2 Document Identifier: DSP0004
3 Date: 2014-08-03
4 Version: 2.8.0

s Common Information Model (CIM) Infrastructure

6 Document Type: Specification
7 Document Status: DMTF Standard

8 Document Language: en-US

10

11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33

Common Information Model (CIM) Infrastructure DSP0004

Copyright Notice
Copyright © 1997-2014 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize,
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third-parties which have notified the DMTF that, in their opinion,
such patent may relate to or impact implementations of DMTF standards, visit
http://www.dmtf.org/about/policies/disclosures.php.

Trademarks
¢ Microsoft Windows is a registered trademark of Microsoft Corporation.

e UNIX is registered trademark of The Open Group.

2 DMTF Standard Version 2.8.0

http://www.dmtf.org/about/policies/disclosures.php

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85

DSP0004 Common Information Model (CIM) Infrastructure

CONTENTS

Lo T (=1TY (0] (o O PPPPPPPPRPPPRY 7
o 0111 T=T Fo [1= SO PPEPRR 7

[T £ [¥Tex 1 o] o R UROPRRRPRRN 8
DOCUMENE CONVENLIONSceiiieieieeeeeeeeeeeeeeeee ettt 8
TypographiCal CONVENLIONScioiuiiiiiieee e et e e e e s e e e e s e s e e e e e e e s s snraaaeeraeeesasnnrennreeaes 8

ABNF USAQgE CONVENLIONSuuiiiiieeiiiiiiiiiiie e e e e s e stitee et e e et s st e e e e e e s s s nanteaaeaeeeessansstaneeaaeeesannnnranns 8
(DT o C=Tor= Y (=T Y= U (=T = USSP 8
EXPerimental MAtEIIAlcooiiiiiiieiie e e e e e e e s e e e e e e e st e e e e e e e s snnnnnnaeeeeeeeesanns 9

CIM ManagemeENnt SCREIMALcocuiiiii et e et e e et e e e e b b e e e abbeeaeaa 9
(000 (1Y [0 =1 HR P PPOPRR 9
(000]04] 40 ToT 0 I \Y/ (0o L= P PPORRR 9

[=T ES (o] TS Ted ¢ 1= 1 = U PO 10

L6111V T4 aT o] (=T o g =101 F= L1 (o] £ 1S TP PP PPPPP PP 10

CIM Implementation CONFOIMMANCEccoiiiiiiiiiiiiie ettt e e e e s snnneeas 11
1o 0] o= P 13
2 NOIMALIVE REFEIEINCESot e e e et e e e e e e e e e et s e e eeeeeastaaeeeeeeeesennanns 13
3 Terms and DEfiNITIONScooouiiiiii et e e e et e s e e e e e e e e bt e e e e e e e e et e e e e eerraraan 15
4 Symbols and ADDreviated TeIMMScc.ueiiiiiee e e e e e e e e s e st r e e e e e s s tnreeeeeeeeeannns 27
I YL (=] 7= TS od U= 1 = NPT 28
5.1 Definition of the Meta SChEMA......cocoii i e e e 28
5.1.1 Formal Syntax used in DeSCHPLONScoiiiiiiieiiiiie e 31

5.1.2 CIM MEta-EIEMENLS ...cvvtiiiie e e e e e e et e e e e e e e e e st e e e eeeeesenaanns 32

LT B T = B Y 1= SO SUPPPTPPPR 48
5.2.1 UCS ANd UNICOUEooviiiiie ettt e s e e e ettt e e e e e e e ees b e e e e e eeesenaanns 48

B.2.2 SN T P i 49

B5.2.3 Charll TYPe e 50

B5.2.4 Datetime TYPe. oo i 50

5.2.5 Indicating Additional Type Semantics with Qualifiers...........ccccccoviiiiiini, 56

5.2.6 CompariSON Of VAIUESccoiiiiiiiiiiiii ettt 56

5.3 Backwards CompatiDility...........cueeiiiiiiiiiiii e 57

5.4 Supported Schema MOdIfICAIONScooiuiiiiiiiii e 57

L B T ot 1= 4 = R VAT €53 (o 1 64

LT T O F= 113 N P10 [66

LT T O T T 1 1= £ 66
5.6.1 Qualifier CONCEPLcceeieieeeeeeeeee 67

5.6.2 Meta QUAlIfIerS.......cooiiiiiie e 70

5.6.3 Standard QUAlIfIersocovviiiiiii 70

5.6.4 Optional QUAlIfIErSccooveiieie 92

5.6.5 User-defined Qualifiers ... 95

5.6.6 Mapping Entities of Other Information Models t0 CIM.........ccccceiviviiiiiiiie e, 96

6 Managed ObJECE FOIMMAL.........ccooii i 99
6.1 IMIOF USBQE.....eeeeeuieeieteietieeteteteeeteeeeete e te e te e te st e s st e e et s st s s st s kst s st 5ttt 5 s s k5t s ekt e et n e nbnbnbnnee 100

(ST O 1= 11 B LT od F= 1= 1 0] 100

(ST I 1 1S3 =Y (o1l B = Tor F= 1= 1 o 1 100

T MOF COMPONENES ... e aeaaaaans 101
7.1 LexiCal Case Of TOKENS.......coociiiiiei ettt e e e e e et e e e e e e e e e et e e e e e eeasraanns 101

% O o 11 012 01] £ 101

AT F- 1110 F= Y10] T 0] £ S 101

7.4 Naming of SChema EIEMENEScooiiiiiii e 101

S T = (TS T T A VZ=T0 VAV A T o L 102

A T O F= T3 B LT o] P 1= 1 0] 0 102

Version 2.8.0 DMTF Standard 3

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140

Common Information Model (CIM) Infrastructure DSP0004

AL A B =T = T o = N1 =TS 102

T.8.2 SUDCIASSES. .. eeeiiiiiiiii ettt ettt e e enree e e e e 103

7.6.3 Default Property VAIUEScccooiiiiiiieiiec et e e et e e e e s s snaraneeeee s 103

T.6.4 KEY PrOPEITIES .ottt ettt et e s e e e nbn e e e 104

7.6.5 Static PropertieS (DEPRECATED)cocuuiiiiiiiiiciiiee et 105

7.7 ASSOCIAtioN DECIArAtIONSeveiiiiiiiiiiiieie e e e e e st e e e e e e s sbb b e eeaaeeeean 105
7.7.1 Declaring an ASSOCIALIONeiiiiuiiiieiiiiie ettt e e 105

T.7.2 SUDBSSOCIALIONS ...ceiiiiiiiiiitiiii ettt e e e e e sttt e e e e e e e s st b b e e e e e e e s e s annbreneeaeens 106

7.7.3 Key References and Properties in ASSOCIAIONS..........cccuvveiriiiieiiiiiie e 106

7.7.4 Weak Associations and Propagated KeYS........ccccceeeeiiiiiiiiiiie e 106

7.7.5 ODbJECt REFEIENCES ...t e e e s e e e e e e s e e nntraneeeee s 109

A T @ LU T 1 =1 £ PPPRPPPRPPPPIN 110
A S A O T - 11 1= G 1Y/ o1 TR 110

7.8.2 QUANIfIEr ValUEcoooiiiieieieeee 111

7.9 INSLANCE DECIATALIONSciuiiiiieiiiiii ettt e e e sttt e e st e e s s nb e e e e nnbae e e e nnees 113
7.9.1 INSEANCE ANBSING .. .eeiieiiiiiie ittt ettt e et e e e b e e 115

T.9.2 AITAY S ettt e e e e e e a et e e e n e e e e s 116

4% (O I V1= 1 g To o I L= = = L o] o SRR PPRPRR 118
4% O A = T /1Y 1 T To £ SRS 119

7. 11 COMPIIET DIFECHIVESeeiieiiieee ettt ettt e e s e e e e et e e e bt e e e e e nbneeeeaneee 119
712 ValUB CONSIANTS. .. .eitiiiiiiee ettt et e e e e s et e e e e e e s e st et eeeeaeeesaantebaeeeaaeeesannsnteeeeaaeesaanns 120
7.12.1 StriNG CONSLANTS ...ccoiiiiiiiieccce e 120
7.12.2 CharaCter CONSTANTSuuieiiieiee ettt e et e e e e e e st b e e e e e e s e e sanbrereeaeens 121

O R B 14 1 (=T o (<] g @0] = g PSPPI 121
7.12.4 Floating-Point CONSIANESccooeiiiiiiiiic e 121
7.12.5 Object Reference CONStants...........ccccceveviiiiiii e 121
T12.6 NUIL...oooi 121

B N AIMING e ————————— 122
8.1 CIM NAMESPACES ..cevvvuunieiiiiiiitiitiin e e et e ee ettt e e et ettt e e et ee e teb ot e e e aeeaas b aaaeeeteestasanseeeaeessnsanns 122
S T2 \F= o 1 Vo T O 11, I @ 1T N 122
8.2.1 ODBJECE PALNS ...ceiiiiiiie it 123

8.2.2 Object Path for Namespace ODJECESccovuiiiiiiiiiie it 124

8.2.3 Object Path for Qualifier TYpe ODJECESccoiiiiiiiiiiie e 124

8.2.4 Object Path for Class ODJECLS..........uiiiiiiiiiie e 125

8.2.5 Object Path for INStaNCe ODJECEScciiiiiieiiiiie e 126

8.2.6 MAtChiNg CIM NAMESooiiiiiiiieiiii ettt et e e e sabee e e e 126

S T0C T o [=T 0111 YAo | O 1Y IO] o] [=Tox £ 7PN 127
8.4 Requirements on Specifications Using Object Pathscccccvviiiiiiiiiiiiiiiiiiiiiiiiiinnnn, 127
8.5 Object Paths Used in CIM MOuiiiiiiiiiiiieieieieieieieisieieeseeeeeererererererersrerererersrnrrrrrnrnrnrnrnnn 127
8.6 Mapping CIM Naming and Native NamMIiNguuuuiuiririmieieininieieinieiner ..., 128
8.6.1 Native Name Contained in Opaque CIM KeYcccccceveviviiiiiiiiee 129

8.6.2 Native Storage Of CIM NAIME........c.uuiiiiiiii et 129

8.6.3 Translation TabIeoooeeiiiiiiee e ae s 129

GRS \\To NV =T o] o 11 o FO PO OTPRP 129

9 Mapping EXisting Models INt0 CIM ..o 129
LS R = Tod o o [T 1Y =T o] o1 T RO PRP 129
S A S = Tox 1S 1Y =T o] o1 o [PP TPRP 130
1S B B To o 0 F= 1] o I/ F=T o o1 o FS PR TPRP 133
9.4 MappPiNg SCratCh PadS.........eoiiiiiiiie ittt ettt e e e e ebee e e e neee 133
10 REPOSITONY PEISPECIIVEeeiiiiiiiiiiiei ittt e ettt e e e s e e b b et e e e e e e s e anbnbbeeeeeaeeeannnnreees 133
10.1 DMTF MIF MappiNg Strat@OIES.....cccuuetieiiieieeitiiieeiiieie e sttt ee ettt e e sttt e e ssnbeeeessnbeeeessnneeeessnneeeas 134
10.2 Recording Mapping DECISIONSc.ciiuuiiiiiiiiii ettt e et e e s snbee e e s annaeeas 135
ANNEX A (normative) MOF Syntax Grammar DeSCIIPLONccuuuieiiiieeiiiiiiie it 138
ALl HIgh 1eVEl ABNF TUIBSccoiiiiieeeeeee ettt et et e e e e e neee 138
A2 LOW IEVEI ABINF TUIES.....eeeiiie e ittt e e e e e e e e e s e e e e e e s e s st e e e e e e s e e nnnraneneeees 141
4 DMTF Standard Version 2.8.0

