACE 1495

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1496
incorrect parameters) 1497

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1498
instance, if provided.) 1499

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1500
unspecified error occurred.) 1501

5.4.2.17 ReferenceNames (PARTLY DEPRECATED) 1502

The ReferenceNames operation enumerates the association objects that refer to a particular target CIM 1503
object (class or instance): 1504

<objectPath>* ReferenceNames (1505

 [IN] <objectName> ObjectName, 1506

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1507

 [IN,OPTIONAL,NULL] string Role = NULL 1508

) 1509

DEPRECATION NOTE: The ReferenceNames operation has been deprecated in version 1.4 of this 1510
document. Use OpenReferenceInstancePaths instead (see 5.4.2.24.6). The ReferenceNames operation 1511
for classes remains undeprecated. 1512

The ObjectName input parameter defines the target CIM object with the referring object names to be 1513

returned. It may be either a class or an instance name (model path). 1514

The ResultClass input parameter, if not NULL, shall be a valid CIM class name. It acts as a filter on the 1515

returned set of object names by mandating that each returned Object Name identify an instance of this 1516
class (or one of its subclasses) or this class (or one of its subclasses). 1517

The Role input parameter, if not NULL, shall be a valid property name. It acts as a filter on the returned 1518

set of object names by mandating that each returned object name shall identify an object that refers to the 1519
target instance through a property with a name that matches the value of this parameter. 1520

If ReferenceNames is successful, the method returns zero or more <objectPath> items representing 1521

CIM class paths or instance paths meeting the requested criteria. Because CIM objects from different 1522
hosts or namespaces can be associated, each returned object includes location information. If the 1523

ObjectName refers to a class path, then class paths are returned. Otherwise, the ObjectName refers to 1524

an instance path, and instance paths are returned. 1525

If ReferenceNames is unsuccessful, this method shall return one of the following status codes, where the 1526
error returned is the first applicable error in the list, starting with the first element and working down. Any 1527
additional method-specific interpretation of the error is enclosed in parentheses. 1528

 CIM_ERR_ACCESS_DENIED 1529

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1530

 CIM_ERR_INVALID_NAMESPACE 1531

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 43

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1532
incorrect parameters) 1533

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1534
instance, if provided.) 1535

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1536
unspecified error occurred.) 1537

5.4.2.18 GetProperty (DEPRECATED) 1538

The GetProperty operation retrieves a single property value from a CIM instance in the target 1539
namespace: 1540

<propertyValue> GetProperty (1541

 [IN] <instanceName> InstanceName, 1542

 [IN] string PropertyName 1543

) 1544

DEPRECATION NOTE: The GetProperty operation has been deprecated in version 1.4 of this document. 1545
Use GetInstance instead (see 5.4.2.2). 1546

The InstanceName input parameter specifies the name of the instance (model path) from which the 1547

property value is requested. 1548

The PropertyName input parameter specifies the name of the property with the value to be returned. 1549

If GetProperty is successful, the return value specifies the value of the requested property. If the value is 1550
NULL, no element is returned. 1551

If GetProperty is unsuccessful, this method shall return one of the following status codes, where the error 1552
returned is the first applicable error in the list, starting with the first element and working down. Any 1553
additional method-specific interpretation of the error is enclosed in parentheses. 1554

 CIM_ERR_ACCESS_DENIED 1555

 CIM_ERR_INVALID_NAMESPACE 1556

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1557
incorrect parameters) 1558

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 1559

 CIM_ERR_NOT_FOUND (The CIM class exists, but the requested CIM instance does not exist 1560
in the specified namespace.) 1561

 CIM_ERR_NO_SUCH_PROPERTY (The CIM instance exists, but the requested property does 1562
not.) 1563

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1564

5.4.2.19 SetProperty (DEPRECATED) 1565

The SetProperty operation sets a single property value in a CIM instance in the target namespace: 1566

void SetProperty (1567

 [IN] <instanceName> InstanceName, 1568

 [IN] string PropertyName, 1569

 [IN,OPTIONAL,NULL] <propertyValue> NewValue = NULL 1570

) 1571

CIM Operations over HTTP DSP0200

44 Work in Progress — Not a DMTF Standard Version 1.4.0a

DEPRECATION NOTE: The SetProperty operation has been deprecated in version 1.4 of this document. 1572
Use ModifyInstance instead (see 5.4.2.8). 1573

The InstanceName input parameter specifies the name of the instance (model path) with the property 1574

value to be updated. 1575

The PropertyName input parameter specifies the name of the property with the value to be updated. 1576

The NewValue input parameter specifies the new value for the property (which may be NULL). 1577

If SetProperty is unsuccessful, this method shall return one of the following status codes, where the error 1578
returned is the first applicable error in the list, starting with the first element and working down. Any 1579
additional method-specific interpretation of the error is enclosed in parentheses. 1580

 CIM_ERR_ACCESS_DENIED 1581

 CIM_ERR_NOT_SUPPORTED (by the WBEM server for this operation) 1582

 CIM_ERR_INVALID_NAMESPACE 1583

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1584
incorrect parameters) 1585

 CIM_ERR_INVALID_CLASS (The CIM class does not exist in the specified namespace.) 1586

 CIM_ERR_NOT_FOUND (The CIM class exists, but the requested CIM instance does not exist 1587
in the specified namespace.) 1588

 CIM_ERR_NOT_SUPPORTED (This operation is not supported for the class of the specified 1589
instance, if provided.) 1590

 CIM_ERR_NO_SUCH_PROPERTY (The CIM instance exists, but the requested property does 1591
not.) 1592

 CIM_ERR_TYPE_MISMATCH (The supplied value is incompatible with the type of the 1593
property.) 1594

 CIM_ERR_FAILED (This operation is not supported for the specified instance, or some other 1595
unspecified error occurred.) 1596

5.4.2.20 GetQualifier 1597

The GetQualifier operation retrieves a single qualifier declaration from the target namespace. 1598

<qualifierDecl> GetQualifier (1599

 [IN] string QualifierName 1600

) 1601

The QualifierName input parameter identifies the qualifier with the declaration to be retrieved. 1602

If GetQualifier is successful, the method returns the qualifier declaration for the named qualifier. 1603

If GetQualifier is unsuccessful, this method shall return one of the following status codes, where the error 1604
returned is the first applicable error in the list, starting with the first element and working down. Any 1605
additional method-specific interpretation of the error is enclosed in parentheses. 1606

 CIM_ERR_ACCESS_DENIED 1607

 CIM_ERR_NOT_SUPPORTED 1608

 CIM_ERR_INVALID_NAMESPACE 1609

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 45

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1610
incorrect parameters) 1611

 CIM_ERR_NOT_FOUND (The requested qualifier declaration does not exist.) 1612

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1613

5.4.2.21 SetQualifier 1614

The SetQualifier operation creates or updates a single qualifier declaration in the target namespace. If the 1615
qualifier declaration already exists, it is overwritten: 1616

void SetQualifier (1617

 [IN] <qualifierDecl> QualifierDeclaration 1618

) 1619

The QualifierDeclaration input parameter defines the qualifier declaration to add to the 1620

namespace. 1621

If SetQualifier is successful, the qualifier declaration is added to the target namespace. If a qualifier 1622
declaration with the same qualifier name already exists, the new declaration replaces it. 1623

If SetQualifier is unsuccessful, this method returns one of the following status codes, where the error 1624
returned is the first applicable error in the list, starting with the first element and working down. Any 1625
additional method-specific interpretation of the error is enclosed in parentheses. 1626

 CIM_ERR_ACCESS_DENIED 1627

 CIM_ERR_NOT_SUPPORTED 1628

 CIM_ERR_INVALID_NAMESPACE 1629

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1630
incorrect parameters) 1631

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1632

5.4.2.22 DeleteQualifier 1633

The DeleteQualifier operation deletes a single qualifier declaration from the target namespace. 1634

void DeleteQualifier (1635

 [IN] string QualifierName 1636

) 1637

The QualifierName input parameter identifies the qualifier with the declaration to be deleted. 1638

If DeleteQualifier is successful, the specified qualifier declaration is deleted from the namespace. 1639

If DeleteQualifier is unsuccessful, this method shall return one of the following status codes, where the 1640
error returned is the first applicable error in the list, starting with the first element and working down. Any 1641
additional method-specific interpretation of the error is enclosed in parentheses. 1642

 CIM_ERR_ACCESS_DENIED 1643

 CIM_ERR_NOT_SUPPORTED 1644

 CIM_ERR_INVALID_NAMESPACE 1645

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1646
incorrect parameters) 1647

 CIM_ERR_NOT_FOUND (The requested qualifier declaration does not exist.) 1648

CIM Operations over HTTP DSP0200

46 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1649

5.4.2.23 EnumerateQualifiers 1650

The EnumerateQualifiers operation enumerates qualifier declarations from the target namespace. 1651

<qualifierDecl>* EnumerateQualifiers (1652

) 1653

If EnumerateQualifiers is successful, the method returns zero or more <qualifierDecl> items 1654

representing qualifier declarations. 1655

If EnumerateQualifiers is unsuccessful, this method shall return one of the following status codes, where 1656
the error returned is the first applicable error in the list, starting with the first element and working down. 1657
Any additional method-specific interpretation of the error is enclosed in parentheses. 1658

 CIM_ERR_ACCESS_DENIED 1659

 CIM_ERR_NOT_SUPPORTED 1660

 CIM_ERR_INVALID_NAMESPACE 1661

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1662
incorrect parameters) 1663

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1664

5.4.2.24 Pulled Enumeration Operations 1665

This clause defines a set of operations that return CIM instances or instance paths in portions controlled 1666
by the WBEM client. These operations are called pulled enumerations. Usually, an enumeration session 1667
is established through an Open operation, and subsequent repeated executions of a Pull operation on the 1668
enumeration session are used to retrieve them. Optionally, the Open operation can also pull a first set of 1669
items. 1670

Pulled enumeration operations consist of the following individual operations: 1671

 Open operations open an enumeration of the following instances or instance paths: 1672

– OpenEnumerateInstances (instances of a class) 1673

– OpenEnumerateInstancePaths (instance paths of instances of a class) 1674

– OpenReferenceInstances (association instances referencing a target instance) 1675

– OpenReferenceInstancePaths (the instance paths of association instances referencing a 1676
target instance) 1677

– OpenAssociatorInstances (instances associated with a source instance) 1678

– OpenAssociatorInstancePaths (the instance paths of instances associated to a source 1679
instance) 1680

– OpenQueryInstances (the rows resulting from a query) 1681

 Pull operations are for the following cases: 1682

– PullInstances (Instances are enumerated, and instance paths are either not available, for 1683
example as in for OpenQueryInstances, or not desired.) 1684

– PullInstancesWithPath (Instances with paths are enumerated.) 1685

– PullInstancePaths (Instance paths are enumerated.) 1686

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 47

 Other operations are as follows: 1687

– CloseEnumeration (closes an open enumeration) 1688

– EnumerationCount (estimates the number of items in an open enumeration) 1689

5.4.2.24.1 Behavioral Rules for Pulled Enumeration Operations 1690

A central concept of pulled enumeration operations is the "enumeration session," which provides a 1691
context in which the operations perform their work and which determines the set of instances or instance 1692
paths to be returned. To process the operations of an enumeration session, some parameters of the 1693
Open operation need to be maintained as long as the enumeration session is open. In addition, some 1694
state data about where the enumeration session is with regard to instances or instance paths already 1695
returned must be maintained. 1696

From a WBEM client perspective, an enumeration session is an enumeration context value. A successful 1697
Open operation establishes the enumeration session and returns an enumeration context value 1698
representing it. This value is used as an input/output parameter in subsequent Pull operations on that 1699
enumeration session. The enumeration context value shall uniquely identify the open enumeration 1700
session within the target CIM namespace of the Open operation that established the enumeration 1701
session. It is valid for a WBEM server to use NULL as an enumeration context value representing a 1702
closed enumeration session, but a WBEM client shall not rely on that. 1703

Defining the enumeration context value in Pull operations as both an input parameter and an output 1704
parameter allows the WBEM server to change the enumeration context value during the execution of a 1705
pull operation. This ability to change allows different implementation approaches on the WBEM server 1706
side, which are transparent for the WBEM client. Example approaches are as follows: 1707

 Maintain any state data describing the enumeration session internally in the WBEM server. The 1708
enumeration context value does not need to change in subsequent Pull operations. The WBEM 1709
server uses this value only to identify the internal state data for the open enumeration session. It 1710
does not use the value to store any state data. A variation of this approach is to hand back 1711
modified enumeration context values for additional WBEM server-side sequence checking. 1712

 Maintain any state data describing the enumeration session only on the WBEM client side. All 1713
state data is stored in the enumeration context value, and the WBEM server does not maintain 1714
any state data about the enumeration session, essentially being completely stateless with 1715
regard to the enumeration session. 1716

 A combination of the two previous approaches. 1717

A WBEM server may support keeping enumeration sessions open across connection terminations and 1718
shutdowns of the server. Objects may be created, deleted, or modified concurrently with an enumeration 1719
session that involves these objects. Such changes may or may not be reflected in the enumeration set. 1720
Therefore, there is no guarantee to the WBEM client that the enumeration set represents a consistent 1721
snapshot of its instances at a point in time. However, the WBEM server should make a best effort attempt 1722
for the returned enumeration set to represent a consistent snapshot of its instances at a point in time. The 1723
order of instances in the enumeration set is undefined. 1724

This document does not restrict the number of enumeration sessions that can be established or executed 1725
concurrently in the same WBEM server or client. This remains true even if the enumeration sets of such 1726
concurrently established enumeration sessions contain the same instances. 1727

Except for CloseEnumeration, all operations on a particular enumeration session shall be executed 1728
sequentially. An enumeration session can be open or closed. It is considered open if operations using its 1729
enumeration context value as an input parameter can be executed successfully. It is opened by the 1730
successful completion of an Open operation and closed by one of the following events: 1731

 Successful completion of a CloseEnumeration operation 1732

CIM Operations over HTTP DSP0200

48 Work in Progress — Not a DMTF Standard Version 1.4.0a

 Successful completion of an open or pull operation with the EndOfSequence output parameter 1733

set to true 1734

 Unsuccessful completion of a pull operation when ContinueOnError is not requested 1735

 WBEM server-side decision to close the enumeration session based upon an operation timeout 1736

 WBEM server-side decision to close an enumeration session during an operation on that 1737
enumeration session based upon exceeding server limits 1738

A conformant WBEM server may support closure of enumeration sessions based upon exceeding server 1739
limits. Example situations for such a decision are: 1740

 Pull operations with no objects requested that are repeated with a high frequency on the same 1741
enumeration session 1742

 EnumerationCount operations repeated with a high frequency on the same enumeration 1743
session 1744

A mechanism by which WBEM servers can declare support for closure of enumeration sessions based 1745
upon exceeding server limits is defined in 7.5. If a WBEM server supports such closure of enumeration 1746
sessions, it shall make the decision to close during an operation on that enumeration session. There is no 1747
way to indicate the reason for the closure if the decision is made elsewhere. If a WBEM server closes an 1748
enumeration session based upon exceeding server limits, it shall return failure on the operation on that 1749
enumeration session with the status code CIM_ERR_SERVER_LIMITS_EXCEEDED. 1750

5.4.2.24.2 Common Parameters for the Open Operations 1751

This clause defines commonly used parameters for the Open operations. The description of the individual 1752
Open operations references these parameters as appropriate. Note that not every Open operation uses 1753
every one of these common parameters: 1754

 EnumerationContext 1755

– This output parameter is the enumeration context value representing the enumeration 1756

session. If the EndOfSequence is true, the EnumerationContext value may be NULL. 1757

– The representation of an enumeration context value uses a string type. In version 1.3 of 1758
this document, enumeration context values were represented using the 1759
ENUMERATIONCONTEXT XML element. The representation was changed to using a 1760
string type in version 1.4 of this document, because it had turned out that all known 1761
implementations had implemented the enumeration context value using a string type. 1762

 EndOfSequence 1763

– This output parameter indicates to the WBEM client whether the enumeration session is 1764

exhausted. If EndOfSequence is true upon successful completion of an Open operation, 1765

no more instances are available and the WBEM server closes the enumeration session, 1766
releasing any allocated resources related to the enumeration session. If the enumeration 1767

set is empty, it is valid for a WBEM server to set EndOfSequence to true, even if 1768

MaxObjectCount is 0. In this case, the enumeration session is closed upon successful 1769

completion of the Open operation. If EndOfSequence is false, additional instances may 1770

be available and the WBEM server shall not close the enumeration session. 1771

 IncludeClassOrigin 1772

– This input parameter is used only on Open operations that enumerate CIM instances. It 1773
controls whether information about the class origin of properties, references or methods is 1774

included in any enumerated CIM instances. If IncludeClassOrigin is true, the 1775

CLASSORIGIN attribute shall be present on all appropriate elements in each CIM instance 1776
returned by any subsequent PullInstance operations on this enumeration session. If 1777

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 49

IncludeClassOrigin is false, any CLASSORIGIN attributes shall not be present in 1778

any enumerated instances. 1779

 FilterQueryLanguage and FilterQuery 1780

– These input parameters specify a filter query that acts as an additional restricting filter on 1781
the set of enumerated instances. 1782

– WBEM servers shall support filter queries in pulled enumerations and shall support the 1783
DMTF Filter Query Language (FQL, see DSP0212) as a query language for such filter 1784
queries. WBEM servers may support additional query languages for pulled enumerations. 1785
A mechanism by which WBEM servers can declare the query languages they support for 1786
pulled enumerations is not defined in this document; it is anticipated that a CIM model 1787
based approach for declaring supported query languages is developed. 1788

Note that before version 1.4 of this document, support for filter queries in pulled 1789
enumerations was optional and no particular query language was required. As a 1790
consequence of this change, the status code 1791
CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED is no longer used in CIM-1792
XML. 1793

– If FilterQueryLanguage is not NULL, it shall specify a query language and 1794

FilterQuery shall be a valid query in that query language. 1795

If the query language specified in FilterQueryLanguage is not supported by the WBEM 1796

server, it shall return an error with status code 1797
CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED. 1798

If the query language specified in FilterQueryLanguage is supported by the WBEM 1799

server, it shall process the filter query specified by the FilterQuery and 1800

FilterQueryLanguage parameters, and shall either restrict the set of enumerated 1801

instances as specified by the query language, or return an error. 1802

WBEM servers shall support the Filter Query Language (see DSP0212) as a query 1803
language for pulled enumerations. WBEM servers may support additional query languages 1804
for pulled enumerations. 1805

– The query specified in FilterQuery shall conform to the following: 1806

 If the query language supports specifying a set of classes the query applies to (for 1807

example, CQL in its FROM list), only the class named in the ClassName parameter 1808

shall be specified. 1809

 If the query language supports specifying a result list (for example, CQL in its 1810
SELECT list), a result list may be specified in the query, but the result list shall be 1811
ignored. 1812

 The query shall not define any ordering criteria or any grouping of objects. 1813

If the query does not satisfy these rules or if the query is invalid according to the definition 1814
of the query language, the WBEM server shall return an error with status code 1815
CIM_ERR_INVALID_QUERY. The Filter Query Language (see DSP0212) automatically 1816
satisfies these rules. 1817

 OperationTimeout 1818

– This input parameter determines the minimum time the WBEM server shall maintain the 1819
open enumeration session after the last Open or Pull operation (unless the enumeration 1820
session is closed during the last operation). If the operation timeout is exceeded, the 1821
WBEM server may close the enumeration session at any time, releasing any resources 1822
allocated to the enumeration session. 1823

CIM Operations over HTTP DSP0200

50 Work in Progress — Not a DMTF Standard Version 1.4.0a

– An OperationTimeout of 0 means that there is no operation timeout. That is, the 1824

enumeration session is never closed based on time. 1825

– If OperationTimeout is NULL, the WBEM server shall choose an operation timeout. 1826

– All other values for OperationTimeout specify the operation timeout in seconds. 1827

– A WBEM server may restrict the set of allowable values for OperationTimeout. 1828

Specifically, the WBEM server may not allow 0 (no timeout). If the specified value is not an 1829
allowable value, the WBEM server shall return failure with the status code 1830
CIM_ERR_INVALID_OPERATION_TIMEOUT. A mechanism by which WBEM servers can 1831

declare the allowable values for OperationTimeout is defined in 7.5. 1832

 ContinueOnError 1833

– This input parameter, if true, requests a continuation on error, which is the ability to 1834
resume an enumeration session successfully after a Pull operation returns an error. A 1835
mechanism by which conformant WBEM servers can declare support for continuation on 1836
error is defined in 7.5. 1837

– If a WBEM server does not support continuation on error and ContinueOnError is true, 1838

it shall return a failure with the status code 1839
CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED. 1840

– If a WBEM server supports continuation on error and ContinueOnError is true, the 1841

enumeration session shall remain open when a Pull operation fails, and any subsequent 1842
successful Pull operations shall return the set of instances or instance paths that would 1843
have been returned if the failing Pull operations were successful. This behavior is subject 1844

to the consistency rules defined for pulled enumerations. If ContinueOnError is false, 1845

the enumeration session shall be closed when a Pull operation returns a failure. 1846

 MaxObjectCount 1847

– This input parameter defines the maximum number of instances or instance paths that this 1848
Open operation can return. Any uint32 number is valid, including 0. The WBEM server may 1849

deliver any number of instances or instance paths up to MaxObjectCount but shall not 1850

deliver more than MaxObjectCount elements. A conformant WBEM server 1851

implementation may choose to never return any instances or instance paths during an 1852

Open operation, regardless of the value of MaxObjectCount. Note that a WBEM client 1853

can use a MaxObjectCount value of 0 to specify that it does not want to retrieve any 1854

instances in the Open operation. 1855

 Return Value (array of enumerated elements) 1856

– The return value of a successful Open operation is an array of enumerated elements with a 1857

number of entries from 0 up to a maximum defined by MaxObjectCount. These entries 1858

meet the criteria defined in the Open operation. Note that returning no entries in the array 1859

does not imply that the enumeration session is exhausted. Only the EndOfSequence 1860

output parameter indicates whether the enumeration session is exhausted. 1861

5.4.2.24.3 OpenEnumerateInstances 1862

The OpenEnumerateInstances operation establishes and opens an enumeration session of the instances 1863
of a CIM class (including instances of its subclasses) in the target namespace. Optionally, it retrieves a 1864
first set of instances. 1865

<instanceWithPath>* OpenEnumerateInstances (1866

 [OUT] string EnumerationContext, 1867

 [OUT] Boolean EndOfSequence, 1868

 [IN] <className> ClassName, 1869

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 51

 [IN,OPTIONAL] boolean DeepInheritance = true, 1870

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 1871

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL, 1872

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 1873

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 1874

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 1875

 [IN,OPTIONAL] Boolean ContinueOnError = false, 1876

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 1877

) 1878

The OpenEnumerateInstances operation shall comply with the behavior defined in 5.4.2.24.1. 1879

The EnumerationContext output parameter is defined in 5.4.2.24.2. 1880

The EndOfSequence output parameter is defined in 5.4.2.24.2. 1881

The ClassName input parameter defines the class that is the basis for the enumeration. The enumeration 1882

set shall consist of all instances of that specified class, including any instances of any of its subclasses, in 1883
accordance with the polymorphic nature of CIM objects. 1884

The DeepInheritance input parameter acts as a filter on the properties included in any enumerated 1885

CIM instances. If the DeepInheritance input parameter is true, all properties of each enumerated 1886

instance of the class shall be present (subject to constraints imposed by the other parameters), including 1887

any added by subclassing the specified class. If DeepInheritance is false, each enumerated 1888

instance includes only properties defined for the class specified by ClassName. 1889

The IncludeClassOrigin input parameter is defined in 5.4.2.24.2. 1890

The PropertyList input parameter acts as a filter on the properties in any enumerated CIM 1891

instances. If PropertyList is not NULL, the members of the array define zero or more property names 1892

of the specified class. This array may include inherited property names or property names explicitly 1893
defined in the specified class. However, it shall not include property names defined in subclasses of the 1894
specified class. Each enumerated instance shall not include any properties missing from this list. Note 1895

that PropertyList acts as an additional filter on the properties defined by the DeepInheritance input 1896

parameter. If PropertyList includes a property that is not in the set defined by DeepInheritance, 1897

the element for the property shall not be included. If PropertyList is an empty array, no properties are 1898

included in the enumerated instances. If PropertyList is NULL, no additional filtering is defined. 1899

If PropertyList contains duplicate property names, the WBEM server shall ignore them but otherwise 1900

process the request normally. If PropertyList contains property names that are invalid for a target 1901

instance, the WBEM server shall ignore them for that instance but otherwise process the request 1902
normally. 1903

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 1904

The OperationTimeout input parameter is defined in 5.4.2.24.2. 1905

The ContinueOnError input parameter is defined in 5.4.2.24.2. 1906

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 1907

If OpenEnumerateInstances is successful, the return value shall be an array of <instanceWithPath> 1908

items representing enumerated instances as defined in 5.4.2.24.2. 1909

The PullInstancesWithPath operation shall be used to pull instances for an enumeration session opened 1910
using OpenEnumerateInstances. If any other operation is used to pull instances, the WBEM server shall 1911
return failure with the status code CIM_ERR_FAILED. 1912

CIM Operations over HTTP DSP0200

52 Work in Progress — Not a DMTF Standard Version 1.4.0a

If OpenEnumerateInstances is unsuccessful, this operation shall return one of the following status codes, 1913
where the error returned is the first applicable error in the list, starting with the first element and working 1914
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 1915

 CIM_ERR_ACCESS_DENIED 1916

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 1917

 CIM_ERR_NOT_SUPPORTED 1918

 CIM_ERR_INVALID_NAMESPACE 1919

 CIM_ERR_INVALID_OPERATION_TIMEOUT 1920

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 1921

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1922
incorrect parameters) 1923

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1924
exist.) 1925

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 1926

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 1927
not recognized.) 1928

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 1929
language.) 1930

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1931

5.4.2.24.4 OpenEnumerateInstancePaths 1932

The OpenEnumerateInstancePaths operation establishes and opens an enumeration session of the 1933
instance paths of the instances of a CIM class (including instances of its subclasses) in the target 1934
namespace. Optionally, it retrieves a first set of instance paths: 1935

<instancePath>* OpenEnumerateInstancePaths (1936

 [OUT] string EnumerationContext, 1937

 [OUT] Boolean EndOfSequence, 1938

 [IN] <className> ClassName, 1939

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 1940

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 1941

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 1942

 [IN,OPTIONAL] Boolean ContinueOnError = false, 1943

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 1944

) 1945

The OpenEnumerateInstancePaths operation shall comply with the behavior defined in 5.4.2.24.1. 1946

The EnumerationContext output parameter is defined in 5.4.2.24.2. 1947

The EndOfSequence output parameter is defined in 5.4.2.24.2. 1948

The ClassName input parameter defines the class that is the basis for the enumeration. The 1949

enumeration set shall consist of the instance paths of all instances of the specified class, including any 1950
instances of any of its subclasses, in accordance with the polymorphic nature of CIM objects. 1951

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 1952

The OperationTimeout input parameter is defined in 5.4.2.24.2. 1953

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 53

The ContinueOnError input parameter is defined in 5.4.2.24.2. 1954

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 1955

If OpenEnumerateInstancePaths is successful, the return value shall be an array of <instancePath> 1956

items representing enumerated instance paths as defined in 5.4.2.24.2. 1957

The PullInstancePaths operation shall be used to pull instances for an enumeration session opened using 1958
OpenEnumerateInstancePaths. If any other operation is used to pull instances, the WBEM server shall 1959
return failure with the status code CIM_ERR_FAILED. 1960

If OpenEnumerateInstancePaths is unsuccessful, this operation shall return one of the following status 1961
codes, where the error returned is the first applicable error in the list, starting with the first element and 1962
working down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 1963

 CIM_ERR_ACCESS_DENIED 1964

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 1965

 CIM_ERR_NOT_SUPPORTED 1966

 CIM_ERR_INVALID_NAMESPACE 1967

 CIM_ERR_INVALID_OPERATION_TIMEOUT 1968

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 1969

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 1970
incorrect parameters) 1971

 CIM_ERR_INVALID_CLASS (The CIM class that is the basis for this enumeration does not 1972
exist.) 1973

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 1974

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 1975
not recognized.) 1976

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 1977
language.) 1978

 CIM_ERR_FAILED (Some other unspecified error occurred.) 1979

5.4.2.24.5 OpenReferenceInstances 1980

The OpenReferenceInstances operation establishes and opens the enumeration session of association 1981
instances that refer to a particular target CIM instance in the target namespace. Optionally, it retrieves a 1982
first set of instances: 1983

<instanceWithPath>* OpenReferenceInstances (1984

 [OUT] string EnumerationContext, 1985

 [OUT] Boolean EndOfSequence, 1986

 [IN] <instanceName> InstanceName, 1987

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 1988

 [IN,OPTIONAL,NULL] string Role = NULL, 1989

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 1990

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL, 1991

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 1992

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 1993

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 1994

 [IN,OPTIONAL] Boolean ContinueOnError = false, 1995

CIM Operations over HTTP DSP0200

54 Work in Progress — Not a DMTF Standard Version 1.4.0a

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 1996

) 1997

The OpenReferenceInstances operation shall comply with the behavior defined in 5.4.2.24.1. 1998

The EnumerationContext output parameter is defined in 5.4.2.24.2. 1999

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2000

The InstanceName input parameter specifies an instance name (model path) that identifies the target 2001

CIM instance with the referring association instances to be enumerated. Unless restricted by any of the 2002
filter parameters of this operation, the enumeration set shall consist of all association instances that 2003
reference the target instance. 2004

The ResultClass input parameter, if not NULL, shall be a CIM class name. It acts as a filter on the 2005

enumerated set of instances by mandating that each enumerated instance shall be an instance of this 2006

class or one of its subclasses. The WBEM server shall not return an error if the ResultClass input 2007

parameter value is an invalid class name or if the class does not exist in the target namespace, 2008

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2009

of instances by mandating that each enumerated instance shall refer to the target instance through a 2010
property with a name that matches the value of this parameter. The WBEM server shall not return an 2011

error if the Role input parameter value is an invalid property name or if the property does not exist, 2012

The IncludeClassOrigin input parameter is defined in 5.4.2.24.2. 2013

The PropertyList input parameter acts as a filter on the properties included in any enumerated CIM 2014

instances. If PropertyList is not NULL, the members of the array define zero or more property names. 2015

Each enumerated instance shall not include any properties missing from this list. If PropertyList is an 2016

empty array, no properties are included in each enumerated instance. If PropertyList is NULL, all 2017

properties are included in each enumerated instance, subject to the conditions expressed by the other 2018

parameters. If PropertyList contains duplicate property names, the WBEM server shall ignore them 2019

but otherwise process the request normally. If PropertyList contains property names that are invalid 2020

for a target instance, the WBEM server shall ignore them for that instance but otherwise process the 2021

request normally. WBEM clients should not specify properties in PropertyList unless they specify a 2022

non-NULL value for the ResultClass parameter. 2023

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2024

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2025

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2026

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2027

If OpenReferenceInstances is successful, the return value shall be an array of <instanceWithPath> 2028

items representing enumerated instances as defined in 5.4.2.24.2. 2029

The PullInstancesWithPath operation shall be used to pull instances for an enumeration session opened 2030
using OpenReferenceInstances. If any other operation is used to pull instances, the WBEM server shall 2031
return failure with the status code CIM_ERR_FAILED. 2032

If OpenReferenceInstances is unsuccessful, this operation shall return one of the following status codes, 2033
where the error returned is the first applicable error in the list, starting with the first element of and working 2034
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2035

 CIM_ERR_ACCESS_DENIED 2036

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 55

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2037

 CIM_ERR_NOT_SUPPORTED 2038

 CIM_ERR_INVALID_NAMESPACE 2039

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2040

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2041

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized or otherwise 2042
incorrect parameters) 2043

 CIM_ERR_NOT_FOUND (The target instance was not found.) 2044

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2045

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2046
not recognized.) 2047

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2048
language.) 2049

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2050

5.4.2.24.6 OpenReferenceInstancePaths 2051

The OpenReferenceInstancePaths operation establishes and opens an enumeration session of the 2052
instance paths of the association instances that refer to a particular target CIM instance in the target 2053
namespace. Optionally, it retrieves a first set of instance paths. 2054

<instancePath>* OpenReferenceInstancePaths (2055

 [OUT] string EnumerationContext, 2056

 [OUT] Boolean EndOfSequence, 2057

 [IN] <instanceName> InstanceName, 2058

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2059

 [IN,OPTIONAL,NULL] string Role = NULL, 2060

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2061

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2062

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2063

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2064

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2065

) 2066

The OpenReferenceInstancePaths operation shall comply with the behavior defined in 5.4.2.24.1. 2067