141
142

143
144
145

146
147

148
149
150

151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

173
174
175
176
177
178
179
180
181
182
183
184

DSP0004 Common Information Model (CIM) Infrastructure

NG N 1o (=] 0 144
ANNEX B (informative) CIM Meta SCREMAuuiiiiiiiiieie e 146
ANNEX C (NOIMALIVE) UNIES...ciiiiiiiiiiiiiiieiit ettt e s bt e e ettt e e e nbe e e e e anbneeeeaneee 167

C.1 ProgrammatiC UNILScoiueiieiiiiiieiiiiet ettt ettt bbbt s ettt e s enb et e e e nbreeeeaneee 167

C.2 Value for UNitS QUAIIFIET ...ttt e e e e e e s e ee e e e e e e nns 172
ANNEX D (informative) UML NOTALONuviiiiiiiiieiiiee ettt 174
ANNEX E (informative) GUIAEIINESccoi ittt e e e s s s e e e e e e s e st ae e e e e e e s e s nnrrnneeeees 176
ANNEX F (normative) EmbeddedObject and Embeddedinstance Qualifiers..........ccocvvveiiieiiie e 177

F.1 ENcoding fOr MOFooiiiiiiiiiii e 177

F.2 Encoding fOr CIM PrOtOCOISccoiiiiiiiiiiee ettt e e s s e e e e e e s e e e e e e e s e nnnneees 178
ANNEX G (informative) SCRemM@ EITALA.........cociiuiiieiiiiiie ittt e e e e 179
ANNEX H (informative) Ambiguous Property and Method NamMeS..........coocuvviiriiiieiniiiee e 181
ANNEX | (informative) OCL CONSIAEIAtIONScccceeiiiiiiiiiiiie e e st e e e s s s e e e e e s e s e e e e e e s e s nanneraeeeees 184
ANNEX J (informative) Change LOQccooiiuiiiiiiie ettt e e s st e et e e e s s s e e e e e e s s st aae e e e e e s e s nnnnennneeeeas 186
=27 o] [ToTo | £=1 o]0} VAN T PO P PP PR TPPR 188
Figures
Figure 1 — FOUr Ways 10 USE ClIMcoiiiiiiiiiiiiii ettt sttt e e et e e e e e e e e 10
FIgure 2 — CIM Meta SCHEIMAc..uiiiiiiiii ettt e e s e e e neee 30
Figure 3 — Example with Two Weak Associations and Propagated KeYsccccuvvvivivivreininieininininnnnnn. 107
Figure 4 — General Component Structure of OBbject Path ... 123
Figure 5 — Component Structure of Object Path for NameSpacesuvvvviiiuimiiiiiiiiiiiiiiiiieinnn. 124
Figure 6 — Component Structure of Object Path for Qualifier TYPESccoiiiiiiiiiiieie e 125
Figure 7 — Component Structure of Object Path for ClaSSES........c.viviiiiiiiiiiie e 125
Figure 8 — Component Structure of Object Path for INStanCesSuuuviiiiiiiiiiiiiiiiiinnen 126
Figure 9 — Technique Mapping EXamPIEoooi i 130
Figure 10 — MIF Technique Mapping EXamPIEuuuuuuuiuiuiuiiiiiiieiiieieieieiereiernrareerererern———————.. 130
FIQUre 11 — RECASE MAPPING -..eeeeiiitiiieiiitiie ettt ettt e ettt e e e st e e e st e e e e e aabe e e e e an b e e e e s anbae e e e anbreeeeannee 131
Figure 12 — REPOSITOrY PartitiONS........uuuuuuiriiureiiiuiiiureretetarersrerereeerarer e rararerersrernrersrsrnrsrnrnrnrnnnrnrnnns 134
Figure 13 — Homogeneous and HeterogeneouS EXPOItcccoiiiiiiiriiiiee e 136
(S To [0 (T S = Lol g T == To L3R Vg o I 1Y =T o] o] 1 o SRS 136
Tables
Table 1 — StANAArAS BOGIES.........coiiiiiiiiiiiiie ettt e e s e e s s n e e e s nr e e e anreeeeans 13
Table 2 — INrNSIC DALA TYPES ...veeeeiiiiiiee ittt ettt e et e e e s bb e e e sbb e e e s aabb e e e e aabaeeeeabbeeeesabbeeeeans 48
Table 3 — Compatibility of Schema Modifications ... 59
Table 4 — Compatibility of Qualifier Type ModifiCatiONScooiiuiiiiiiiee e 64
Table 5 — Changes that Increment the CIM Schema Major Version NUMDErcccccovieiiiiiiinniiniieeenns 65
Table 6 — Defined QUAIIFIEr SCOPESccoiiiiiieiie et e et e e e e e e st nbeeeeaaeeeanns 68
Table 7 — Defined QUAIIFIEr FIAVOIScoiiiiieeiiee ettt e e e e et e e e e s e ssstnneeeeeaeeeannns 68
Table 8 — Example for Mapping a String Format Based on the General Mapping String Format............... 98
Table 9 — UML Cardinality NOTATIONScoueiiiieiieeeie ittt e e e s et e e e e e e s e anbreeeeeeeas 110
Table 10 — Standard CoMPIlEr DIFECLIVEScocuuiiiiiiiiii ettt s e e seb e e s snneeeas 119
Table 11 — Domain Mapping EXAMPIE ...ttt e et e e e e e s e anabeeeee e s 133

Version 2.8.0 DMTF Standard 5

Common Information Model (CIM) Infrastructure DSP0004

185

6 DMTF Standard Version 2.8.0

186

187
188

189
190

191
192

193
194

195
196
197
198
199
200
201
202
203

DSP0004 Common Information Model (CIM) Infrastructure
Foreword

The Common Information Model (CIM) Infrastructure (DSP0004) was prepared by the DMTF Architecture
Working Group.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about the DMTF, see http://www.dmtf.org.

Acknowledgments
The DMTF acknowledges the following individuals for their contributions to this document:

Editor:

. Lawrence Lamers — VMware

Contributors:
o Jeff Piazza — Hewlett-Packard Company
e Andreas Maier — IBM
e George Ericson — EMC
e Jim Davis — WBEM Solutions
o Karl Schopmeyer — Inova Development
e Steve Hand — Symantec
e Andrea Westerinen — CA Technologies

° Aaron Merkin - Dell

Version 2.8.0 DMTF Standard 7

http://www.dmtf.org/

204

205
206
207
208
209
210
211
212

213

214

215
216
217
218

219

220
221

222
223

224
225
226
227

228
229
230
231
232

233
234
235

236

237
238
239
240
241

242
243

Common Information Model (CIM) Infrastructure DSP0004
Introduction

The Common Information Model (CIM) can be used in many ways. Ideally, information for performing
tasks is organized so that disparate groups of people can use it. This can be accomplished through an
information model that represents the details required by people working within a particular domain. An
information model requires a set of legal statement types or syntax to capture the representation and a
collection of expressions to manage common aspects of the domain (in this case, complex computer
systems). Because of the focus on common aspects, the Distributed Management Task Force (DMTF)
refers to this information model as CIM, the Common Information Model. For information on the current
core and common schemas developed using this meta model, contact the DMTF.

Document Conventions

Typographical Conventions

The following typographical conventions are used in this document:
e Document titles are marked in italics.
. Important terms that are used for the first time are marked in italics.

e ABNF rules, OCL text and CIM MOF text are in monospaced font.

ABNF Usage Conventions

Format definitions in this document are specified using ABNF (see RFC5234), with the following
deviations:

e Literal strings are to be interpreted as case-sensitive UCS/Unicode characters, as opposed to
the definition in REC5234 that interprets literal strings as case-insensitive US-ASCII characters.

e By default, ABNF rules (including literals) are to be assembled without inserting any additional
whitespace characters, consistent with RFC5234. If an ABNF rule states "whitespace allowed",
zero or more of the following whitespace characters are allowed between any ABNF rules
(including literals) that are to be assembled:

— U+0009 (horizontal tab)

— U+000A (linefeed, newline)
— U+000C (form feed)

— U+000D (carriage return)
— U+0020 (space)

e In previous versions of this document, the vertical bar (]) was used to indicate a choice. Starting
with version 2.6 of this document, the forward slash (/) is used to indicate a choice, as defined in
RFC5234.

Deprecated Material

Deprecated material is not recommended for use in new development efforts. Existing and new
implementations may use this material, but they shall move to the favored approach as soon as possible.
CIM servers shall implement any deprecated elements as required by this document in order to achieve
backwards compatibility. Although CIM clients may use deprecated elements, they are directed to use the
favored elements instead.

Deprecated material should contain references to the last published version that included the deprecated
material as normative material and to a description of the favored approach.

8 DMTF Standard Version 2.8.0

244

245

246

247

248
249

250

251
252
253
254
255

256

257
258
259

260
261

262

263
264
265

266
267
268
269

270

271

272
273
274
275

276

277
278
279
280

DSP0004 Common Information Model (CIM) Infrastructure

The following typographical convention indicates deprecated material:

DEPRECATED
Deprecated material appears here.

DEPRECATED

In places where this typographical convention cannot be used (for example, tables or figures), the
"DEPRECATED" label is used alone.

Experimental Material

Experimental material has yet to receive sufficient review to satisfy the adoption requirements set forth by
the DMTF. Experimental material is included in this document as an aid to implementers who are
interested in likely future developments. Experimental material may change as implementation
experience is gained. It is likely that experimental material will be included in an upcoming revision of the
document. Until that time, experimental material is purely informational.

The following typographical convention indicates experimental material:

EXPERIMENTAL
Experimental material appears here.

EXPERIMENTAL

In places where this typographical convention cannot be used (for example, tables or figures), the
"EXPERIMENTAL" label is used alone.

CIM Management Schema

Management schemas are the building-blocks for management platforms and management applications,
such as device configuration, performance management, and change management. CIM structures the
managed environment as a collection of interrelated systems, each composed of discrete elements.

CIM supplies a set of classes with properties and associations that provide a well-understood conceptual
framework to organize the information about the managed environment. We assume a thorough
knowledge of CIM by any programmer writing code to operate against the object schema or by any
schema designer intending to put new information into the managed environment.

CIM is structured into these distinct layers: core model, common model, extension schemas.

Core Model

The core model is an information model that applies to all areas of management. The core model is a
small set of classes, associations, and properties for analyzing and describing managed systems. Itis a
starting point for analyzing how to extend the common schema. While classes can be added to the core
model over time, major reinterpretations of the core model classes are not anticipated.

Common Model

The common model is a basic set of classes that define various technology-independent areas, such as
systems, applications, networks, and devices. The classes, properties, associations, and methods in the
common model are detailed enough to use as a basis for program design and, in some cases,
implementation. Extensions are added below the common model in platform-specific additions that supply

Version 2.8.0 DMTF Standard 9

Common Information Model (CIM) Infrastructure DSP0004

concrete classes and implementations of the common model classes. As the common model is extended,

281
282 it offers a broader range of information.
283 The common model is an information model common to particular management areas but independent of
284 aparticular technology or implementation. The common areas are systems, applications, networks, and
285 devices. The information model is specific enough to provide a basis for developing management
286 applications. This schema provides a set of base classes for extension into the area of technology-
287 specific schemas. The core and common models together are referred to in this document as the CIM
288 schema.
289 Extension Schema
290 The extension schemas are technology-specific extensions to the common model. Operating systems
291 (such as Microsoft Windows® or UNIX®) are examples of extension schemas. The common model is
292 expected to evolve as objects are promoted and properties are defined in the extension schemas.
2903 CIM Implementations
294 Because CIM is not bound to a particular implementation, it can be used to exchange management
295 information in a variety of ways; four of these ways are illustrated in Figure 1. These ways of exchanging
296 information can be used in combination within a management application.
CIM Meta Model Content of CIM Realization of CIM
'/\/1\. Has Instances W Realization @
i // / \ \\ /// / \
! 7 /(Zfore Schema “~_ e A
j -~ /Common Schema ™. 7 / K
/ L/ / Extension Schemas v .~ J \
l!
I
i
i
|
i
i
! 4
I s/
i s
| i
i s
Objects (instances of classes)
Repository - Application DBMS - Application Objects - Exchange Parameter -
Store meta model Transform conceptual Define a set of data- Use content of CIM to
information for definition into a physical oriented application objects structure instances passed
program access. schema for particular to instantiate and extend between applications.
database technology (for the targeted technology.
example, relational).
297
298 Figure 1 — Four Ways to Use CIM
299 The constructs defined in the model are stored in a database repository. These constructs are not
300 instances of the object, relationship, and so on. Rather, they are definitions to establish objects and
301 relationships. The meta model used by CIM is stored in a repository that becomes a representation of the
302 meta model. The constructs of the meta-model are mapped into the physical schema of the targeted

10 DMTF Standard Version 2.8.0

303
304

305
306
307
308

309
310

311
312
313
314

315

316
317
318

DSP0004 Common Information Model (CIM) Infrastructure

repository. Then the repository is populated with the classes and properties expressed in the core model,
common model, and extension schemas.

For an application database management system (DBMS), the CIM is mapped into the physical schema
of a targeted DBMS (for example, relational). The information stored in the database consists of actual
instances of the constructs. Applications can exchange information when they have access to a common
DBMS and the mapping is predictable.

For application objects, the CIM is used to create a set of application objects in a particular language.
Applications can exchange information when they can bind to the application objects.

For exchange parameters, the CIM — expressed in some agreed syntax — is a neutral form to exchange
management information through a standard set of object APIs. The exchange occurs through a direct set
of API calls or through exchange-oriented APIs that can create the appropriate object in the local
implementation technology.

CIM Implementation Conformance

An implementation of CIM is conformant to this specification if it satisfies all requirements defined in this
specification.

Version 2.8.0 DMTF Standard 11

Common Information Model (CIM) Infrastructure DSP0004

319

12 DMTF Standard Version 2.8.0

320

321

322
323
324
325
326

327
328
329

330
331

332

333
334
335
336

337

338

339

340
341

342
343

DSP0004 Common Information Model (CIM) Infrastructure

Common Information Model (CIM) Infrastructure

1 Scope

The DMTF Common Information Model (CIM) Infrastructure is an approach to the management of
systems and networks that applies the basic structuring and conceptualization techniques of the object-
oriented paradigm. The approach uses a uniform modeling formalism that together with the basic
repertoire of object-oriented constructs supports the cooperative development of an object-oriented
schema across multiple organizations.

This document describes an object-oriented meta model based on the Unified Modeling Language (UML).
This model includes expressions for common elements that must be clearly presented to management
applications (for example, object classes, properties, methods, and associations).

This document does not describe specific CIM implementations, application programming interfaces
(APIs), or communication protocols.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

Table 1 shows standards bodies and their web sites.

Table 1 — Standards Bodies

Abbreviation Standards Body Web Site

ANSI American National Standards Institute http://www.ansi.org
DMTF Distributed Management Task Force http://www.dmtf.org
EIA Electronic Industries Alliance http://www.eia.org
IEC International Engineering Consortium http://www.iec.ch
IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org
IETF Internet Engineering Task Force http://www.ietf.org
INCITS International Committee for Information Technology Standards http://www.incits.org
ISO International Standards Organization http://www.iso.ch
ITU International Telecommunications Union http://www.itu.int
W3C World Wide Web Consortium http://www.w3.0rg

ANSI/IEEE 754-1985, IEEE® Standard for BinaryFloating-Point Arithmetic, August 1985
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=30711

DMTF DSP0207, WBEM URI Mapping Specification, Version 1.0
http://www.dmtf.org/standards/published _documents/DSP0207 1.0.pdf

Version 2.8.0 DMTF Standard 13

http://www.ansi.org/
http://www.dmtf.org/
http://www.eia.org/
http://www.iec.ch/
http://www.ieee.org/
http://www.ietf.org/
http://www.incits.org/
http://www.iso.ch/
http://www.itu.int/
http://www.w3.org/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=30711
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf

344
345

346
347

348
349
350

351
352

353
354

355
356

357
358

359
360

361
362
363

364
365

366
367
368

369
370
371

372
373
374

375
376
377

378
379
380

381
382
383

384
385

Common Information Model (CIM) Infrastructure DSP0004

DMTF DSP4004, DMTF Release Process, Version 2.2
http://www.dmtf.org/standards/published documents/DSP4004 2.2.pdf

EIA-310, Cabinets, Racks, Panels, and Associated Equipment
http://electronics.ihs.com/collections/abstracts/eia-310.htm

IEEE Std 1003.1, 2004 Edition, Standard for information technology - portable operating system interface
(POSIX). Shell and utilities
http://www.unix.org/version3/ieee_std.html

IETF RFC3986, Uniform Resource Identifiers (URI): Generic Syntax, August 1998
http://tools.ietf.org/html/rfc3986

IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008
http://tools.ietf.org/html/rfc5234

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards
http://isotc.iso.org/livelink/livelink.exe?func=I1&objld=4230456&objAction=browse&sort=subtype

ISO 639-1:2002, Codes for the representation of names of languages — Part 1: Alpha-2 code
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue detail.htm?csnumber=22109

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue detail.htm?csnumber=4767

ISO 639-3:2007, Codes for the representation of names of languages — Part 3: Alpha-3 code for
comprehensive coverage of languages
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue detail.htm?csnumber=39534

ISO 1000:1992, Sl units and recommendations for the use of their multiples and of certain other units
http://www.iso.org/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnumber=5448

ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue detail.htm?csnumber=39719

ISO 3166-2:2007, Codes for the representation of names of countries and their subdivisions — Part 2:
Country subdivision code
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue detail.htm?csnumber=39718

ISO 3166-3:1999, Codes for the representation of names of countries and their subdivisions — Part 3:
Code for formerly used names of countries
http://www.iso.org/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnumber=2130

ISO 8601:2004 (E), Data elements and interchange formats — Information interchange — Representation
of dates and times
http://www.iso.org/iso/iso _catalogue/catalogue tc/catalogue detail.htm?csnumber=40874

ISO/IEC 9075-10:2003, Information technology — Database languages — SQL — Part 10: Object
Language Bindings (SQL/OLB)
http://www.iso.org/iso/iso_catalogue/catalogue ics/catalogue detail ics.htm?csnumber=34137

ISO/IEC 10165-4:1992, Information technology — Open Systems Interconnection — Structure of
management information — Part 4: Guidelines for the definition of managed objects (GDMO)
http://www.iso.org/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnumber=18174

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921 ISO IEC 10646 2003(E).zip

14 DMTF Standard Version 2.8.0

http://www.dmtf.org/standards/published_documents/DSP4004_2.2.pdf
http://electronics.ihs.com/collections/abstracts/eia-310.htm
http://www.unix.org/version3/ieee_std.html
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5234
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=4767
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39534
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=5448
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39718
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2130
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=34137
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18174
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip

386
387
388
389

390
391
392
393

394
395
396

397
398
399

400
401

402
403
404

405
406

407
408

409
410
411

412
413

414

415
416

417
418
419
420
421
422

423
424

425
426
427

428

DSP0004 Common Information Model (CIM) Infrastructure

ISO/IEC 10646:2003/Amd 1:2005, Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Amendment 1: Glagolitic, Coptic, Georgian and other characters
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040755 1SO IEC 10646 2003 Amd 1 2005(E).

zip

ISO/IEC 10646:2003/Amd 2:2006, Information technology — Universal Multiple-Octet Coded Character
Set (UCS) — Amendment 2: N'Ko, Phags-pa, Phoenician and other characters
http://standards.iso.org/ittf/PubliclyAvailableStandards/c041419 1SO IEC 10646 2003 Amd 2 2006(E).

Zip

ISO/IEC 14651:2007, Information technology — International string ordering and comparison — Method
for comparing character strings and description of the common template tailorable ordering
http://standards.iso.org/ittf/PubliclyAvailableStandards/c044872 1SO IEC 14651 2007(E).zip

ISO/IEC 14750:1999, Information technology — Open Distributed Processing — Interface Definition
Language
http://www.iso.org/iso/iso _catalogue/catalogue tc/catalogue detail.htm?csnumber=25486

ITU X.501, Information Technology — Open Systems Interconnection — The Directory: Models
http://www.itu.int/rec/T-REC-X.501/en

ITU X.680 (07/02), Information technology — Abstract Syntax Notation One (ASN.1): Specification of
basic notation
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf

OMG, Object Constraint Language, Version 2.0
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

OMG, Unified Modeling Language: Superstructure, Version 2.1.1
http://www.omg.org/cgi-bin/doc?formal/07-02-05

The Unicode Consortium, The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization
Forms
http://www.unicode.org/reports/tr15/

W3C, Namespaces in XML, W3C Recommendation, 14 January 1999
http://www.w3.0org/TR/REC-xml-names

3 Terms and Definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described
in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. ISO/IEC
Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional alternatives

shall be interpreted in their normal English meaning.

The terms "clause”, "subclause", "paragraph”, and "annex" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 5.

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do
not contain normative content. Notes and examples are always informative elements.

The following additional terms are used in this document.

Version 2.8.0 DMTF Standard 15

http://standards.iso.org/ittf/PubliclyAvailableStandards/c040755_ISO_IEC_10646_2003_Amd_1_2005(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040755_ISO_IEC_10646_2003_Amd_1_2005(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c041419_ISO_IEC_10646_2003_Amd_2_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c041419_ISO_IEC_10646_2003_Amd_2_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c044872_ISO_IEC_14651_2007(E).zip
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486
http://www.itu.int/rec/T-REC-X.501/en
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://www.unicode.org/reports/tr15/
http://www.w3.org/TR/REC-xml-names

429
430

431
432

433

434
435

436
437
438
439
440
441
442
443

444
445
446

447
448

449
450

451
452
453

454
455

456
457

458

459
460

461
462
463

464
465

466
467
468
469
470

471

472
473
474

Common Information Model (CIM) Infrastructure DSP0004

3.1
address

the general concept of a location reference to a CIM object that is accessible through a CIM server, not
implying any particular format or protocol

More specific kinds of addresses are object paths.

Embedded objects are not addressable; they may be accessible indirectly through their embedding
instance. Instances of an indication class are not addressable since they only exist while being delivered.

3.2

aggregation

a strong form of association that expresses a whole-part relationship between each instance on the
aggregating end and the instances on the other ends, where the instances on the other ends can exist
independently from the aggregating instance.