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2068

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2069

The InstanceName input parameter specifies an instance name (model path) that identifies the target 2070

CIM instance with the referring association instances (respectively, their instance paths) to be 2071
enumerated. Unless restricted by any filter parameters of this operation, the enumeration set shall consist 2072
of the instance paths of all association instances that reference the target instance. 2073

The ResultClass input parameter, if not NULL, shall be a CIM class name. It acts as a filter on the 2074

enumerated set of instance paths by mandating that each enumerated instance path shall identify an 2075
instance of this class or one of its subclasses. The WBEM server shall not return an error if the 2076

ResultClass input parameter value is an invalid class name or if the class does not exist in the target 2077

namespace. 2078

CIM Operations over HTTP DSP0200

56 Work in Progress — Not a DMTF Standard Version 1.4.0a

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2079

of instance paths by mandating that each enumerated instance path shall identify an instance that refers 2080
to the target instance through a property with a name that matches the value of this parameter. The 2081

WBEM server shall not return an error if the Role input parameter value is an invalid property name or if 2082

the property does not exist, 2083

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2084

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2085

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2086

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2087

If OpenReferenceInstancePaths is successful, the return value shall be an array of <instancePath> 2088

items representing enumerated instance paths as defined in 5.4.2.24.2. 2089

The PullInstancePaths operation shall be used to pull instances for an enumeration session opened using 2090
OpenReferenceInstancePaths. If any other operation is used to pull instances, the WBEM server shall 2091
return failure with the status code CIM_ERR_FAILED. 2092

If OpenReferenceInstancePaths is unsuccessful, this operation shall return one of the following status 2093
codes, where the error returned is the first applicable error in the list, starting with the first element and 2094
working down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2095

 CIM_ERR_ACCESS_DENIED 2096

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2097

 CIM_ERR_NOT_SUPPORTED 2098

 CIM_ERR_INVALID_NAMESPACE 2099

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2100

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2101

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2102
incorrect parameters) 2103

 CIM_ERR_NOT_FOUND (The target instance was not found.) 2104

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2105

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2106
not recognized.) 2107

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2108
language.) 2109

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2110

5.4.2.24.7 OpenAssociatorInstances 2111

The OpenAssociatorInstances operation establishes and opens an enumeration session of the instances 2112
associated with a particular source CIM instance in the target namespace. Optionally, it retrieves a first 2113
set of instances. 2114

<instanceWithPath>* OpenAssociatorInstances (2115

 [OUT] string EnumerationContext, 2116

 [OUT] Boolean EndOfSequence, 2117

 [IN] <instanceName> InstanceName, 2118

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 57

 [IN,OPTIONAL,NULL] <className> AssocClass = NULL, 2119

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2120

 [IN,OPTIONAL,NULL] string Role = NULL, 2121

 [IN,OPTIONAL,NULL] string ResultRole = NULL, 2122

 [IN,OPTIONAL] boolean IncludeClassOrigin = false, 2123

 [IN,OPTIONAL,NULL] string PropertyList [] = NULL, 2124

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2125

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2126

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2127

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2128

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2129

) 2130

The OpenAssociatorInstances operation shall comply with the behavior defined in 5.4.2.24.1. 2131

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2132

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2133

The InstanceName input parameter specifies an instance name (model path) that identifies the source 2134

CIM instance with the associated instances to be enumerated. Unless restricted by any filter parameters 2135
of this operation, the enumeration set shall consist of all instances associated with the source instance. 2136

The AssocClass input parameter, if not NULL, shall be a CIM association class name. It acts as a filter 2137

on the enumerated set of instances by mandating that each enumerated instance shall be associated with 2138
the source instance through an instance of this class or one of its subclasses. The WBEM server shall not 2139

return an error if the AssocClass input parameter value is an invalid class name or if the class does not 2140

exist in the target namespace. 2141

The ResultClass input parameter, if not NULL, must be a CIM class name. It acts as a filter on the 2142

enumerated set of instances by mandating that each enumerated instance shall be an instance of this 2143

class or one of its subclasses. The WBEM server shall not return an error if the ResultClass input 2144

parameter value is an invalid class name or if the class does not exist in the target namespace. 2145

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2146

of instances by mandating that each enumerated instance shall be associated with the source instance 2147
through an association in which the source instance plays the specified role. That is, the name of the 2148
property in the association class that refers to the source instance shall match the value of this 2149

parameter. The WBEM server shall not return an error if the Role input parameter value is an invalid 2150

property name or if the property does not exist. 2151

The ResultRole input parameter, if not NULL, shall be a property name. It acts as a filter on the 2152

enumerated set of instances by mandating that each enumerated instance shall be associated with the 2153
source instance through an association in which the enumerated instance plays the specified role. That 2154
is, the name of the property in the association class that refers to the enumerated instance shall match 2155

the value of this parameter. The WBEM server shall not return an error if the ResultRole input 2156

parameter value is an invalid property name or if the property does not exist. 2157

The IncludeClassOrigin input parameter is defined in 5.4.2.24.2. 2158

The PropertyList input parameter acts as a filter on the properties included in any enumerated CIM 2159

instances. If PropertyList is not NULL, the members of the array define zero or more property names. 2160

Each enumerated instance shall not include any properties missing from this list. If PropertyList is an 2161

empty array, no properties are included in each enumerated instance. If PropertyList is NULL, all 2162

properties are included in each enumerated instance, subject to the conditions expressed by the other 2163

parameters. If PropertyList contains duplicate property names, the WBEM server shall ignore them 2164

CIM Operations over HTTP DSP0200

58 Work in Progress — Not a DMTF Standard Version 1.4.0a

but otherwise process the request normally. If PropertyList contains property names that are invalid 2165

for a target instance, the WBEM server shall ignore them for that instance but otherwise process the 2166

request normally. WBEM clients should not specify properties in PropertyList unless they specify a 2167

non-NULL value for the ResultClass parameter. 2168

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2169

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2170

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2171

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2172

If OpenAssociatorInstances is successful, the return value shall be an array of <instanceWithPath> 2173

items representing enumerated instances as defined in 5.4.2.24.2. 2174

The PullInstancesWithPath operation shall be used to pull instances for an enumeration session opened 2175
using OpenAssociatorInstances. If any other operation is used to pull instances, the WBEM server shall 2176
return failure with the status code CIM_ERR_FAILED. 2177

If OpenAssociatorInstances is unsuccessful, this operation shall return one of the following status codes, 2178
where the error returned is the first applicable error in the list, starting with the first element and working 2179
down. Any additional operation-specific interpretation of the error is given in parentheses. 2180

 CIM_ERR_ACCESS_DENIED 2181

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2182

 CIM_ERR_NOT_SUPPORTED 2183

 CIM_ERR_INVALID_NAMESPACE 2184

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2185

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2186

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2187
incorrect parameters) 2188

 CIM_ERR_NOT_FOUND (The source instance was not found.) 2189

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2190

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2191
not recognized.) 2192

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2193
language.) 2194

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2195

5.4.2.24.8 OpenAssociatorInstancePaths 2196

The OpenAssociatorInstancePaths operation establishes and opens an enumeration session of the 2197
instance paths of the instances associated with a particular source CIM instance in the target namespace. 2198
Optionally, it retrieves a first set of instance paths. 2199

<instancePath>* OpenAssociatorInstancePaths (2200

 [OUT] string EnumerationContext, 2201

 [OUT] Boolean EndOfSequence, 2202

 [IN] <instanceName> InstanceName, 2203

 [IN,OPTIONAL,NULL] <className> AssocClass= NULL, 2204

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 59

 [IN,OPTIONAL,NULL] <className> ResultClass = NULL, 2205

 [IN,OPTIONAL,NULL] string Role = NULL, 2206

 [IN,OPTIONAL,NULL] string ResultRole = NULL, 2207

 [IN,OPTIONAL,NULL] string FilterQueryLanguage = NULL, 2208

 [IN,OPTIONAL,NULL] string FilterQuery = NULL, 2209

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2210

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2211

 [IN,OPTIONAL] uint32 MaxObjectCount = 0 2212

) 2213

This operation shall comply with the behavior defined in 5.4.2.24.1. 2214

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2215

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2216

The InstanceName input parameter specifies an instance name (model path) that identifies the source 2217

CIM instance with the associated instances (respectively, their instance paths) to be enumerated. Unless 2218
restricted by any filter parameters of this operation, the enumeration set shall consist of the instance 2219
paths of all instances associated with the source instance. 2220

The AssocClass input parameter, if not NULL, shall be a CIM association class name. It acts as a filter 2221

on the enumerated set of instance paths by mandating that each instance path identify an instance that 2222
shall be associated with the source instance through an instance of this class or one of its subclasses. 2223

The WBEM server shall not return an error if the AssocClass input parameter value is an invalid class 2224

name or if the class does not exist in the target namespace. 2225

The ResultClass input parameter, if not NULL, shall be a CIM class name. It acts as a filter on the 2226

enumerated set of instance paths by mandating that each instance path identify an instance that shall be 2227
an instance of this class or one of its subclasses. The WBEM server shall not return an error if the 2228

ResultClass input parameter value is an invalid class name or if the class does not exist in the target 2229

namespace. 2230

The Role input parameter, if not NULL, shall be a property name. It acts as a filter on the enumerated set 2231

of instance paths by mandating that each instance path identify an instance that shall be associated with 2232
the source instance through an association in which the source instance plays the specified role. That is, 2233
the name of the property in the association class that refers to the source instance shall match the value 2234

of this parameter. The WBEM server shall not return an error if the Role input parameter value is an 2235

invalid property name or if the property does not exist. 2236

The ResultRole input parameter, if not NULL, shall be a property name. It acts as a filter on the 2237

enumerated set of instance paths by mandating that each instance path identify an instance that shall be 2238
associated with the source instance through an association in which the instance identified by 2239
the enumerated instance path plays the specified role. That is, the name of the property in the association 2240
class that refers to the instance identified by the enumerated instance path shall match the value of this 2241

parameter. The WBEM server shall not return an error if the ResultRole input parameter value is an 2242

invalid property name or if the property does not exist. 2243

The FilterQueryLanguage and FilterQuery input parameters are defined in 5.4.2.24.2. 2244

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2245

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2246

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2247

CIM Operations over HTTP DSP0200

60 Work in Progress — Not a DMTF Standard Version 1.4.0a

If OpenAssociatorInstancePaths is successful, the return value shall be an array of <instancePath> 2248

items representing enumerated instance paths as defined in 5.4.2.24.2. 2249

The PullInstancePaths operation shall be used to pull instances for an enumeration session opened using 2250
OpenAssociatorInstancePaths. If any other operation is used to pull instances, the WBEM server shall 2251
return failure with the status code CIM_ERR_FAILED. 2252

If OpenAssociatorInstancePaths is unsuccessful, this operation shall return one of the following status 2253
codes, where the error returned is the first applicable error in the list, starting with the first element and 2254
working down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2255

 CIM_ERR_ACCESS_DENIED 2256

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2257

 CIM_ERR_NOT_SUPPORTED 2258

 CIM_ERR_INVALID_NAMESPACE 2259

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2260

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2261

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2262
incorrect parameters) 2263

 CIM_ERR_NOT_FOUND (The source instance was not found.) 2264

 CIM_ERR_FILTERED_ENUMERATION_NOT_SUPPORTED 2265

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2266
not recognized.) 2267

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter 2268
language.) 2269

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2270

5.4.2.24.9 Common Parameters for the Pull Operations 2271

This clause defines commonly used parameters for the Pull operations. The description of the individual 2272
Pull operations references these parameters as appropriate. Note that not every Pull operation uses 2273
every one of these common parameters. 2274

 EnumerationContext 2275

– This parameter is the enumeration context value representing the enumeration session to 2276
be used. 2277

– The representation of an enumeration context value uses a string type. In version 1.3 of 2278
this document, enumeration context values were represented using the 2279
ENUMERATIONCONTEXT XML element. The representation was changed to using a 2280
string type in version 1.4 of this document, because it had turned out that all known 2281
implementations had implemented the enumeration context value using a string type. 2282

– When the Pull operation is invoked, the enumeration session represented by the 2283

EnumerationContext input parameter shall be open. The first enumeration session shall 2284

use one of the Open operations with a type of enumerated object that matches the Pull 2285
operation. For the first Pull operation on an enumeration session, the value of the 2286

EnumerationContext input parameter shall be the enumeration context value returned 2287

by a successful Open operation. For subsequent Pull operations on that enumeration 2288

session, the value of the EnumerationContext input parameter shall be the value of the 2289

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 61

EnumerationContext output parameter returned by the previous Pull operation on the 2290

same enumeration session. 2291

– After the Pull operation is completed, the enumeration session represented by the 2292

EnumerationContext output parameter shall be open or closed. 2293

 EndOfSequence 2294

– This output parameter indicates to the WBEM client whether the enumeration session is 2295

exhausted. If EndOfSequence is true upon successful completion of a Pull operation, no 2296

more instances or instance paths are available and the WBEM server shall close the 2297
enumeration session, releasing any allocated resources related to the session. If 2298

EndOfSequence is false, additional instances or instance paths may be available, and 2299

the WBEM server shall not close the session. 2300

 MaxObjectCount 2301

– This input parameter defines the maximum number of instances or instance paths that may 2302
be returned by this Pull operation. Any uint32 number is valid, including 0. The WBEM 2303

server may deliver any number of instances or instance paths up to MaxObjectCount but 2304

shall not deliver more than MaxObjectCount. The WBEM client may use a 2305

MaxObjectCount value of 0 to restart the operation timeout for the enumeration session 2306

when it does not need to not retrieve any instances or instance paths. 2307

 Return Value (array of enumerated elements) 2308

– The return value of a Pull operation upon successful completion is an array of enumerated 2309
instances or instance paths with a number of entries from 0 up to a maximum defined by 2310

MaxObjectCount. These entries meet the criteria defined in the Open operation that 2311

established this enumeration session. Note that returning no entries in the array does not 2312

imply that the enumeration session is exhausted. Only the EndOfSequence output 2313

parameter indicates whether the enumeration session is exhausted. 2314

5.4.2.24.10 PullInstancesWithPath 2315

The PullInstancesWithPath operation retrieves instances including their instance paths from an open 2316
enumeration session represented by an enumeration context value: 2317

<instanceWithPath>* PullInstancesWithPath (2318

 [IN,OUT] string EnumerationContext, 2319

 [OUT] Boolean EndOfSequence, 2320

 [IN] uint32 MaxObjectCount 2321

) 2322

The PullInstancesWithPath operation shall comply with the behavior defined in 5.4.2.24.1. 2323

The EnumerationContext input/output parameter is defined in 5.4.2.24.9. The enumeration session 2324

shall be established using one of the OpenEnumerateInstances, OpenReferenceInstances, or 2325
OpenAssociatorInstances operations. 2326

The EndOfSequence output parameter is defined in 5.4.2.24.9. 2327

The MaxObjectCount input parameter is defined in 5.4.2.24.9. 2328

If PullInstancesWithPath is successful, the return value shall be an array of <instanceWithPath> 2329

items representing enumerated instances including their instance paths as defined in 5.4.2.24.9. 2330

If PullInstancesWithPath is unsuccessful, this operation shall return one of the following status codes, 2331
where the error returned is the first applicable error in the list, starting with the first element and working 2332
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2333

CIM Operations over HTTP DSP0200

62 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM_ERR_ACCESS_DENIED 2334

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2335

 CIM_ERR_NOT_SUPPORTED 2336

 CIM_ERR_INVALID_NAMESPACE 2337

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2338
incorrect parameters) 2339

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2340

 CIM_ERR_PULL_HAS_BEEN_ABANDONED 2341

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2342

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2343

5.4.2.24.11 PullInstancePaths 2344

The PullInstancePaths operation retrieves instance paths from an open enumeration session represented 2345
by an enumeration context value: 2346

<instancePath>* PullInstancePaths (2347

 [IN,OUT] string EnumerationContext, 2348

 [OUT] Boolean EndOfSequence, 2349

 [IN] uint32 MaxObjectCount 2350

) 2351

The PullInstancePaths operation shall comply with the behavior defined in 5.4.2.24.1. 2352

The EnumerationContext input/output parameter is defined in 5.4.2.24.9. The enumeration session 2353

shall have been established using one of the OpenEnumerateInstancePaths, 2354
OpenReferenceInstancePaths, or OpenAssociatorInstancePaths operations. 2355

The EndOfSequence output parameter is defined in 5.4.2.24.9. 2356

The MaxObjectCount input parameter is defined in 5.4.2.24.9. 2357

If PullInstancePaths is successful, the return value shall be an array of <instancePath> items 2358

representing enumerated instance paths as defined in 5.4.2.24.9. 2359

If PullInstancePaths is unsuccessful, this operation shall return one of the following status codes, where 2360
the error returned is the first applicable error in the list, starting with the first element and working down. 2361
Any additional operation-specific interpretation of the error is enclosed in parentheses. 2362

 CIM_ERR_ACCESS_DENIED 2363

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2364

 CIM_ERR_NOT_SUPPORTED 2365

 CIM_ERR_INVALID_NAMESPACE 2366

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2367
incorrect parameters) 2368

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2369

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2370

 CIM_ERR_PULL_HAS_BEEN_ABANDONED 2371

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 63

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2372

5.4.2.24.12 CloseEnumeration 2373

The CloseEnumeration operation closes an open enumeration session, performing an early termination of 2374
an enumeration sequence: 2375

void CloseEnumeration (2376

 [IN] string EnumerationContext 2377

) 2378

The EnumerationContext parameter is the value representing the enumeration session to be closed. 2379

The enumeration session shall be open and shall be established using one of the Open operations. This 2380
implies that this operation is not to close an enumeration sequence already indicated by 2381

EndOfSequence because the sequence has already been closed. The value of the 2382

EnumerationContext parameter shall be the value of the EnumerationContext output parameter 2383

returned by the previous Pull operation on the enumeration session to be closed. 2384

If CloseEnumeration is successful, the WBEM server shall close the enumeration session represented by 2385

EnumerationContext, releasing any allocated resources. Any subsequent use of the 2386

EnumerationContext value is unsuccessful. 2387

CloseEnumeration may be executed concurrently with a Pull operation or an EnumerationCount operation 2388
on the same enumeration session. If a WBEM server receives a CloseEnumeration operation request 2389
while it is processing a Pull operation on the same enumeration session, the WBEM server shall attempt 2390
to abandon that Pull operation. If the Pull operation can be abandoned, it shall return a failure with the 2391
status code CIM_ERR_PULL_HAS_BEEN_ABANDONED and the CloseEnumeration operation shall 2392
return success. If the Pull operation cannot be abandoned, it shall proceed as if the CloseEnumeration 2393
operation has not been issued, and the CloseEnumeration operation shall return a failure with the status 2394
code CIM_ERR_PULL_CANNOT_BE_ABANDONED. 2395

If CloseEnumeration is unsuccessful, this operation shall return one of the following status codes, where 2396
the error returned is the first applicable error in the list, starting with the first element and working down. 2397
Any additional operation-specific interpretation of the error is enclosed in parentheses. 2398

 CIM_ERR_ACCESS_DENIED 2399

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2400

 CIM_ERR_NOT_SUPPORTED 2401

 CIM_ERR_INVALID_NAMESPACE 2402

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2403
incorrect parameters) 2404

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2405

 CIM_ERR_PULL_CANNOT_BE_ABANDONED 2406

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2407

5.4.2.24.13 EnumerationCount 2408

The EnumerationCount operation provides an estimated count of the total number of objects in an open 2409
enumeration session represented by an EnumerationContext: 2410

uint64 EnumerationCount (2411

 [IN] string EnumerationContext 2412

) 2413

CIM Operations over HTTP DSP0200

64 Work in Progress — Not a DMTF Standard Version 1.4.0a

The EnumerationContext parameter identifies the enumeration session for the EnumerationCount 2414

operation. It shall be established using any of the Open operations and shall be open at the time of the 2415
CloseEnumeration request. A conformant WBEM server may support this operation. A WBEM server that 2416
does not support this operation should respond with the CIM_ERR_NOT_SUPPORTED status. 2417

If EnumerationCount is successful, the operation returns an approximate count of the number of objects 2418
in the enumeration session. This is the number of items remaining to be sent with subsequent Pull 2419
operations. Thus, executing this operation immediately after the open may provide an approximate 2420
estimate of the total number of objects to be returned in the enumeration set. The returned count is only 2421
an estimate of the number of objects to be pulled in the enumeration sequence. This mechanism is 2422
intended to assist WBEM clients in determining the overall size of an enumeration set and the number of 2423

objects remaining in the enumeration session. It should not be used instead of the EndOfSequence 2424

parameter to determine the end of an enumeration sequence. 2425

If the WBEM server cannot or will not return an estimate of the number of objects to be returned for the 2426
enumeration context, it may return success and the NULL value. 2427

If EnumerationCount is unsuccessful, this operation shall return one of the following status codes, where 2428
the error returned is the first applicable error in the list, starting with the first element and working down. 2429
Any additional operation-specific interpretation of the error is enclosed in parentheses. 2430

 CIM_ERR_ACCESS_DENIED 2431

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2432

 CIM_ERR_NOT_SUPPORTED 2433

 CIM_ERR_INVALID_NAMESPACE 2434

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2435
incorrect parameters) 2436

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2437

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2438

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2439

5.4.2.24.14 OpenQueryInstances 2440

The OpenQueryInstances operation establishes and opens an enumeration session of the instances of a 2441
CIM class (including instances of its subclasses) in the target namespace. Optionally, it retrieves a first 2442
set of instances: 2443

<instance>* OpenQueryInstances (2444

 [IN] string FilterQuery, 2445

 [IN] string FilterQueryLanguage, 2446

 [IN,OPTIONAL] Boolean ReturnQueryResultClass = false, 2447

 [IN,OPTIONAL,NULL] uint32 OperationTimeout = NULL, 2448

 [IN,OPTIONAL] Boolean ContinueOnError = false, 2449

 [IN,OPTIONAL] uint32 MaxObjectCount = 0, 2450

 [OUT, OPTIONAL, NULL] <class> QueryResultClass, 2451

 [OUT] string EnumerationContext, 2452

 [OUT] Boolean EndOfSequence 2453

) 2454

The OpenQueryInstances shall comply with the behavior defined in 5.4.2.24.1. 2455

The FilterQuery and FilterQueryLanguage input parameters specify the set of enumerated 2456

instances. 2457

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 65

FilterQueryLanguage shall specify a query language and the value of FilterQuery shall be a valid 2458

query in that query language. This document defines neither the query language nor the format of the 2459
query. It is anticipated that query languages will be submitted to the DMTF as separate proposals. A 2460
mechanism by which WBEM servers can declare the query languages they support for filtering in Pulled 2461
enumerations (if any) is defined in 7.5. 2462

The ReturnQueryResultClass input parameter controls whether a class definition is returned in 2463

QueryResultClass. If it is set to false, QueryResultClass shall be set to NULL on output. If it is 2464

set to true, the value of the QueryResultClass on output shall be a class definition that defines the 2465

properties (columns) of each row of the query result. 2466

The OperationTimeout input parameter is defined in 5.4.2.24.2. 2467

The ContinueOnError input parameter is defined in 5.4.2.24.2. 2468

The MaxObjectCount input parameter is defined in 5.4.2.24.2. 2469

The QueryResultClass output parameter shall be set to NULL if the ReturnQueryResultClass 2470

input parameter is set to false. Otherwise, it shall return a class definition where each property of the 2471

class corresponds to one entry of the query select list. The class definition corresponds to one row of the 2472
query result. The class name of this returned class shall be "CIM_QueryResult.” This class definition is 2473
valid only in the context of this enumeration. 2474

The EnumerationContext output parameter is defined in 5.4.2.24.2. 2475

The EndOfSequence output parameter is defined in 5.4.2.24.2. 2476

If OpenQueryInstances is successful, the return value shall be an array of <instance> items 2477

representing enumerated instances as defined in 5.4.2.24.2. Such instances are available only in the 2478
context of the enumeration and do not return an instance path. The PullInstancesWithPath operation may 2479
not be used to continue an enumeration started by the OpenQueryInstances operation. 2480

The PullInstances operation shall be used to pull instances for an enumeration session opened using If 2481
OpenQueryInstances. If any other operation is used to pull instances, the WBEM server shall return 2482
failure with the status code CIM_ERR_FAILED. 2483

If OpenQueryInstances is unsuccessful, this operation shall return one of the following status codes, 2484
where the error returned is the first applicable error in the list, starting with the first element and working 2485
down. Any additional operation-specific interpretation of the error is enclosed in parentheses. 2486

 CIM_ERR_ACCESS_DENIED 2487

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2488

 CIM_ERR_NOT_SUPPORTED 2489

 CIM_ERR_INVALID_NAMESPACE 2490

 CIM_ERR_INVALID_OPERATION_TIMEOUT 2491

 CIM_ERR_CONTINUATION_ON_ERROR_NOT_SUPPORTED 2492

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2493
incorrect parameters) 2494

 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED (The requested filter query language is 2495
not recognized.) 2496

 CIM_ERR_INVALID_QUERY (The filter query is not a valid query in the specified filter query 2497
language.) 2498

CIM Operations over HTTP DSP0200

66 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM_ERR_QUERY_FEATURE_NOT_SUPPORTED (The query requires support for features 2499
that are not supported.) 2500

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2501

5.4.2.24.15 PullInstances 2502

The PullInstances operation retrieves instances from an OpenQueryInstances session represented by an 2503
enumeration context value: 2504

<instance>* PullInstances (2505

 [IN,OUT] string EnumerationContext, 2506

 [OUT] Boolean EndOfSequence, 2507

 [IN] uint32 MaxObjectCount 2508

) 2509

The PullInstances operation shall comply with the behavior defined in 5.4.2.24.1. 2510

The EnumerationContext input/output parameter is defined in 5.4.2.24.9. The enumeration session 2511

shall be established using the OpenQueryInstances operation. 2512

The EndOfSequence output parameter is defined in 5.4.2.24.9. 2513

The MaxObjectCount input parameter is defined in 5.4.2.24.9. 2514

If PullInstances is successful, the return value shall be an array of <instance> items representing 2515

enumerated instances as defined in 5.4.2.24.9. 2516

If PullInstances is unsuccessful, this operation shall return one of the following status codes, where the 2517
error returned is the first applicable error in the list, starting with the first element and working down. Any 2518
additional operation-specific interpretation of the error is enclosed in parentheses. 2519

 CIM_ERR_ACCESS_DENIED 2520

 CIM_ERR_SERVER_IS_SHUTTING_DOWN 2521

 CIM_ERR_NOT_SUPPORTED 2522

 CIM_ERR_INVALID_NAMESPACE 2523

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2524
incorrect parameters) 2525

 CIM_ERR_INVALID_ENUMERATION_CONTEXT 2526

 CIM_ERR_SERVER_LIMITS_EXCEEDED 2527

 CIM_ERR_PULL_HAS_BEEN_ABANDONED 2528

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2529

5.4.3 Namespace Manipulation Using the CIM_Namespace Class 2530

No intrinsic methods are defined specifically to manipulate namespaces. Namespaces shall be 2531
manipulated using intrinsic methods on the CIM_Namespace class. 2532

5.4.3.1 Namespace Creation 2533

A namespace is created by calling the intrinsic method CreateInstance for the CIM_Namespace class. A 2534
value is specified for the new instance parameter that defines a valid instance of the CIM_Namespace 2535
class and that has a name property that is the desired name of the new namespace. 2536

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 67

The proposed definition shall be a correct namespace definition according to DSP0004. Despite the 2537
naming conventions used in the CIM specifications (use of / in namespaces such as root/CIMV2 and 2538
root/CIMV2/test), there is no hierarchy implied among different namespaces. Each namespace is 2539
independent of all others. The namespaces are to be considered flat, and there is no defined behavior for 2540
navigating namespaces. 2541

In creating the new namespace, the WBEM server shall conform to the following rules: 2542

 The namespace defined by name property shall not already exist in the WBEM server. 2543

 The <LOCALNAMESPACEPATH> defined for the operation defines the namespace in which 2544
the CIM_Namespace instance associated with this new namespace is created. 2545

It is recommended that instances of CIM_Namespace be created in root unless there is a specific reason 2546
to define them in another namespace. The inclusion of a CIM_Namespace instance within a namespace 2547
other than root is allowed. 2548

In addition to creating instances of CIM_Namespace, compliant implementations shall also create an 2549
instance of the association class CIM_NamespaceInManager defining the linking of the namespace 2550
created to the current CIM_ObjectManager. 2551

If CreateInstance is successful, the WBEM server creates the specified namespace. In addition, the 2552
WBEM server shall return information about the namespace as an instance of the class CIM_Namespace 2553
and of returning instances of the association class CIM_NamespaceInManager for each 2554
CIM_Namespace instance created. 2555

5.4.3.2 Namespace Deletion 2556

If the WBEM server supports the CIM_Namespace class, all valid namespaces shall be represented by 2557
an instance of the CIM_Namespace class. A namespace is deleted using the intrinsic method 2558
DeleteInstance to delete the instance of the class CIM_Namespace that represents the namespace. The 2559
namespace to be deleted shall exist. 2560

If DeleteInstance is successful, the WBEM server shall remove the specified CIM_Namespace instance. 2561

If DeleteInstance is unsuccessful, one of the status codes defined for the DeleteInstance operation shall 2562
be returned. A WBEM server may return CIM_ERR_FAILED if a non-empty namespace cannot 2563
successfully be deleted. 2564

5.4.3.3 Manipulation and Query of Namespace Information 2565

The query of namespaces is provided through the following means: 2566

 Query of the CIM_Namespace class on an individual namespace 2567

 Use of the CIM_NamespaceInManager association to link the target CIM_ObjectManager and 2568
the instances of CIM_Namespace representing all namespaces defined in the target 2569
CIM_ObjectManager 2570

5.4.3.4 Use of the __Namespace Pseudo Class (DEPRECATED) 2571

In previous versions of this document, namespaces were manipulated through the pseudo class 2572
__Namespace as follows: 2573

No intrinsic methods are specifically defined for manipulating CIM namespaces. However, modeling a 2574
CIM namespace using class __Namespace, together with the requirement that the root namespace be 2575
supported by all WBEM servers, implies that all namespace operations can be supported. 2576

For example, all child namespaces of a particular namespace are enumerated by calling the intrinsic 2577
method EnumerateInstanceNames against the parent namespace, specifying a value for the ClassName 2578

CIM Operations over HTTP DSP0200

68 Work in Progress — Not a DMTF Standard Version 1.4.0a

parameter of __Namespace. A child namespace is created by calling the intrinsic method CreateInstance 2579
against the parent namespace, specifying a value for the NewInstance parameter that defines a valid 2580
instance of the class __Namespace and that has a name property that is the desired name of the new 2581
namespace. 2582

DEPRECATION NOTE: The use of the __Namespace class is DEPRECATED. In its place, use the 2583
CIM_Namespace class. 2584

5.4.4 Functional Profiles 2585

To establish conformance, this clause partitions the intrinsic methods into functional groups. 2586

Support for a particular group does not guarantee that all invocations of a method in that group will 2587
succeed. Rather, the exclusion of a group is a declaration that any attempt to call a method in that group 2588
always returns CIM_ERR_NOT_SUPPORTED. 2589

Mechanisms by which a WBEM server may declare the functional groups that it supports are defined in 2590
7.5. 2591

To limit the number of different profiles that a WBEM server may support, each functional group has a 2592
dependency on another group (with the exception of the Basic Read functional group). If functional group 2593
G1 has a dependency on functional group G2, then a WBEM server that supports G1 shall also support 2594
G2. 2595

The dependency relation is transitive, so if G1 depends on G2, and G2 depends on G3, then G1 depends 2596
on G3. It is also anti-symmetric, so if G1 depends on G2, then G2 cannot depend on G1. 2597

Using these rules, Table 3 defines a rooted-directed tree of dependencies with the Basic Read 2598
dependency representing the root node. 2599

For example, a WBEM server that supports the Schema Manipulation functional group shall also support 2600
the Instance Manipulation, Basic Write, and Basic Read. 2601

A WBEM server shall support the Basic Read functional group. 2602

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 69

Table 3 – Root-Directed Tree of Functional Profile Dependencies 2603

Functional Group Dependency Methods

Basic Read none GetClass

EnumerateClasses

EnumerateClassNames

GetInstance

EnumerateInstances

EnumerateInstanceNames

GetProperty (DEPRECATED)

Pulled Read Basic Read OpenEnumerateInstances

OpenEnumerateInstancePaths

OpenReferenceInstances

OpenReferenceInstancePaths

OpenAssociatorInstances

OpenAssociatorInstancePaths

PullInstancesWithPath

PullInstancePaths

CloseEnumeration

PulledReadCount Pulled Read EnumerationCount

Pulled Query Execution Pulled Read OpenQueryInstances

PullInstances

Basic Write Basic Read SetProperty (DEPRECATED)

Schema Manipulation Instance Manipulation CreateClass

ModifyClass

DeleteClass

Instance Manipulation Basic Write CreateInstance

ModifyInstance

DeleteInstance

Association Traversal Basic Read Associators

AssociatorNames

References

ReferenceNames

Query Execution Basic Read ExecQuery

Qualifier Declaration Schema Manipulation GetQualifier

SetQualifier

DeleteQualifier

EnumerateQualifiers

5.4.5 Extrinsic Method Invocation 2604

Any WBEM server is assumed to support extrinsic methods, which are defined by the schema supported 2605
by the WBEM server. If a WBEM server does not support extrinsic method invocations, it shall return the 2606
error code CIM_ERR_NOT_SUPPORTED to any request to execute an extrinsic method (subject to the 2607
considerations described in the rest of this clause). This allows a WBEM client to determine that all 2608
attempts to execute extrinsic methods will fail. 2609

CIM Operations over HTTP DSP0200

70 Work in Progress — Not a DMTF Standard Version 1.4.0a

If the WBEM server cannot invoke extrinsic methods, it shall return one of the following status codes, 2610
where the error returned is the first applicable error in the list, starting with the first element and working 2611
down. Any additional specific interpretation of the error is enclosed in parentheses. 2612

 CIM_ERR_ACCESS_DENIED 2613

 CIM_ERR_NOT_SUPPORTED (The WBEM server does not support extrinsic method 2614
invocations.) 2615

 CIM_ERR_INVALID_NAMESPACE 2616

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2617
incorrect parameters) 2618

 CIM_ERR_NOT_FOUND (The target CIM class or instance does not exist in the specified 2619
namespace.) 2620

 CIM_ERR_METHOD_NOT_FOUND 2621

 CIM_ERR_METHOD_NOT_AVAILABLE (The WBEM server is unable to honor the invocation 2622
request.) 2623

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2624

5.5 CIM Export Syntax and Semantics 2625

This clause focuses on export methods and their invocation, as well as on functional profiles. 2626

5.5.1 Export Method Invocations 2627

All CIM-XML export message requests defined for the CIM-to-HTTP mapping are invocations of one or 2628
more export methods. Export methods do not operate against CIM namespaces. 2629

An export method call is represented in XML by the <EXPMETHODCALL> element, and the response to 2630
that call is represented by the <EXPMETHODRESPONSE> element. 2631

An input parameter has an IN qualifier with value true in the method definition. An output parameter has 2632

an OUT qualifier with value true in the method definition. A parameter may be both an input parameter 2633

and an output parameter. 2634

The <EXPMETHODCALL> element names the method to be invoked and supplies any input parameters 2635
to the export method call: 2636

 Each input parameter shall be named using the name assigned in the method definition. 2637

 Input parameters may be supplied in any order. 2638

 Each input parameter of the method, and no others, shall be present in the call unless it is 2639
optional. 2640

The <EXPMETHODRESPONSE> element defines either an <ERROR> or a (possibly optional) return 2641
value and output parameters, which are decorated with the OUT qualifier in the method definition. In the 2642
latter case, the following rules apply: 2643

 Each output parameter shall be named using the name assigned in the method definition. 2644

 Output parameters may be supplied in any order. 2645

 Each output parameter of the method, and no others, shall be present in the response, unless it 2646
is optional. 2647

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 71

The method invocation process may be thought of as a two-part process: 2648

 Binding the input parameter values specified as child elements of the <EXPMETHODCALL> 2649
element to the input parameters of the method. 2650

 Attempting to execute the method using the bound input parameters, with one of the following 2651
results: 2652

– If the attempt to call the method is successful, the return value and output parameters are 2653
bound to the child elements of the <EXPMETHODRESPONSE> element. 2654

– If the attempt to call the method is unsuccessful, an error code and (optional) human-2655
readable description of that code is bound to the <EXPMETHODRESPONSE> element. 2656

5.5.1.1 Simple Export 2657

A simple export requires the invocation of a single export method. A simple export request is represented 2658
by a <SIMPLEEXPREQ> element, and a simple export response is represented by a <SIMPLEEXPRSP> 2659
element. 2660

A <SIMPLEEXPREQ> shall contain a <EXPMETHODCALL> element. 2661

5.5.1.2 Multiple Export 2662

A multiple export requires the invocation of more than one export method. A multiple export request is 2663
represented by a <MULTIEXPREQ> element, and a multiple export response is represented by a 2664
<MULTIEXPRSP> element. 2665

A <MULTIEXPREQ> (or its respective <MULTIEXPRSP>) element is a sequence of two or more 2666
<SIMPLEEXPREQ> (or its respective <SIMPLEEXPRSP>) elements. 2667

A <MULTIEXPRSP> element shall contain a <SIMPLEEXPRSP> element for every <SIMPLEEXPREQ> 2668
element in the corresponding multiple export response. These <SIMPLEEXPRSP> elements shall be in 2669
the same order as their <SIMPLEEXPREQ> counterparts. The first <SIMPLEEXPRSP> in the response 2670
corresponds to the first <SIMPLEEXPREQ> in the request, and so forth. 2671

Multiple exports conveniently batch the delivery of multiple export method invocations into a single HTTP 2672
message, reducing the number of roundtrips between a WBEM client and a WBEM listener and allowing 2673
the WBEM listener to make certain internal optimizations. Note that multiple exports do not confer any 2674
transactional capabilities in processing the request. For example, the WBEM listener does not have to 2675
guarantee that the constituent export method calls either all failed or all succeeded. The WBEM listener 2676
must only make a "best effort" to process the operation. However, WBEM listeners shall finish processing 2677
each method invocation in a batched message before executing the next method invocation in the batch. 2678
Clients shall recognize that the order of method calls within a batched message is significant. 2679

Not all WBEM listeners support multiple exports. If a WBEM listener does not support multiple exports, it 2680
shall return the status code CIM_ERR_NOT_SUPPORTED. 2681

5.5.1.3 Status Codes 2682

This clause defines the status codes and detailed error information that a conforming WBEM listener may 2683
return. 2684

The value of an <ERROR> child element within a <EXPMETHODRESPONSE> element includes the 2685
following parts: 2686

 mandatory status code 2687

 optional human-readable description of the status code 2688

 zero or more CIM_Error instances 2689

CIM Operations over HTTP DSP0200

72 Work in Progress — Not a DMTF Standard Version 1.4.0a

The symbolic names defined in Table 4 do not appear on the wire. They are used here solely for 2690
convenient reference to an error in other parts of this document. Not all methods are expected to return 2691
all these status codes. 2692

In addition to returning a status code, a conforming WBEM listener may return zero or more 2693
<INSTANCE> child elements as part of an <ERROR> element. Each <INSTANCE> child element shall 2694
be an instance of CIM_Error, and the value of CIMStatusCode shall comply with the definition of expected 2695
error codes for the CIM-XML export request. A WBEM client may ignore any <INSTANCE> child 2696
elements. 2697

Table 4 – Symbolic Names for Referencing Error Codes 2698

Symbolic Name Code Definition

CIM_ERR_FAILED 1 A general error occurred that is not covered by a more specific
error code.

CIM_ERR_ACCESS_DENIED 2 Access was not available to the client.

CIM_ERR_NOT_SUPPORTED 7 The requested operation is not supported.

CIM_ERR_TYPE_MISMATCH 13 The value supplied is incompatible with the type.

5.5.2 Export Methods 2699

This clause describes the methods that can be defined within a CIM-XML export message. These 2700
methods operate only on an external data representation of a CIM entity, namespace, or element. 2701
Specifically, export methods do not operate on CIM namespaces or elements. The export method defined 2702
in this document is Export an Indication. 2703

The notation used in the following subclauses to define the signatures of the export methods is a pseudo-2704
MOF notation that extends the standard MOF BNF (DSP0004) for describing CIM export methods with a 2705
number of pseudo parameter types. The pseudo parameter types are enclosed in angle brackets (< >). 2706

This notation allows parameters to be decorated with pseudo-qualifiers (IN, OPTIONAL, and NULL) to 2707
define their invocation semantics. Note that these qualifiers are for description purposes only within the 2708
scope of this document. In particular, a WBEM client shall not specify them in export method invocations. 2709

This notation uses the IN qualifier for input parameters. 2710

A WBEM client may omit an optional parameter if the required value is the specified default by not 2711
specifying an <EXPPARAMVALUE> element for the parameter. It shall not omit a parameter that is not 2712
optional. 2713

The NULL qualifier indicates parameters with values that may be specified as NULL in an export method 2714
call. A NULL (unassigned) value for a parameter is specified by an <EXPPARAMVALUE> element with 2715
no child element. The WBEM client shall specify a value for parameters without the NULL qualifier by 2716
including a suitable child element for the <EXPPARAMVALUE> element. 2717

All parameters shall be uniquely named and shall correspond to a valid parameter name for that method 2718
as described by this document. The order of the parameters is not significant. 2719

The non-NULL values of export method parameters or return values that are modeled as standard CIM 2720
types (such as string and Boolean, or arrays thereof) are represented as follows: 2721

 Simple values shall be represented by the <VALUE> child element in an <EXPPARAMVALUE> 2722
element (for export method parameters) or in an <IRETURNVALUE> element (for export 2723
method return values). 2724

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 73

 Array values shall be represented by the <VALUE.ARRAY> child element in an 2725
<EXPPARAMVALUE> element (for export method parameters) or in an <IRETURNVALUE> 2726
element (for export method return values). 2727

Table 5 shows how each pseudo-type used by the export methods shall be mapped to an XML element 2728
described in DSP0201 in the context of both a parameter value (child element of <EXPPARAMVALUE>) 2729
and a return value (child element of <IRETURNVALUE>). 2730

2731

CIM Operations over HTTP DSP0200

74 Work in Progress — Not a DMTF Standard Version 1.4.0a

Table 5 – Mapping of Export Method Pseudo-Types to XML Elements 2732

Type XML Element

<object> (VALUE.OBJECT|VALUE.OBJECTWITHLOCALPATH|VALUE.OBJECTWITHPATH)

<class> CLASS

<instance> INSTANCE

<className> CLASSNAME

<namedInstance> VALUE.NAMEDINSTANCE

<instanceName> INSTANCENAME

<objectWithPath> VALUE.OBJECTWITHPATH

<objectName> (CLASSNAME|INSTANCENAME)

<propertyValue> (VALUE|VALUE.ARRAY|VALUE.REFERENCE)

<qualifierDecl> QUALIFIER.DECLARATION

5.5.2.1 ExportIndication 2733

The ExportIndication operation exports a single CIM indication to the destination WBEM listener: 2734

void ExportIndication (2735

 [IN] <instance> NewIndication 2736

) 2737

The NewIndication input parameter defines the indication to be exported. The proposed definition 2738

should be a correct instance definition for the underlying CIM indication class according to the CIM 2739
specification. 2740

If ExportIndication is unsuccessful, this method shall return one of the following status codes, where the 2741
error returned is the first applicable error in the list, starting with the first element and working down. Any 2742
additional method-specific interpretation of the error is enclosed in parentheses. 2743

 CIM_ERR_ACCESS_DENIED 2744

 CIM_ERR_NOT_SUPPORTED 2745

 CIM_ERR_INVALID_PARAMETER (including missing, duplicate, unrecognized, or otherwise 2746
incorrect parameters) 2747

 CIM_ERR_INVALID_CLASS (The CIM class of which this is to be a new instance does not 2748
exist.) 2749
DEPRECATED: The use of CIM_ERR_INVALID_CLASS has been deprecated in version 1.4 of 2750
this document because a WBEM listener has no notion about existing classes. Listeners should 2751
not use this status code anymore, and WBEM servers receiving this status code should treat it 2752
like CIM_ERR_FAILED. 2753

 CIM_ERR_FAILED (Some other unspecified error occurred.) 2754

5.5.3 Functional Profiles 2755

This clause partitions the export methods into functional groups to establish conformance. See Table 6. 2756

Support for a particular group does not guarantee that all invocations of an export method in that group 2757
will succeed. Rather, the exclusion of a group is a declaration that any attempt to call an export method in 2758
that group always returns CIM_ERR_NOT_SUPPORTED. 2759

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 75

The dependency relation is transitive, so if group G1 depends on G2, and G2 depends on G3, then G1 2760
depends on G3. It is also anti-symmetric, so if G1 depends on G2, then G2 cannot depend on G1. 2761

Table 6 – Functional Groups of Export Methods 2762

Functional Group Dependency Method

Indication None ExportIndication

6 Encapsulation of CIM-XML Messages 2763

This clause describes how to use CIM-XML messages in HTTP. CIM-XML message requests may be 2764
used with or without the HTTP Extension Framework. 2765

Although CIM-XML messages can be used in combination with a variety of HTTP request methods, this 2766
document defines CIM-XML messages only within HTTP POST requests. (M-POST may be used in place 2767
of POST. For details on how to use CIM-XML messages with the HTTP Extension Framework, see 6.2.) 2768

All CIM-XML message responses are carried in the corresponding HTTP response. In the remaining 2769
discussion, the following terms are used as convenient shorthand for the definitions provided here: 2770

 CIM-XML operation request. An HTTP POST request message with an XML entity body that 2771
defines an operation request message. 2772

 CIM-XML operation response. An HTTP response message, issued in response to a CIM-XML 2773
operation request, with an entity body that defines an operation response message. 2774

 CIM-XML export request. An HTTP POST request message with an XML entity body that 2775
defines an export request message. 2776

 CIM-XML export response. An HTTP response message, issued in response to a CIM-XML 2777
export message request, with an entity body that defines an export response message. 2778

 CIM-XML message request. An HTTP POST request message with an XML entity body that 2779
defines either an operation request message or an export request message. 2780

 CIM-XML message response. An HTTP response message, issued in response to a CIM-XML 2781
message request, with an entity body that defines either an operation response message or an 2782
export response message. 2783

Note that an HTTP response to a CIM request is not always a CIM response. For example, a "505 HTTP 2784
Version Not Supported" response is not a CIM response. 2785

6.1 WBEM clients, WBEM servers, and WBEM listeners 2786

A CIM product is any product that can supply and/or consume management information using the CIM 2787
schema. In particular, WBEM clients, WBEM servers, and WBEM listeners are examples of CIM products: 2788

 A WBEM client issues CIM-XML operation requests and receives and processes CIM-XML 2789
operation responses. 2790

 A WBEM server receives and processes CIM-XML operation requests and issues CIM-XML 2791
operation responses. A WBEM server also issues CIM-XML export requests and receives and 2792
processes CIM-XML export responses. 2793

 A WBEM listener is a server that receives and processes CIM-XML export requests and issues 2794
CIM-XML export responses. 2795

Throughout this document, the terms WBEM client, WBEM server, WBEM listener, and CIM product are 2796
used as convenient shorthand to refer to the subset of CIM products that conform to this document. 2797

http://www.ietf.org/rfc/rfc2774.txt

CIM Operations over HTTP DSP0200

76 Work in Progress — Not a DMTF Standard Version 1.4.0a

Note that "WBEM client" (server, listener) was used for the term "WBEM client" (server, listener) before 2798
version 1.4 of this document. 2799

6.2 Use of M-POST 2800

A WBEM client attempting to invoke a CIM-XML message using the HTTP Extension Framework method 2801
"M-POST" shall follow these steps: 2802

 If the M-POST invocation fails with an HTTP status of "501 Not Implemented" or "510 Not 2803
Extended," the client should retry the request using the HTTP method "POST" with the 2804
appropriate modifications (described in 6.2.2). 2805

 If the M-POST invocation fails with an HTTP status of "405 Method Not Allowed," the client 2806
should fail the request. 2807

 For all other status codes, the client shall act in accordance with standard HTTP (see 7.1). 2808

This extended invocation mechanism gives Internet proxies and firewalls greater filtering control and 2809
administrative flexibility over CIM-XML message invocations. 2810

If a client receives a 501 or 510 status in response to an M-POST request, in subsequent invocations to 2811
the same HTTP server, the client may omit the attempt at M-POST invocations for a suitable period. This 2812
omission avoids the need for an extra round trip on each and every method invocation. The details of the 2813
caching strategy employed by the client are outside the scope of this document. 2814

6.2.1 Use of the Ext Header 2815

If a WBEM server or WBEM listener receives a valid M-POST request and has fulfilled all mandatory 2816
extension header declarations in the request, it shall include in the response the "Ext" header defined by 2817
RFC2774. This included header shall be protected by the appropriate Cache-Control directive. 2818

6.2.2 Naming of Extension Headers 2819

In M-POST request messages (and their responses), CIM extension headers shall be declared using the 2820
name space prefix allotted by the "Man" extension header (in accordance with RFC2774) that refers to 2821
the name space "http://www.dmtf.org/cim/mapping/http/v1.0". The full format of the "Man" header 2822
declaration for this document is: 2823

Man = "Man" ":" "http://www.dmtf.org/cim/mapping/http/v1.0" 2824

 ";" "ns" "=" header-prefix 2825

 2826

header-prefix = 2*DIGIT 2827

This header-prefix should be generated at random on a per-HTTP message basis, and should not 2828
necessarily be a specific number. 2829

In accordance with RFC2774, all POST request messages (and their responses) shall not include such a 2830
mandatory extension declaration. In POST request messages (and their responses), name space 2831
prefixes shall not be used. 2832

EXAMPLE 1: 2833

Using M-POST: 2834

M-POST /cimom HTTP/1.1 2835

Man: http://www.dmtf.org./cim/mapping/http/v1.0 ; ns=23 2836

23-CIMOperation: MethodCall 2837

... 2838

EXAMPLE 2: 2839

file:///C:/u/am/eServer/CIM-M12/DMTF/SC-Infrastructure/CIM-XML/CIM%20Ops/1.4.0a/RFC2774

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 77

Using POST: 2840

POST /cimom HTTP/1.1 2841

CIMOperation: MethodCall 2842

... 2843

6.3 Extension Headers Defined for CIM-XML Message Requests and Responses 2844

A CIM-XML message contains exactly one CIM-XML operation request, CIM-XML operation response, 2845
CIM-XML export request, or CIM-XML export response. This clause describes the extension headers to 2846
specify CIM-XML message semantics in the HTTP header of a POST message. 2847

Any CIM-XML operation request or CIM-XML operation response shall, and only CIM-XML operation 2848
requests and responses may, include the following CIM extension header: 2849

 CIMOperation 2850

Any CIM-XML operation request shall, and only CIM-XML operation requests may, include one and only 2851
one of the following CIM extension header sets: 2852

 CIMMethod and CIMObject, or 2853

 CIMBatch 2854

Any CIM-XML export request or CIM-XML export response shall, and only CIM-XML export requests and 2855
responses may, include the following CIM extension header: 2856

 CIMExport 2857

Any CIM-XML export request shall, and only CIM-XML export requests may, include one and only one of 2858
the following CIM extension headers: 2859

 CIMExportMethod 2860

 CIMExportBatch 2861

An HTTP response with an error status code to a CIM-XML message request may include the following 2862
CIM extension header: 2863

 CIMError 2864

All CIM-XML messages may include the following CIM extension header: 2865

 CIMProtocolVersion 2866

6.3.1 Encoding of CIM Element Names within HTTP Headers and Trailers 2867

CIM element (class, property, qualifier, method, or method parameter) names are natively Unicode, and 2868
may use UCS-2 characters unsuitable for inclusion within an HTTP message header or trailer. To encode 2869
CIM element names represented in Unicode to values within HTTP headers or trailers, the following two-2870
step mapping process shall be used: 2871

 Encode the full Unicode CIM element name using UTF-8. 2872

 Using the ""%" HEX HEX" convention, apply the standard URI [RFC2396, section 2] escaping 2873
mechanism to the resulting string to escape any characters that are unsafe within an HTTP 2874
header or trailer. 2875

In this document, the token CIMIdentifier represents a CIM element name to which this transformation 2876
has been applied. 2877

CIM Operations over HTTP DSP0200

78 Work in Progress — Not a DMTF Standard Version 1.4.0a

One characteristic of this mapping is that CIM elements named with an ASCII representation appear in 2878
ASCII in the resulting URL. 2879

EXAMPLES: 2880

 CIM_LogicalElement is unchanged under this transformation. 2881

 The class named using the UCS-2 sequence representing the Hangul characters for the Korean 2882
word "hangugo" (D55C, AD6D, C5B4) becomes 2883

 %ED%95%9C%EA%B5%AD%EC%96%B4=10 2884

after UTF-8 transformation and escaping all characters with their % HEX HEX equivalent. 2885

6.3.2 Encoding of CIM Object Paths within HTTP Headers and Trailers 2886

This clause describes the mapping that shall be applied to represent CIM object paths, as described 2887
within an Operation Request Message using the <LOCALNAMESPACEPATH>, <LOCALCLASSPATH>, 2888
or <LOCALINSTANCEPATH> elements, in a format that is safe for representation within an HTTP header 2889
or trailer. 2890

If the element to be transformed is a <LOCALNAMESPACEPATH>, the algorithm is as follows: 2891

 For the first <NAMESPACE> child element, output the textual content of that element. 2892

 For each subsequent <NAMESPACE> child element, output the forward slash character (/) 2893
followed by the textual content of that <NAMESPACE> element. 2894

If the element to be transformed is a <LOCALCLASSPATH>, the algorithm is as follows: 2895

 Transform the <LOCALNAMESPACEPATH> child element using the rules previously 2896
described, and output a colon character (:). 2897

 Output the value of the NAME attribute of the <CLASSNAME> child element. 2898

If the element to be transformed is a <LOCALINSTANCEPATH>, the algorithm is as follows: 2899

 Transform the <LOCALNAMESPACEPATH> child element using the rules previously 2900
described, and output a colon character (:). 2901

 Output the value of the CLASSNAME attribute of the <INSTANCENAME> child element. 2902

 If there is at least one <KEYBINDING> child element under the <INSTANCENAME> child 2903
element, then for each such child element: 2904

– Output a period character (.) if this is the first <KEYBINDING> child element; otherwise, 2905
output a comma character (,). 2906

– Output the value of the NAME attribute, followed by an equal character (=). 2907

– If there is a <KEYVALUE> child element, output the textual element content of that 2908
element, subject to the following transformation: 2909

 If the VALUETYPE attribute is numeric or Boolean, the output is identical to the 2910
content of the element. 2911

 If the VALUETYPE attribute is a string, the output is obtained by enclosing the content 2912
of the element in double quote (") characters and escaping any double quote 2913
characters or backslash character within the value with a preceding backslash (\) 2914
character. 2915

– If there is a <VALUE.REFERENCE> child element 2916

 Output a double quote character ("). 2917

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 79

 Apply the process recursively to the <CLASSPATH> or <INSTANCEPATH> child 2918
element of the <VALUE.REFERENCE> element, escaping any double quote or 2919
backslash character thereby generated with a preceding backslash (\) character. 2920

 Output a closing double quote character ("). 2921

 If there is no <KEYBINDING> child element but there is a <KEYVALUE> or 2922
<VALUE.REFERENCE> child element under the <INSTANCENAME> child element, then: 2923

– Output an equal character (=). 2924

– Output the transformed value of the <KEYVALUE> or <VALUE.REFERENCE> using the 2925
previously-described rules. 2926

 If there are no <KEYBINDING> child elements or no <KEYVALUE> or <VALUE.REFERENCE> 2927
child element, then indicate a singleton instance by outputting the string "=@" under the 2928
<INSTANCENAME> child element. 2929

Finally, after applying these rules to the <LOCALNAMESPACEPATH>, <LOCALCLASSPATH>, or 2930
<LOCALINSTANCEPATH> element, transform the entire output string into URI-safe format in the 2931
following two-step procedure: 2932

 Encode the string using UTF-8 [RFC2279] if it is not already in this format. 2933

 Using the ""%" HEX HEX" convention, apply the standard URI [RFC2396, section 2] escaping 2934
mechanism to the resulting string to escape any characters that are unsafe within an HTTP 2935
header or trailer. 2936

In this document, the token CIMObjectPath represents a <LOCALNAMESPACEPATH>, 2937
<LOCALCLASSPATH>, or <LOCALINSTANCEPATH> element to which the preceding transformation 2938
has been applied. 2939

6.3.3 CIMOperation 2940

The CIMOperation header shall be present in all CIM-XML operation request and CIM-XML operation 2941
response messages. It identifies the HTTP message as carrying a CIM-XML operation request or 2942
response. 2943

CIMOperation = "CIMOperation" ":" ("MethodCall" | "MethodResponse") 2944

A WBEM client shall include this header, with the value "MethodCall," in all CIM-XML operation requests 2945
that it issues. A WBEM server shall include this header in all CIM-XML operation responses that it issues, 2946
with the value "MethodResponse". 2947

If a WBEM server receives a CIM-XML operation request with this header, but with a missing value or a 2948
value that is not "MethodCall," then it shall fail the request with status "400 Bad Request". The WBEM 2949

server shall include a CIMError header in the response with a value of unsupported-operation. 2950

If a WBEM server receives a CIM-XML operation request without this header, it shall not process it as a 2951
CIM-XML operation request. The status code returned by the WBEM server in response to such a 2952
request is outside the scope of this document. 2953

If a WBEM client receives a response to a CIM-XML operation request without this header (or if this 2954
header has a value that is not "MethodResponse"), it should discard the response and take appropriate 2955
measures to publicize that it has received an incorrect response. The details as to how this is done are 2956
outside the scope of this document. 2957

The CIMOperation header affords a simple mechanism by which firewall or proxy administrators can 2958
make global administrative decisions on all CIM operations. 2959

CIM Operations over HTTP DSP0200

80 Work in Progress — Not a DMTF Standard Version 1.4.0a

6.3.4 CIMExport 2960

The CIMExport header shall be present in all CIM-XML export request and response messages. It 2961
identifies the HTTP message as carrying a CIM export method request or response. 2962

CIMExport = "CIMExport" ":" ("MethodRequest" | "MethodResponse") 2963

A WBEM client shall include this header with the value "MethodRequest" in all CIM-XML export requests 2964
that it issues. A WBEM listener shall include this header in all CIM-XML export responses that it issues, 2965
with the value "MethodResponse". 2966

If a WBEM listener receives a CIM-XML export request with this header, but with a missing value or a 2967
value that is not "MethodRequest", then it shall fail the request with status "400 Bad Request". The 2968
WBEM listener shall include a CIMError header in the response with a value of unsupported-operation. 2969

If a WBEM listener receives a CIM-XML export request without this header, it shall not process it. The 2970
status code returned by the WBEM listener in response to such a request is outside of the scope of this 2971
document. 2972

If a WBEM client receives a response to a CIM-XML export request without this header (or if this header 2973
has a value that is not "MethodResponse”), it should discard the response and take appropriate 2974
measures to publicize that it has received an incorrect response. The details as to how this is done are 2975
outside the scope of this document. 2976

The CIMExport header affords a simple mechanism by which firewall or proxy administrators can make 2977
global administrative decisions on all CIM exports. 2978

6.3.5 CIMProtocolVersion 2979

The CIMProtocolVersion header may be present in any CIM-XML message. The header identifies the 2980
version of the CIM operations over the HTTP specification in use by the sending entity. 2981

CIMProtocolVersion = "CIMProtocolVersion" ":" 1*DIGIT "." 1*DIGIT 2982

If the header is omitted, then a value of 1.0 must be assumed. 2983

The major and minor revision numbers must be treated as independent integers. 2984

The CIMProtocolVersion x1.y1 is less than CIMProtocolVersion x2.y2 if and only if one of the following 2985
statements is true: 2986

 x1 is less than x2 2987

 x1 equals x2, and y1 is less than y2 2988

The CIMProtocolVersion x1.y1 is greater than CIMProtocolVersion x2.y2 if and only if one of the following 2989
statements is true: 2990

 x1 is greater than x2, 2991

 x1 equals x2, and y1 is greater than y2 2992

A CIMProtocolVersion x1.y1 is within tolerance of CIMProtocolVersion x2.y2 if: 2993

 x1 equals x2, and 2994

 y1 is less than or equal to y2 2995

If the CIMProtocolVersion of the CIM-XML message received is within tolerance of the 2996
CIMProtocolVersion supported for a WBEM server or WBEM listener implementation, the receiving 2997
implementation shall accept that CIM-XML message. Equivalent CIMProtocolVersion values between 2998
WBEM server or WBEM listener and the WBEM client shall be accepted. The WBEM server or WBEM 2999

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 81

listener implementation may reject a CIM-XML message in all other cases. For information about how 3000
CIM-XML messages are rejected, see 7.3. 3001

Beyond tolerance considerations, the implementation should reject the received CIM-XML message only 3002
if the design as defined by the CIMProtocolVersion of the receiving implementation has changed in the 3003
declaration of the API, method parameters, or behavior since the design defined by the 3004
CIMProtocolVersion of the received CIM-XML message. 3005

6.3.6 CIMMethod 3006

The CIMMethod header shall be present in any CIM-XML operation request message that contains a 3007
Simple Operation Request. 3008

It shall not be present in any CIM-XML operation response message nor in any CIM-XML operation 3009
request message unless it is a simple operation request. It shall not be present in any CIM-XML export 3010
request or response message. 3011

The header identifies the name of the CIM method to be invoked, encoded in an HTTP-safe 3012
representation. Firewalls and proxies may use this header to carry out routing and forwarding decisions 3013
based on the CIM method to be invoked. 3014

The name of the CIM method within a simple operation request is the value of the NAME attribute of the 3015

<METHODCALL> or <IMETHODCALL> element. 3016

CIMMethod = "CIMMethod" ":" MethodName 3017

 3018

MethodName = CIMIdentifier 3019

If a WBEM server receives a CIM-XML operation request for which any one of the following statements is 3020
true, then it shall fail the request and return a status of "400 Bad Request". Also, it shall include a 3021

CIMError header in the response with a value of header-mismatch, subject to the considerations 3022

specified in 7.3: 3023

 The CIMMethod header is present, but it has an invalid value. 3024

 The CIMMethod header is not present, but the operation request message is a Simple 3025
Operation Request. 3026

 The CIMMethod header is present, but the operation request message is not a simple operation 3027
request. 3028

 The CIMMethod header is present and the operation request message is a simple operation 3029
request, but the CIMIdentifier value (when unencoded) does not match the unique method 3030
name within the simple operation request. 3031

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy was 3032
not acting on misleading information when it decided to forward the request based on the content of the 3033
CIMMethod header. Additional securing of HTTP messages against modification in transit (such as the 3034
encryption of the payload or appending of a digital signature thereto) would be required to provide a 3035
higher degree of integrity. 3036

6.3.7 CIMObject 3037

The CIMObject header shall be present in any CIM-XML operation request message that contains a 3038
Simple Operation Request. 3039

It shall not be present in any CIM-XML operation response message nor in any CIM-XML operation 3040
request message unless it is a simple operation Request. It shall not be present in any CIM-XML export 3041
request or response message. 3042

CIM Operations over HTTP DSP0200

82 Work in Progress — Not a DMTF Standard Version 1.4.0a

The header identifies the CIM object on which the method is to be invoked using a CIM object path 3043
encoded in an HTTP-safe representation. This object shall be a class or instance for an extrinsic method 3044
or a namespace for an intrinsic method. Firewalls and proxies may use this header to carry out routing 3045
and forwarding decisions based on the CIM object that is the target of a method invocation. 3046

CIMObject = "CIMObject" ":" ObjectPath 3047

 3048

ObjectPath = CIMObjectPath 3049

The ObjectPath value is constructed by applying the algorithm defined in 6.3.2 to either of the following 3050
child elements within the CIM-XML operation request: 3051

 The <LOCALNAMESPACEPATH> child element of the <IMETHODCALL> element. 3052

 The <LOCALCLASSPATH> or <LOCALINSTANCEPATH> child element of the 3053
<METHODCALL> element. 3054

If a WBEM server receives a CIM-XML operation request for which any one of the following statements is 3055
true, then it shall fail the request and return a status of "400 Bad Request". Also, it shall include a 3056

CIMError header in the response with a value of header-mismatch, subject to the considerations 3057

specified in 7.3: 3058

 The CIMObject header is present, but it has an invalid value. 3059

 The CIMObject header is not present, but the operation request message is a Simple Operation 3060
Request. 3061