For example, the containment relationship between a physical server and its physical components can be
considered an aggregation, since the physical components can exist if the server is dismantled. A
stronger form of aggregation is a composition.

3.3
ancestor
the ancestor of a schema element is for a class, its direct superclass (if any); for a property or method, its

overridden property or method (if any); and for a parameter of a method, the like-named parameter of the
overridden method (if any)

The ancestor of a schema element plays a role for propagating qualifier values to that schema element
for qualifiers with flavor ToSubclass.

34
ancestry
the ancestry of a schema element is the set of schema elements that results from recursively determining

its ancestor schema elements
A schema element is not considered part of its ancestry.

3.5
arity
the number of references exposed by an association class

3.6
association, CIM association

a special kind of class that expresses the relationship between two or more other classes
The relationship is established by two or more references defined in the association that are typed to
these other classes.

For example, an association ACME_SystemDevice may relate the classes ACME_System and
ACME_Device by defining references to those classes.

A CIM association is a UML association class. Each has the aspects of both a UML association and a
UML class, which may expose ordinary properties and methods and may be part of a class inheritance
hierarchy. The references belonging to a CIM association belong to it and are also exposed as part of the
association and not as parts of the associated classes. The term "association class" is sometimes used
instead of the term "association" when the class aspects of the element are being emphasized.

Aggregations and compositions are special kinds of associations.

In a CIM server, associations are special kinds of objects. The term "association object" (i.e., object of
association type) is sometimes used to emphasize that. The address of such association objects is
termed "class path", since associations are special classes. Similarly, association instances are a special

16 DMTF Standard Version 2.8.0

475
476

477
478

479
480

481

482
483

484

485
486
487

488

489
490
491
492
493
494

495
496
497

498
499

500
501
502

503
504

505
506

507
508
509

510
511

512

DSP0004 Common Information Model (CIM) Infrastructure

kind of instances and are also addressable objects. Associations may also be represented as embedded
instances, in which case they are not independently addressable.

In a schema, associations are special kinds of schema elements.
In the CIM meta-model, associations are represented by the meta-element named "Association".

3.7
association end

a synonym for the reference defined in an association

3.8
cardinality

the number of instances in a set

DEPRECATED

The use of the term "cardinality” for the allowable range for the number of instances on an association
end is deprecated. The term "multiplicity" has been introduced for that, consistent with UML terminology.

DEPRECATED

3.9

Common Information Model

CIM

CIM (Common Information Model) is:
1. the name of the meta-model used to define schemas (e.g., the CIM schema or extension schemas).
2. the name of the schema published by the DMTF (i.e., the CIM schema).

3.10
CIM schema

the schema published by the DMTF that defines the Common Information Model
It is divided into a core model and a common model. Extension schemas are defined outside of the DMTF
and are not considered part of the CIM schema.

3.11
CIM client

a role responsible for originating CIM operations for processing by a CIM server
This definition does not imply any particular implementation architecture or scope, such as a client library
component or an entire management application.

3.12
CIM listener

a role responsible for processing CIM indications originated by a CIM server
This definition does not imply any particular implementation architecture or scope, such as a standalone
demon component or an entire management application.

3.13
CIM operation

an interaction within a CIM protocol that is originated by a CIM client and processed by a CIM server

Version 2.8.0 DMTF Standard 17

513
514
515

516
517

518
519
520
521

522
523

524
525
526

527
528

529
530
531

532

533
534

535
536

537
538

539

540
541
542
543
544
545

546
547

548

549
550

551

552
553
554

555
556

Common Information Model (CIM) Infrastructure DSP0004

3.14
CIM protocol

a protocol that is used between CIM client, CIM server and CIM listener
This definition does not imply any particular communication protocol stack, or even that the protocol
performs a remote communication.

3.15
CIM server

a role responsible for processing CIM operations originated by a CIM client and for originating CIM
indications for processing by a CIM listener

This definition does not imply any particular implementation architecture, such as a separation into a
CIMOM and provider components.

3.16
class, CIM class

a common type for a set of instances that support the same features
A class is defined in a schema and models an aspect of a managed object. For a full definition, see
5.1.2.7.

For example, a class named "ACME_Modem" may represent a common type for instances of modems
and may define common features such as a property named "ActualSpeed"” to represent the actual
modem speed.

Special kinds of classes are ordinary classes, association classes and indication classes.

In a CIM server, classes are special kinds of objects. The term "class object" (i.e., object of class type) is
sometimes used to emphasize that. The address of such class objects is termed "class path".

In a schema, classes are special kinds of schema elements.
In the CIM meta-model, classes are represented by the meta-element named "Class".

3.17
class declaration
the definition (or specification) of a class

For example, a class that is accessible through a CIM server can be retrieved by a CIM client. What the
CIM client receives as a result is actually the class declaration. Although unlikely, the class accessible
through the CIM server may already have changed its definition by the time the CIM client receives the
class declaration. Similarly, when a class accessible through a CIM server is being modified through a
CIM operation, one input parameter might be a class declaration that is used during the processing of the
CIM operation to change the class.

3.18
class path

a special kind of object path addressing a class that is accessible through a CIM server

3.19
class origin

the class origin of a feature is the class defining the feature

3.20
common model
the subset of the CIM Schema that is specific to particular domains

It is derived from the core model and is actually a collection of models, including (but not limited to) the
System model, the Application model, the Network model, and the Device model.

18 DMTF Standard Version 2.8.0

557
558
559
560
561
562
563
564

565
566
567

568
569

570
571

572

573
574
575

576
577

578

579

580
581
582
583
584

585

586
587

588
589
590

5901
592
593
594
595
596
597

598
599

600

DSP0004 Common Information Model (CIM) Infrastructure

3.21

compaosition

a strong form of association that expresses a whole-part relationship between each instance on the
aggregating end and the instances on the other ends, where the instances on the other ends cannot exist
independently from the aggregating instance

For example, the containment relationship between a running operating system and its logical devices
can be considered a composition, since the logical devices cannot exist if the operating system does not
exist. A composition is also a strong form of aggregation.

3.22
core model

the subset of the CIM Schema that is not specific to any particular domain
The core model establishes a basis for derived models such as the common model or extension
schemas.

3.23
creation class

the creation class of an instance is the most derived class of the instance

The creation class of an instance can also be considered the factory of the instance (although in CIM,
instances may come into existence through other means than issuing an instance creation operation
against the creation class).

3.24
domain

an area of management or expertise

DEPRECATED

The following use of the term "domain” is deprecated: The domain of a feature is the class defining the
feature. For example, if class ACME_C1 defines property P1, then ACME_C1 is said to be the domain of
P1. The domain acts as a space for the names of the schema elements it defines in which these names
are unique. Use the terms "class origin" or "class defining the schema element" or "class exposing the
schema element" instead.

DEPRECATED

3.25
effective qualifier value

For every schema element, an effective qualifier value can be determined for each qualifier scoped to the
element. The effective qualifier value on an element is the value that determines the qualifier behavior for
the element.

For example, qualifier Counter is defined with flavor ToSubclass and a default value of False. If a value of
True is specified for Counter on a property NumErrors in a class ACME_Device, then the effective value
of qualifier Counter on that property is True. If an ACME_Modem subclass of class ACME_Device
overrides NumErrors without specifying the Counter qualifier again, then the effective value of qualifier
Counter on that property is also True since its flavor ToSubclass defines that the effective value of
qualifier Counter is determined from the next ancestor element of the element that has the qualifier
specified.

3.26
element

a synonym for schema element

Version 2.8.0 DMTF Standard 19

601
602

603

604
605

606

607
608

609

610
611
612
613

614
615

616

617
618

619

620
621
622

623
624

625
626

627
628

629
630

631
632

633

634
635

636

637
638
639

640
641

Common Information Model (CIM) Infrastructure DSP0004

3.27
embedded class

a class declaration that is embedded in the value of a property, parameter or method return value

3.28
embedded instance

an instance declaration that is embedded in the value of a property, parameter or method return value

3.29
embedded object

an embedded class or embedded instance

3.30

explicit qualifier

a qualifier type declared separately from its usage on schema elements
See also implicit qualifier.

3.31
extension schema

a schema not owned by the DMTF whose classes are derived from the classes in the CIM Schema

3.32
feature
a property or method defined in a class

A feature is exposed if it is available to consumers of a class. The set of features exposed by a class is
the union of all features defined in the class and its ancestry. In the case where a feature overrides a
feature, the combined effects are exposed as a single feature.

3.33
flavor

meta-data on a qualifier type that defines the rules for propagation, overriding and translatability of
qualifiers

For example, the Key qualifier has the flavors ToSubclass and DisableOverride, meaning that the qualifier
value gets propagated to subclasses and these subclasses cannot override it.

3.34
implicit qualifier

a qualifier type declared as part of the declaration of a schema element
See also explicit qualifier.

DEPRECATED

The concept of implicitly defined qualifier types (i.e., implicit qualifiers) is deprecated. See 5.1.2.16 for
details.

DEPRECATED

3.35
indication, CIM indication
a special kind of class that expresses the notification about an event that occurred

Indications are raised based on a trigger that defines the condition under which an event causes an
indication to be raised. Events may be related to objects accessible in a CIM server, such as the creation,

20 DMTF Standard Version 2.8.0

642
643

644

645
646

647
648

649
650
651
652

653
654

655
656
657
658

659
660

661
662

663
664

665
666

667
668
669

670

671
672

673
674
675

676
677

678

679
680

681
682

683
684

DSP0004 Common Information Model (CIM) Infrastructure

modification, deletion of or access to an object, or execution of a method on the object. Events may also
be related to managed objects, such as alerts or errors.

For example, an indication ACME_ Alertindication may express the naotification about an alert event.

The term "indication class" is sometimes used instead of the term "indication" to emphasize that an
indication is also a class.

In a CIM server, indication instances are not addressable. They exist as embedded instances in the
protocol message that delivers the indication.

In a schema, indications are special kinds of schema elements.

In the CIM meta-model, indications are represented by the meta-element named "Indication".

The term "indication" also refers to an interaction within a CIM protocol that is originated on a CIM server
and processed by a CIM listener.

3.36
inheritance

a relationship between a more general class and a more specific class

An instance of the specific class is also an instance of the general class. The specific class inherits the
features of the general class. In an inheritance relationship, the specific class is termed "subclass" and
the general class is termed "superclass”.

For example, if a class ACME_Modem is a subclass of a class ACME_Device, any ACME_Modem
instance is also an ACME_Device instance.

3.37
instance, CIM instance

This term has two (different) meanings:

1) Asinstance of a class:

An instance of a class has values (including possible Null) for the properties exposed by its
creation class. Embedded instances are also instances.

In a CIM server, instances are special kinds of objects. The term "instance object" (i.e., object of
instance type) is sometimes used to emphasize that. The address of such instance objects is
termed "instance path".

In a schema, instances are special kinds of schema elements.

In the CIM meta-model, instances are represented by the meta-element named "Instance".

2) As instance of a meta-element:

A relationship between an element and its meta-element. For example, a class ACME_Modem
is said to be an instance of the meta-element Class, and a property ACME_Modem.Speed is
said to be an instance of the meta-element Property.