 The CIMObject header is present, but the operation request message is not a simple operation 3062
request. 3063

 The CIMObject header is present and the operation request message is a simple operation 3064
request, but the ObjectPath value does not match the operation request message (where a 3065
match is defined in 6.3.2). 3066

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3067
acting on misleading information when it forwards the request based on the content of the CIMObject 3068
header. Additional securing of HTTP messages against modification in transit, such as encrypting the 3069
payload or appending a digital signature to it, would be required to provide a higher degree of integrity. 3070

6.3.8 CIMExportMethod 3071

The CIMExportMethod header shall be present in any CIM-XML export request message that contains a 3072
simple export request. 3073

This header shall not be present in any CIM-XML export response message nor in any CIM-XML export 3074
request message unless it is a simple export request. It shall not be present in any CIM-XML operation 3075
request or response message. 3076

The CIMExportMethod header identifies the name of the CIM export method to be invoked, encoded in an 3077
HTTP-safe representation. Firewalls and proxies may use this header to carry out routing and forwarding 3078
decisions based on the CIM export method to be invoked. 3079

The name of the CIM export method within a simple export request is the value of the NAME attribute of 3080
the <EXPMETHODCALL> element. 3081

CIMExportMethod = "CIMExportMethod" ":" ExportMethodName 3082

 3083

ExportMethodName = CIMIdentifier 3084

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 83

If a WBEM listener receives a CIM-XML export request for which any one of the following statements is 3085
true, then it shall fail the request and return a status of "400 Bad Request". Also, it shall include a 3086
CIMError header in the response with a value of header-mismatch, subject to the considerations specified 3087
in 7.3: 3088

 The CIMExportMethod header is present, but it has an invalid value. 3089

 The CIMExportMethod header is not present, but the export request message is a simple export 3090
request. 3091

 The CIMExportMethod header is present, but the export request message is not a simple export 3092
request. 3093

 The CIMExportMethod header is present and the export request message is a simple export 3094
request, but the CIMIdentifier value (when unencoded) does not match the unique method 3095
name within the simple export request. 3096

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3097
acting on misleading information when it forwards the request based on the content of the 3098
CIMExportMethod header. Additional securing of HTTP messages against modification in transit, such as 3099
encrypting the payload or appending a digital signature to it, would be required to provide a higher degree 3100
of integrity. 3101

6.3.9 CIMBatch 3102

The CIMBatch header shall be present in any CIM-XML operation request message that contains a 3103
Multiple Operation Request. 3104

This header shall not be present in any CIM-XML operation response message nor in any CIM-XML 3105
operation request message unless it is a multiple operation request. It shall not be present in any CIM-3106
XML export request or response message. 3107

The CIMBatch header identifies the encapsulated operation request message as containing multiple 3108
method invocations. Firewalls and proxies may use this header to carry out routing and forwarding 3109
decisions for batched CIM method invocations. 3110

CIMBatch = "CIMBatch" ":" 3111

If a WBEM server receives a CIM-XML operation request for which any one of the following statements is 3112
true, then it must fail the request and return a status of "400 Bad Request". Also it must include a 3113

CIMError header in the response with a value of header-mismatch, subject to the considerations 3114

specified in 7.3: 3115

 The CIMBatch header is present, but it has an invalid value. 3116

 The CIMBatch header is not present, but the operation request message is a multiple operation 3117
request. 3118

 The CIMBatch header is present, but the operation request message is not a multiple operation 3119
request. 3120

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3121
acting on misleading information when it forwards the request based on the content of the CIMBatch 3122
header. Additional securing of HTTP messages against modification in transit, such as encrypting the 3123
payload or appending a digital signature to it, would be required to provide a higher degree of integrity. 3124

If a WBEM server receives a CIM-XML operation request for which the CIMBatch header is present but 3125
the server does not support multiple operations, then it shall fail the request and return a status of "501 3126
Not Implemented". Firewalls or Proxies may also employ this mechanism to compel a WBEM client to use 3127
simple operation requests rather than multiple operation requests. 3128

CIM Operations over HTTP DSP0200

84 Work in Progress — Not a DMTF Standard Version 1.4.0a

A WBEM client that receives a response of "501 Not Implemented" to a multiple operation request should 3129
resubmit that request as a series of simple operation requests. 3130

6.3.10 CIMExportBatch 3131

The CIMExportBatch header shall be present in any CIM-XML export request message that contains a 3132
multiple export request. 3133

It shall not be present in any CIM-XML operation request or response message. Also, it shall not be 3134
present in any CIM-XML export response message nor in any CIM-XML export request message unless it 3135
is a multiple export request. 3136

The header identifies the encapsulated Export Request Message as containing multiple export method 3137
invocations. Firewalls and proxies may use this header to carry out routing and forwarding decisions for 3138
batched CIM Export method invocations. 3139

CIMExportBatch = "CIMExportBatch" ":" 3140

If a WBEM listener receives a CIM-XML export request for which any one of the following statements is 3141
true, then it must fail the request and return a status of "400 Bad Request". Also, it must include a 3142
CIMError header in the response with a value of header-mismatch, subject to the considerations specified 3143
in Errors: 3144

 The CIMExportBatch header is present, but it has an invalid value. 3145

 The CIMExportBatch header is not present, but the export request message is a multiple export 3146
request. 3147

 The CIMExportBatch header is present, but the export request message is not a multiple export 3148
request. 3149

Note that this verification provides a basic level of assurance that any intermediate firewall or proxy is not 3150
acting on misleading information when it forwards the request based on the content of the 3151
CIMExportBatch header. Additional securing of HTTP messages against modification in transit, such as 3152
encrypting the payload or appending a digital signature to it, would be required to provide a higher degree 3153
of integrity. 3154

If a WBEM listener receives a CIM-XML export request for which the CIMExportBatch header is present, 3155
but the WBEM listener does not support multiple exports, then it shall fail the request and return a status 3156
of "501 Not Implemented". Firewalls or Proxies may also employ this mechanism to compel a WBEM 3157
client to use simple rather than multiple export requests. 3158

A WBEM client that receives a response of "501 Not Implemented" to a multiple export request should 3159
resubmit that request as a series of simple export requests. 3160

6.3.11 CIMError 3161

The CIMError header may be present in any HTTP response to a CIM-XML message request that is not a 3162
CIM-XML message response. 3163

It shall not be present in any CIM-XML message response or in any CIM-XML message request. 3164

The CIMError header provides further CIM-specific diagnostic information if the WBEM server or WBEM 3165
listener encounters a fundamental error during processing of the CIM-XML operation request and is 3166
intended to assist clients to further disambiguate errors with the same HTTP status code: 3167

 CIMError = "CIMError" ":" cim-error 3168

 3169

 cim-error = "unsupported-protocol-version" | 3170

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 85

 "multiple-requests-unsupported" | 3171

 "unsupported-cim-version" | 3172

 "unsupported-dtd-version" | 3173

 "request-not-valid" | 3174

 "request-not-well-formed" | 3175

 "request-not-loosely-valid" | 3176

 "header-mismatch" | 3177

 "unsupported-operation" 3178

6.3.12 CIMRoleAuthenticate 3179

A WBEM server may return a CIMRoleAuthenticate header as part of the 401 Unauthorized response 3180
along with the WWW-Authenticate header. The CIMRoleAuthenticate header must meet the challenge of 3181
indicating the WBEM server policy on role credentials. 3182

challenge = "credentialrequired" | "credentialoptional" | "credentialnotrequired" 3183

 A challenge of credentialrequired indicates that the WBEM server requires that a WBEM 3184

client must present a credential if it seeks to assume a role. 3185

 A challenge of credentialoptional indicates that the credential is optional. If a credential is 3186

not sent, the WBEM server allows the role assumption if it is permitted for the given user. 3187
However, certain operations that require the role credential may not succeed. 3188

 A challenge of credentialnotrequired indicates that no credential is required to assume 3189

the role. 3190

Absence of the CIMRoleAuthenticate header indicates that the WBEM server does not support role 3191
assumption. A WBEM client should handle each of these cases appropriately. 3192

The challenge does not contain any authorization scheme, realm, or other information. A WBEM client 3193
should extract this information from the WWW-Authenticate header. This implies that for any given 3194
request, the role credentials should use the same scheme as those required for the user credentials. 3195

A WBEM server allows role assumption to succeed only if the user is allowed to assume the role. 3196
Therefore, even if appropriate credentials are presented, role assumption can fail. If either the user 3197
authentication or role assumption fails, the entire authentication operation fails. 3198

To maintain backward compatibility, a WBEM server that supports role assumption must allow user 3199
authentication even if no role is specified. 3200

6.3.13 CIMRoleAuthorization 3201

The CIMRoleAuthorization header is supplied along with the normal authorization header that the WBEM 3202
client populates to perform user authentication. If the WBEM client needs to perform role assumption and 3203
the WBEM server challenge is credentialrequired, the CIMRoleAuthorization header must be supplied 3204
with the appropriate credentials. The credentials supplied as part of the CIMRoleAuthorization header 3205
must use the same scheme as those specified for the authorization header, as specified in RFC2617. 3206
Therefore, both Basic and Digest authentication are possible for the role credential. 3207

If the WBEM client wishes to assume a role but does not wish to supply role credentials for server 3208
challenge credentialoptional or credentialnotrequired, the CIMRoleAuthorization header must set the 3209
auth-scheme field as specified in RFC2617 to be "role". The auth-param must contain the role name. 3210

A WBEM server that supports roles must be capable of handling the presence of credentials in the 3211
CIMRoleAuthorization header (that is auth-scheme not set to "role") regardless of whether it is expecting 3212
credentials or not. It may choose to ignore these credentials. 3213

CIM Operations over HTTP DSP0200

86 Work in Progress — Not a DMTF Standard Version 1.4.0a

6.3.14 CIMStatusCodeDescription 3214

If a CIM product includes the CIMStatusCode trailer, it may also include the CIMStatusCodeDescription 3215
trailer. The value of this trailer is a string describing the nature of the error. A CIM product shall not 3216
include this trailer if the CIMStatusCode trailer is not present. 3217

6.3.15 WBEMServerResponseTime 3218

The WBEMServerResponseTime header may be present in any CIM response message. If it is present, 3219
the header shall contain a measure, specified in microseconds, of the elapsed time required by the 3220
WBEM server to process the request and create a response. Specifically, WBEMServerResponseTime 3221
describes the time elapsed since the WBEM server received the CIM request message and the 3222
associated CIM response message was ready to send to the WBEM client. 3223

WBEMServerResponseTime = "WBEMServerResponseTime" ":", where the response time must be 3224
representable as a 64-bit unsigned integer value. If the actual elapsed time exceeds the maximum 3225
representable value, then the maximum value shall be returned. If the actual elapsed time is less than 1 3226
microsecond, then a 0 shall be returned. 3227

Although a WBEM client may ignore the WBEMServerResponseTime header, it shall allow this header to 3228
be included in a response. 3229

7 HTTP Requirements and Usage 3230

This clause describes HTTP support and the use of standard headers. 3231

7.1 HTTP and HTTPS Support 3232

CIM products shall support CIM-XML messages in HTTP. The following applies to this case: 3233

 CIM products should support HTTP/1.1 as defined in RFC2616. 3234

DEPRECATED 3235

CIM products may support HTTP/1.0 as defined in RFC1945. 3236

 Support for HTTP/1.0 is deprecated since version 1.4 of this document; HTTP/1.1 should be 3237
supported instead. 3238

DEPRECATED 3239

CIM products should support CIM-XML messages in HTTPS. If they do, the following applies to this case: 3240

 CIM products shall support HTTPS as defined in RFC2818. This includes the use of HTTP 3241
within HTTPS, as defined in RFC2818. 3242

NOTE RFC2818 describes the use of TLS 1.0 and higher but not the use of SSL 2.0 or 3.0. 3243

 Within their support of HTTPS, CIM products: 3244

– shall support TLS 1.0 (also known as SSL 3.1) as defined in RFC2246. Note that TLS 1.0 3245
implementations may be vulnerable when using CBC cipher suites 3246

– should support TLS 1.1 as defined in RFC4346 3247

– should support TLS 1.2 as defined in RFC5246 3248

– should not support SSL 2.0 or SSL 3.0 because of known security issues in these versions 3249

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 87

NOTE RFC5246 describes in Appendix E "Backward Compatibility" how the secure sockets layer can 3250
be negotiated. 3251

Requirements and considerations for authentication and encryption between CIM products are described 3252
in 7.4. 3253

CIM products that use extension headers as defined in this document shall conform to the requirements 3254
defined in RFC2774 for their use. 3255

7.2 Use of Standard HTTP Headers 3256

Unless otherwise stated in this document, CIM products shall comply with the requirements on the use of 3257
standard HTTP headers described in RFC1945 and RFC2616. This clause defines only additional 3258
requirements on CIM products with respect to the use of these standard HTTP headers in a CIM-XML 3259
message. 3260

Note that CIM products should not use HTTP headers defined in RFC2068 but deprecated in RFC2616 3261
(for example, Public, Content-Base). 3262

7.2.1 Accept 3263

If a WBEM client includes an Accept header in a request, it shall specify a value that allows the WBEM 3264
server to return an entity body of "text/xml" or "application/xml" in the response. 3265

A WBEM server or WBEM listener shall accept any value for this header stating that "text/xml" or 3266
"application/xml" is an acceptable type for a response entity. A WBEM server or WBEM listener should 3267
return "406 Not Acceptable" if the Accept header indicates that neither of these content types is 3268
acceptable. 3269

If a WBEM server or WBEM listener accepts a request to return an entity of a type other than "text/xml" or 3270
"application/xml", the nature of the response is outside the scope of this document. 3271

7.2.2 Accept-Charset 3272

If a WBEM client includes an Accept-Charset header in a request, it shall specify a value that allows the 3273
WBEM server or WBEM listener to return an entity body using the character set "UTF-8". 3274

A WBEM server or WBEM listener shall accept any value for this header asserting that "UTF-8" is an 3275
acceptable character set for a response entity. If the client does not provide an Accept-Charset, then 3276
"UTF-8" should be assumed by the WBEM server or WBEM listener. 3277

Accept-Charset: UTF-8 3278

A WBEM server or WBEM listener shall return "406 Not Acceptable" if the character set requested in the 3279
Accept-Charset header is not supported. 3280

If a WBEM server or WBEM listener accepts a request to return an entity using a character set other than 3281
"UTF-8", the behavior of the subsequent WBEM client and WBEM server interaction is outside the scope 3282
of this document. See 7.8 for details. 3283

7.2.3 Accept-Encoding 3284

If a WBEM client includes an Accept-Encoding header in a request, it shall specify a q value that allows 3285
the WBEM server or WBEM listener to use the "Identity" encoding. The value shall be greater than 0 or 3286
not specified. 3287

Accept-Encoding: Identity 3288

Accept-Encoding: Identity; q=1.0 3289

CIM Operations over HTTP DSP0200

88 Work in Progress — Not a DMTF Standard Version 1.4.0a

A WBEM server or WBEM listener shall accept any value for this header asserting that "Identity" is an 3290
acceptable encoding for the response entity. 3291

A WBEM server or WBEM listener shall return "406 Not Acceptable" if the Accept-Encoding header 3292
indicates that the requested encoding is not acceptable. 3293

7.2.4 Accept-Language 3294

If a WBEM client includes an Accept-Language header in a request, it shall request a language-range, 3295
special-range, or both. The WBEM client shall also allow any language to be returned if the requested 3296
languages cannot be supported. This is accomplished by including the special-range, "*". The WBEM 3297
client may request multiple languages. Each language has equal priority, unless a q value is provided. 3298

Accept-Language: zh, * 3299

Accept-Language: zh;q=1.0, en;q=.7, * 3300

Each CIM element in the response should be localized in only one language. A CIM element shall not be 3301
duplicated in the response because it is localized in more than one language. 3302

WBEM servers may support multiple languages. A CIM product shall interpret the use of the special-3303
range value, "*", as a request to return the response content using the default language defined for the 3304
target processing the request. Multiple targets, with different default language settings, may participate in 3305
the construction of a response. (See RFC2616 section 3.10 and ISO 639-1.) 3306

See 7.8 for more information. 3307

7.2.5 Accept-Ranges 3308

WBEM clients shall not include the Accept-Ranges header in a request. A WBEM server or WBEM 3309
listener shall reject a request that includes an Accept-Range header with a status of "406 Not 3310
Acceptable". 3311

7.2.6 Allow 3312

If a WBEM server or WBEM listener is returning a "405 Method Not Allowed" response to a CIM-XML 3313
message request, then the Allow header shall include either M-POST or POST. Whether it includes any 3314
other HTTP methods is outside the scope of this document. 3315

7.2.7 Authorization 3316

See 7.4 for details. 3317

7.2.8 Cache-Control 3318

Generally, a CIM-XML message request may consist of a mixture of CIM method invocations, some of 3319
which may be eminently able to cache (for example, the manufacturer label on a disk drive) and some of 3320
which may be decidedly impossible to cache (for example, format a disk drive). 3321

Furthermore, the encapsulation of such multiple method invocations in an HTTP POST or M-POST 3322
means that if a CIM-XML message request has any effect on an HTTP cache it is likely to be one of 3323
invalidating cached responses for the target WBEM server or WBEM listener. Indeed, HTTP/1.1 stipulates 3324
that by default POST responses cannot be cached unless the WBEM server indicates otherwise using an 3325
appropriate Cache-Control or Expires header. 3326

For these reasons, CIM-XML message responses should not be considered as able to be cached. A 3327
WBEM server or WBEM listener should not include a Cache-Control header in a CIM-XML message 3328
response that might indicate to a cache that the response can be cached. 3329

http://www.loc.gov/standards/iso639-2/englangn.html

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 89

If the WBEM server or WBEM listener is responding to a CIM-XML message request conveyed in an M-3330
POST request, then in accordance with RFC2774 the WBEM server or WBEM listener shall include a no-3331
cache control directive to prevent inadvertent caching of the "Ext" header, as in the following example: 3332

EXAMPLE 3333

HTTP/1.1 200 OK 3334

Ext: 3335

Cache-Control: no-cache 3336

... 3337

7.2.9 Connection 3338

The following courses of action are recommended for connections: 3339

 WBEM clients should avoid the use of the "Connection: close" header unless it is known in 3340
advance that this is the only request likely to be sent out on that connection. 3341

 WBEM servers and WBEM listener support persistent connections wherever possible. 3342

Timeout mechanisms should be employed to remove idle connections on the WBEM client, WBEM 3343
server, and WBEM listener. The details of timeout mechanisms are outside the scope of this document. 3344
Clients should be cautious in retrying requests, especially if they are not idempotent (for example, method 3345
invocation). 3346

WBEM clients, WBEM servers, and WBEM listeners should support pipelining (HTTP/1.1 only, see 3347
RFC2616) if possible, but be aware of the requirements defined in RFC2616. In particular, attention is 3348
drawn to the requirement from RFC2616 that clients not pipeline requests using non-idempotent methods 3349
or non-idempotent sequences of methods. A client that needs to send a non-idempotent request should 3350
wait to send that request until it receives the response status for the previous request. 3351

7.2.10 Content-Encoding 3352

If a WBEM client includes a Content-Encoding header in a request, it should specify a value of "identity", 3353
unless there is good reason to believe that the WBEM server or WBEM listener can accept another 3354
encoding. 3355

7.2.11 Content-Language 3356

The Content-Language entity-header field of a CIM-XML message describes the natural language(s) of 3357
the intended audience of the content. 3358

A CIM-XML message may contain a Content-Language header. The value of the Content-Language 3359
header in a CIM response message shall be consistent with the Accept-Language values specified in the 3360
corresponding CIM request message. If the WBEM server cannot determine one or more of the content 3361
languages used to construct the response, then the Content-Language entity shall not be returned. 3362

Multiple targets using different Content-Language values may participate in constructing a response. The 3363
Content-Language field shall reflect all Content-Language values used to construct the response. The 3364
content of a CIM-XML message may contain elements in languages not listed in the Content-Language 3365
field. 3366

Content-Language: en 3367

See 7.8 for details. 3368

7.2.12 Content-Range 3369

WBEM clients, WBEM servers, and WBEM listeners shall not use this header. 3370

CIM Operations over HTTP DSP0200

90 Work in Progress — Not a DMTF Standard Version 1.4.0a

7.2.13 Content-Type 3371

WBEM clients, WBEM servers, and WBEM listeners shall specify (and accept) a media type for the 3372
Content-Type header of either "text/xml" or "application/xml" as defined in RFC2376. In addition, they 3373
may specify and shall accept a "charset" parameter as defined in RFC2616. If a "charset" parameter is 3374
specified, it shall have the value "utf-8" either with or without surrounding double quotes. The sending 3375
side should use the form without double quotes. The receiving side shall support both forms. If a "charset" 3376
parameter is not specified, the receiving side shall assume "utf-8" as a default. 3377

Examples of valid Content-Type headers are: 3378

Content-type: text/xml 3379

Content-type: text/xml; charset=utf-8 3380

Content-type: text/xml; charset="utf-8" 3381

Content-type: application/xml 3382

Content-type: application/xml; charset=utf-8 3383

Content-type: application/xml; charset="utf-8" 3384

7.2.14 Expires 3385

For the reasons described in 7.2.8, a WBEM server or WBEM listener shall not include an Expires header 3386
in a CIM-XML message response that might indicate to a cache that the response can be cached. 3387

7.2.15 If-Range 3388

WBEM clients, WBEM servers, and WBEM listeners shall not use this header. 3389

7.2.16 Proxy-Authenticate 3390

See 7.4 for details. 3391

7.2.17 Range 3392

WBEM clients, WBEM servers, and WBEM listeners shall not use this header. 3393

7.2.18 WWW-Authenticate 3394

See 7.4 for details. 3395

7.3 Errors and Status Codes 3396

This clause defines how WBEM servers and WBEM listeners shall handle errors that occur in processing 3397
a CIM-XML message request. This document does not introduce any new HTTP response status codes. 3398

If there is an error in processing the HTTP Request-Line or standard HTTP headers, the WBEM server or 3399
WBEM listener shall take appropriate action as dictated by its conformance to the relevant version of 3400
HTTP (see 7.1). 3401

Otherwise, if there are any mandatory extension declarations that the WBEM server does not support it 3402
shall respond with a "510 Not Extended" status according to RFC2774. 3403

Otherwise, the request shall be processed in accordance with the relevant version of HTTP (see 7.1) and 3404
the additional rules defined in this document. 3405

Assuming that the HTTP request is otherwise correct, the WBEM server or WBEM listener shall use the 3406
following status codes when processing the CIM extension headers: 3407

 501 Not Implemented 3408

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 91

This status code indicates that one of the following situations occurred: 3409

– The CIMProtocolVersion extension header in the request specifies a version of the CIM 3410
mapping onto HTTP that is not supported by this WBEM server or WBEM listener. The 3411
WBEM server or WBEM listener shall include a CIMError header in the response with a 3412

value of unsupported-protocol-version. 3413

– The client specified a Multiple Operation Request (or multiple Export Request), and the 3414
WBEM server (or WBEM listener) does not support such requests. The WBEM server or 3415
WBEM listener shall include a CIMError header in the response with a value of 3416

multiple-requests-unsupported. 3417

– The CIMVERSION attribute in the message request is not set to a proper value. The 3418
CIMVERSION attribute shall be in the form of "M.N", where M is the major revision of the 3419
specification in numeric form and N is the minor revision in numeric form. The version shall 3420
be at "2.0" or greater (for example, "2.0" or "2.3"). The WBEM server or WBEM listener 3421

shall include a CIMError header in the response with a value of unsupported-cim-3422

version. 3423

– The DTDVERSION attribute in the message request is not set to a proper value. The 3424
DTDVERSION attribute shall be in the form of "M.N", where M is the major revision of the 3425
specification in numeric form and N is the minor revision in numeric form. The version shall 3426
be at "2.0" or greater (for example, "2.0" or "2.1"). The WBEM server or WBEM listener 3427

shall include a CIMError header in the response with a value of unsupported-dtd-3428

version. 3429

 401 Unauthorized 3430

The WBEM server or WBEM listener is configured to require that a client authenticate itself 3431
before it can issue CIM-XML message requests to the WBEM server or WBEM listener. 3432

 403 Forbidden 3433

The WBEM server or WBEM listener does not allow the client to issue CIM-XML message 3434
requests. The WBEM server or WBEM listener may alternatively respond with a "404 Not 3435
Found" if it does not wish to reveal this information to the client. 3436

 407 Proxy Authentication Required 3437

The WBEM server or WBEM listener is configured to require that the proxy authenticate itself 3438
before it can issue CIM-XML message requests on behalf of a WBEM client to the WBEM 3439
server or WBEM listener. 3440

Assuming that the CIM extension headers are correct, a validating WBEM server or WBEM listener (one 3441
that enforces the validity of the CIM-XML message request with respect to the CIM XML DTD) shall use 3442
the following status code when processing the entity body containing the CIM-XML message request: 3443

 400 Bad Request 3444

The entity body defining the CIM-XML message request is not well-formed or not valid with 3445
respect to the CIM XML DTD. The WBEM server or WBEM listener shall include a CIMError 3446

header in the response with a value of request-not-well-formed or request-not-3447

valid (as appropriate). 3448

A loosely-validating WBEM server or WBEM listener only enforces the CIM-XML message request to be 3449
loosely valid. Therefore, it may reject a CIM-XML message request that is not loosely valid with an HTTP 3450
status code of 400 (Bad Request) before further processing. In this case, the WBEM server or WBEM 3451

listener shall include a CIMError header in the response with a value of request-not-loosely-3452

valid. 3453

CIM Operations over HTTP DSP0200

92 Work in Progress — Not a DMTF Standard Version 1.4.0a

A loosely-validating WBEM server or WBEM listener shall reject a CIM-XML message request that is not 3454
well-formed with an HTTP status code of 400 (Bad Request). In this case, the WBEM server or WBEM 3455

listener shall include a CIMError header in the response with a value of request-not-well-formed. 3456

A loosely-validating WBEM server or WBEM listener shall not reject an invalid CIM-XML message request 3457
that is loosely valid in the XML sense. 3458

A loosely-validating WBEM server or WBEM listener shall ultimately signal an error to the WBEM client if 3459
the CIM-XML message request is not loosely valid. That is, the request is missing required content or the 3460
required content is incorrect, such as an attribute with an invalid value according to the CIM XML DTD. It 3461
is not mandated to reject a CIM-XML message request before processing, for to do otherwise would 3462
compel the WBEM server or WBEM listener to check the complete request before processing can begin 3463
and this would be as expensive as requiring the WBEM server or WBEM listener to fully validate the 3464
request. Therefore, a loosely-validating server or listener may elect to begin processing the request and 3465
issuing a response (with an HTTP success status code) before verifying that the entire request is loosely 3466
valid. 3467

A WBEM client may use the CIMValidation header mechanism to determine whether a WBEM server or 3468
WBEM listener is validating or loosely-validating. 3469

Assuming that the CIM-XML message request is correctly formed as previously described, the WBEM 3470
server or WBEM listener shall process the request accordingly and return a CIM-XML message response. 3471

The entity body shall be a correct CIM-XML message response for that request. 3472

If the CIM-XML message response contains an entity that is a simple message response, then the 3473
response status shall be "200 OK". Otherwise, the response status shall be "207 Multistatus". 3474

7.4 Security Considerations 3475

This subclause describes requirements and considerations for authentication and message encryption 3476
between CIM products. 3477

7.4.1 Authentication 3478

This subclause describes requirements and considerations for authentication between CIM products. 3479
Specifically, authentication happens from WBEM clients to WBEM servers for CIM-XML operation 3480
messages, and from WBEM servers to WBEM listeners for CIM-XML export messages. The 3481
authentication mechanisms defined in this subclause apply to both HTTP and HTTPS. 3482

CIM products may support operating without the use of authentication. This practice is not recommended 3483
and should only be done in environments where lack of network privacy is not an issue (for example, in a 3484
physically secure private network or on the same operating system). 3485

Basic authentication is described in RFC1945 and RFC2068. Digest authentication is defined in 3486
RFC2069. Both authentication schemes are covered in a consolidated document (RFC2617), which also 3487
makes a number of improvements to the original specification of digest authentication. This document 3488
requires conformance to RFC2617 but not to the earlier documents. 3489

Basic authentication provides a very rudimentary level of authentication, with the major weakness that the 3490
client password is sent over the wire in unencrypted form (unless HTTPS is used).. 3491

CIM products may support basic authentication as defined in RFC2617. Basic authentication without 3492
HTTPS should only be used in environments where lack of network privacy is not an issue. 3493

Digest authentication verifies that both parties share a common secret without having to send that secret. 3494

CIM products should support digest authentication as defined in RFC2617. 3495

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 93

CIM products may support authentication mechanisms not covered by RFC2617. One example are public 3496
key certificates as defined in X.509. 3497

WBEM servers and WBEM listeners should require that WBEM clients and WBEM servers, respectively, 3498
authenticate themselves. This document does not mandate this because it is recognized that in some 3499
circumstances the WBEM server or WBEM listener may not require or wish the overhead of employing 3500
authentication. WBEM servers and WBEM listeners should carefully consider the performance/security 3501
tradeoffs in determining how often to issue challenges to WBEM clients and WBEM servers, respectively. 3502

A WBEM server or WBEM listener that returns a "401 Unauthorized" response to a CIM message request 3503
shall include one WWW-Authenticate response-header indicating one supported authentication 3504
mechanism. This document does not mandate use of basic or digest authentication because it is 3505
recognized that in some circumstances the WBEM server or WBEM listener may use bespoke 3506
authentication mechanisms not covered by RFC2617. Similar considerations apply to the use of the 3507
Proxy-Authenticate response-header in "407 Proxy Authentication Required". 3508

7.4.2 Message Encryption 3509

Encryption of messages between CIM products is supported by the use of HTTPS in the communication 3510
between CIM products. Requirements for the use of HTTPS and its underlying secure sockets are 3511
defined in 7.1. 3512

The following requirements on cipher suites apply to CIM products that support HTTPS: 3513

 The TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA cipher suite (hexadecimal value 0x0013) 3514
shall be supported when using TLS 1.0. Note that RFC2246 defines this cipher suite to be 3515
mandatory for TLS 1.0 3516

 The TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite (hexadecimal value 0x000A) shall 3517
be supported when using TLS 1.1. Note that RFC4346 defines this cipher suite to be mandatory 3518
for TLS 1.1 3519

 The TLS_RSA_WITH_AES_128_CBC_SHA cipher suite (hexadecimal value 0x002F) shall be 3520
supported when using TLS 1.2. Note that RFC5246 defines this cipher suite to be mandatory for 3521
TLS 1.2 3522

 The TLS_RSA_WITH_AES_128_CBC_SHA256 cipher suite (hexadecimal value 0x003C) 3523
should be supported when using TLS 1.2, in order to meet the transition to a security strength of 3524
112 bits (guidance is provided in NIST 800-57 and NIST 800-131A) 3525

 Any additional cipher suites may be supported 3526

7.5 Determining WBEM server Capabilities 3527

If a WBEM server can return capabilities information, there are two techniques for returning this 3528
information as defined in this document: 3529

 The preferred technique is through the use of the classes defined in 7.5.1. 3530

 Alternatively, use of the HTTP OPTIONS method as defined in 7.5.2 is allowed because 3531
historically it is the original technique defined for requesting capabilities information. 3532

Use of the CIM classes defined in 7.5.1 is strongly encouraged and it is expected that this method will be 3533
enhanced and extended in the future to provide more capabilities information. The future use of the HTTP 3534
OPTIONS method to determine capabilities of WBEM servers is discouraged. It will probably not be 3535
expanded significantly and may be reviewed for possible deprecation in the next major revision of this 3536
document. 3537

CIM Operations over HTTP DSP0200

94 Work in Progress — Not a DMTF Standard Version 1.4.0a

7.5.1 Determining WBEM server Capabilities through CIM Classes 3538

A set of CIM classes is defined specifically to return WBEM server capabilities information as follows: 3539

 CIM_ObjectManager 3540

This class is a type of CIM_Service that defines the capabilities of the target WBEM server. 3541

 CIM_ObjectManagerCommunicationMechanism 3542

This class describes access to the target WBEM server. It defines the capabilities of the WBEM 3543
server that are available through the target Object Manager Communication mechanism. A 3544
WBEM server is allowed to support different capabilities through different communication 3545
mechanisms. 3546

 CIM_CIMXMLCommunicationMechanism 3547

This class specializes on ObjectManagerCommunicationMechanism, adding properties specific 3548
to the CIM-XML encoding and protocol. 3549

 CIM_CommMechanismForManager 3550

This association between CIM_ObjectManager and 3551
CIM_ObjectManagerCommunicationMechanism defines the communications protocols (and 3552
corresponding capabilities) available on the target WBEM server through the 3553
ObjectManagerCommunicationMechanism instances. 3554

A WBEM client may use instances of these CIM classes to determine the CIM capabilities (if any) of the 3555
target WBEM server. A WBEM server that supports capabilities determination through these classes shall 3556
support at least the Enumerate Instance and Get Instance operations for the classes. The use of other 3557
methods of the basic read profile is optional. A WBEM server that does not support the determination of 3558
CIM capabilities through these classes shall return CIM_ERR_NOT_FOUND to any instance or class 3559
request on these classes. These classes shall not be used for reporting any other information than 3560
capabilities of the target WBEM server. 3561

To provide interoperability, the CIM object manager classes shall exist in a well-known namespace. 3562
Because there is no discovery mechanism that can define this well-known namespace to a WBEM client, 3563
it shall be one or more predefined namespaces. Therefore, to ensure interoperability, we recommend that 3564
pending future extensions of the WBEM specifications include discovery tools that define a namespace 3565
for these classes in a WBEM server; these predefined namespaces should exist in either the root 3566
namespace or in the /root/CIMV2 namespace. 3567

A WBEM server that supports capabilities reporting through these classes shall correctly report the 3568
current actual capabilities of the target WBEM server and shall report on all capabilities defined. A WBEM 3569
server is allowed to report "none" if the capability does not exist or "unknown" if the status of the capability 3570
is unknown at the time of the request for those properties where these choices exist in the properties 3571
definition. Because the CIM_ObjectManager object provides information on the target WBEM server, only 3572
a single instance of this class may exist in a WBEM server. 3573

The capabilities to be reported through the CIM_ObjectManagerCommunicationMechanism are as 3574
follows: 3575

 CommunicationMechanism property, which defines the communication protocol for the 3576
CommunicationMechanism object. A compliant WBEM server shall include the CIM-XML 3577
protocol for at least one ObjectManagerCommunicationMechanism instance. 3578

 ProfilesSupported property, which defines the functional profiles supported as defined in clause 3579
5.4.4. All WBEM servers shall support the basic-read functional group. All WBEM clients may 3580
assume that any WBEM server supports the basic-read functional group. The list of functional 3581
groups returned by a WBEM server shall contain the basic-read group and shall not contain 3582

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 95

duplicates. WBEM clients shall ignore duplicate entries in the functional-group list. If a functional 3583
group is included in the list, the WBEM client shall assume that all other groups on which it 3584
depends (according to the rules defined in 5.4.4) are also supported. A WBEM server should 3585
not explicitly include a functional group in the list whose presence may be inferred implicitly by a 3586
dependency. Support for a functional group does not imply that any method from that group will 3587
always succeed. Rather, the absence of the functional group from this list (whether explicit or 3588
implied) indicates to the WBEM client that methods in that group will never succeed. 3589

 MultipleOperationsSupported property, which defines whether the target WBEM server supports 3590

multiple operation requests as defined in 5.4.2. True in this property indicates that the WBEM 3591

server can accept and process multiple operation requests. False indicates that the WBEM 3592

server can accept only single operation requests. 3593

 AuthenticationMechanismsSupported property, which defines the authentication mechanisms 3594
supported by the target WBEM server as defined in 7.4. 3595

 PulledEnumerationClosureOnExceedingServerLimits property, which indicates whether the 3596
WBEM server supports closure of Pulled Enumeration sessions based upon exceeding server 3597
limits. 3598

 PulledEnumerationContinuationOnErrorSupported property, which indicates whether the WBEM 3599
server supports continuation on error for Pulled enumerations. 3600

 PulledEnumerationMinimumOperationTimeout (PulledEnumerationMaximumOperationTimeout) 3601
property, which indicates the minimum (maximum) operation timeout allowed by the WBEM 3602
server for Pulled enumerations. 3603

Compliant WBEM servers may report additional capabilities for the CommunicationMechanism Functional 3604
Profiles, QueryLanguageSupported, and AuthenticationMechanismSupported by defining the "other" 3605
enumeration in the property and returning additional information in the associated "additional capabilities" 3606
property. 3607

7.5.2 Determining WBEM server Capabilities through the HTTP Options 3608

A WBEM client may use the OPTIONS method to determine the CIM capabilities (if any) of the target 3609
server. A WBEM server may support the OPTIONS method (for example, WBEM servers supporting only 3610
HTTP/1.0 would not support OPTIONS). 3611

To support the ability for a WBEM server to declare its CIM capabilities independently of HTTP, the DMTF 3612
intends to publish a CIM schema (in a separate document) describing such capabilities. In particular, this 3613
mechanism would allow servers that do not support the OPTIONS method to declare their capabilities to 3614
a client. 3615

If a WBEM server supports the OPTIONS method, it should return the following headers in the response: 3616

 CIM Extension Header CIMProtocolVersion, which provides a way for a client to discover the 3617
version of the CIM HTTP mapping supported by the WBEM server. 3618

 CIM Extension Header CIMSupportedFunctionalGroups, which provides a way for a client to 3619
discover the CIM operations supported by the WBEM server. 3620

 CIM Extension Header CIMSupportsMultipleOperations, which provides a way for the client to 3621
discover whether the WBEM server can support Multiple Operation Requests. 3622

In addition, if the WBEM server supports one or more query languages for the ExecQuery operation (see 3623
5.4.2.13), it should return the following header in the response: 3624

 CIM Extension Header CIMSupportedQueryLanguages, which allows the client to discover the 3625
query languages supported by the WBEM server for the ExecQuery operation. 3626

CIM Operations over HTTP DSP0200

96 Work in Progress — Not a DMTF Standard Version 1.4.0a

In addition, if the WBEM server runs in a fixed validation mode, it should return the following header in the 3627
response: 3628

 CIM Extension Header CIMValidation, which allows the client to determine whether the WBEM 3629
server is strictly validating or loosely validating. 3630

If the CIMProtocolVersion, CIMSupportedFunctionalGroups, CIMSupportsMultipleOperations, 3631
CIMValidation, or CIMSupportedQueryLanguages extension headers are included in the response, the 3632
WBEM server shall declare them as optional extension headers using the "Opt" header defined in 3633
RFC2774. 3634

The full format of the "Opt" header declaration for this document is: 3635

Opt = "Opt" ":" "http://www.dmtf.org/cim/mapping/http/v1.0" 3636

 ";" "ns" "=" header-prefix 3637

 3638

header-prefix = 2*DIGIT 3639

This header-prefix should be generated at random on a per-HTTP message basis and should not 3640
necessarily be a specific number. 3641

EXAMPLE: The following is a fragment of a legitimate OPTIONS response from a WBEM server: 3642

HTTP/1.1 200 OK 3643

Opt: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=77 3644

77-CIMProtocolVersion: 1.0 3645

77-CIMSupportedFunctionalGroups: basic-read 3646

77-CIMBatch 3647

77-CIMSupportedQueryLanguages: wql 3648

... 3649

7.5.2.1 CIMSupportedFunctionalGroups 3650

The CIMSupportedFunctionalGroups extension header should be returned by a WBEM server in any 3651
OPTIONS response. It shall not be returned in any other scenario. 3652

This header is defined as follows: 3653

CIMSupportedFunctionalGroups = "CIMSupportedFunctionalGroups" ":" 3654

 1#functional-group 3655

 3656

functional-group = "basic-read" | 3657

 "basic-write" | 3658

 "schema-manipulation" | 3659

 "instance-manipulation" | 3660

 "qualifier-declaration" | 3661

 "association-traversal" | 3662

 "query-execution" 3663

The functional group definitions correspond directly to those listed in 5.5.3. All WBEM servers shall 3664
support the basic-read functional group. All WBEM clients may assume that any WBEM server supports 3665
the basic-read functional group. 3666

The list of functional groups returned by a WBEM server shall contain the basic-read group and shall not 3667
contain any duplicates. WBEM clients shall ignore any duplicate entries in the functional-group list. 3668

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 97

If a functional group is included in the list, the WBEM client shall assume that all other groups on which it 3669
depends (according to the rules defined in 5.5.3) are also supported. A WBEM server should not explicitly 3670
include a functional group in the list if the presence of the group may be implied by a dependency. 3671

EXAMPLE: The following HTTP response message indicates that the WBEM server supports instance-3672
manipulation, association-traversal, basic-write, and basic-read. 3673

HTTP/1.1 200 OK 3674

Opt: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=77 3675

77-CIMProtocolVersion: 1.0 3676

77-CIMSupportedFunctionalGroups: association-traversal, instance-manipulation 3677

... 3678

Support for a functional group does not imply that any method from that group will always succeed. 3679
Rather, the absence (whether explicit or implied) of the functional group from this header is an indication 3680
to the WBEM client that methods in that group will never succeed. 3681

7.5.2.2 CIMSupportsMultipleOperations 3682

The CIMSupportsMultipleOperations extension header shall be returned in an OPTIONS response by any 3683
WBEM server that supports Multiple Operation Requests. It shall not be returned in any other 3684
circumstances. 3685

This header is defined as follows: 3686

CIMSupportsMultipleOperations = "CIMSupportsMultipleOperations" 3687

The presence of this header indicates that the WBEM server can accept and process multiple operation 3688
requests. The absence of this header indicates that the WBEM server can only accept and process 3689
Simple Operation Requests. 3690

7.5.2.3 CIMSupportedQueryLanguages (DEPRECATED) 3691

The CIMSupportedQueryLanguages extension header identifies the query languages supported by the 3692
WBEM server for the ExecQuery operation (see 5.4.2.13). 3693

DEPRECATION NOTE: The CIMSupportedQueryLanguages extension header has been deprecated in 3694
version 1.4 of this document, because it was used only for the ExecQuery operation. 3695

The CIMSupportedQueryLanguages extension header should be returned in any OPTIONS response by 3696
a WBEM server that supports at least one such query language. It shall not be returned in any other 3697
scenario. 3698

This header is defined as follows (token has the meaning conferred by RFC1945 and RFC2616): 3699

CIMSupportedQueryLanguages = "CIMSupportedQueryLanguages" ":" 1#query-language 3700

 3701

query-language = token 3702

The query-language value shall be treated as case-insensitive. It is anticipated that query languages 3703

will be submitted for approval to the DMTF, and each submission will define a value for this token to 3704
enable it to be specified in this header. 3705

7.5.2.4 CIMValidation 3706

The CIMValidation extension header may be returned by a WBEM server to provide information about the 3707
level of validation of CIM-XML operation request messages. 3708

This header is defined as follows: 3709

CIM Operations over HTTP DSP0200

98 Work in Progress — Not a DMTF Standard Version 1.4.0a

CIMValidation = "CIMValidation" ":" validation-level 3710

 3711

validation-level = "validating" | "loosely-validating" 3712

A validation-level of validating indicates that the WBEM server always applies strict validation of each 3713

CIM-XML operation request. A validation-level of loosely-validating indicates that the WBEM 3714

server applies loose validation of each CIM-XML operation request. 3715

In the absence of this header, a WBEM client should assume that the WBEM server operates in strict 3716
validation mode. 3717

7.6 Other HTTP Methods 3718

This document does not in any way define or constrain the way a WBEM client, WBEM server, or WBEM 3719
listener uses any HTTP method other than those explicitly cited. 3720

7.7 Discovery and Addressing 3721

The target URI of the CIM-XML operation request is defined as the location of the WBEM server. This 3722
document does not constrain the format of this URI other than it should be a valid URI (RFC2396) for 3723
describing an HTTP-addressable resource. 3724

An HTTP server that supports the CIM mapping defined in this document, and which supports the 3725
OPTIONS method, should include the following CIM extension header in an OPTIONS response: 3726

 CIMOM 3727

This header is defined as follows: 3728

CIMOM = "CIMOM" ":" (absoluteURI | relativeURI) 3729

The terms absoluteURI and relativeURI are taken from RFC2616; they indicate the location of the 3730

WBEM server for this HTTP server. 3731

If the CIMOM extension header is included in the response, the WBEM server shall declare it an optional 3732
extension header as described in 7.5. 3733

A WBEM client that needs to communicate with a WBEM server on an HTTP server should try an 3734
OPTIONS request to that HTTP server. If the OPTIONS request fails or the response does not include the 3735
CIM-CIMOM extension header, the WBEM client may assume that the value of CIM-CIMOM is the 3736

relative URI cimom. 3737

The DMTF recommends the use of the following well-known IP ports in compliant WBEM servers. This is 3738
a recommendation and not a requirement. The DMTF has registered these port addresses with IANA, so 3739
they are for the exclusive use of the DMTF. 3740

 CIM-XML (HTTP) 5988/tcp 3741

 CIM-XML (HTTP) 5988/udp 3742

 CIM-XML (HTTPS) 5989/tcp 3743

 CIM-XML (HTTPS) 5989/udp 3744

Other discovery mechanisms are outside the scope of this version of the specification. 3745

EXAMPLE 1: 3746

This example shows an HTTP server located at http://www.dmtf.org/ issuing an OPTIONS response 3747
to an HTTP client to indicate that its WBEM server is located at http://www.dmtf.org/access/cimom. 3748

http://www.dmtf.org/

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 99

 HTTP/1.1 200 OK 3749

 Opt: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=48 3750

 48-CIMOM: /access/cimom 3751

 ... 3752

EXAMPLE 2: 3753

If an HTTP server located at http://www.dmtf.org/ responds with a "501 Not Implemented" to an 3754
OPTIONS request from a WBEM client, the WBEM client may then try to contact the WBEM server 3755
at http://www.dmtf.org/cimom. 3756

7.8 Internationalization Considerations 3757

This clause defines the capabilities of the CIM HTTP mapping with respect to IETF policy guidelines on 3758
character sets and languages (RFC2277). 3759

In this document, human-readable fields are contained within a response or request entity body. In all 3760
cases, a human-readable content is encoded using XML (which explicitly provides for character set 3761
tagging and encoding) and requires that XML processors read XML elements encoded, at minimum, 3762
using the UTF-8 (RFC2279) encoding of the ISO 10646 multilingual plane. 3763

Properties that are not of type string or string array shall not be localized. 3764

Because keys are writeable only on instantiation, key values shall not be localized. See DSP0004 for 3765
details. 3766

XML examples in this document demonstrate the use of the charset parameter of the Content-Type 3767
header, as defined in RFC2616, as well as the XML attribute on the <?xml> processing instruction, which 3768
together provide charset identification information for MIME and XML processors. This document 3769
mandates that conforming applications shall support at least the "UTF-8" charset encoding (RFC2277) in 3770

the Content-Type header and shall support the "UTF-8" value for the XML encoding attribute. 3771

XML also provides a language tagging capability for specifying the language of the contents of a 3772
particular XML element, based on use of IANA registered language tags (RFC1766) in combination with 3773
ISO 639-1, in the xml:lang attribute of an XML element to identify the language of its content and 3774
attributes. Section 3.10 of RFC2616 defines how the two-character ISO 639-1 language code is used as 3775
the primary-tag. The language-tag shall be registered by IANA. 3776

DSP0201 declares this attribute on any XML elements. Therefore, conforming applications should use 3777
this attribute when specifying the language in which a particular element is encoded for string and string 3778
array attributes and qualifiers. See the usage rules on this element, which are defined by the World Wide 3779
Web Consortium in XML 1.0, second edition. The attribute may be scoped by the instance or a class and 3780
should not be scoped by a property because instances or classes should be localized in one language. 3781

This document defines several names of HTTP headers and their values. These names are constructed 3782
using standard encoding practices so that they always have an HTTP-safe ASCII representation. 3783
Because these headers are not usually visible to users, they do not need to support encoding in multiple 3784
character sets. 3785

DSP0201 introduces several XML element names. Similarly, these names are not visible to an end user 3786
and do not need to support multiple character set encodings. 3787

The CIM model (DSP0004) defines the subset of the Unicode character set that can be used to name 3788
CIM elements (classes, instances, methods, properties, qualifiers, and method parameters). In general, 3789
these characters appear as the value of XML attributes or as element content and are not displayed to 3790
end users. 3791

Negotiation and notification of language settings is effected in this mapping using the standard Accept-3792
Language and Content-Language headers defined in RFC1945 and RFC2616. 3793

http://www.dmtf.org/
http://www.iana.org/assignments/language-tags
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.w3.org/TR/2000/REC-xml-20001006#sec-lang-tag
http://www.w3.org/TR/2000/REC-xml-20001006

CIM Operations over HTTP DSP0200

100 Work in Progress — Not a DMTF Standard Version 1.4.0a

ANNEX A 3794

(Informative) 3795

 3796

 3797

Examples of Message Exchanges 3798

This annex illustrates the protocol defined in this document with examples of valid HTTP 3799
request/response exchanges. The examples are for illustration purposes only and are not considered part 3800
of the specification. 3801

For clarity, additional white space is included in the examples, but such white space is not an intrinsic part 3802
of such XML documents. 3803

A.1 Retrieval of a Single Class Definition 3804

The following HTTP request illustrates how a client requests the class CIM_VideoBIOSElement. 3805

M-POST /cimom HTTP/1.1 3806

HOST: http://www.myhost.com/ 3807

Content-Type: application/xml; charset=utf-8 3808

Content-Length: xxxx 3809

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3810

73-CIMOperation: MethodCall 3811

73-CIMMethod: GetClass 3812

73-CIMObject: root/cimv2 3813

 3814

<?xml version="1.0" encoding="utf-8" ?> 3815

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3816

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3817

 <SIMPLEREQ> 3818

 <IMETHODCALL NAME="GetClass"> 3819

 <LOCALNAMESPACEPATH> 3820

 <NAMESPACE NAME="root"/> 3821

 <NAMESPACE NAME="cimv2"/> 3822

 </LOCALNAMESPACEPATH> 3823

 <IPARAMVALUE NAME="ClassName"> 3824

 <CLASSNAME NAME="CIM_VideoBIOSElement"/> 3825

 </IPARAMVALUE> 3826

 <IPARAMVALUE NAME="LocalOnly"><VALUE>FALSE</VALUE></IPARAMVALUE> 3827

 </IMETHODCALL> 3828

 </SIMPLEREQ> 3829

 </MESSAGE> 3830

</CIM> 3831

Following is an HTTP response to the preceding request indicating success of the requested operation. 3832
For clarity of exposition, the complete definition of the returned <CLASS> element is not shown. 3833

HTTP/1.1 200 OK 3834

Content-Type: application/xml; charset=utf-8 3835

Content-Length: xxxx 3836

Ext: 3837

Cache-Control: no-cache 3838

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3839

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 101

73-CIMOperation: MethodResponse 3840

 3841

<?xml version="1.0" encoding="utf-8" ?> 3842

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3843

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3844

 <SIMPLERSP> 3845

 <IMETHODRESPONSE NAME="GetClass"> 3846

 <IRETURNVALUE> 3847

 <CLASS NAME="CIM_VideoBIOSElement" 3848

 SUPERCLASS="CIM_SoftwareElement"> 3849

 ... 3850

 </CLASS> 3851

 </IRETURNVALUE> 3852

 </IMETHODRESPONSE> 3853

 </SIMPLERSP> 3854

 </MESSAGE> 3855

</CIM> 3856

A.2 Retrieval of a Single Instance Definition 3857

The following HTTP request illustrates how a client requests the instance MyClass.MyKey="S3". 3858

M-POST /cimom HTTP/1.1 3859

HOST: http://www.myhost.com/ 3860

Content-Type: application/xml; charset=utf-8 3861

Content-Length: xxxx 3862

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3863

73-CIMOperation: MethodCall 3864

73-CIMMethod: GetInstance 3865

73-CIMObject: root%2FmyNamespace 3866

 3867

<?xml version="1.0" encoding="utf-8" ?> 3868

<CIM CIMVERSION="2.0" DTDVERSION="1.1"> 3869

 <MESSAGE ID="87855" PROTOCOLVERSION="1.0"> 3870

 <SIMPLEREQ> 3871

 <IMETHODCALL NAME="GetInstance"> 3872

 <LOCALNAMESPACEPATH> 3873

 <NAMESPACE NAME="root"/> 3874

 <NAMESPACE NAME="myNamespace"/> 3875

 </LOCALNAMESPACEPATH> 3876

 <IPARAMVALUE NAME="InstanceName"> 3877

 <INSTANCENAME CLASSNAME="MyClass"> 3878

 <KEYBINDING NAME="MyKey"><KEYVALUE>S3</KEYVALUE></KEYBINDING> 3879

 </INSTANCENAME> 3880

 </IPARAMVALUE> 3881

 <IPARAMVALUE NAME="LocalOnly"><VALUE>FALSE</VALUE></IPARAMVALUE> 3882

 </IMETHODCALL> 3883

 </SIMPLEREQ> 3884

 </MESSAGE> 3885

</CIM> 3886

Following is an HTTP response to the preceding request indicating an error because the specified 3887
instance is not found. 3888

CIM Operations over HTTP DSP0200

102 Work in Progress — Not a DMTF Standard Version 1.4.0a

HTTP/1.1 200 OK 3889

Content-Type: application/xml; charset=utf-8 3890

Content-Length: xxxx 3891

Ext: 3892

Cache-Control: no-cache 3893

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3894

73-CIMOperation: MethodResponse 3895

 3896

<?xml version="1.0" encoding="utf-8" ?> 3897

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3898

 <MESSAGE ID="87885" PROTOCOLVERSION="1.0"> 3899

 <SIMPLERSP> 3900

 <IMETHODRESPONSE NAME="GetInstance"> 3901

 <ERROR CODE="6" DESCRIPTION="Instance of MyClass not found"/> 3902

 </IMETHODRESPONSE> 3903

 </SIMPLERSP> 3904

 </MESSAGE> 3905

</CIM> 3906

A.3 Deletion of a Single Class Definition 3907

The following HTTP request illustrates how a client deletes the class CIM_VideoBIOSElement. 3908

M-POST /cimom HTTP/1.1 3909

HOST: http://www.myhost.com/ 3910

Content-Type: application/xml; charset=utf-8 3911

Content-Length: xxxx 3912

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3913

73-CIMOperation: MethodCall 3914

73-CIMMethod: DeleteClass 3915

73-CIMObject: root/cimv2 3916

 3917

<?xml version="1.0" encoding="utf-8" ?> 3918

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3919

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3920

 <SIMPLEREQ> 3921

 <IMETHODCALL NAME="DeleteClass"> 3922

 <LOCALNAMESPACEPATH> 3923

 <NAMESPACE NAME="root"/> 3924

 <NAMESPACE NAME="cimv2"/> 3925

 </LOCALNAMESPACEPATH> 3926

 <IPARAMVALUE NAME="ClassName"> 3927

 <CLASSNAME NAME="CIM_VideoBIOSElement"/> 3928

 </IPARAMVALUE> 3929

 </IMETHODCALL> 3930

 </SIMPLEREQ> 3931

 </MESSAGE> 3932

</CIM> 3933

Following is an HTTP response to the preceding request indicating failure of the preceding operation due 3934
to the inability to delete instances of the class. 3935

HTTP/1.1 200 OK 3936

Content-Type: application/xml; charset=utf-8 3937

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 103

Content-Length: xxxx 3938

Ext: 3939

Cache-Control: no-cache 3940

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3941

73-CIMOperation: MethodResponse 3942

 3943

<?xml version="1.0" encoding="utf-8" ?> 3944

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3945

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3946

 <SIMPLERSP> 3947

 <IMETHODRESPONSE NAME="DeleteClass"> 3948

 <ERROR CODE="9" DESCRIPTION="Class has non-deletable instances"/> 3949

 </IMETHODRESPONSE> 3950

 </SIMPLERSP> 3951

 </MESSAGE> 3952

</CIM> 3953

A.4 Deletion of a Single Instance Definition 3954

The following HTTP request illustrates how a client deletes the instance MyClass.MyKey="S3". 3955

M-POST /cimom HTTP/1.1 3956

HOST: http://www.myhost.com/ 3957

Content-Type: application/xml; charset=utf-8 3958

Content-Length: xxxx 3959

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 3960

73-CIMOperation: MethodCall 3961

73-CIMMethod: DeleteInstance 3962

73-CIMObject: root%2FmyNamespace 3963

 3964

<?xml version="1.0" encoding="utf-8" ?> 3965

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3966

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3967

 <SIMPLEREQ> 3968

 <IMETHODCALL NAME="DeleteInstance"> 3969

 <LOCALNAMESPACEPATH> 3970

 <NAMESPACE NAME="root"/> 3971

 <NAMESPACE NAME="myNamespace"/> 3972

 </LOCALNAMESPACEPATH> 3973

 <IPARAMVALUE NAME="InstanceName"> 3974

 <INSTANCENAME CLASSNAME="MyClass"> 3975

 <KEYBINDING NAME="MyKey"> 3976

 <KEYVALUE>S3</KEYVALUE> 3977

 </KEYBINDING> 3978

 </INSTANCENAME> 3979

 </IPARAMVALUE> 3980

 </IMETHODCALL> 3981

 </SIMPLEREQ> 3982

 </MESSAGE> 3983

</CIM> 3984

Following is an HTTP response to the preceding request indicating success of the preceding operation. 3985

HTTP/1.1 200 OK 3986

CIM Operations over HTTP DSP0200

104 Work in Progress — Not a DMTF Standard Version 1.4.0a

Content-Type: application/xml; charset=utf-8 3987

Content-Length: xxxx 3988

Ext: 3989

Cache-Control: no-cache 3990

Man: http://www.dmtf.org/cim/operation ; ns=73 3991

73-CIMOperation: MethodResponse 3992

 3993

<?xml version="1.0" encoding="utf-8" ?> 3994

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 3995

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 3996

 <SIMPLERSP> 3997

 <IMETHODRESPONSE NAME="DeleteInstance"/> 3998

 </SIMPLERSP> 3999

 </MESSAGE> 4000

</CIM> 4001

A.5 Creation of a Single Class Definition 4002

The following HTTP request illustrates how a client creates the class MySchema_VideoBIOSElement as 4003
a subclass of CIM_VideoBIOSElement. For clarity of exposition, most of the submitted <CLASS> element 4004
is omitted from the example. 4005

M-POST /cimom HTTP/1.1 4006

HOST: http://www.myhost.com/ 4007

Content-Type: application/xml; charset=utf-8 4008

Content-Length: xxxx 4009

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4010

73-CIMOperation: MethodCall 4011

73-CIMMethod: CreateClass 4012

73-CIMObject: root/cimv2 4013

 4014

<?xml version="1.0" encoding="utf-8" ?> 4015

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4016

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4017

 <SIMPLEREQ> 4018

 <IMETHODCALL NAME="CreateClass"> 4019

 <LOCALNAMESPACEPATH> 4020

 <NAMESPACE NAME="root"/> 4021

 <NAMESPACE NAME="cimv2"/> 4022

 </LOCALNAMESPACEPATH> 4023

 <IPARAMVALUE NAME="NewClass"> 4024

 <CLASS NAME="MySchema_VideoBIOSElement" 4025

 SUPERCLASS="CIM_VideoBIOSElement"> 4026

 ... 4027

 </CLASS> 4028

 </IPARAMVALUE> 4029

 </IMETHODCALL> 4030

 </SIMPLEREQ> 4031

 </MESSAGE> 4032

</CIM> 4033

Following is an HTTP response to the preceding request indicating success of the preceding operation. 4034

HTTP/1.1 200 OK 4035

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 105

Content-Type: application/xml; charset=utf-8 4036

Content-Length: xxxx 4037

Ext: 4038

Cache-Control: no-cache 4039

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4040

73-CIMOperation: MethodResponse 4041

 4042

<?xml version="1.0" encoding="utf-8" ?> 4043

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4044

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4045

 <SIMPLERSP> 4046

 <IMETHODRESPONSE NAME="CreateClass"/> 4047

 </SIMPLERSP> 4048

 </MESSAGE> 4049

</CIM> 4050

A.6 Creation of a Single Instance Definition 4051

The following HTTP request illustrates how a client creates an instance of the class 4052
MySchema_VideoBIOSElement. For clarity of exposition, most of the submitted <INSTANCE> element is 4053
omitted from the example. 4054

M-POST /cimom HTTP/1.1 4055

HOST: http://www.myhost.com/ 4056

Content-Type: application/xml; charset=utf-8 4057

Content-Length: xxxx 4058

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4059

73-CIMOperation: MethodCall 4060

73-CIMMethod: CreateInstance 4061

73-CIMObject: root/cimv2 4062

 4063

<?xml version="1.0" encoding="utf-8" ?> 4064

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4065

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4066

 <SIMPLEREQ> 4067

 <IMETHODCALL NAME="CreateInstance"> 4068

 <LOCALNAMESPACEPATH> 4069

 <NAMESPACE NAME="root"/> 4070

 <NAMESPACE NAME="cimv2"/> 4071

 </LOCALNAMESPACEPATH> 4072

 <IPARAMVALUE NAME="NewInstance"> 4073

 <INSTANCE CLASSNAME="CIM_VideoBIOSElement"> 4074

 ... 4075

 </INSTANCE> 4076

 </IPARAMVALUE> 4077

 </IMETHODCALL> 4078

 </SIMPLEREQ> 4079

 </MESSAGE> 4080

</CIM> 4081

Following is an HTTP response to the preceding request indicating the success of the preceding 4082
operation. 4083

HTTP/1.1 200 OK 4084

CIM Operations over HTTP DSP0200

106 Work in Progress — Not a DMTF Standard Version 1.4.0a

Content-Type: application/xml; charset=utf-8 4085

Content-Length: xxxx 4086

Ext: 4087

Cache-Control: no-cache 4088

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4089

73-CIMOperation: MethodResponse 4090

 4091

<?xml version="1.0" encoding="utf-8" ?> 4092

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4093

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4094

 <SIMPLERSP> 4095

 <IMETHODRESPONSE NAME="CreateInstance"> 4096

 <IRETURNVALUE> 4097

 <INSTANCENAME CLASSNAME="MySchema_VideoBIOSElement"> 4098

 <KEYBINDING NAME="Name"><KEYVALUE>S4</KEYVALUE></KEYBINDING> 4099

 </INSTANCENAME> 4100

 </IRETURNVALUE> 4101

 </IRETURNVALUE> 4102

 </SIMPLERSP> 4103

 </MESSAGE> 4104

</CIM> 4105

A.7 Enumeration of Class Names 4106

The following HTTP request illustrates how a client enumerates the names of all subclasses of the class 4107
CIM_SoftwareElement. 4108

M-POST /cimom HTTP/1.1 4109

HOST: http://www.myhost.com/ 4110

Content-Type: application/xml; charset=utf-8 4111

Content-Length: xxxx 4112

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4113

73-CIMOperation: MethodCall 4114

73-CIMMethod: EnumerateClassNames 4115

73-CIMObject: root/cimv2 4116

 4117

<?xml version="1.0" encoding="utf-8" ?> 4118

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4119

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4120

 <SIMPLEREQ> 4121

 <IMETHODCALL NAME="EnumerateClassNames"> 4122

 <LOCALNAMESPACEPATH> 4123

 <NAMESPACE NAME="root"/> 4124

 <NAMESPACE NAME="cimv2"/> 4125

 </LOCALNAMESPACEPATH> 4126

 <IPARAMVALUE NAME="ClassName"> 4127

 <CLASSNAME NAME="CIM_SoftwareElement"/> 4128

 </IPARAMVALUE> 4129

 <IPARAMVALUE NAME="DeepInheritance"> 4130

 <VALUE>FALSE</VALUE> 4131

 </IPARAMVALUE> 4132

 </IMETHODCALL> 4133

 </SIMPLEREQ> 4134

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 107

 </MESSAGE> 4135

</CIM> 4136

Following is an HTTP response to the preceding request indicating the success of the preceding 4137
operation and returning the names of the requested subclasses. 4138

HTTP/1.1 200 OK 4139

Content-Type: application/xml; charset=utf-8 4140

Content-Length: xxxx 4141

Ext: 4142

Cache-Control: no-cache 4143

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4144

73-CIMOperation: MethodResponse 4145

 4146

<?xml version="1.0" encoding="utf-8" ?> 4147

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4148

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4149

 <SIMPLERSP> 4150

 <IMETHODRESPONSE NAME="EnumerateClassNames"> 4151

 <IRETURNVALUE> 4152

 <CLASSNAME NAME="CIM_BIOSElement"/> 4153

 <CLASSNAME NAME="CIM_VideoBOISElement"/> 4154

 </IRETURNVALUE> 4155

 </IMETHODRESPONSE> 4156

 </SIMPLERSP> 4157

 </MESSAGE> 4158

</CIM> 4159

A.8 Enumeration of Instances 4160

The following HTTP request illustrates how a client enumerates all instances of the class 4161
CIM_LogicalDisk. For clarity of exposition, most of the returned instances are omitted from the example. 4162