3.38
instance path

a special kind of object path addressing an instance that is accessible through a CIM server

3.39
instance declaration

the definition (or specification) of an instance by means of specifying a creation class for the instance and
a set of property values

For example, an instance that is accessible through a CIM server can be retrieved by a CIM client. What
the CIM client receives as a result, is actually an instance declaration. The instance itself may already

Version 2.8.0 DMTF Standard 21

685
686
687
688

689
690

691
692
693

694

695
696

697
698

699
700

701
702

703
704

705
706
707

708
709

710
711

712
713

714
715

716
717

718
719

720
721

722

723
724

725
726

727
728

Common Information Model (CIM) Infrastructure DSP0004

have changed its property values by the time the CIM client receives the instance declaration. Similarly,
when an instance that is accessible through a CIM server is being modified through a CIM operation, one
input parameter might be an instance declaration that specifies the intended new property values for the
instance.

3.40
key

The key of an instance is synonymous with the model path of the instance (class name, plus set of key
property name/value pairs). The key of a non-embedded instance is required to be unique in the
namespace in which it is registered. The key properties of a class are indicated by the Key qualifier.

Also, shorthand for the term "key property".

3.41
managed object

a resource in the managed environment of which an aspect is modeled by a class
An instance of that class represents that aspect of the represented resource.

For example, a network interface card is a managed object whose logical function may be modeled as a
class ACME_NetworkPort.

3.42
meta-element

an entity in a meta-model
The boxes in Figure 2 represent the meta-elements defined in the CIM meta-model.

For example, the CIM meta-model defines a meta-element named "Property” that defines the concept of
a structural data item in an object. Specific properties (e.g., property P1) can be thought of as being
instances of the meta-element named "Property".

3.43
meta-model

a set of meta-elements and their meta-relationships that expresses the types of things that can be defined
in a schema

For example, the CIM meta-model includes the meta-elements named "Property" and "Class" which have
a meta-relationship such that a Class owns zero or more Properties.

3.44
meta-relationship

a relationship between two entities in a meta-model
The links in Figure 2 represent the meta-relationships defined in the CIM meta-model.

For example, the CIM meta-model defines a meta-relationship by which the meta-element named
"Property" is aggregated into the meta-element named "Class".

3.45
meta-schema

a synonym for meta-model

3.46
method, CIM method

a behavioral feature of a class
Methods can be invoked to produce the associated behavior.

In a schema, methods are special kinds of schema elements. Method name, return value, parameters
and other information about the method are defined in the class declaration.

22 DMTF Standard Version 2.8.0

729

730
731

732
733
734

735
736

737

738
739

740
741
742

743
744
745
746

747
748

749
750

751
752

753

754
755
756

757

758
759

760

761
762
763
764

765

766
767
768

DSP0004 Common Information Model (CIM) Infrastructure

In the CIM meta-model, methods are represented by the meta-element named "Method".

3.47
model

a set of classes that model a specific domain
A schema may contain multiple models (that is the case in the CIM Schema), but a particular domain
could also be modeled using multiple schemas, in which case a model would consist of multiple schemas.

3.48
model path

the part of an object path that identifies the object within the namespace

3.49
multiplicity

The multiplicity of an association end is the allowable range for the number of instances that may be
associated to each instance referenced by each of the other ends of the association. The multiplicity is
defined on a reference using the Min and Max qualifiers.

3.50

namespace, CIM namespace

a special kind of object that is accessible through a CIM server that represents a haming space for
classes, instances and qualifier types

3.51
namespace path

a special kind of object path addressing a namespace that is accessible through a CIM server
Also, the part of an instance path, class path and qualifier type path that addresses the namespace.

3.52
name

an identifier that each element or meta-element has in order to identify it in some scope

DEPRECATED

The use of the term "name" for the address of an object that is accessible through a CIM server is
deprecated. The term "object path" should be used instead.

DEPRECATED

3.53
object, CIM object

a class, instance, qualifier type or namespace that is accessible through a CIM server

An object may be addressable, i.e., have an object path. Embedded objects are objects that are not
addressable; they are accessible indirectly through their embedding property, parameter or method return
value. Instances of indications are objects that are not addressable either, as they are not accessible
through a CIM server at all and only exist in the protocol message in which they are being delivered.

DEPRECATED

The term "object" has historically be used to mean just "class or instance". This use of the term "object" is
deprecated. If a restriction of the term "object" to mean just "class or instance" is intended, this is now
stated explicitly.

Version 2.8.0 DMTF Standard 23

769

770
771
772

773
774

775
776

77

778
779

780

781
782
783

784
785

786
787
788

789
790

791
792

793
794

795
796

797

798
799
800

801
802
803

804
805

806
807

808
809
810
811

Common Information Model (CIM) Infrastructure DSP0004

DEPRECATED

3.54
object path

the address of an object that is accessible through a CIM server
An object path consists of a namespace path (addressing the namespace) and optionally a model path
(identifying the object within the namespace).

3.55
ordinary class

a class that is neither an association class nor an indication class

3.56
ordinary property

a property that is not a reference

3.57
override

a relationship between like-named elements of the same type of meta-element in an inheritance
hierarchy, where the overriding element in a subclass redefines the overridden element in a superclass
The purpose of an override relationship is to refine the definition of an element in a subclass.

For example, a class ACME_Device may define a string typed property Status that may have the values

"powersave", "on", or "off". A class ACME_Modem, subclass of ACME_Device, may override the Status
property to have only the values "on" or "off", but not "powersave".

3.58
parameter, CIM parameter

a named and typed argument passed in and out of methods
The return value of a method is not considered a parameter; instead it is considered part of the method.

In a schema, parameters are special kinds of schema elements.
In the CIM meta-model, parameters are represented by the meta-element named "Parameter”.

3.59
polymorphism
the ability of an instance to be of a class and all of its subclasses

For example, a CIM operation may enumerate all instances of class ACME_Device. If the instances
returned may include instances of subclasses of ACME_Device, then that CIM operation is said to
implement polymorphic behavior.

3.60
propagation
the ability to derive a value of one property from the value of another property

CIM supports propagation via either PropertyConstraint qualifiers utilizing a derivation constraint or via
weak associations.

3.61

property, CIM property

a named and typed structural feature of a class

Name, data type, default value and other information about the property are defined in a class. Properties

have values that are available in the instances of a class. The values of its properties may be used to
characterize an instance.

24 DMTF Standard Version 2.8.0

812
813

814
815
816

817
818
819
820
821

822
823

824
825
826
827

828
829

830
831

832

833
834

835
836

837
838

839

840
841
842
843
844
845

846
847

848

849
850
851
852

853
854

855

DSP0004 Common Information Model (CIM) Infrastructure

For example, a class ACME_Device may define a string typed property named "Status”. In an instance of
class ACME_Device, the Status property may have a value "on".

Special kinds of properties are ordinary properties and references.
In a schema, properties are special kinds of schema elements.
In the CIM meta-model, properties are represented by the meta-element named "Property".

3.62

gualified element

a schema element that has a qualifier specified in the declaration of the element

For example, the term "qualified element" in the description of the Counter qualifier refers to any property
(or other kind of schema element) that has the Counter qualifier specified on it.

3.63
qualifier, CIM qualifier

a named value used to characterize schema elements

Qualifier values may change the behavior or semantics of the qualified schema element. Qualifiers can
be regarded as metadata that is attached to the schema elements. The scope of a qualifier determines on
which kinds of schema elements a specific qualifier can be specified.

For example, if property ACME_Modem.Speed has the Key qualifier specified with a value of True, this
characterizes the property as a key property for the class.

3.64
qualifier type
a common type for a set of qualifiers

In a CIM server, qualifier types are special kinds of objects. The address of qualifier type objects is
termed "qualifier type path".

In a schema, qualifier types are special kinds of schema elements.
In the CIM meta-model, qualifier types are represented by the meta-element named "QualifierType".

3.65
qualifier type declaration
the definition (or specification) of a qualifier type

For example, a qualifier type object that is accessible through a CIM server can be retrieved by a CIM
client. What the CIM client receives as a result, is actually a qualifier type declaration. Although unlikely,
the qualifier type itself may already have changed its definition by the time the CIM client receives the
qualifier type declaration. Similarly, when a qualifier type that is accessible through a CIM server is being
modified through a CIM operation, one input parameter might be a qualifier type declaration that is used
during the processing of the operation to change the qualifier type.

3.66
qualifier type path
a special kind of object path addressing a qualifier type that is accessible through a CIM server

3.67

qgualifier value

the value of a qualifier in a general sense, without implying whether it is the specified value, the effective
value, or the default value

3.68
reference, CIM reference

an association end

Version 2.8.0 DMTF Standard 25

856

857
858
859

860
861

862
863

864
865

866
867

868
869

870
871

872
873
874

875
876
877
878
879

880
881

882

883
884

885

886
887

888
889
890

891

892
893

894

Common Information Model (CIM) Infrastructure DSP0004

References are special kinds of properties that reference an instance.

The value of a reference is an instance path. The type of a reference is a class of the referenced
instance. The referenced instance may be of a subclass of the class specified as the type of the
reference.

In a schema, references are special kinds of schema elements.
In the CIM meta-model, references are represented by the meta-element named "Reference".

3.69
schema

a set of classes with a single defining authority or owning organization
In the CIM meta-model, schemas are represented by the meta-element named "Schema".

3.70
schema element

a specific class, property, method or parameter
For example, a class ACME_C1 or a property P1 are schema elements.

3.71
scope

part of a qualifier type, indicating the meta-elements on which the qualifier can be specified
For example, the Abstract qualifier has scope class, association and indication, meaning that it can be
specified only on ordinary classes, association classes, and indication classes.

3.72

scoping object, scoping instance, scoping class

a scoping object provides context for a set of other objects

A specific example is an object (class or instance) that propagates some or all of its key properties to a
weak object, along a weak association.

3.73
signature

a method name together with the type of its return value and the set of names and types of its parameters

3.74
subclass

See inheritance.

3.75
superclass

See inheritance.

3.76
top-level object

DEPRECATED

The use of the terms "top-level object" or "TLO" for an object that has no scoping object is deprecated.
Use phrases like "an object that has no scoping object", instead.

DEPRECATED

26 DMTF Standard Version 2.8.0

895
896

897

898
899
900
901

902
903
904
905

906
907

908
909

910
911
912

913
914

915
916

917

918
919

920

921
922

923

924
925

926

927
928

929

930
931

932

DSP0004 Common Information Model (CIM) Infrastructure

3.77
trigger

a condition that when True, expresses the occurrence of an event

3.78

UCS character

A character from the Universal Multiple-Octet Coded Character Set (UCS) defined in ISO/IEC
10646:2003. For details, see 5.2.1.

3.79

weak object, weak instance, weak class

an object (class or instance) that gets some or all of its key properties propagated from a scoping object,
along a weak association

3.80
weak association

an association that references a scoping object and weak objects, and along which the values of key
properties get propagated from a scoping object to a weak object

In the weak object, the key properties to be propagated have qualifier Propagate with an effective value of
True, and the weak association has qualifier Weak with an effective value of True on its end referencing
the weak object.

4 Symbols and Abbreviated Terms
The following abbreviations are used in this document.

4.1

API

application programming interface
4.2

CIM

Common Information Model

4.3

DBMS

Database Management System
4.4

DMI

Desktop Management Interface
45

GDMO

Guidelines for the Definition of Managed Objects
4.6

HTTP

Hypertext Transfer Protocol

Version 2.8.0 DMTF Standard 27

933
934

935

936
937

938

939
940

941

942
943

944

945
946

947

948
949

950

951
952

953

954

955
956

957
958
959
960
961

962

963
964
965
966

967

968
969

970
971

Common Information Model (CIM) Infrastructure DSP0004

4.7
MIB

Management Information Base

4.8
MIF

Management Information Format

4.9
MOF

Managed Object Format

4.10
OID

object identifier

411
SMI

Structure of Management Information

412
SNMP

Simple Network Management Protocol

4.13
UML

Unified Modeling Language

5 Meta Schema

The Meta Schema is a formal definition of the model that defines the terms to express the model and its
usage and semantics (see ANNEX B).

The Unified Modeling Language (UML) (see Unified Modeling Language: Superstructure) defines the
structure of the meta schema. In the discussion that follows, italicized words refer to objects in Figure 2.
We assume familiarity with UML notation (see www.rational.com/uml) and with basic object-oriented
concepts in the form of classes, properties, methods, operations, inheritance, associations, objects,
cardinality, and polymorphism.

5.1 Definition of the Meta Schema

The CIM meta schema provides the basis on which CIM schemas and models are defined. The CIM meta
schema defines meta-elements that have attributes and relationships between them. For example, a CIM
class is a meta-element that has attributes such as a class name, and relationships such as a
generalization relationship to a superclass, or ownership relationships to its properties and methods.

The CIM meta schema is defined as a UML user model, using the following UML concepts:

e CIM meta-elements are represented as UML classes (UML Class metaclass defined in Unified
Modeling Language: Superstructure)

¢ CIM meta-elements may use single inheritance, which is represented as UML generalization
(UML Generalization metaclass defined in Unified Modeling Language: Superstructure)

28 DMTF Standard Version 2.8.0

http://www.rational.com/uml

972
973

974
975
976
977
978

979
980

981
982
983
984
985
986

987
988
989
990

991
992
993

994
995

DSP0004 Common Information Model (CIM) Infrastructure

e Attributes of CIM meta-elements are represented as UML properties (UML Property metaclass
defined in Unified Modeling Language: Superstructure)

e Relationships between CIM meta-elements are represented as UML associations (UML
Association metaclass defined in Unified Modeling Language: Superstructure) whose
association ends are owned by the associated metaclasses. The reason for that ownership is
that UML Association metaclasses do not have the ability to own attributes or operations. Such
relationships are defined in the "Association ends" sections of each meta-element definition.

Languages defining CIM schemas and models (e.g., CIM Managed Object Format) shall use the meta-
schema defined in this subclause, or an equivalent meta-schema, as a basis.

A meta schema describing the actual run-time objects in a CIM server is not in scope of this CIM meta
schema. Such a meta schema may be closely related to the CIM meta schema defined in this subclause,
but there are also some differences. For example, a CIM instance specified in a schema or model
following this CIM meta schema may specify property values for a subset of the properties its defining
class exposes, while a CIM instance in a CIM server always has all properties exposed by its defining
class.

Any statement made in this document about a kind of CIM element also applies to sub-types of the
element. For example, any statement made about classes also applies to indications and associations. In
some cases, for additional clarity, the sub-types to which a statement applies, is also indicated in
parenthesis (example: "classes (including association and indications)").

If a statement is intended to apply only to a particular type but not to its sub-types, then the additional
qualification "ordinary” is used. For example, an ordinary class is a class that is not an indication or an
association.

Figure 2 shows a UML class diagram with all meta-elements and their relationships defined in the CIM
meta schema.

Version 2.8.0 DMTF Standard 29

996
997

998
999

DSP0004

Common Information Model (CIM) Infrastructure
ElementQualifierType
0.1 |
1 SpecifiedQualifier
NamedElement |[@
- i SchemaElement
+Name : string
% 1. TriggeringElement
[¢! ‘
Trigger Schema Qualifier
%
. *d dicati Class fini I
TriggeredIindication 11 1 DefiningClass DefiningQualifier
01 T§T N1 § |
* Instance
Generalization
* | 1
Indication Association
SpecifiedProperty
*
TypedElement DefiningProperty InstanceProperty
MethodDomain PropertyDomain S
N JRVAN 0.1
: ERE | oa
Method Property QualifierType *
1 +Scope : string >
0.1 0.1 0.1
: *0..10 1
MethodOverride PropertyOverride
ElementType QualifierTypeFlavor
MethodParameter
* 1
Parameter Reference Flavor
+InheritancePropagation : boolean
+OverridePermission : boolean
1 ReferenceRange +Translatable : boolean
PropertyDefaultValue -

Type 1 ValueType pery QualifierTypeDefaultValue
+IsArray : boolean PropertyValue
+ArraySize : integer —

A QualifierValue
0.1)0.1 1 1]
0.1 o Value
PrimitiveType ReferenceType +Value : string
+TypeName : string . +IsNull : boolean

NOTE: The CIM meta schema has been defined such that it can be defined as a CIM model provides a CIM model

Figure 2 — CIM Meta Schema

representing the CIM meta schema.

30

DMTF Standard

Version 2.8.0

DSP0004 Common Information Model (CIM) Infrastructure

1000 5.1.1 Formal Syntax used in Descriptions

1001 In 5.1.2, the description of attributes and association ends of CIM meta-elements uses the following
1002 formal syntax defined in ABNF. Unless otherwise stated, the ABNF in this subclause has whitespace
1003 allowed. Further ABNF rules are defined in ANNEX A.

1004 Descriptions of attributes use the attribute-format ABNF rule:

1005 attribute-format = attr-name ":" attr-type ("[" attr-multiplicity "]")
1006 ; the format used to describe the attributes of CIM meta-elements
1007

1008 attr-name = IDENTIFIER

1009 ; the name of the attribute

1010

1011 attr-type = type

1012 ; the datatype of the attribute

1013

1014 type = "string" ; a string of UCS characters of arbitrary length
1015 / "boolean" ; a boolean value

1016 / "integer" ; a signed 64-bit integer value

1017

1018 attr-multiplicity = cardinality-format

1019 ; the multiplicity of the attribute. The default multiplicity is 1

1020 Descriptions of association ends use the association-end-format ABNF rule:

1021 association-end-format = other-role ":" other-element "[" other-cardinality "]"
1022 ; the format used to describe association ends of associations

1023 ; between CIM meta-elements

1024

1025 other-role = IDENTIFIER

1026 ; the role of the association end (on this side of the relationship)

1027 ; that is referencing the associated meta-element

1028

1029 other-element = IDENTIFIER

1030 ; the name of the associated meta-element

1031

1032 other-cardinality = cardinality-format

1033 ; the cardinality of the associated meta-element

1034

1035 cardinality-format = positiveIntegerValue ; exactly that
1036 AR ; zero to any
1037 / integerValue ".." positivelntegerValue ; min to max

1038 / integerValue ".." "*" ; min to any

1039 ; format of a cardinality specification

1040

1041 integerValue = decimalDigit *decimalDigit ; no whitespace allowed
1042

1043 positiveIntegerValue = positiveDecimalDigit *decimalDigit ; no whitespace allowed

Version 2.8.0 DMTF Standard 31

1044

1045
1046

1047
1048

1049
1050

1051
1052

1053
1054

1055

1056

1057
1058

1059

1060
1061

1062
1063

1064
1065

1066

1067
1068

1069
1070
1071

1072
1073
1074

Common Information Model (CIM) Infrastructure DSP0004

5.1.2 CIM Meta-Elements

5.1.2.1 NamedElement
Abstract class for CIM elements, providing the ability for an element to have a name.

Some kinds of elements provide the ability to have qualifiers specified on them, as described in
subclasses of NamedElement.

Generalization: None
Non-default UML characteristics: isAbstract = True

Attributes:

e Name: string

The name of the element. The format of the name is determined by subclasses of
NamedElement.

The names of elements shall be compared case-insensitively.

Association ends:

¢ OwnedQualifier : Qualifier [] (composition SpecifiedQualifier, aggregating on its
OwningElement end)

The qualifiers specified on the element.

e OwningSchema : Schema [1] (composition SchemaElement, aggregating on its
OwningSchema end)

The schema owning the element.

e Trigger : Trigger [*] (association TriggeringElement)

The triggers specified on the element.

e QualifierType : QualifierType [*] (association ElementQualifierType)
The qualifier types implicitly defined on the element.

Note: Qualifier types defined explicitly are not associated to elements; they are global in the
CIM namespace.

DEPRECATED
The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details.
DEPRECATED

Additional constraints:
1) The value of Name shall not be Null.

2) The value of Name shall not be one of the reserved words defined in 7.5.

32 DMTF Standard Version 2.8.0

1075
1076

1077
1078

1079
1080
1081

1082
1083

1084
1085

1086
1087
1088
1089

1090
1091

1092
1093

1094
1095

1096
1097

1098

1099
1100

1101
1102

1103
1104
1105

1106

1107
1108

DSP0004 Common Information Model (CIM) Infrastructure

5.1.2.2 TypedElement
Abstract class for CIM elements that have a CIM data type.

Not all kinds of CIM data types may be used for all kinds of typed elements. The details are determined
by subclasses of TypedElement.

Generalization: NamedElement
Non-default UML characteristics: isAbstract = True
Attributes: None

Association ends:

e OwnedType : Type [1] (composition ElementType, aggregating on its OwningElement end)
The CIM data type of the element.

Additional constraints: None

5.1.2.3 Type

Abstract class for any CIM data types, including arrays of such.
Generalizations: None

Non-default UML characteristics: isAbstract = True

Attributes:
. IsArray : boolean
Indicates whether the type is an array type. For details on arrays, see 7.9.2.
e ArraySize : integer

If the type is an array type, a hon-Null value indicates the size of a fixed-length array, and a Null
value indicates a variable-length array. For details on arrays, see 7.9.2.

Deprecation Note: Fixed-length arrays have been deprecated in version 2.8 of this document.
See 7.9.2 for details.

Association ends:

e OwningElement : TypedElement [0..1] (composition ElementType, aggregating on its
OwningElement end)

e OwningValue : Value [0..1] (composition ValueType, aggregating on its OwningValue end)
The element that has a CIM data type.

Additional constraints:
1) The value of IsArray shall not be Null.

2) If the type is no array type, the value of ArraySize shall be Null.

Equivalent OCL class constraint:

inv: self.IsArray = False
implies self.ArraySize.IsNull ()

Version 2.8.0 DMTF Standard 33

1109

1110

1111
1112

1113
1114
1115
1116

1117
1118

1119
1120

1121

1122
1123

1124

1125
1126

1127

1128
1129
1130
1131
1132
1133
1134

1135
1136
1137
1138
1139

1140
1141

1142

Common Information Model (CIM) Infrastructure DSP0004

3) A Type instance shall be owned by only one owner.

Equivalent OCL class constraint:
inv: self.ElementType [OwnedType] .OwningElement->size () +

self.ValueType [OwnedType] .OwningValue->size () = 1

5.1.2.4 PrimitiveType

A CIM data type that is one of the intrinsic types defined in Table 2, excluding references.
Generalization: Type

Non-default UML characteristics: None

Attributes:
e TypeName : string

The name of the CIM data type.
Association ends: None

Additional constraints:

1) The value of TypeName shall follow the formal syntax defined by the dataType ABNF rule in
ANNEX A.

2) The value of TypeName shall not be Null.

3) This kind of type shall be used only for the following kinds of typed elements: Method,
Parameter, ordinary Property, and QualifierType.