M-POST /cimom HTTP/1.1 4163

HOST: http://www.myhost.com/ 4164

Content-Type: application/xml; charset=utf-8 4165

Content-Length: xxxx 4166

Man: http://www.dmtf.org/cim/operation ; ns=73 4167

73-CIMOperation: MethodCall 4168

73-CIMMethod: EnumerateInstances 4169

73-CIMObject: root/cimv2 4170

 4171

<?xml version="1.0" encoding="utf-8" ?> 4172

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4173

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4174

 <SIMPLEREQ> 4175

 <IMETHODCALL NAME="EnumerateInstances"> 4176

 <LOCALNAMESPACEPATH> 4177

 <NAMESPACE NAME="root"/> 4178

 <NAMESPACE NAME="cimv2"/> 4179

 </LOCALNAMESPACEPATH> 4180

 <IPARAMVALUE NAME="ClassName"> 4181

 <CLASSNAME NAME="CIM_LogicalDisk"/> 4182

 </IPARAMVALUE> 4183

CIM Operations over HTTP DSP0200

108 Work in Progress — Not a DMTF Standard Version 1.4.0a

 <IPARAMVALUE NAME="LocalOnly"><VALUE>TRUE</VALUE></IPARAMVALUE> 4184

 <IPARAMVALUE NAME="DeepInheritance"><VALUE>TRUE</VALUE></IPARAMVALUE> 4185

 </IMETHODCALL> 4186

 </SIMPLEREQ> 4187

 </MESSAGE> 4188

</CIM> 4189

Following is an HTTP response to the preceding request indicating success of the preceding operation, 4190
returning the requested instances. 4191

HTTP/1.1 200 OK 4192

Content-Type: application/xml; charset=utf-8 4193

Content-Length: xxxx 4194

Ext: 4195

Cache-Control: no-cache 4196

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4197

73-CIMOperation: MethodResponse 4198

 4199

<?xml version="1.0" encoding="utf-8" ?> 4200

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4201

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4202

 <SIMPLERSP> 4203

 <IMETHODRESPONSE NAME="EnumerateInstances"> 4204

 <IRETURNVALUE> 4205

 <VALUE.NAMEDINSTANCE> 4206

 <INSTANCENAME CLASSNAME="Erewhon_LogicalDisk"> 4207

 ... 4208

 </INSTANCENAME> 4209

 <INSTANCE CLASSNAME="Erewhon_LogicalDisk"> 4210

 ... 4211

 </INSTANCE> 4212

 </VALUE.NAMEDINSTANCE> 4213

 ... 4214

 <VALUE.NAMEDINSTANCE> 4215

 <INSTANCENAME CLASSNAME="Foobar_LogicalDisk"> 4216

 ... 4217

 </INSTANCENAME> 4218

 <INSTANCE CLASSNAME="Foobar_LogicalDisk"> 4219

 ... 4220

 </INSTANCE> 4221

 </VALUE.NAMEINSTANCE> 4222

 </IRETURNVALUE> 4223

 </IMETHODRESPONSE> 4224

 </SIMPLERSP> 4225

 </MESSAGE> 4226

</CIM> 4227

A.9 Retrieval of a Single Property 4228

The following HTTP request illustrates how a client retrieves the FreeSpace property from the instance 4229
MyDisk.DeviceID="C:". This example demonstrates how to use the GetInstance operation with a property 4230
list filter instead of the deprecated GetProperty operation. 4231

M-POST /cimom HTTP/1.1 4232

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 109

HOST: http://www.myhost.com/ 4233

Content-Type: application/xml; charset=utf-8 4234

Content-Length: xxxx 4235

Man: http://www.dmtf.org/cim/operation ; ns=73 4236

73-CIMOperation: MethodCall 4237

73-CIMMethod: GetInstance 4238

73-CIMObject: root%2FmyNamespace 4239

 4240

<?xml version="1.0" encoding="utf-8" ?> 4241

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4242

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4243

 <SIMPLEREQ> 4244

 <IMETHODCALL NAME="GetInstance"> 4245

 <LOCALNAMESPACEPATH> 4246

 <NAMESPACE NAME="root"/> 4247

 <NAMESPACE NAME="myNamespace"/> 4248

 </LOCALNAMESPACEPATH> 4249

 <IPARAMVALUE NAME="InstanceName"> 4250

 <INSTANCENAME CLASSNAME="MyDisk"> 4251

 <KEYBINDING NAME="DeviceID"> 4252

 <KEYVALUE>C:</KEYVALUE> 4253

 </KEYBINDING> 4254

 </INSTANCENAME> 4255

 </IPARAMVALUE> 4256

 <IPARAMVALUE NAME="LocalOnly"><VALUE>FALSE</VALUE></IPARAMVALUE> 4257

 <IPARAMVALUE NAME="PropertyList"> 4258

 <VALUE>FreeSpace</VALUE> 4259

 </IPARAMVALUE> 4260

 </IMETHODCALL> 4261

 </SIMPLEREQ> 4262

 </MESSAGE> 4263

</CIM> 4264

Following is an HTTP response to the preceding request indicating success of the preceding operation, 4265
returning the requested instance with the requested property value. 4266

HTTP/1.1 200 OK 4267

Content-Type: application/xml; charset=utf-8 4268

Content-Length: xxxx 4269

Ext: 4270

Cache-Control: no-cache 4271

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4272

73-CIMOperation: MethodResponse 4273

 4274

<?xml version="1.0" encoding="utf-8" ?> 4275

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4276

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4277

 <SIMPLERSP> 4278

 <IMETHODRESPONSE NAME="GetInstance"> 4279

 <IRETURNVALUE> 4280

 <INSTANCE CLASSNAME="Erewhon_LogicalDisk"> 4281

 <PROPERTY NAME="FreeSpace" TYPE="uint32"> 4282

 <VALUE>6752332</VALUE> 4283

 </PROPERTY> 4284

CIM Operations over HTTP DSP0200

110 Work in Progress — Not a DMTF Standard Version 1.4.0a

 </INSTANCE> 4285

 </IRETURNVALUE> 4286

 </IMETHODRESPONSE> 4287

 </SIMPLERSP> 4288

 </MESSAGE> 4289

</CIM> 4290

A.10 Execution of an Extrinsic Method 4291

The following HTTP request illustrates how a client executes the SetPowerState method on the instance 4292
MyDisk.DeviceID="C:". 4293

M-POST /cimom HTTP/1.1 4294

HOST: http://www.myhost.com/ 4295

Content-Type: application/xml; charset=utf-8 4296

Content-Length: xxxx 4297

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4298

73-CIMOperation: MethodCall 4299

73-CIMMethod: SetPowerState 4300

73-CIMObject: root%2FmyNamespace%3AMyDisk.Name%3D%22C%3A%22 4301

 4302

<?xml version="1.0" encoding="utf-8" ?> 4303

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4304

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4305

 <SIMPLEREQ> 4306

 <METHODCALL NAME="SetPowerState"> 4307

 <LOCALINSTANCEPATH> 4308

 <LOCALNAMESPACEPATH> 4309

 <NAMESPACE NAME="root"/> 4310

 <NAMESPACE NAME="myNamespace"/> 4311

 </LOCALNAMESPACEPATH> 4312

 <INSTANCENAME CLASSNAME="MyDisk"> 4313

 <KEYBINDING NAME="Name"><KEYVALUE>C:</KEYVALUE></KEYBINDING> 4314

 </INSTANCENAME> 4315

 </LOCALINSTANCEPATH> 4316

 <PARAMVALUE NAME="PowerState"><VALUE>1</VALUE></PARAMVALUE> 4317

 <PARAMVALUE NAME="Time"> 4318

 <VALUE>00000001132312.000000:000</VALUE> 4319

 </PARAMVALUE> 4320

 </METHODCALL> 4321

 </SIMPLEREQ> 4322

 </MESSAGE> 4323

</CIM> 4324

Following is an HTTP response to the preceding request indicating the success of the preceding 4325
operation. 4326

HTTP/1.1 200 OK 4327

Content-Type: application/xml; charset=utf-8 4328

Content-Length: xxxx 4329

Ext: 4330

Cache-Control: no-cache 4331

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=73 4332

73-CIMOperation: MethodResponse 4333

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 111

 4334

<?xml version="1.0" encoding="utf-8" ?> 4335

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4336

 <MESSAGE ID="87872" PROTOCOLVERSION="1.0"> 4337

 <SIMPLERSP> 4338

 <METHODRESPONSE NAME="SetPowerState"> 4339

 <RETURNVALUE> 4340

 <VALUE>0</VALUE> 4341

 </RETURNVALUE> 4342

 </METHODRESPONSE> 4343

 </SIMPLERSP> 4344

 </MESSAGE> 4345

</CIM> 4346

A.11 Indication Delivery Example 4347

The following HTTP request illustrates the format for sending an indication of type CIM_AlertIndication to 4348
a WBEM listener. 4349

M-POST /cimlistener/browser HTTP/1.1 4350

HOST: http://www.acme.com/ 4351

Content-Type: application/xml; charset=utf-8 4352

Content-Length: XXX 4353

Man: http://www.dmtf.org/cim/mapping/http/v1.0 ; ns=40 4354

40-CIMExport: MethodRequest 4355

40-CIMExportMethod: ExportIndication 4356

 4357

<?xml version="1.0" encoding="utf-8" ?> 4358

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4359

 <MESSAGE ID="1007" PROTOCOLVERSION="1.0"> 4360

 <SIMPLEEXPREQ> 4361

 <EXPMETHODCALL NAME="ExportIndication"> 4362

 <EXPPARAMVALUE NAME="NewIndication"> 4363

 <INSTANCE CLASSNAME="CIM_AlertIndication" > 4364

 <PROPERTY NAME="Description" TYPE="string"> 4365

 <VALUE>Sample CIM_AlertIndication indication</VALUE> 4366

 </PROPERTY> 4367

 <PROPERTY NAME="AlertType" TYPE="uint16"> 4368

 <VALUE>1</VALUE> 4369

 </PROPERTY> 4370

 <PROPERTY NAME="PerceivedSeverity" TYPE="uint16"> 4371

 <VALUE>3</VALUE> 4372

 </PROPERTY> 4373

 <PROPERTY NAME="ProbableCause" TYPE="uint16"> 4374

 <VALUE>2</VALUE> 4375

 </PROPERTY> 4376

 <PROPERTY NAME="IndicationTime" TYPE="datetime"> 4377

 <VALUE>20010515104354.000000:000</VALUE> 4378

 </PROPERTY> 4379

 </INSTANCE> 4380

 </EXPPARAMVALUE> 4381

 </EXPMETHODCALL> 4382

 </SIMPLEEXPREQ> 4383

CIM Operations over HTTP DSP0200

112 Work in Progress — Not a DMTF Standard Version 1.4.0a

 </MESSAGE> 4384

</CIM> 4385

Following is an HTTP response to the preceding request indicating a successful receipt by the WBEM 4386
listener. 4387

HTTP/1.1 200 OK 4388

Content-Type: application/xml; charset=utf-8 4389

Content-Length: 267 4390

Ext: 4391

Cache-Control: no-cache 4392

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=40 4393

40-CIMExport: MethodResponse 4394

 4395

<?xml version="1.0" encoding="utf-8" ?> 4396

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4397

 <MESSAGE ID="1007" PROTOCOLVERSION="1.0"> 4398

 <SIMPLEEXPRSP> 4399

 <EXPMETHODRESPONSE NAME="ExportIndication"> 4400

 <IRETURNVALUE></IRETURNVALUE> 4401

 </EXPMETHODRESPONSE> 4402

 </SIMPLEEXPRSP> 4403

 </MESSAGE> 4404

</CIM> 4405

A.12 Subscription Example 4406

A WBEM client application activates a subscription by creating an instance of the 4407
CIM_IndicationSubscription class, which defines an association between a CIM_IndicationFilter (a filter) 4408
instance and a CIM_IndicationHandler (a handler) instance. The CIM_IndicationFilter instance defines the 4409
filter criteria and data project list to describe the desired indication stream. The CIM_IndicationHandler 4410
instance defines the desired indication encoding, destination location, and protocol for delivering the 4411
indication stream. 4412

The following HTTP request illustrates how a client creates an instance of the class CIM_IndicationFilter. 4413
Note that the exact syntax of the WMI Query Language is still under review and is subject to change. 4414

Host: bryce 4415

Content-Type: application/xml; charset=utf-8 4416

Content-Length: XXXX 4417

Man: http://www.dmtf.org/cim/mapping/http/v1.0;ns=20 4418

20-CIMProtocolVersion: 1.0 4419

20-CIMOperation: MethodCall 4420

20-CIMMethod: CreateInstance 4421

20-CIMObject: root/cimv2 4422

 4423

<?xml version="1.0" encoding="utf-8"?> 4424

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4425

 <MESSAGE ID="53000" PROTOCOLVERSION="1.0"> 4426

 <SIMPLEREQ> 4427

 <IMETHODCALL NAME="CreateInstance"> 4428

 <LOCALNAMESPACEPATH> 4429

 <NAMESPACE NAME="root"/> 4430

 <NAMESPACE NAME="cimv2"/> 4431

 </LOCALNAMESPACEPATH> 4432

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 113

 <IPARAMVALUE NAME="NewInstance"> 4433

 <INSTANCE CLASSNAME="CIM_IndicationFilter"> 4434

 <PROPERTY NAME="SystemCreationClassName" TYPE="string"> 4435

 <VALUE>CIM_UnitaryComputerSystem</VALUE> 4436

 </PROPERTY> 4437

 <PROPERTY NAME="SystemName" TYPE="string"> 4438

 <VALUE>server001.acme.com</VALUE> 4439

 </PROPERTY> 4440

 <PROPERTY NAME="CreationClassName" TYPE="string"> 4441

 <VALUE>CIM_IndicationFilter</VALUE> 4442

 </PROPERTY> 4443

 <PROPERTY NAME="Name" TYPE="string"> 4444

 <VALUE>ACMESubscription12345</VALUE> 4445

 </PROPERTY> 4446

 <PROPERTY NAME="SourceNamespace" TYPE="string"> 4447

 <VALUE>root/cimv2</VALUE> 4448

 </PROPERTY> 4449

 <PROPERTY NAME="Query" TYPE="string"> 4450

 <VALUE> 4451

 SELECT Description, AlertType, PerceivedSeverity, 4452
 ProbableCause, IndicationTime 4453

 FROM CIM_AlertIndication 4454

 WHERE PerceivedSeverity = 3 4455

 </VALUE> 4456

 </PROPERTY> 4457

 <PROPERTY NAME="QueryLanguage" TYPE="string"> 4458

 <VALUE>WQL</VALUE> 4459

 </PROPERTY> 4460

 </INSTANCE> 4461

 </IPARAMVALUE> 4462

 </IMETHODCALL> 4463

 </SIMPLEREQ> 4464

 </MESSAGE> 4465

</CIM> 4466

Following is an HTTP response to the preceding request indicating success of the preceding operation. 4467

HTTP/1.1 200 OK 4468

Content-Type: application/xml; charset=utf-8 4469

Content-Length: XXX 4470

Ext: 4471

Cache-Control: no-cache 4472

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=28 4473

28-CIMOperation: MethodResponse 4474

 4475

<?xml version="1.0" encoding="utf-8" ?> 4476

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4477

 <MESSAGE ID="53000" PROTOCOLVERSION="1.0"> 4478

 <SIMPLERSP> 4479

 <IMETHODRESPONSE NAME="CreateInstance"> 4480

 <IRETURNVALUE> 4481

 <INSTANCENAME CLASSNAME="CIM_IndicationFilter"> 4482

 <KEYBINDING NAME="SystemCreationClassName"> 4483

 <KEYVALUE VALUETYPE="string"> 4484

CIM Operations over HTTP DSP0200

114 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM_UnitaryComputerSystem 4485

 </KEYVALUE> 4486

 </KEYBINDING> 4487

 <KEYBINDING NAME="SystemName"> 4488

 <KEYVALUE VALUETYPE="string"> 4489

 server001.acme.com 4490

 </KEYVALUE> 4491

 </KEYBINDING> 4492

 <KEYBINDING NAME="CreationClassName"> 4493

 <KEYVALUE VALUETYPE="string"> 4494

 CIM_IndicationFilter 4495

 </KEYVALUE> 4496

 </KEYBINDING> 4497

 <KEYBINDING NAME="Name"> 4498

 <KEYVALUE VALUETYPE="string"> 4499

 ACMESubscription12345 4500

 </KEYVALUE> 4501

 </KEYBINDING> 4502

 </INSTANCENAME> 4503

 </IRETURNVALUE> 4504

 </IMETHODRESPONSE> 4505

 </SIMPLERSP> 4506

 </MESSAGE> 4507

</CIM> 4508

The following HTTP request illustrates how a client creates an instance of the class 4509
CIM_IndicationHandlerCIMXML. 4510

M-POST /cimom HTTP/1.1 4511

Host: bryce 4512

Content-Type: application/xml; charset=utf-8 4513

Content-Length: XXX 4514

Man: http://www.dmtf.org/cim/mapping/http/v1.0;ns=20 4515

20-CIMProtocolVersion: 1.0 4516

20-CIMOperation: MethodCall 4517

20-CIMMethod: CreateInstance 4518

20-CIMObject: root/cimv2 4519

 4520

<?xml version="1.0" encoding="utf-8"?> 4521

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4522

 <MESSAGE ID="54000" PROTOCOLVERSION="1.0"> 4523

 <SIMPLEREQ> 4524

 <IMETHODCALL NAME="CreateInstance"> 4525

 <LOCALNAMESPACEPATH> 4526

 <NAMESPACE NAME="root"/> 4527

 <NAMESPACE NAME="cimv2"/> 4528

 </LOCALNAMESPACEPATH> 4529

 <IPARAMVALUE NAME="NewInstance"> 4530

 <INSTANCE CLASSNAME="CIM_IndicationHandlerCIMXML"> 4531

 <PROPERTY NAME="SystemCreationClassName" TYPE="string"> 4532

 <VALUE>CIM_UnitaryComputerSystem</VALUE> 4533

 </PROPERTY> 4534

 <PROPERTY NAME="SystemName" TYPE="string"> 4535

 <VALUE>server001.acme.com</VALUE> 4536

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 115

 </PROPERTY> 4537

 <PROPERTY NAME="CreationClassName" TYPE="string"> 4538

 <VALUE>CIM_IndicationHandlerCIMXML</VALUE> 4539

 </PROPERTY> 4540

 <PROPERTY NAME="Name" TYPE="string"> 4541

 <VALUE>ACMESubscription12345</VALUE> 4542

 </PROPERTY> 4543

 <PROPERTY NAME="Owner" TYPE="string"> 4544

 <VALUE>ACMEAlertMonitoringConsole</VALUE> 4545

 </PROPERTY> 4546

 <PROPERTY NAME="Destination" TYPE="string"> 4547

 <VALUE>HTTP://www.acme.com/cimlistener/browser</VALUE> 4548

 </PROPERTY> 4549

 </INSTANCE> 4550

 </IPARAMVALUE> 4551

 </IMETHODCALL> 4552

 </SIMPLEREQ> 4553

 </MESSAGE> 4554

</CIM> 4555

Following is an HTTP response to the preceding request indicating the success of the preceding 4556
operation. 4557

HTTP/1.1 200 OK 4558

Content-Type: application/xml; charset=utf-8 4559

Content-Length: XXX 4560

Ext: 4561

Cache-Control: no-cache 4562

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=27 4563

27-CIMOperation: MethodResponse 4564

 4565

<?xml version="1.0" encoding="utf-8" ?> 4566

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4567

 <MESSAGE ID="54000" PROTOCOLVERSION="1.0"> 4568

 <SIMPLERSP> 4569

 <IMETHODRESPONSE NAME="CreateInstance"> 4570

 <IRETURNVALUE> 4571

 <INSTANCENAME CLASSNAME="CIM_IndicationHandlerCIMXML"> 4572

 <KEYBINDING NAME="SystemCreationClassName"> 4573

 <KEYVALUE VALUETYPE="string"> 4574

 CIM_UnitaryComputerSystem 4575

 </KEYVALUE> 4576

 </KEYBINDING> 4577

 <KEYBINDING NAME="SystemName"> 4578

 <KEYVALUE VALUETYPE="string"> 4579

 server001.acme.com 4580

 </KEYVALUE> 4581

 </KEYBINDING> 4582

 <KEYBINDING NAME="CreationClassName"> 4583

 <KEYVALUE VALUETYPE="string"> 4584

 CIM_IndicationHandlerCIMXML 4585

 </KEYVALUE> 4586

 </KEYBINDING> 4587

 <KEYBINDING NAME="Name"> 4588

CIM Operations over HTTP DSP0200

116 Work in Progress — Not a DMTF Standard Version 1.4.0a

 <KEYVALUE VALUETYPE="string"> 4589

 ACMESubscription12345 4590

 </KEYVALUE> 4591

 </KEYBINDING> 4592

 </INSTANCENAME> 4593

 </IRETURNVALUE> 4594

 </IMETHODRESPONSE> 4595

 </SIMPLERSP> 4596

 </MESSAGE> 4597

</CIM> 4598

The following HTTP request illustrates how a client creates an instance of the class 4599
CIM_IndicationSubscription. 4600

M-POST /cimom HTTP/1.1 4601

Host: bryce 4602

Content-Type: application/xml; charset=utf-8 4603

Content-Length: XXXX 4604

Man: http://www.dmtf.org/cim/mapping/http/v1.0;ns=55 4605

55-CIMProtocolVersion: 1.0 4606

55-CIMOperation: MethodCall 4607

55-CIMMethod: CreateInstance 4608

55-CIMObject: root/cimv2 4609

 4610

<?xml version="1.0" encoding="utf-8"?> 4611

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4612

 <MESSAGE ID="55000" PROTOCOLVERSION="1.0"> 4613

 <SIMPLEREQ> 4614

 <IMETHODCALL NAME="CreateInstance"> 4615

 <LOCALNAMESPACEPATH> 4616

 <NAMESPACE NAME="root"/> 4617

 <NAMESPACE NAME="cimv2"/> 4618

 </LOCALNAMESPACEPATH> 4619

 <IPARAMVALUE NAME="NewInstance"> 4620

 <INSTANCE CLASSNAME="CIM_IndicationSubscription"> 4621

 <PROPERTY.REFERENCE NAME="Filter" 4622
 REFERENCECLASS="CIM_IndicationFilter"> 4623

 <VALUE.REFERENCE> 4624

 <INSTANCENAME CLASSNAME="CIM_IndicationFilter"> 4625

 <KEYBINDING NAME="SystemCreationClassName"> 4626

 <KEYVALUE VALUETYPE="string"> 4627

 CIM_UnitaryComputerSystem 4628

 </KEYVALUE> 4629

 </KEYBINDING> 4630

 <KEYBINDING NAME="SystemName"> 4631

 <KEYVALUE VALUETYPE="string"> 4632

 server001.acme.com 4633

 </KEYVALUE> 4634

 </KEYBINDING> 4635

 <KEYBINDING NAME="CreationClassName"> 4636

 <KEYVALUE VALUETYPE="string"> 4637

 CIM_IndicationFilter 4638

 </KEYVALUE> 4639

 </KEYBINDING> 4640

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 117

 <KEYBINDING NAME="Name"> 4641

 <KEYVALUE VALUETYPE="string"> 4642

 ACMESubscription12345 4643

 </KEYVALUE> 4644

 </KEYBINDING> 4645

 </INSTANCENAME> 4646

 </VALUE.REFERENCE> 4647

 </PROPERTY.REFERENCE> 4648

 <PROPERTY.REFERENCE NAME="Handler" 4649

 REFERENCECLASS="CIM_IndicationHandler"> 4650

 <VALUE.REFERENCE> 4651

 <INSTANCENAME CLASSNAME="CIM_IndicationHandlerCIMXML"> 4652

 <KEYBINDING NAME="SystemCreationClassName"> 4653

 <KEYVALUE VALUETYPE="string"> 4654

 CIM_UnitaryComputerSystem 4655

 </KEYVALUE> 4656

 </KEYBINDING> 4657

 <KEYBINDING NAME="SystemName"> 4658

 <KEYVALUE VALUETYPE="string"> 4659

 server001.acme.com 4660

 </KEYVALUE> 4661

 </KEYBINDING> 4662

 <KEYBINDING NAME="CreationClassName"> 4663

 <KEYVALUE VALUETYPE="string"> 4664

 CIM_IndicationHandlerCIMXML 4665

 </KEYVALUE> 4666

 </KEYBINDING> 4667

 <KEYBINDING NAME="Name"> 4668

 <KEYVALUE VALUETYPE="string"> 4669

 ACMESubscription12345 4670

 </KEYVALUE> 4671

 </KEYBINDING> 4672

 </INSTANCENAME> 4673

 </VALUE.REFERENCE> 4674

 </PROPERTY.REFERENCE> 4675

 </INSTANCE> 4676

 </IPARAMVALUE> 4677

 </IMETHODCALL> 4678

 </SIMPLEREQ> 4679

 </MESSAGE> 4680

</CIM> 4681

Following is an HTTP response to the preceding request indicating the success of the preceding 4682
operation. 4683

HTTP/1.1 200 OK 4684

Content-Type: application/xml; charset=utf-8 4685

Content-Length: XXXX 4686

Ext: 4687

Cache-Control: no-cache 4688

Man: http://www.dmtf.org/cim/mapping/http/v1.0; ns=75 4689

75-CIMOperation: MethodResponse 4690

 4691

<?xml version="1.0" encoding="utf-8" ?> 4692

CIM Operations over HTTP DSP0200

118 Work in Progress — Not a DMTF Standard Version 1.4.0a

<CIM CIMVERSION="2.0" DTDVERSION="2.0"> 4693

 <MESSAGE ID="55000" PROTOCOLVERSION="1.0"> 4694

 <SIMPLERSP> 4695

 <IMETHODRESPONSE NAME="CreateInstance"> 4696

 <IRETURNVALUE> 4697

 <INSTANCENAME CLASSNAME="CIM_IndicationSubscription"> 4698

 <KEYBINDING NAME="Filter"> 4699

 <VALUE.REFERENCE> 4700

 <INSTANCENAME CLASSNAME="CIM_IndicationFilter"> 4701

 <KEYBINDING NAME="SystemCreationClassName"> 4702

 <KEYVALUE VALUETYPE="string"> 4703

 CIM_UnitaryComputerSystem 4704

 </KEYVALUE> 4705

 </KEYBINDING> 4706

 <KEYBINDING NAME="SystemName"> 4707

 <KEYVALUE VALUETYPE="string"> 4708

 server001.acme.com 4709

 </KEYVALUE> 4710

 </KEYBINDING> 4711

 <KEYBINDING NAME="CreationClassName"> 4712

 <KEYVALUE VALUETYPE="string"> 4713

 CIM_IndicationFilter 4714

 </KEYVALUE> 4715

 </KEYBINDING> 4716

 <KEYBINDING NAME="Name"> 4717

 <KEYVALUE VALUETYPE="string"> 4718

 ACMESubscription12345 4719

 </KEYVALUE> 4720

 </KEYBINDING> 4721

 </INSTANCENAME> 4722

 </VALUE.REFERENCE> 4723

 </KEYBINDING> 4724

 <KEYBINDING NAME="Handler"> 4725

 <VALUE.REFERENCE> 4726

 <INSTANCENAME CLASSNAME="CIM_IndicationHandlerCIMXML"> 4727

 <KEYBINDING NAME="SystemCreationClassName"> 4728

 <KEYVALUE VALUETYPE="string"> 4729

 CIM_UnitaryComputerSystem 4730

 </KEYVALUE> 4731

 </KEYBINDING> 4732

 <KEYBINDING NAME="SystemName"> 4733

 <KEYVALUE VALUETYPE="string"> 4734

 server001.acme.com 4735

 </KEYVALUE> 4736

 </KEYBINDING> 4737

 <KEYBINDING NAME="CreationClassName"> 4738

 <KEYVALUE VALUETYPE="string"> 4739

 CIM_IndicationHandlerCIMXML 4740

 </KEYVALUE> 4741

 </KEYBINDING> 4742

 <KEYBINDING NAME="Name"> 4743

 <KEYVALUE VALUETYPE="string"> 4744

 ACMESubscription12345 4745

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 119

 </KEYVALUE> 4746

 </KEYBINDING> 4747

 </INSTANCENAME> 4748

 </VALUE.REFERENCE> 4749

 </KEYBINDING> 4750

 </INSTANCENAME> 4751

 </IRETURNVALUE> 4752

 </IMETHODRESPONSE> 4753

 </SIMPLERSP> 4754

 </MESSAGE> 4755

</CIM> 4756

A.13 Multiple Operations Example 4757

The following HTTP request illustrates how a client performs multiple operations. This example batches a 4758
GetClass, an EnumerateInstanceNames, and an EnumerateInstance operation on 4759
CIM_ObjectManagerAdapter. 4760

POST /CIMOM1 HTTP/1.1 4761

Authorization: Basic Z3Vlc3Q6Z3Vlc3Q= 4762

Content-Length: XXX 4763

Host: localhost:5988 4764

CIMOperation: MethodCall 4765

CIMProtocolVersion: 1.0 4766

Content-Type: application/xml; charset=utf-8 4767

CIMBatch: CIMBatch 4768

<?xml version="1.0" encoding="UTF-8"?> 4769

 4770

<CIM DTDVERSION="2.0" CIMVERSION="2.0"> 4771

 <MESSAGE ID="2004:2:5:1:1:11:41:1" PROTOCOLVERSION="1.0"> 4772

 <MULTIREQ> 4773

 <SIMPLEREQ> 4774

 <IMETHODCALL NAME="GetClass"> 4775

 <LOCALNAMESPACEPATH> 4776

 <NAMESPACE NAME="interop" /> 4777

 </LOCALNAMESPACEPATH> 4778

 <IPARAMVALUE NAME="ClassName"> 4779

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4780

 </IPARAMVALUE> 4781

 <IPARAMVALUE NAME="LocalOnly"> 4782

 <VALUE>FALSE</VALUE> 4783

 </IPARAMVALUE> 4784

 <IPARAMVALUE NAME="IncludeClassOrigin"> 4785

 <VALUE>TRUE</VALUE> 4786

 </IPARAMVALUE> 4787

 </IMETHODCALL> 4788

 </SIMPLEREQ> 4789

 <SIMPLEREQ> 4790

 <IMETHODCALL NAME="Associators"> 4791

 <LOCALNAMESPACEPATH> 4792

 <NAMESPACE NAME="interop" /> 4793

 </LOCALNAMESPACEPATH> 4794

 <IPARAMVALUE NAME="ObjectName"> 4795

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4796

CIM Operations over HTTP DSP0200

120 Work in Progress — Not a DMTF Standard Version 1.4.0a

 </IPARAMVALUE> 4797

 <IPARAMVALUE NAME="IncludeQualifiers"> 4798

 <VALUE>TRUE</VALUE> 4799

 </IPARAMVALUE> 4800

 <IPARAMVALUE NAME="IncludeClassOrigin"> 4801

 <VALUE>TRUE</VALUE> 4802

 </IPARAMVALUE> 4803

 </IMETHODCALL> 4804

 </SIMPLEREQ> 4805

 <SIMPLEREQ> 4806

 <IMETHODCALL NAME="EnumerateInstanceNames"> 4807

 <LOCALNAMESPACEPATH> 4808

 <NAMESPACE NAME="interop" /> 4809

 </LOCALNAMESPACEPATH> 4810

 <IPARAMVALUE NAME="ClassName"> 4811

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4812

 </IPARAMVALUE> 4813

 </IMETHODCALL> 4814

 </SIMPLEREQ> 4815

 <SIMPLEREQ> 4816

 <IMETHODCALL NAME="EnumerateInstances"> 4817

 <LOCALNAMESPACEPATH> 4818

 <NAMESPACE NAME="interop" /> 4819

 </LOCALNAMESPACEPATH> 4820

 <IPARAMVALUE NAME="ClassName"> 4821

 <CLASSNAME NAME="CIM_ObjectManagerAdapter" /> 4822

 </IPARAMVALUE> 4823

 <IPARAMVALUE NAME="LocalOnly"> 4824

 <VALUE>FALSE</VALUE> 4825

 </IPARAMVALUE> 4826

 </IMETHODCALL> 4827

 </SIMPLEREQ> 4828

 </MULTIREQ> 4829

 </MESSAGE> 4830

</CIM> 4831

Following is the HTTP response to the preceding request indicating the success of the preceding 4832
operation. 4833