Equivalent OCL class constraint:

inv: let e : NamedElement =
self.ElementType [OwnedType] .OwningElement
in
.0clIsTypeOf (Method) or
.0clIsTypeOf (Parameter) or

(
(
.0clIsTypeOf (Property) or
(

® ® ® O

.0clIsTypeOf (QualifierType)

5.1.2.5 ReferenceType

A CIM data type that is a reference, as defined in Table 2.
Generalization: Type

Non-default UML characteristics: None

Attributes: None

Association ends:

o ReferencedClass : Class [1] (association ReferenceRange)

The class referenced by the reference type.

34 DMTF Standard Version 2.8.0

1143

1144
1145

1146

1147
1148
1149
1150
1151

1152
1153

1154
1155
1156
1157

1158

1159
1160

1161
1162
1163

1164

1165
1166

1167

1168

1169
1170

1171
1172
1173
1174

1175

1176
1177

1178
1179
1180

DSP0004 Common Information Model (CIM) Infrastructure

Additional constraints:

1) This kind of type shall be used only for the following kinds of typed elements: Parameter and
Reference.

Equivalent OCL class constraint:

inv: let e : NamedElement = /* the typed element */
self.ElementType [OwnedType] .OwningElement
in
e.oclIsTypeOf (Parameter) or

e.oclIsTypeOf (Reference)
2) When used for a Reference, the type shall not be an array.
Equivalent OCL class constraint:

inv: self.ElementType [OwnedType] .OwningElement.
oclIsTypeOf (Reference)
implies
self.IsArray = False
5.1.2.6 Schema

Models a CIM schema. A CIM schema is a set of CIM classes with a single defining authority or owning
organization.

Generalization: NamedElement
Non-default UML characteristics: None
Attributes: None

Association ends:

e OwnedElement : NamedElement [¥] (composition SchemaElement, aggregating on its
OwningSchema end)

The elements owned by the schema.

Additional constraints:

1) The value of the Name attribute shall follow the formal syntax defined by the schemaName
ABNF rule in ANNEX A.

2) The elements owned by a schema shall be only of kind Class.
Equivalent OCL class constraint:

inv: self.SchemaElement [OwningSchema] .OwnedElement.

oclIsTypeOf (Class)

5.1.2.7 Class

Models a CIM class. A CIM class is a common type for a set of CIM instances that support the same
features (i.e., properties and methods). A CIM class models an aspect of a managed element.

Classes may be arranged in a generalization hierarchy that represents subtype relationships between
classes. The generalization hierarchy is a rooted, directed graph and does not support multiple
inheritance.

Version 2.8.0 DMTF Standard 35

1181
1182

1183
1184
1185
1186
1187

1188

1189
1190

1191
1192

1193
1194

1195
1196

1197
1198

1199
1200

1201

1202

1203
1204

1205
1206

1207

1208
1209

1210
1211
1212

1213
1214
1215
1216

Common Information Model (CIM) Infrastructure DSP0004

A class may have methods, which represent their behavior, and properties, which represent the data
structure of its instances.

A class may participate in associations as the target of an association end owned by the association.
A class may have instances.

Generalization: NamedElement

Non-default UML characteristics: None

Attributes: None

Association ends:

e OwnedProperty : Property [¥] (composition PropertyDomain, aggregating on its OwningClass
end)

The properties owned by the class.

e OwnedMethod : Method [*] (composition MethodDomain, aggregating on its OwningClass end)

The methods owned by the class.

o ReferencingType : ReferenceType [*] (association ReferenceRange)

The reference types referencing the class.

e SuperClass : Class [0..1] (association Generalization)

The superclass of the class.

e SubClass : Class [*] (association Generalization)

The subclasses of the class.

e Instance : Instance [*] (association DefiningClass)
The instances for which the class is their defining class.

Additional constraints:

1) The value of the Name attribute (i.e., the class hame) shall follow the formal syntax defined by
the className ABNF rule in ANNEX A.

NOTE: The name of the schema containing the class is part of the class name.

2) The class name shall be unique within the schema owning the class.

5.1.2.8 Property

Models a CIM property defined in a CIM class. A CIM property is the declaration of a structural feature of
a CIM class, i.e., the data structure of its instances.

Properties are inherited to subclasses such that instances of the subclasses have the inherited properties
in addition to the properties defined in the subclass. The combined set of properties defined in a class
and properties inherited from superclasses is called the properties exposed by the class.

A class defining a property may indicate that the property overrides an inherited property. In this case, the
class exposes only the overriding property. The characteristics of the overriding property are formed by
using the characteristics of the overridden property as a basis, changing them as defined in the overriding
property, within certain limits as defined in section "Additional constraints".

36 DMTF Standard Version 2.8.0

1217
1218
1219
1220
1221

1222
1223
1224
1225

1226
1227

1228
1229
1230
1231

1232
1233

1234

1235
1236
1237
1238
1239
1240

1241
1242
1243

1244
1245
1246
1247
1248
1249
1250
1251
1252

1253
1254

1255
1256

DSP0004 Common Information Model (CIM) Infrastructure

Classes shall not define a property of the same name as an inherited property, unless the so defined
property overrides the inherited property. Whether a class with such duplicate properties exposes both
properties, or only the inherited property or only the property defined in the subclass is implementation-
specific. Version 2.7.0 of this specification prohibited such duplicate properties within the same schema
and deprecated their use across different schemas; version 2.8.0 prohibited them comprehensively.

Between an underlying schema (e.g., the DMTF published CIM schema) and a derived schema (e.g., a
vendor schema), the definition of such duplicated properties could occur if both schemas are updated
independently. Therefore, care should be exercised by the owner of the derived schema when moving to
a new release of the underlying schema in order to avoid this situation.

If a property defines a default value, that default value shall be consistent with any initialization
constraints for the property.

An initialization constraint limits the range of initial values of the property in new CIM instances.
Initialization constraints for properties may be specified via the PropertyConstraint qualifier (see 5.6.3.39).
Other specifications can additionally constrain the range of values for a property within a conformant
implementation.

For example, management profiles may define initialization constraints, or operations may create new
CIM instances with specific initial values.

The initial value of a property shall be conformant to all specified initialization constraints.

If no default value is defined for a property, and no value is provided at initialization, then the property will
initially have no value, (i.e. it shall be Null.) Unless a property is specified to be Null at initialization time,
an implementation may provide a value that is consistent with the property type and any initialization
constraintsDefault values defined on properties in a class propagate to overriding properties in its
subclasses. The value of the PropertyConstraint qualifier also propagates to overriding properties in
subclasses, as defined in its qualifier type.

Generalization: TypedElement
Non-default UML characteristics: None
Attributes: None.

Association ends:

e OwningClass : Class [1] (composition PropertyDomain, aggregating on its OwningClass end)
The class owning (i.e., defining) the property.

e OverriddenProperty : Property [0..1] (association PropertyOverride)
The property overridden by this property.

e OverridingProperty : Property [*] (association PropertyOverride)
The property overriding this property.

e InstanceProperty : InstanceProperty [*] (association DefiningProperty)
A value of this property in an instance.

e OwnedDefaultValue : Value [0..1] (composition PropertyDefaultValue, aggregating on its
OwningProperty end)

The default value of the property declaration. A Value instance shall be associated if and only if
a default value is defined on the property declaration.

Version 2.8.0 DMTF Standard 37

Common Information Model (CIM) Infrastructure DSP0004

Additional constraints:

1) The value of the Name attribute (i.e., the property name) shall follow the formal syntax defined
by the propertyName ABNF rule in ANNEX A.

2) Property names shall be unique within its owning (i.e., defining) class.

3) An overriding property shall have the same name as the property it overrides.
Equivalent OCL class constraint:

inv: self.PropertyOverride[OverridingProperty]->
size() = 1
implies
self.PropertyOverride [OverridingProperty].
OverriddenProperty.Name.toUpper () =
self.Name. toUpper ()

4) The class owning an overridden property shall be a (direct or indirect) superclass of the class
owning the overriding property.

5) For ordinary properties, the data type of the overriding property shall be the same as the data
type of the overridden property.

Equivalent OCL class constraint:

inv: self.oclIsTypeOf (Meta Property) and
PropertyOverride [OverridingProperty] —->
size() = 1
implies
let pt :Type = /* type of property */
self.ElementType[Element] .Type
in
let opt : Type = /* type of overridden prop. */
self.PropertyOverride [OverridingProperty] .
OverriddenProperty.Meta ElementType[Element] .Type
in
opt.TypeName. toUpper () = pt.TypeName.toUpper () and
opt.IsArray = pt.IsArray and
opt.ArraySize = pt.ArraySize

6) For references, the class referenced by the overriding reference shall be the same as, or a
subclass of, the class referenced by the overridden reference.

7) A property shall have no more than one initialization constraint defined (either via its default
value or via the PropertyConstraint qualifier, see 5.6.3.39).

8) A property shall have no more than one derivation constraint defined (via the PropertyConstraint
qualifier, see 5.6.3.39).

5.1.2.9 Method

Models a CIM method. A CIM method is the declaration of a behavioral feature of a CIM class,
representing the ability for invoking an associated behavior.

The CIM data type of the method defines the declared return type of the method.

Methods are inherited to subclasses such that subclasses have the inherited methods in addition to the
methods defined in the subclass. The combined set of methods defined in a class and methods inherited
from superclasses is called the methods exposed by the class.

A class defining a method may indicate that the method overrides an inherited method. In this case, the
class exposes only the overriding method. The characteristics of the overriding method are formed by

38 DMTF Standard Version 2.8.0

DSP0004 Common Information Model (CIM) Infrastructure

using the characteristics of the overridden method as a basis, changing them as defined in the overriding
method, within certain limits as defined in section "Additional constraints".

Classes shall not define a method of the same name as an inherited method, unless the so defined
method overrides the inherited method. Whether a class with such duplicate properties exposes both
methods, or only the inherited method or only the method defined in the subclass is implementation-
specific. Version 2.7.0 of this specification prohibited such duplicate methods within the same schema
and deprecated their use across different schemas; version 2.8.0 prohibited them comprehensively.

Between an underlying schema (e.g., the DMTF published CIM schema) and a derived schema (e.g., a
vendor schema), the definition of such duplicated methods could occur if both schemas are updated
independently. Therefore, care should be exercised by the owner of the derived schema when moving to
a new release of the underlying schema in order to avoid this situation.

Generalization: TypedElement
Non-default UML characteristics: None
Attributes: None

Association ends:

e OwningClass : Class [1] (composition MethodDomain, aggregating on its OwningClass end)

The class owning (i.e., defining) the method.

e OwnedParameter : Parameter [*] (composition MethodParameter, aggregating on its
OwningMethod end)

The parameters of the method. The return value of a method is not represented as a parameter.
e OverriddenMethod : Method [0..1] (association MethodOverride)

The method overridden by this method.
e OverridingMethod : Method [*] (association MethodOverride)

The method overriding this method.

Additional constraints:

1) The value of the Name attribute (i.e., the method name) shall follow the formal syntax defined
by the methodName ABNF rule in ANNEX A.

2) Method names shall be unique within its owning (i.e., defining) class.

3) An overriding method shall have the same name as the method it overrides.
Equivalent OCL class constraint:

inv: self.MethodOverride[OverridingMethod]->
size() = 1
implies
self.MethodOverride [OverridingMethod] .
OverriddenMethod.Name.toUpper () =
self.Name. toUpper ()

4) The return type of a method shall not be an array.