HTTP/1.1 200 OK 4834

CIMOperation: MethodResponse 4835

Content-Length: XXX 4836

 4837

<?xml version="1.0" encoding="UTF-8"?> 4838

<CIM DTDVERSION="2.0" CIMVERSION="2.0"> 4839

 <MESSAGE ID="2004:2:5:1:1:11:41:1" PROTOCOLVERSION="1.0"> 4840

 <MULTIRSP> 4841

 <SIMPLERSP> 4842

 <IMETHODRESPONSE NAME="GetClass"> 4843

 <IRETURNVALUE> 4844

 <CLASS SUPERCLASS="CIM_WBEMService" 4845
 NAME="CIM_ObjectManagerAdapter"> 4846

 ... 4847

 </CLASS> 4848

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 121

 </IRETURNVALUE> 4849

 </IMETHODRESPONSE> 4850

 </SIMPLERSP> 4851

 <SIMPLERSP> 4852

 <IMETHODRESPONSE NAME="Associators"> 4853

 <IRETURNVALUE> 4854

 <VALUE.OBJECTWITHPATH> 4855

 ... 4856

 </VALUE.OBJECTWITHPATH> 4857

 <VALUE.OBJECTWITHPATH> 4858

 ... 4859

 </VALUE.OBJECTWITHPATH> 4860

 ... 4861

 </IRETURNVALUE> 4862

 </IMETHODRESPONSE> 4863

 </SIMPLERSP> 4864

 <SIMPLERSP> 4865

 <IMETHODRESPONSE NAME="EnumerateInstanceNames"> 4866

 <IRETURNVALUE> 4867

 <INSTANCENAME CLASSNAME="WBEMSolutions_ObjectManagerAdapter"> 4868

 ... 4869

 </INSTANCENAME> 4870

 <INSTANCENAME CLASSNAME="WBEMSolutions_ObjectManagerAdapter"> 4871

 ... 4872

 </INSTANCENAME> 4873

 ... 4874

 </IRETURNVALUE> 4875

 </IMETHODRESPONSE> 4876

 </SIMPLERSP> 4877

 <SIMPLERSP> 4878

 <IMETHODRESPONSE NAME="EnumerateInstances"> 4879

 <IRETURNVALUE> 4880

 <VALUE.NAMEDINSTANCE> 4881

 ... 4882

 </VALUE.NAMEDINSTANCE> 4883

 <VALUE.NAMEDINSTANCE> 4884

 ... 4885

 </VALUE.NAMEDINSTANCE> 4886

 ... 4887

 </IRETURNVALUE> 4888

 </IMETHODRESPONSE> 4889

 </SIMPLERSP> 4890

 </MULTIRSP> 4891

 </MESSAGE> 4892

</CIM> 4893

CIM Operations over HTTP DSP0200

122 Work in Progress — Not a DMTF Standard Version 1.4.0a

ANNEX B 4894

(informative) 4895

 4896

 4897

LocalOnly Parameter Discussion 4898

This annex discusses the issues associated with the 1.1 definition of the LocalOnly parameter for the 4899

GetInstance and EnumerateInstances operations. 4900

B.1 Explanation of the Deprecated 1.1 Interpretation 4901

In April 2002, two DMTF Change Requests (CRs), CR809 (EnumerateInstances) and CR815 4902
(GetInstance), were approved and incorporated into version 1.1of this document to clarify the 4903

interpretation of the LocalOnly flag for the GetInstance and EnumerateInstances operations. With these 4904

CRs, the definition of the LocalOnly flag for these operations was modified to align with the 4905

interpretation of this flag for the GetClass and EnumerateClasses operations. This change was incorrect, 4906
resulted in reduced functionality, and introduced several backward compatibility issues. 4907

To clarify the difference between the 1.0 Interpretation and the 1.1 Interpretation (CR815), consider the 4908
following example: 4909

class A { 4910

 [Key] 4911

 string name; 4912

 uint32 counter = 3; 4913

}; 4914

 4915

class B : A { 4916

 uint32 moreData = 4; 4917

}; 4918

 4919

instance of A { 4920

 name = "Roger"; 4921

}; 4922

 4923

instance of B { 4924

 name = "Karl"; 4925

 counter = 3; 4926

 moreData = 5; 4927

}; 4928

 4929

instance of B { 4930

 name = "Denise"; 4931

 counter = 5; 4932

}; 4933

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 123

Assuming PropertyList = NULL and LocalOnly = TRUE, Table 7 shows the properties returned by 4934

a GetInstance operation. 4935

Table 7 – Comparison of Properties Returned by GetInstance in Versions 1.0 and 1.1 4936

Instance DSP0200 1.0 Interpretation DSP0200 1.1 Interpretation

"Roger" name name, counter

"Karl" name, counter, moreData moreData

"Denise" name, counter moreData

The properties returned using the 1.0 interpretation are consistent with the properties specified in the 4937
MOF instance definitions, and the properties returned using the 1.1 Interpretation are consistent with the 4938
properties defined in the class definitions. 4939

B.2 Risks of Using the 1.1 Interpretation 4940

The risks of using the 1.1 interpretation are as follows: 4941

1) Within the DMTF, promoting a property from a class to one of its superclasses is defined as a 4942
backward-compatible change that can be made in a minor revision of the CIM schema. With the 1.1 4943
interpretation, promoting a property to a superclass can cause backward-incompatible changes. 4944

Suppose, for example, version 1.0 of the schema includes the following definitions: 4945

class A { 4946

 [Key] 4947

 string name; 4948

 uint32 counter = 3; 4949

}; 4950

 4951

class B : A { 4952

 uint32 moreData = 4; 4953

}; 4954

Now suppose that the schema is modified in version 1.1 to promote the property moreData from 4955
class B to class A. 4956

class A { 4957

 [Key] 4958

 string name; 4959

 uint32 counter = 3; 4960

 uint32 moreData = 4; 4961

}; 4962

 4963

class B : A { 4964

}; 4965

Using these examples, Table 8 shows the properties returned by a call to GetInstance with 4966

PropertyList = NULL and LocalOnly = TRUE. With the 1.1 Interpretation, this schema 4967

change would affect the list of properties returned. When dealing with a WBEM server that complies 4968
with the 1.1 interpretation, applications must be designed to treat “promoting properties” as a 4969
backward-compatible change. 4970

CIM Operations over HTTP DSP0200

124 Work in Progress — Not a DMTF Standard Version 1.4.0a

Table 8 – Comparison of Properties Returned by a Call to GetInstance in Versions 1.0 and 1.1 4971

Instance Schema Version 1.0 Schema Version 1.1

of A name, counter name, counter, moreData

of B moreData none

 4972

2) The 1.1 Interpretation encourages application developers to use multiple operations to retrieve the 4973
properties of an instance. That is, a commonly-stated use model for the 1.1 interpretation is to 4974
selectively traverse subclasses getting additional properties of an instance. This practice significantly 4975
increases the risk that a client will construct an inconsistent instance. With both Interpretations, 4976
applications should be designed to ensure that dependent properties are retrieved together. 4977

B.3 Techniques for Differentiating between the 1.0 Interpretation and 1.1 4978

Interpretation 4979

For concrete classes, WBEM servers that comply with the 1.0 Interpretation return the value of all KEY 4980

properties not explicitly excluded by the PropertyList parameter. WBEM servers that comply with the 4981

1.1 interpretation return only the value of KEY properties explicitly defined in the class. Applications can 4982
use this difference to detect which interpretation is supported by a WBEM server. 4983

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 125

ANNEX C 4984

(normative) 4985

 4986

 4987

Generic Operations Mapping 4988

This annex defines a mapping of generic operations (see DSP0223) to the CIM-XML protocol described 4989
in this document. 4990

A main purpose of this mapping is to support the implementations of DMTF management profiles that 4991
define operations in terms of generic operations, by providing them a translation from the generic 4992
operation listed in the management profile, to the CIM-XML operation that actually needs to be 4993
implemented. 4994

C.1 Operations 4995

This subclause defines for each generic operation, which CIM-XML operation needs to be supported in 4996
order to support the respective generic operation. 4997

Table 9 lists the generic operations defined in DSP0223 and for each of them, lists the name of the 4998
corresponding CIM-XML operation and a link to the description subclause. 4999

Table 9 – Mapping of generic operations to CIM-XML operations 5000

Generic Operation CIM-XML Operation Description

GetInstance GetInstance See C.1.1

DeleteInstance DeleteInstance See C.1.2

ModifyInstance ModifyInstance See C.1.3

CreateInstance CreateInstance See C.1.4

GetClassInstancesWithPath EnumerateInstances See C.1.5

GetClassInstancePaths EnumerateInstanceNames See C.1.6

GetAssociatedInstancesWithPath Associators (ObjectName is an instance path) See C.1.7

GetAssociatedInstancePaths AssociatorNames (ObjectName is an instance path) See C.1.8

GetReferencingInstancesWithPath References (ObjectName is an instance path) See C.1.9

GetReferencingInstancePaths ReferenceNames (ObjectName is an instance path) See C.1.10

OpenClassInstancesWithPath OpenEnumerateInstances See C.1.11

OpenClassInstancePaths OpenEnumerateInstancePaths See C.1.12

OpenAssociatedInstancesWithPath OpenAssociatorInstances See C.1.13

OpenAssociatedInstancePaths OpenAssociatorInstanceNames See C.1.14

OpenReferencingInstancesWithPath OpenReferenceInstances See C.1.15

OpenReferencingInstancePaths OpenReferenceInstanceNames See C.1.16

OpenQueryInstances OpenQueryInstances See C.1.17

PullInstancesWithPath PullInstancesWithPath See C.1.18

PullInstancePaths PullInstancePaths See C.1.19

CIM Operations over HTTP DSP0200

126 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Operation CIM-XML Operation Description

PullInstances PullInstances See C.1.20

CloseEnumeration CloseEnumeration See C.1.21

EnumerationCount EnumerationCount See C.1.22

InvokeMethod invocation of extrinsic non-static method See C.1.23

InvokeStaticMethod invocation of extrinsic static method See C.1.24

GetClass GetClass See C.1.25

DeleteClass DeleteClass See C.1.26

ModifyClass ModifyClass See C.1.27

CreateClass CreateClass See C.1.28

GetTopClassesWithPath EnumerateClasses (ClassName is NULL) See C.1.29

GetTopClassPaths EnumerateClassNames (ClassName is NULL) See C.1.30

GetSubClassesWithPath EnumerateClasses (ClassName is non-NULL) See C.1.31

GetSubClassPaths EnumerateClassNames (ClassName is non-NULL) See C.1.32

GetAssociatedClassesWithPath Associators (ObjectName is a class path) See C.1.33

GetAssociatedClassPaths AssociatorNames (ObjectName is a class path) See C.1.34

GetReferencingClassesWithPath References (ObjectName is a class path) See C.1.35

GetReferencingClassPaths ReferenceNames (ObjectName is a class path) See C.1.36

GetQualifierType GetQualifier See C.1.37

DeleteQualifierType DeleteQualifier See C.1.38

ModifyQualifierType SetQualifier (Qualifier exists) See C.1.39

CreateQualifierType SetQualifier (Qualifier does not exist) See C.1.40

EnumerateQualifierTypesWithPath EnumerateQualifiers See C.1.41

In the following subclauses, the CIM-XML Type listed in the tables is either an intrinsic CIM type (e.g. 5001
"boolan"), or one of the pseudo-types defined in this document (e.g. "instanceName"). 5002

C.1.1 GetInstance 5003

CIM-XML Operation Name: GetInstance 5004

Purpose: Retrieve an instance given its instance path. 5005

Operation Input Parameters: 5006

 5007

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 127

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

N/A N/A IncludeQualifiers boolean See 2)

N/A N/A LocalOnly boolean See 3)

1) The CIM-XML parameter InstanceName includes the model path portion of the instance path of the 5008
instance. The generic parameter InstancePath corresponds to the combination of the CIM-XML 5009
parameter InstanceName and the target namespace of the CIM-XML operation. 5010

2) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5011
defined behavior of generic operation GetInstance conforms to the behavior of CIM-XML operation 5012
GetInstance with IncludeQualifiers=false, which is the recommended value to be used for CIM-XML 5013
clients since version 1.2 of this document. 5014

3) The CIM-XML parameter LocalOnly has been deprecated in version 1.2 of this document. The 5015
defined behavior of generic operation GetInstance conforms to the behavior of CIM-XML operation 5016
GetInstance with LocalOnly=false, which is the recommended value to be used for CIM-XML clients 5017
since version 1.2 of this document. 5018

Operation Output Parameters: 5019

 5020

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

Instance InstanceSpecification return value instance

Optional behavior: 5021

 CIM-XML allows implementations to optimize by not including properties in the returned 5022
instance that have a value of NULL. 5023

Deviations: None 5024

C.1.2 DeleteInstance 5025

CIM-XML Operation Name: DeleteInstance 5026

Purpose: Delete an instance given its instance path. 5027

Operation Input Parameters: 5028

 5029

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

1) The CIM-XML parameter InstanceName includes the model path portion of the instance path of the 5030
instance. The generic parameter InstancePath corresponds to the combination of the CIM-XML 5031
parameter InstanceName and the target namespace of the CIM-XML operation. 5032

Operation Output Parameters: None 5033

Deviations: None 5034

CIM Operations over HTTP DSP0200

128 Work in Progress — Not a DMTF Standard Version 1.4.0a

C.1.3 ModifyInstance 5035

CIM-XML Operation Name: ModifyInstance 5036

Purpose: Modify property values of an instance given its instance path. 5037

Operation Input Parameters: 5038

 5039

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

ModifiedInstance namedInstance See 1)

ModifiedInstance InstanceSpecification ModifiedInstance namedInstance

IncludedProperties PropertyName [] PropertyList string []

N/A N/A IncludeQualifiers boolean See 2)

1) The CIM-XML parameter ModifiedInstance includes the model path portion of the instance path of 5040
the instance that is being modified, and the modified property values. The combination of the model 5041
path portion of the CIM-XML parameter ModifiedInstance and the target namespace of the CIM-XML 5042
operation corresponds to the generic parameter InstancePath. 5043

2) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5044
defined behavior of generic operation ModifyInstance conforms to the behavior of CIM-XML 5045
operation ModifyInstance with IncludeQualifiers=false, which is the recommended behavior for CIM-5046
XML servers since version 1.2 of this document. 5047

Operation Output Parameters: None 5048

Optional behavior: 5049

 DSP0223 permits conformant WBEM protocols to require that all properties exposed by the 5050
creation class of the instance referenced by InstancePath are supplied by the WBEM client with 5051
their modified values. CIM-XML does not require that, i.e. CIM-XML permits clients to supply 5052
modified values only for a subset of these properties and those not supplied are meant to be left 5053
unchanged by the operation. 5054

Deviations: None 5055

C.1.4 CreateInstance 5056

CIM-XML Operation Name: CreateInstance 5057

Purpose: Create a CIM instance given the class path of its creation class. 5058

Operation Input Parameters: 5059

 5060

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

NewInstance instance See 1)

NewInstance InstanceSpecification NewInstance instance

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 129

1) The generic parameter ClassPath corresponds to the combination of the class name specified in the 5061
CIM-XML parameter NewInstance and the target namespace of the CIM-XML operation. 5062

Operation Output Parameters: 5063

 5064

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath return value instanceName

Optional behavior: None 5065

Deviations: None 5066

C.1.5 GetClassInstancesWithPath 5067

CIM-XML Operation Name: EnumerateInstances 5068

Purpose: Retrieve the instances of a given class (including instances of its subclasses). The retrieved 5069
instances include their instance paths. 5070

Operation Input Parameters: 5071

 5072

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean DeepInheritance boolean See 2)

N/A N/A IncludeQualifiers boolean See 3)

N/A N/A LocalOnly boolean See 4)

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5073
ClassName and the target namespace of the CIM-XML operation. 5074

2) The generic parameter ExcludeSubclassProperties corresponds to the negated CIM-XML parameter 5075
DeepInheritance. 5076

3) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5077
defined behavior of generic operation GetClassInstancesWithPath conforms to the behavior of CIM-5078
XML operation EnumerateInstances with IncludeQualifiers=false, which is the recommended value 5079
to be used for CIM-XML clients since version 1.2 of this document. 5080

4) The CIM-XML parameter LocalOnly has been deprecated in version 1.2 of this document. The 5081
defined behavior of generic operation GetClassInstancesWithPath conforms to the behavior of CIM-5082
XML operation EnumerateInstances with LocalOnly=false, which is the recommended value to be 5083
used for CIM-XML clients since version 1.2 of this document. 5084

CIM Operations over HTTP DSP0200

130 Work in Progress — Not a DMTF Standard Version 1.4.0a

Operation Output Parameters: 5085

 5086

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value namedInstance [] See 1)

1) The CIM-XML return value includes the set of property values including the model paths, but without 5087
namespace paths. The generic parameter InstanceList needs to contain the instance paths in 5088
addition to the set of property values. A CIM client side mapping layer can construct the instance 5089
paths from the model paths and the CIM-XML target namespace. 5090

Optional behavior: 5091

 CIM-XML allows implementations to optimize by not including properties in the returned 5092
instances that have a value of NULL. 5093

Deviations: None 5094

C.1.6 GetClassInstancePaths 5095

CIM-XML Operation Name: EnumerateInstanceNames 5096

Purpose: Retrieve the instance paths of the instances of a given class (including instances of its 5097
subclasses). 5098

Operation Input Parameters: 5099

 5100

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5101
ClassName and the target namespace of the CIM-XML operation. 5102

Operation Output Parameters: 5103

 5104

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instanceName [] See 1)

1) The CIM-XML return value includes the set of model paths, but without namespace paths. The 5105
generic parameter InstancePathList needs to contain the instance paths, including namespace 5106
paths. A CIM client side mapping layer can construct the instance paths from the model paths and 5107
the CIM-XML target namespace. 5108

Optional behavior: None 5109

Deviations: None 5110

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 131

C.1.7 GetAssociatedInstancesWithPath 5111

CIM-XML Operation Name: Associators with ObjectName being an instance path 5112

Purpose: Retrieve the instances that are associated with a given source instance. The retrieved 5113
instances include their instance paths. 5114

Operation Input Parameters: 5115

 5116

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 2)

N/A N/A IncludeQualifiers boolean See 3)

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5117
parameter ObjectName and the target namespace of the CIM-XML operation. 5118

The generic operation GetAssociatedInstancesWithPath corresponds to the CIM-XML operation 5119
Associators when an instance path is passed in for its ObjectName parameter. Using the CIM-XML 5120
operation Associators with a class path for its ObjectName parameter is covered by the generic 5121
operation GetAssociatedClassesWithPath (see C.1.33). 5122

2) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5123
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5124
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5125
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5126
parameter has a value of true. 5127

3) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5128
defined behavior of generic operation GetAssociatedInstancesWithPath conforms to the behavior of 5129
CIM-XML operation Associators with IncludeQualifiers=false, which is the recommended value to be 5130
used for CIM-XML clients since version 1.2 of this document. 5131

Operation Output Parameters: 5132

 5133

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value objectWithPath []

CIM Operations over HTTP DSP0200

132 Work in Progress — Not a DMTF Standard Version 1.4.0a

Optional behavior: 5134

 CIM-XML allows implementations to optimize by not including properties in the returned 5135
instances that have a value of NULL. 5136

Deviations: None 5137

C.1.8 GetAssociatedInstancePaths 5138

CIM-XML Operation Name: AssociatorNames with ObjectName being an instance path 5139

Purpose: Retrieve the instance paths of the instances that are associated with a given source instance. 5140

Operation Input Parameters: 5141

 5142

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5143
parameter ObjectName and the target namespace of the CIM-XML operation. 5144

The generic operation GetAssociatedInstancePaths corresponds to the CIM-XML operation 5145
AssociatorNames when an instance path is passed in for its ObjectName parameter. Using the CIM-5146
XML operation AssociatorNames with a class path for its ObjectName parameter is covered by the 5147
generic operation GetAssociatedClassPaths (see C.1.34). 5148

Operation Output Parameters: 5149

 5150

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value objectPath []

Optional behavior: None 5151

Deviations: None 5152

C.1.9 GetReferencingInstancesWithPath 5153

CIM-XML Operation Name: References with ObjectName being an instance path 5154

Purpose: Retrieve the association instances that reference a given source instance. The retrieved 5155
instances include their instance paths. 5156

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 133

Operation Input Parameters: 5157

 5158

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See Error!
Reference
source not
found.

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See Error!
Reference
source not
found.

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 3)

N/A N/A IncludeQualifiers boolean See 4)

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5159
parameter ObjectName and the target namespace of the CIM-XML operation. 5160

The generic operation GetReferencingInstancesWithPath corresponds to the CIM-XML operation 5161
References when an instance path is passed in for its ObjectName parameter. Using the CIM-XML 5162
operation References with a class path for its ObjectName parameter is covered by the generic 5163
operation GetReferencingClassesWithPath (see C.1.35). 5164

2) The CIM-XML operation References does not support a means to filter by class name or role name 5165
of the associated classes on the other ends of the associations referencing the source instance. The 5166
generic operation GetReferencingInstancesWithPath does support such filtering through its 5167
parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior of the 5168
CIM-XML operation will result in including association instances that these two parameters could 5169
filter out, a mapping layer on the CIM client side can implement the behavior defined by these two 5170
generic parameters by eliminating association instances if these filter parameters are used. 5171

3) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5172
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5173
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5174
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5175
parameter has a value of true. 5176

4) The CIM-XML parameter IncludeQualifiers has been deprecated in version 1.2 of this document. The 5177
defined behavior of generic operation GetReferencingInstancesWithPath conforms to the behavior of 5178
CIM-XML operation References with IncludeQualifiers=false, which is the recommended value to be 5179
used for CIM-XML clients since in version 1.2 of this document. 5180

Operation Output Parameters: 5181

 5182

CIM Operations over HTTP DSP0200

134 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value objectWithPath []

Optional behavior: 5183

 CIM-XML allows implementations to optimize by not including properties in the returned 5184
instances that have a value of NULL. 5185

Deviations: None 5186

C.1.10 GetReferencingInstancePaths 5187

CIM-XML Operation Name: ReferenceNames with ObjectName being an instance path 5188

Purpose: Retrieve the instance paths of the association instances that reference a given source 5189
instance. 5190

Operation Input Parameters: 5191

 5192

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See Error!
Reference
source not
found.1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5193
parameter ObjectName and the target namespace of the CIM-XML operation. 5194

The generic operation GetReferencingInstancePaths corresponds to the CIM-XML operation 5195
ReferenceNames when an instance path is passed in for its ObjectName parameter. Using the CIM-5196
XML operation ReferenceNames with a class path for its ObjectName parameter is covered by the 5197
generic operation GetReferencingClassPaths (see C.1.36). 5198

2) The CIM-XML operation References does not support a means to filter by class name or role name 5199
of the associated classes on the other ends of the associations referencing the source instance. The 5200
generic operation GetReferencingInstancesWithPath does support such filtering through its 5201
parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior of the 5202
CIM-XML operation will result in including association instances that these two parameters could 5203
filter out, a mapping layer on the CIM client side can implement the behavior defined by these two 5204
generic parameters by eliminating association instances if these filter parameters are used. 5205

Operation Output Parameters: 5206

 5207

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 135

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value objectPath []

Optional behavior: None 5208

Deviations: None 5209

C.1.11 OpenClassInstancesWithPath 5210

CIM-XML Operation Name: OpenEnumerateInstances 5211

Purpose: Open an enumeration session for retrieving the instances of a class (including instances of its 5212
subclasses), and optionally retrieve a first set of those instances. The retrieved instances include their 5213
instance paths. 5214

Operation Input Parameters: 5215

 5216

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See Error!
Reference
source not
found.2)

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5217
ClassName and the target namespace of the CIM-XML operation. 5218

2) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5219
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5220
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5221
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5222
parameter has a value of true. 5223

Operation Output Parameters: 5224

 5225

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

CIM Operations over HTTP DSP0200

136 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5226

 CIM-XML allows implementations to optimize by not including properties in the returned 5227
instances that have a value of NULL. 5228

Deviations: None 5229

C.1.12 OpenClassInstancePaths 5230

CIM-XML Operation Name: OpenEnumerateInstancePaths 5231

Purpose: Open an enumeration session for retrieving the instance paths of the instances of a class 5232
(including instances of its subclasses), and optionally retrieve a first set of those instance paths. 5233

Operation Input Parameters: 5234

 5235

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter EnumClassPath corresponds to the combination of the CIM-XML parameter 5236
ClassName and the target namespace of the CIM-XML operation. 5237

Operation Output Parameters: 5238

 5239

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5240

Deviations: None 5241

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 137

C.1.13 OpenAssociatedInstancesWithPath 5242

CIM-XML Operation Name: OpenAssociatorInstances 5243

Purpose: Open an enumeration session for retrieving the instances that are associated with a given 5244
source instance, and optionally retrieve a first set of those instances. The retrieved instances include their 5245
instance paths. 5246

Operation Input Parameters: 5247

 5248

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 2)

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5249
parameter InstanceName and the target namespace of the CIM-XML operation. 5250

2) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5251
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5252
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5253
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5254
parameter has a value of true. 5255

Operation Output Parameters: 5256

 5257

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

CIM Operations over HTTP DSP0200

138 Work in Progress — Not a DMTF Standard Version 1.4.0a

Optional behavior: 5258

 CIM-XML allows implementations to optimize by not including properties in the returned 5259
instances that have a value of NULL. 5260

Deviations: None 5261

C.1.14 OpenAssociatedInstancePaths 5262

CIM-XML Operation Name: OpenAssociatorInstancePaths 5263

Purpose: Open an enumeration session for retrieving the instance paths of instances that are associated 5264
with a given source instance, and optionally retrieve a first set of those instance paths. 5265

Operation Input Parameters: 5266

 5267

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5268
parameter InstanceName and the target namespace of the CIM-XML operation. 5269

Operation Output Parameters: 5270

 5271

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5272

Deviations: None 5273

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 139

C.1.15 OpenReferencingInstancesWithPath 5274

CIM-XML Operation Name: OpenReferenceInstances 5275

Purpose: Open an enumeration session for retrieving the association instances that reference a given 5276
source instance, and optionally retrieve a first set of those instances. The retrieved instances include their 5277
instance paths. 5278

Operation Input Parameters: 5279

 5280

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

ExcludeSubclass-
Properties

boolean N/A N/A See 3)

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5281
parameter InstanceName and the target namespace of the CIM-XML operation. 5282

2) The CIM-XML operation OpenReferenceInstances does not support a means to filter by class name 5283
or role name of the associated classes on the other ends of the associations referencing the source 5284
instance. The generic operation OpenReferencingInstancesWithPath does support such filtering 5285
through its parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior 5286
of the CIM-XML operation will result in including association instances that these two parameters 5287
could filter out, a mapping layer on the CIM client side can implement the behavior defined by these 5288
two generic parameters by eliminating association instances if these filter parameters are used. 5289

3) The optional generic parameter ExcludeSubclassProperties does not have a corresponding CIM-5290
XML parameter. Since the defined behavior of the CIM-XML operation will result in including 5291
subclass properties, a mapping layer on the CIM client side can implement the behavior defined by 5292
the generic parameter ExcludeSubclassProperties by eliminating subclass properties if that 5293
parameter has a value of true. 5294

Operation Output Parameters: 5295

 5296

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

CIM Operations over HTTP DSP0200

140 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5297

 CIM-XML allows implementations to optimize by not including properties in the returned 5298
instances that have a value of NULL. 5299

Deviations: None 5300

C.1.16 OpenReferencingInstancePaths 5301

CIM-XML Operation Name: OpenReferenceInstancePaths 5302

Purpose: Open an enumeration session for retrieving the instance paths of association instances that 5303
reference a given source instance, and optionally retrieve a first set of those instance paths. 5304

Operation Input Parameters: 5305

 5306

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

SourceInstancePath InstancePath target namespace N/A See 1)

InstanceName instanceName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

SourceRoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

FilterQueryString QueryString FilterQuery string

FilterQueryLanguage QueryLanguage FilterQueryLanguage string

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

1) The generic parameter SourceInstancePath corresponds to the combination of the CIM-XML 5307
parameter InstanceName and the target namespace of the CIM-XML operation. 5308

2) The CIM-XML operation OpenReferenceInstancePaths does not support a means to filter by class 5309
name or role name of the associated classes on the other ends of the associations referencing the 5310
source instance. The generic operation OpenReferencingInstancePaths does support such filtering 5311
through its parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior 5312
of the CIM-XML operation will result in including association instances that these two parameters 5313
could filter out, a mapping layer on the CIM client side can implement the behavior defined by these 5314
two generic parameters by eliminating association instances if these filter parameters are used. 5315

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 141

Operation Output Parameters: 5316

 5317

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5318

Deviations: None 5319

C.1.17 OpenQueryInstances 5320

CIM-XML Operation Name: OpenQueryInstances 5321

Purpose: Open an enumeration session for retrieving the instances representing a query result, and 5322
optionally retrieve a first set of those instances. The retrieved instances are not addressable and thus do 5323
not include any instance paths. 5324

Operation Input Parameters: 5325

 5326

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

QueryString QueryString FilterQuery string

QueryLanguage QueryLanguage FilterQueryLanguage string

ReturnQueryResult-
Class

boolean ReturnQueryResult-
Class

boolean

OperationTimeout uint32 OperationTimeout uint32

ContinueOnError boolean ContinueOnError boolean

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5327

 5328

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification
[]

return value instance []

QueryResultClass QueryResultClass class

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5329

CIM Operations over HTTP DSP0200

142 Work in Progress — Not a DMTF Standard Version 1.4.0a

 CIM-XML allows implementations to optimize by not including properties in the returned 5330
instances that have a value of NULL. 5331

Deviations: None 5332

C.1.18 PullInstancesWithPath 5333

CIM-XML Operation Name: PullInstancesWithPath 5334

Purpose: Retrieve the next set of instances from an open enumeration session. The retrieved instances 5335
include their instance paths. 5336

Operation Input Parameters: 5337

 5338

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5339

 5340

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value instanceWithPath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5341

 CIM-XML allows implementations to optimize by not including properties in the returned 5342
instances that have a value of NULL. 5343

Deviations: None 5344

C.1.19 PullInstancePaths 5345

CIM-XML Operation Name: PullInstancePaths 5346

Purpose: Retrieve the next set of instance paths from an open enumeration session. 5347

Operation Input Parameters: 5348

 5349

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 143

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5350

 5351

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePathList InstancePath [] return value instancePath []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: None 5352

Deviations: None 5353

C.1.20 PullInstances 5354

CIM-XML Operation Name: PullInstances 5355

Purpose: Retrieve the next set of instances from an open enumeration session. The retrieved instances 5356
do not include any instance paths. 5357

Operation Input Parameters: 5358

 5359

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

MaxObjectCount uint32 MaxObjectCount uint32

Operation Output Parameters: 5360

 5361

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification
[]

return value instance []

EnumerationContext EnumerationContext EnumerationContext enumerationContext

EndOfSequence boolean EndOfSequence boolean

Optional behavior: 5362

 CIM-XML allows implementations to optimize by not including properties in the returned 5363
instances that have a value of NULL. 5364

Deviations: None 5365

CIM Operations over HTTP DSP0200

144 Work in Progress — Not a DMTF Standard Version 1.4.0a

C.1.21 CloseEnumeration 5366

CIM-XML Operation Name: CloseEnumeration 5367

Purpose: Close an open enumeration session. 5368

Operation Input Parameters: 5369

 5370

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

Operation Output Parameters: None 5371

Optional behavior: None 5372

Deviations: None 5373

C.1.22 EnumerationCount 5374

CIM-XML Operation Name: EnumerationCount 5375

Purpose: Estimate the total number of remaining items in an open enumeration session. 5376

Operation Input Parameters: 5377

 5378

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

EnumerationContext EnumerationContext EnumerationContext enumerationContext

Operation Output Parameters: 5379

 5380

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

EnumerationCount uint64 return value uint64

Optional behavior: None 5381

Deviations: None 5382

C.1.23 InvokeMethod 5383

CIM-XML Operation Name: The generic operation InvokeMethod corresponds to CIM-XML extrinsic 5384
method invocation on an instance. CIM-XML extrinsic method invocation on a class is covered by the 5385
generic operation InvokeStaticMethod (see C.1.24). 5386

Purpose: Invoke a method on an instance. 5387

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 145

Operation Input Parameters: 5388

This document does not define an operation name or parameters for extrinsic method invocation. 5389
DSP0201 defines the input and output parameters for extrinsic method invocation by means of the 5390
attributes and child elements of the XML elements METHODCALL and METHODRESPONSE. The table 5391
below therefore uses the names of these attributes and child elements in the mapping to generic 5392
operation parameters. 5393

 5394

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstancePath InstancePath target namespace N/A See 1)

LOCALINSTANCE-
PATH child element

N/A See 1)

MethodName MethodName NAME attribute N/A

InParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

1) The CIM-XML element LOCALINSTANCEPATH includes the model path portion of the instance path 5395
of the instance. The generic parameter InstancePath corresponds to the combination of the CIM-5396
XML element LOCALINSTANCEPATH and the target namespace of the CIM-XML operation. 5397

Operation Output Parameters: 5398

 5399

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

OutParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

ReturnValue ReturnValue RETURNVALUE child
element

N/A

Optional behavior: None 5400

Deviations: None 5401

C.1.24 InvokeStaticMethod 5402

CIM-XML Operation Name: The generic operation InvokeStaticMethod corresponds to CIM-XML 5403
extrinsic method invocation on a class. CIM-XML extrinsic method invocation on an instance is covered 5404
by the generic operation InvokeMethod (see C.1.23). 5405

Purpose: Invoke a static method on a class. 5406

Operation Input Parameters: 5407

This document does not define an operation name or parameters for extrinsic method invocation. 5408
DSP0201 defines the input and output parameters for extrinsic method invocation by means of the 5409
attributes and child elements of the XML elements METHODCALL and METHODRESPONSE. The table 5410
below therefore uses the names of these attributes and child elements in the mapping to generic 5411
operation parameters. 5412

 5413

CIM Operations over HTTP DSP0200

146 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

LOCALCLASSPATH
child element

N/A See 1)

MethodName MethodName NAME attribute N/A

InParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

1) The CIM-XML element LOCALCLASSPATH includes the model path portion of the class path of the 5414
class. The generic parameter ClassPath corresponds to the combination of the CIM-XML element 5415
LOCALCLASSPATH and the target namespace of the CIM-XML operation. 5416

Operation Output Parameters: 5417

 5418

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

OutParmValues ParameterValue [] set of PARAMVALUE
child elements

N/A

ReturnValue ReturnValue RETURNVALUE child
element

N/A

Optional behavior: None 5419

Deviations: None 5420

C.1.25 GetClass 5421

CIM-XML Operation Name: GetClass 5422

Purpose: Retrieve a class given its class path. 5423

Operation Input Parameters: 5424

 5425

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

N/A N/A LocalOnly boolean See 2)

1) The CIM-XML parameter ClassName specifies the class name. The generic parameter ClassPath 5426
corresponds to the combination of the CIM-XML parameter ClassName and the target namespace of 5427
the CIM-XML operation. 5428

2) The defined behavior of generic operation GetClass conforms to the behavior of CIM-XML operation 5429
GetClass with LocalOnly=false. 5430

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 147

Operation Output Parameters: 5431

 5432

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

Class ClassSpecification-
WithPath

return value class See 1)

1) The CIM-XML return value includes the class declaration, without any class path information. The 5433
generic parameter Class needs to contain the class path in addition to the class declaration. A CIM 5434
client side mapping layer can remember the class path provided in the generic input parameter 5435
ClassPath, and add that to the generic output parameter Class. 5436

Optional behavior: None 5437

Deviations: None 5438

C.1.26 DeleteClass 5439

CIM-XML Operation Name: DeleteClass 5440

Purpose: Delete a class given its class path. 5441

Operation Input Parameters: 5442

 5443

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ClassName className See 1)

DeleteDependents boolean N/A N/A See 2)

1) The CIM-XML parameter ClassName specifies the class name. The generic parameter ClassPath 5444
corresponds to the combination of the CIM-XML parameter ClassName and the target namespace of 5445
the CIM-XML operation. 5446

2) EXPERIMENTAL: The experimental generic parameter DeleteDependents indicates whether 5447
dependent classes and instances are to be deleted as well. DSP0223 defines the generic parameter 5448
DeleteDependents as optional. CIM-XML does not support deleting dependent classes and 5449
instances. 5450

Operation Output Parameters: None 5451

Deviations: None 5452

C.1.27 ModifyClass 5453

CIM-XML Operation Name: ModifyClass 5454

Purpose: Modify a class given its class path. 5455

Operation Input Parameters: 5456

 5457

CIM Operations over HTTP DSP0200

148 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ModifiedClass class See 1)

ModifiedClass ClassSpecification ModifiedClass class

1) The CIM-XML parameter ModifiedClass includes the name of the class that is being modified, and 5458
the modified class declaration. The combination of the class name portion of the CIM-XML 5459
parameter ModifiedClass and the target namespace of the CIM-XML operation corresponds to the 5460
generic parameter ClassPath. 5461

Operation Output Parameters: None 5462

Optional behavior: None 5463

Deviations: None 5464

C.1.28 CreateClass 5465

CIM-XML Operation Name: CreateClass 5466

Purpose: Create a class. 5467

Operation Input Parameters: 5468

 5469

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

NewClass ClassSpecification NewClass class

Operation Output Parameters: None 5470

Optional behavior: None 5471

Deviations: None 5472

C.1.29 GetTopClassesWithPath 5473

CIM-XML Operation Name: EnumerateClasses with ClassName being NULL 5474

Purpose: Retrieve the top classes (i.e., classes that have no superclasses) of a given namespace. The 5475
retrieved classes include their class paths. 5476

Operation Input Parameters: 5477

 5478

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

IncludeSubclasses boolean DeepInheritance boolean

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 149

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

N/A N/A ClassName className See 1)

N/A N/A LocalOnly boolean See 2)

1) The defined behavior of generic operation GetTopClassesWithPath conforms to the behavior of CIM-5479
XML operation EnumerateClasses with ClassName=NULL. 5480

2) The defined behavior of generic operation GetTopClassesWithPath conforms to the behavior of CIM-5481
XML operation EnumerateClasses with LocalOnly=false. 5482

Operation Output Parameters: 5483

 5484

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassList ClassSpecification-
WithPath []

return value class [] See 1)

1) The CIM-XML return value includes the set of class declarations including class names, but without a 5485
class path. The generic parameter ClassList needs to contain the class path in addition to the class 5486
declaration. A CIM client side mapping layer can construct the class paths from the class names and 5487
the CIM-XML target namespace. 5488

Optional behavior: None 5489

Deviations: None 5490

C.1.30 GetTopClassPaths 5491

CIM-XML Operation Name: EnumerateClassNames with ClassName being NULL 5492

Purpose: Retrieve the class paths of the top classes (i.e., classes that have no superclasses) of a given 5493
namespace. 5494

Operation Input Parameters: 5495

 5496

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

IncludeSubclasses boolean DeepInheritance boolean

N/A N/A ClassName className See 1)

1) The defined behavior of generic operation GetTopClassPaths conforms to the behavior of CIM-XML 5497
operation EnumerateClassNames with ClassName=NULL. 5498

Operation Output Parameters: 5499

 5500

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

CIM Operations over HTTP DSP0200

150 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value className [] See 1)

1) The CIM-XML return value includes the set of class names, but without a class path. The generic 5501
parameter ClassPathList needs to contain the class paths. A CIM client side mapping layer can 5502
construct the class paths from the class names and the CIM-XML target namespace. 5503

Optional behavior: None 5504

Deviations: None 5505

C.1.31 GetSubClassesWithPath 5506

CIM-XML Operation Name: EnumerateClasses with ClassName being non-NULL 5507

Purpose: Retrieve the subclasses of a given class. The retrieved classes include their class paths. 5508

Operation Input Parameters: 5509

 5510

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ClassName className See 1), 2)

IncludeSubclasses boolean DeepInheritance boolean

IncludeInherited-
Elements

boolean LocalOnly boolean See 3)

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

1) The CIM-XML parameter ClassName specifies the class name. The generic parameter ClassPath 5511
corresponds to the combination of the CIM-XML parameter ClassName and the target namespace of 5512
the CIM-XML operation. 5513

2) The defined behavior of generic operation GetSubClassesWithPath conforms to the behavior of CIM-5514
XML operation EnumerateClasses with ClassName being non-NULL. 5515

3) The generic parameter IncludeInheritedElements corresponds to the negated CIM-XML parameter 5516
LocalOnly. 5517

Operation Output Parameters: 5518

 5519

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassList ClassSpecification-
WithPath []

return value class [] See 1)

1) The CIM-XML return value includes the set of class declarations including class names, but without a 5520
class path. The generic parameter ClassList needs to contain the class path in addition to the class 5521
declaration. A CIM client side mapping layer can construct the class paths from the class names and 5522
the CIM-XML target namespace. 5523

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 151

Optional behavior: None 5524

Deviations: None 5525

C.1.32 GetSubClassPaths 5526

CIM-XML Operation Name: EnumerateClassNames with ClassName being non-NULL 5527

Purpose: Retrieve the class paths of the subclasses of a given class. 5528

Operation Input Parameters: 5529

 5530

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ClassName className See 1), 2)

IncludeSubclasses boolean DeepInheritance boolean

1) The CIM-XML parameter ClassName specifies the class name. The generic parameter ClassPath 5531
corresponds to the combination of the CIM-XML parameter ClassName and the target namespace of 5532
the CIM-XML operation. 5533

2) The defined behavior of generic operation GetSubClassPaths conforms to the behavior of CIM-XML 5534
operation EnumerateClassNames with ClassName being non-NULL. 5535

Operation Output Parameters: 5536

 5537

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value className [] See 1)

1) The CIM-XML return value includes the set of class names, but without a class path. The generic 5538
parameter ClassPathList needs to contain the class paths. A CIM client side mapping layer can 5539
construct the class paths from the class names and the CIM-XML target namespace. 5540

Optional behavior: None 5541

Deviations: None 5542

C.1.33 GetAssociatedClassesWithPath 5543

CIM-XML Operation Name: Associators with ObjectName being a class path 5544

Purpose: Retrieve the classes that are associated with a given source class. The retrieved classes 5545
include their class paths. 5546

Operation Input Parameters: 5547

 5548

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

CIM Operations over HTTP DSP0200

152 Work in Progress — Not a DMTF Standard Version 1.4.0a

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

RoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5549
ObjectName and the target namespace of the CIM-XML operation. 5550

The generic operation GetAssociatedClassesWithPath corresponds to the CIM-XML operation 5551
Associators when a class path is passed in for its ObjectName parameter. Using the CIM-XML 5552
operation Associators with an instance path for its ObjectName parameter is covered by the generic 5553
operation GetAssociatedInstancesWithPath (see C.1.7). 5554

Operation Output Parameters: 5555

 5556

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassList ClassSpecification-
WithPath []

return value objectWithPath []

Optional behavior: None 5557

Deviations: None 5558

C.1.34 GetAssociatedClassPaths 5559

CIM-XML Operation Name: AssociatorNames with ObjectName being a class path 5560

Purpose: Retrieve the class paths of the classes that are associated with a given source class. 5561

Operation Input Parameters: 5562

 5563

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName AssocClass className

AssociatedClassName ClassName ResultClass className

RoleName PropertyName Role string

AssociatedRoleName PropertyName ResultRole string

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 153

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5564
ObjectName and the target namespace of the CIM-XML operation. 5565

The generic operation GetAssociatedClassPaths corresponds to the CIM-XML operation 5566
AssociatorNames when a class path is passed in for its ObjectName parameter. Using the CIM-XML 5567
operation AssociatorNames with an instance path for its ObjectName parameter is covered by the 5568
generic operation GetAssociatedInstancePaths (see C.1.8). 5569

Operation Output Parameters: 5570

 5571

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value objectPath []

Optional behavior: None 5572

Deviations: None 5573

C.1.35 GetReferencingClassesWithPath 5574

CIM-XML Operation Name: References with ObjectName being a class path 5575

Purpose: Retrieve the association classes that reference a given source class. The retrieved classes 5576
include their class paths. 5577

Operation Input Parameters: 5578

 5579

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

RoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

IncludeQualifiers boolean IncludeQualifiers boolean

IncludeClassOrigin boolean IncludeClassOrigin boolean

IncludedProperties PropertyName [] PropertyList string []

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5580
ObjectName and the target namespace of the CIM-XML operation. 5581

The generic operation GetReferencingClassesWithPath corresponds to the CIM-XML operation 5582
References when a class path is passed in for its ObjectName parameter. Using the CIM-XML 5583
operation References with an instance path for its ObjectName parameter is covered by the generic 5584
operation GetReferencingInstancesWithPath (see C.1.9). 5585

2) The CIM-XML operation References does not support a means to filter by class name or role name 5586
of the associated classes on the other ends of the associations referencing the source class. The 5587
generic operation GetReferencingClassesWithPath does support such filtering through its 5588

CIM Operations over HTTP DSP0200

154 Work in Progress — Not a DMTF Standard Version 1.4.0a

parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior of the 5589
CIM-XML operation will result in including association classes that these two parameters could filter 5590
out, a mapping layer on the CIM client side can implement the behavior defined by these two generic 5591
parameters by eliminating association classes if these filter parameters are used. 5592

Operation Output Parameters: 5593

 5594

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

InstanceList InstanceSpecification-
WithPath []

return value objectWithPath []

Optional behavior: None 5595

Deviations: None 5596

C.1.36 GetReferencingClassPaths 5597

CIM-XML Operation Name: ReferenceNames with ObjectName being a class path 5598

Purpose: Retrieve the class paths of the association classes that reference a given class. 5599

Operation Input Parameters: 5600

 5601

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPath ClassPath target namespace N/A See 1)

ObjectName objectName See 1)

AssociationClassName ClassName ResultClass className

AssociatedClassName ClassName N/A N/A See 2)

RoleName PropertyName Role string

AssociatedRoleName PropertyName N/A N/A See 2)

1) The generic parameter ClassPath corresponds to the combination of the CIM-XML parameter 5602
ObjectName and the target namespace of the CIM-XML operation. 5603

The generic operation GetReferencingClassPaths corresponds to the CIM-XML operation 5604
ReferenceNames when a class path is passed in for its ObjectName parameter. Using the CIM-XML 5605
operation ReferenceNames with an instance path for its ObjectName parameter is covered by the 5606
generic operation GetReferencingInstancePaths (see C.1.10). 5607

2) The CIM-XML operation References does not support a means to filter by class name or role name 5608
of the associated classes on the other ends of the associations referencing the source class. The 5609
generic operation GetReferencingClassesWithPath does support such filtering through its 5610
parameters AssociatedClassName and AssociatedRoleName. Since the defined behavior of the 5611
CIM-XML operation will result in including association classes that these two parameters could filter 5612
out, a mapping layer on the CIM client side can implement the behavior defined by these two generic 5613
parameters by eliminating association classes if these filter parameters are used. 5614

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 155

Operation Output Parameters: 5615

 5616

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

ClassPathList ClassPath [] return value objectPath []

Optional behavior: None 5617

Deviations: None 5618

C.1.37 GetQualifierType 5619

CIM-XML Operation Name: GetQualifier 5620

Purpose: Retrieve a qualifier type given its qualifier type path. 5621

Operation Input Parameters: 5622

 5623

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath target namespace N/A See 1), 1)

QualifierName string See 1), 1)

1) The CIM-XML parameter QualifierName specifies the name of the qualifier type. The generic 5624
parameter QualifierTypePath corresponds to the combination of the CIM-XML parameter 5625
QualifierName and the target namespace of the CIM-XML operation. 5626

Operation Output Parameters: 5627

 5628

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierType QualifierType return value qualifierDecl See 1)

1) The CIM-XML return value includes the qualifier type declaration including the qualifier type name, 5629
but without the namespace path portion of the full qualifier type path. The generic parameter 5630
QualifierType needs to contain the full qualifier type path in addition to the qualifier type declaration. 5631
A CIM client side mapping layer can remember the qualifier type path provided in the generic input 5632
parameter QualifierTypePath, and add that to the generic output parameter QualifierType. 5633

Optional behavior: None 5634

Deviations: None 5635

C.1.38 DeleteQualifierType 5636

CIM-XML Operation Name: DeleteQualifier 5637

Purpose: Delete a qualifier type given its qualifier type path. 5638

CIM Operations over HTTP DSP0200

156 Work in Progress — Not a DMTF Standard Version 1.4.0a

Operation Input Parameters: 5639

 5640

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath target namespace N/A See 1)

QualifierName string See 1)

1) The CIM-XML parameter QualifierName specifies the name of the qualifier type, i.e. the model path 5641
portion of its qualifier type path. The generic parameter QualifierTypePath corresponds to the 5642
combination of the CIM-XML parameter QualifierName and the target namespace of the CIM-XML 5643
operation. 5644

Operation Output Parameters: None 5645

Deviations: None 5646

C.1.39 ModifyQualifierType 5647

CIM-XML Operation Name: SetQualifier 5648

Purpose: Modify a qualifier type given its qualifier type path. 5649

Operation Input Parameters: 5650

 5651

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath target namespace N/A See 1)

QualifierDeclaration qualifierDecl See 1)

ModifiedQualifierType QualifierType QualifierDeclaration qualifierDecl

1) The CIM-XML parameter QualifierDeclaration includes the name of the qualifier type that is modified, 5652
i.e. the model path portion of its qualifier type, and the modified qualifier type declaration. The 5653
combination of the name of the qualifier type within the CIM-XML parameter QualifierDeclaration and 5654
the target namespace of the CIM-XML operation corresponds to the generic parameter 5655
QualifierTypePath. 5656

Operation Output Parameters: None 5657

Optional behavior: None 5658

Deviations: 5659

 The generic operation ModifyQualifierType is required to fail if invoked on a non-existing 5660
qualifier type. The CIM-XML operation SetQualifier creates the qualifier type in this case. This 5661
deviation covers only an error case. A CIM client side mapping layer can expose the generic 5662
operation behavior by first testing for the existence of the qualifier type using the CIM-XML 5663
operation GetQualifier, before modifying it. 5664

C.1.40 CreateQualifierType 5665

CIM-XML Operation Name: SetQualifier 5666

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 157

Purpose: Create a CIM qualifier type. 5667

Operation Input Parameters: 5668

 5669

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A See 1)

QualifierDeclaration qualifierDecl See 1)

NewQualifierType QualifierType QualifierDeclaration qualifierDecl

1) The generic parameter NamespacePath corresponds to the combination of the qualifier type name 5670
specified in the CIM-XML parameter NewQualifierType and the target namespace of the CIM-XML 5671
operation. 5672

Operation Output Parameters: 5673

 5674

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypePath QualifierTypePath return value instanceName

Optional behavior: None 5675

Deviations: 5676

 The generic operation CreateQualifierType is required to fail if invoked on an existing qualifier 5677
type. The CIM-XML operation SetQualifier modifies the qualifier type in this case. This deviation 5678
covers only an error case. A CIM client side mapping layer can expose the generic operation 5679
behavior by first testing for the existence of the qualifier type using the CIM-XML operation 5680
GetQualifier, before creating it. 5681

C.1.41 EnumerateQualifierTypesWithPath 5682

CIM-XML Operation Name: EnumerateQualifiers 5683

Purpose: Retrieve the qualifier types of a given namespace. The retrieved qualifier types include their 5684
qualifier type paths. 5685

Operation Input Parameters: 5686

 5687

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

NamespacePath NamespacePath target namespace N/A

Operation Output Parameters: 5688

 5689

Generic Name Generic Type CIM-XML Name CIM-XML Type Description

QualifierTypeList QualifierTypeWithPath
[]

return value qualifierDecl [] See 1)

CIM Operations over HTTP DSP0200

158 Work in Progress — Not a DMTF Standard Version 1.4.0a

1) The CIM-XML return value includes the set of qualifier type declarations including their names, but 5690
without namespace paths. The generic parameter QualifierTypeList needs to contain the qualifier 5691
type paths in addition to the set of qualifier type declarations. A CIM client side mapping layer can 5692
construct the qualifier type paths from the qualifier names and the CIM-XML target namespace. 5693

Optional behavior: None 5694

Deviations: None 5695

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 159

ANNEX D 5696

(informative) 5697

 5698

 5699

Change Log 5700

Version Date Description

1.0 1999-06-02 DMTF Final Standard

1.1 2003-01-06 DMTF Final Standard

1.2 2007-01-09 DMTF Final Standard

1.3.0 2008-10-15 DMTF Final Standard

1.3.1 2009-07-29 DMTF Standard Release

CIM Operations over HTTP DSP0200

160 Work in Progress — Not a DMTF Standard Version 1.4.0a

Version Date Description

1.4.0a 2013-05-07 Work in Progress, with the following changes:

Changes:

 Changed representation of enumeration context value from an
ENUMERATIONCONTEXT element to a string using the VALUE element (see
5.4.2.24.2)
(CRCIMXML00022.001)

 Added requirement to support DMTF Filter Query Language (FQL) in pulled
enumeration operations (see 5.4.2.24.2)
(CRCIMXML00033.001)

 Updated several normative references (see clause 2)
(multiple CRs)

 Lifted requirements in CreateInstance to initialize only with client-provided
values, and in ModifyInstance to update only with client-provided values, to leave
room for model-defined deviations (see 5.4.2.6 and 5.4.2.8).
(CRCIMXML00036.000)

Deprecations::

 Deprecated use of CIM_ERR_INVALID_CLASS on ExportIndication operation
(see 5.5.2.1)
(CRCIMXML00021.000)

 Deprecated the GetProperty and SetProperty operations (see 5.4.2.18 and
5.4.2.19)
(CRCIMXML00027.000)

 Deprecated the EnumerateInstances, EnumerateInstanceNames, ExecQuery,
and the instance-level Associators, AssociatorNames, References and
ReferenceNames operations
(CRCIMXML00030.002)

Additional Functions and Requirements:

 Added support for operation correlators (see 5.3)
(CRCIMXML00014.002)

Clarifications:

 Clarified HTTPS support (see 7.1)
(CRCIMXML00010.004)

 Clarified filter query in pulled enumerations (5.4.2.24.2)
(CRCIMXML00019.001)

 Added mapping to generic operations (see ANNEX C)
(CRCIMXML00034.000)

Editorial Changes:

 Terminology cleanup
(CRCIMXML00026.002)

 5701

DSP0200 CIM Operations over HTTP

Version 1.4.0a Work in Progress — Not a DMTF Standard 161

Bibliography 5702

DMTF DSP0203, DTD for Representation of CIM in XML 2.4, 5703
http://www.dmtf.org/standards/published_documents/DSP0203_2.4.dtd 5704

DMTF DSP8044, XSD for Representation of CIM in XML 2.4, 5705
http://schemas.dmtf.org/wbem/wbem/cim-xml/2/dsp8044_2.4.xsd 5706

IETF RFC2068 (obsoleted by RFC2616), Hypertext Transfer Protocol – HTTP/1.1, January 1997, 5707
http://www.ietf.org/rfc/rfc2068.txt 5708

IETF RFC2069 (obsoleted by RFC2617), An Extension to HTTP: Digest Access Authentication, January 5709
1997, 5710
http://www.ietf.org/rfc/rfc2069.txt 5711

ITU-T X.509: Information technology - Open Systems Interconnection - The Directory: Public-key and 5712
attribute certificate frameworks, 5713
http://www.itu.int/rec/T-REC-X.509/en 5714

SSL 2.0, Hickman: The SSL Protocol, Draft 02, Netscape Communications Corp., February 1995, 5715
http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html 5716

SSL 3.0, Freier, Karlton, and Kocher: The SSL Protocol, Version 3.0, Final Draft, Netscape 5717
Communications Corp., November 1996, 5718
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt 5719

http://www.dmtf.org/standards/published_documents/DSP0203_2.4.dtd
http://schemas.dmtf.org/wbem/wbem/cim-xml/2/dsp8044_2.4.xsd
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2069.txt
http://www.itu.int/rec/T-REC-X.509/en
http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html
http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt

	Requirements
	1 Scope
	2 Normative References
	3 Terms and Definitions
	4 Abbreviated Terms and Document Conventions
	4.1 Abbreviated Terms
	4.2 Document Conventions

	5 CIM-XML Message Syntax and Semantics
	5.1 Well-Formed, Valid, and Loosely Valid Documents
	5.2 Operational Semantics
	5.3 Operation Correlators
	5.3.1 Overview
	5.3.2 Representation
	5.3.3 Implementation Requirements and Compatibility for Operation Messages
	5.3.4 Implementation Requirements and Compatibility for Export Messages

	5.4 CIM Operation Syntax and Semantics
	5.4.1 Method Invocations
	5.4.1.1 Simple Operations
	5.4.1.2 Multiple Operations
	5.4.1.3 Status Codes

	5.4.2 Intrinsic Methods
	5.4.2.1 GetClass
	5.4.2.2 GetInstance
	5.4.2.3 DeleteClass
	5.4.2.4 DeleteInstance
	5.4.2.5 CreateClass
	5.4.2.6 CreateInstance
	5.4.2.7 ModifyClass
	5.4.2.8 ModifyInstance
	5.4.2.9 EnumerateClasses
	5.4.2.10 EnumerateClassNames
	5.4.2.11 EnumerateInstances (DEPRECATED)
	5.4.2.12 EnumerateInstanceNames (DEPRECATED)
	5.4.2.13 ExecQuery (DEPRECATED)
	5.4.2.14 Associators (PARTLY DEPRECATED)
	5.4.2.15 AssociatorNames (PARTLY DEPRECATED)
	5.4.2.16 References (PARTLY DEPRECATED)
	5.4.2.17 ReferenceNames (PARTLY DEPRECATED)
	5.4.2.18 GetProperty (DEPRECATED)
	5.4.2.19 SetProperty (DEPRECATED)
	5.4.2.20 GetQualifier
	5.4.2.21 SetQualifier
	5.4.2.22 DeleteQualifier
	5.4.2.23 EnumerateQualifiers
	5.4.2.24 Pulled Enumeration Operations
	5.4.2.24.1 Behavioral Rules for Pulled Enumeration Operations
	5.4.2.24.2 Common Parameters for the Open Operations
	5.4.2.24.3 OpenEnumerateInstances
	5.4.2.24.4 OpenEnumerateInstancePaths
	5.4.2.24.5 OpenReferenceInstances
	5.4.2.24.6 OpenReferenceInstancePaths
	5.4.2.24.7 OpenAssociatorInstances
	5.4.2.24.8 OpenAssociatorInstancePaths
	5.4.2.24.9 Common Parameters for the Pull Operations
	5.4.2.24.10 PullInstancesWithPath
	5.4.2.24.11 PullInstancePaths
	5.4.2.24.12 CloseEnumeration
	5.4.2.24.13 EnumerationCount
	5.4.2.24.14 OpenQueryInstances
	5.4.2.24.15 PullInstances

	5.4.3 Namespace Manipulation Using the CIM_Namespace Class
	5.4.3.1 Namespace Creation
	5.4.3.2 Namespace Deletion
	5.4.3.3 Manipulation and Query of Namespace Information
	5.4.3.4 Use of the __Namespace Pseudo Class (DEPRECATED)

	5.4.4 Functional Profiles
	5.4.5 Extrinsic Method Invocation

	5.5 CIM Export Syntax and Semantics
	5.5.1 Export Method Invocations
	5.5.1.1 Simple Export
	5.5.1.2 Multiple Export
	5.5.1.3 Status Codes

	5.5.2 Export Methods
	5.5.2.1 ExportIndication

	5.5.3 Functional Profiles

	6 Encapsulation of CIM-XML Messages
	6.1 WBEM clients, WBEM servers, and WBEM listeners
	6.2 Use of M-POST
	6.2.1 Use of the Ext Header
	6.2.2 Naming of Extension Headers

	6.3 Extension Headers Defined for CIM-XML Message Requests and Responses
	6.3.1 Encoding of CIM Element Names within HTTP Headers and Trailers
	6.3.2 Encoding of CIM Object Paths within HTTP Headers and Trailers
	6.3.3 CIMOperation
	6.3.4 CIMExport
	6.3.5 CIMProtocolVersion
	6.3.6 CIMMethod
	6.3.7 CIMObject
	6.3.8 CIMExportMethod
	6.3.9 CIMBatch
	6.3.10 CIMExportBatch
	6.3.11 CIMError
	6.3.12 CIMRoleAuthenticate
	6.3.13 CIMRoleAuthorization
	6.3.14 CIMStatusCodeDescription
	6.3.15 WBEMServerResponseTime

	7 HTTP Requirements and Usage
	7.1 HTTP and HTTPS Support
	7.2 Use of Standard HTTP Headers
	7.2.1 Accept
	7.2.2 Accept-Charset
	7.2.3 Accept-Encoding
	7.2.4 Accept-Language
	7.2.5 Accept-Ranges
	7.2.6 Allow
	7.2.7 Authorization
	7.2.8 Cache-Control
	7.2.9 Connection
	7.2.10 Content-Encoding
	7.2.11 Content-Language
	7.2.12 Content-Range
	7.2.13 Content-Type
	7.2.14 Expires
	7.2.15 If-Range
	7.2.16 Proxy-Authenticate
	7.2.17 Range
	7.2.18 WWW-Authenticate

	7.3 Errors and Status Codes
	7.4 Security Considerations
	7.4.1 Authentication
	7.4.2 Message Encryption

	7.5 Determining WBEM server Capabilities
	7.5.1 Determining WBEM server Capabilities through CIM Classes
	7.5.2 Determining WBEM server Capabilities through the HTTP Options
	7.5.2.1 CIMSupportedFunctionalGroups
	7.5.2.2 CIMSupportsMultipleOperations
	7.5.2.3 CIMSupportedQueryLanguages (DEPRECATED)
	7.5.2.4 CIMValidation

	7.6 Other HTTP Methods
	7.7 Discovery and Addressing
	7.8 Internationalization Considerations
	ANNEX A (Informative) Examples of Message Exchanges
	A.1 Retrieval of a Single Class Definition
	A.2 Retrieval of a Single Instance Definition
	A.3 Deletion of a Single Class Definition
	A.4 Deletion of a Single Instance Definition
	A.5 Creation of a Single Class Definition
	A.6 Creation of a Single Instance Definition
	A.7 Enumeration of Class Names
	A.8 Enumeration of Instances
	A.9 Retrieval of a Single Property
	A.10 Execution of an Extrinsic Method
	A.11 Indication Delivery Example
	A.12 Subscription Example
	A.13 Multiple Operations Example

	ANNEX B (informative) LocalOnly Parameter Discussion
	B.1 Explanation of the Deprecated 1.1 Interpretation
	B.2 Risks of Using the 1.1 Interpretation
	B.3 Techniques for Differentiating between the 1.0 Interpretation and 1.1 Interpretation

	ANNEX C (normative) Generic Operations Mapping
	C.1 Operations
	C.1.1 GetInstance

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.2 DeleteInstance

	Operation Input Parameters:
	Operation Output Parameters: None
	Deviations: None
	C.1.3 ModifyInstance

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior:
	Deviations: None
	C.1.4 CreateInstance

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.5 GetClassInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.6 GetClassInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.7 GetAssociatedInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.8 GetAssociatedInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.9 GetReferencingInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.10 GetReferencingInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.11 OpenClassInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.12 OpenClassInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.13 OpenAssociatedInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.14 OpenAssociatedInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.15 OpenReferencingInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.16 OpenReferencingInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.17 OpenQueryInstances

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.18 PullInstancesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.19 PullInstancePaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.20 PullInstances

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior:
	Deviations: None
	C.1.21 CloseEnumeration

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations: None
	C.1.22 EnumerationCount

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.23 InvokeMethod

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.24 InvokeStaticMethod

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.25 GetClass

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.26 DeleteClass

	Operation Input Parameters:
	Operation Output Parameters: None
	Deviations: None
	C.1.27 ModifyClass

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations: None
	C.1.28 CreateClass

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations: None
	C.1.29 GetTopClassesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.30 GetTopClassPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.31 GetSubClassesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.32 GetSubClassPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.33 GetAssociatedClassesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.34 GetAssociatedClassPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.35 GetReferencingClassesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.36 GetReferencingClassPaths

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.37 GetQualifierType

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	C.1.38 DeleteQualifierType

	Operation Input Parameters:
	Operation Output Parameters: None
	Deviations: None
	C.1.39 ModifyQualifierType

	Operation Input Parameters:
	Operation Output Parameters: None
	Optional behavior: None
	Deviations:
	C.1.40 CreateQualifierType

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations:
	C.1.41 EnumerateQualifierTypesWithPath

	Operation Input Parameters:
	Operation Output Parameters:
	Optional behavior: None
	Deviations: None
	ANNEX D (informative) Change Log