Equivalent OCL class constraint:

Version 2.8.0 DMTF Standard 39

Common Information Model (CIM) Infrastructure DSP0004

inv: self.ElementType[Element].Type.IsArray = False

5) The class owning an overridden method shall be a superclass of the class owning the overriding
method.

6) An overriding method shall have the same signature (i.e., parameters and return type) as the
method it overrides.

Equivalent OCL class constraint:

inv: MethodOverride[OverridingMethod]->size() = 1
implies
let om : Method = /* overridden method */
self.MethodOverride [OverridingMethod] .
OverriddenMethod
in
om.ElementType [Element] .Type.TypeName. toUpper () =
self.ElementType [Element] .Type.TypeName. toUpper ()
and
Set {1 .. om.MethodParameter [OwningMethod].
OwnedParameter->size () }
->forAll(1 /
let omp : Parameter = /* parm in overridden method */
om.MethodParameter [OwningMethod] .OwnedParameter->
asOrderedSet () —>at (1)
in
let selfp : Parameter = /* parm in overriding method */
self.MethodParameter [OwningMethod] .OwnedParameter—>
asOrderedSet () ->at (1)
in
omp.Name.toUpper () = selfp.Name.toUpper () and
omp.ElementType [Element] .Type.TypeName. toUpper () =
selfp.ElementType [Element] . Type.TypeName.toUpper ()
)

5.1.2.10 Parameter

Models a CIM parameter. A CIM parameter is the declaration of a parameter of a CIM method. The return
value of a method is not modeled as a parameter.

Generalization: TypedElement
Non-default UML characteristics: None
Attributes: None

Association ends:

e OwningMethod : Method [1] (composition MethodParameter, aggregating on its
OwningMethod end)

The method owning (i.e., defining) the parameter.

Additional constraints:

1) The value of the Name attribute (i.e., the parameter name) shall follow the formal syntax defined
by the parameterName ABNF rule in ANNEX A.

5.1.2.11 Trigger

Models a CIM trigger. A CIM trigger is the specification of a rule on a CIM element that defines when the
trigger is to be fired.

40 DMTF Standard Version 2.8.0

1387

1388
1389

1390
1391

1392
1393

1394
1395

1396

1397
1398

1399
1400
1401

1402
1403

1404
1405

1406

1407

1408
1409

1410
1411

1412

1413
1414

1415
1416
1417
1418
1419
1420
1421

1422

1423
1424
1425
1426

DSP0004 Common Information Model (CIM) Infrastructure

Triggers may be fired on the following occasions:

e On creation, deletion, modification, or access of CIM instances of ordinary classes and
associations. The trigger is specified on the class in this case and applies to all instances.

¢ On modification, or access of a CIM property. The trigger is specified on the property in this
case and applies to all instances.

e Before and after the invocation of a CIM method. The trigger is specified on the method in this
case and applies to all invocations of the method.

e When a CIM indication is raised. The trigger is specified on the indication in this case and
applies to all occurrences for when this indication is raised.

The rules for when a trigger is to be fired are specified with the TriggerType qualifier.

The firing of a trigger shall cause the indications to be raised that are associated to the trigger via
Triggeredindication.

Generalization: NamedElement
Non-default UML characteristics: None
Attributes: None

Association ends:

e Element: NamedElement [1..*] (association TriggeringElement)

The CIM element on which the trigger is specified.

¢ Indication : Indication [*] (association TriggeredIndication)
The CIM indications to be raised when the trigger fires.

Additional constraints:

1) The value of the Name attribute (i.e., the name of the trigger) shall be unique within the class,
property, or method on which the trigger is specified.

2) Triggers shall be specified only on ordinary classes, associations, properties (including
references), methods and indications.

Equivalent OCL class constraint:

inv: let e : NamedElement = /* the element on which the trigger is specified*/
self. TriggeringElement[Trigger].Element

in
e.ocllsTypeOf(Class) or
e.ocllsTypeOf(Association) or
e.oclisTypeOf(Property) or
e.oclisTypeOf(Reference) or
e.ocllsTypeOf(Method) or
e.ocllsTypeOf(Indication)

5.1.2.12 Indication

Models a CIM indication. An instance of a CIM indication represents an event that has occurred. If an
instance of an indication is created, the indication is said to be raised. The event causing an indication to
be raised may be that a trigger has fired, but other arbitrary events may cause an indication to be raised
as well.

Version 2.8.0 DMTF Standard 41

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

1437

1438
1439
1440

1441
1442
1443
1444
1445
1446
1447

1448
1449

1450

1451

1452
1453

1454
1455

1456

1457
1458
1459
1460
1461

Common Information Model (CIM) Infrastructure DSP0004

Generalization: Class

Non-default UML characteristics: None

Attributes: None

Association ends:

Trigger : Trigger [*] (association Triggeredindication)

The triggers that when fired cause the indication to be raised.

Additional constraints:

1)

An indication shall not own any methods.

Equivalent OCL class constraint:

inv: self.MethodDomain[OwningClass] .OwnedMethod->size () = 0

5.1.2.13 Association

Models a CIM association. A CIM association is a special kind of CIM class that represents a relationship
between two or more CIM classes. A CIM association owns its association ends (i.e., references). This
allows for adding associations to a schema without affecting the associated classes.

Generalization: Class

Non-default UML characteristics: None

Attributes: None

Association ends: None

Additional constraints:

1

2)

3)

The superclass of an association shall be an association.
Equivalent OCL class constraint:

inv: self.Generalization[SubClass].SuperClass->

oclIsTypeOf (Association)

An association shall own two or more references.
Equivalent OCL class constraint:

inv: self.PropertyDomain[OwningClass] .OwnedProperty->

select(p / p.oclIsTypeOf (Reference))->size() >= 2

The number of references exposed by an association (i.e., its arity) shall not change in its
subclasses.

Equivalent OCL class constraint:

inv: self.PropertyDomain[OwningClass] .OwnedProperty—->
select(p / p.oclIsTypeOf (Reference))->size() =
self.Generalization[SubClass] .SuperClass—>
PropertyDomain [OwningClass] .OwnedProperty->
select(p / p.oclIsTypeOf (Reference))->size ()

42

DMTF Standard Version 2.8.0

1462

1463
1464

1465
1466
1467
1468

1469

1470
1471

1472

1473
1474

1475

1476
1477

1478

1479
1480

1481
1482
1483
1484
1485

1486
1487

1488
1489

1490
1491

1492
1493
1494
1495
1496

DSP0004 Common Information Model (CIM) Infrastructure

5.1.2.14 Reference

Models a CIM reference. A CIM reference is a special kind of CIM property that represents an association
end, as well as a role the referenced class plays in the context of the association owning the reference.

Generalization: Property

Non-default UML characteristics: None
Attributes: None

Association ends: None

Additional constraints:

1) The value of the Name attribute (i.e., the reference name) shall follow the formal syntax defined
by the referenceName ABNF rule in ANNEX A.

2) Areference shall be owned by an association (i.e., not by an ordinary class or by an indication).

As a result of this, reference names do not need to be unique within any of the associated
classes.

Equivalent OCL class constraint:

inv: self.PropertyDomain[OwnedProperty].OwningClass.

oclIsTypeOf (Association)

5.1.2.15 Qualifier Type

Models the declaration of a CIM qualifier (i.e., a qualifier type). A CIM qualifier is meta data that provides
additional information about the element on which the qualifier is specified.

The qualifier type is either explicitly defined in the CIM namespace, or implicitly defined on an element as
a result of a qualifier that is specified on an element for which no explicit qualifier type is defined.

DEPRECATED
The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for detalils.
DEPRECATED

Generalization: TypedElement
Non-default UML characteristics: None
Attributes:

e Scope : string [*]

The scopes of the qualifier. The qualifier scopes determine to which kinds of elements a
qualifier may be specified on. Each qualifier scope shall be one of the following keywords:

"any" - the qualifier may be specified on any qualifiable element.
— "class" - the qualifier may be specified on any ordinary class.
— "association" - the gqualifier may be specified on any association.
— indication" - the qualifier may be specified on any indication.

— "property" - the qualifier may be specified on any ordinary property.

Version 2.8.0 DMTF Standard 43

1497
1498
1499
1500

1501
1502

1503
1504
1505
1506
1507

1508
1509
1510

1511

1512

1513
1514

1515

1516
1517
1518

1519
1520

1521
1522

1523
1524
1525

1526

1527
1528
1529

Common Information Model (CIM) Infrastructure DSP0004

— "reference" - the qualifier may be specified on any reference.
— "method" - the qualifier may be specified on any method.

— "parameter" - the qualifier may be specified on any parameter.
Qualifiers cannot be specified on qualifiers.

Association ends:
e Flavor : Flavor [1] (composition QualifierTypeFlavor, aggregating on its QualifierType end)
The flavor of the qualifier type.
e Qualifier ; Qualifier [*] (association DefiningQualifier)
The specified qualifiers (i.e., usages) of the qualifier type.
e Element: NamedElement [0..1] (association ElementQualifierType)

For implicitly defined qualifier types, the element on which the qualifier type is defined.

DEPRECATED
The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details.
DEPRECATED

Qualifier types defined explicitly are not associated to elements; they are global in the CIM namespace.

Additional constraints:

1) The value of the Name attribute (i.e., the name of the qualifier) shall follow the formal syntax
defined by the qualifierName ABNF rule in ANNEX A.

2) The names of explicitly defined qualifier types shall be unique within the CIM namespace.

NOTE: Unlike classes, qualifier types are not part of a schema, so name uniqueness cannot be defined at
the definition level relative to a schema, and is instead only defined at the object level relative to a
namespace.

3) The names of implicitly defined qualifier types shall be unique within the scope of the CIM
element on which the qualifiers are specified.

4) Implicitly defined qualifier types shall agree in data type, scope, flavor and default value with
any explicitly defined qualifier types of the same name.

DEPRECATED
The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details.
DEPRECATED

5.1.2.16 Qualifier

Models the specification (i.e., usage) of a CIM qualifier on an element. A CIM qualifier is meta data that
provides additional information about the element on which the qualifier is specified. The specification of a
qualifier on an element defines a value for the qualifier on that element.

44 DMTF Standard Version 2.8.0

1530
1531
1532

1533
1534
1535

1536
1537

1538
1539

1540

1541
1542

1543

1544
1545

1546

1547

1548
1549

1550

1551
1552

1553
1554

1555
1556

1557
1558

1559

1560
1561

1562
1563

DSP0004 Common Information Model (CIM) Infrastructure

If no explicitly defined qualifier type exists with this name in the CIM namespace, the specification of a
qualifier causes an implicitly defined qualifier type (i.e., a QualifierType element) to be created on the
qualified element.

DEPRECATED
The concept of implicitly defined qualifier types is deprecated. Use explicitly defined qualifiers instead.

DEPRECATED

Generalization: NamedElement
Non-default UML characteristics: None

Attributes:

e Value: string [*]
The value of the qualifier, in its string representation.
Association ends:
e QualifierType : QualifierType [1] (association DefiningQualifier)
The qualifier type defining the characteristics of the qualifier.

e OwningElement : NamedElement [1] (composition SpecifiedQualifier, aggregating on its
OwningElement end)

The element on which the qualifier is specified.

Additional constraints:

1) The value of the Name attribute (i.e., the name of the qualifier) shall follow the formal syntax
defined by the qualifierName ABNF rule in ANNEX A.

5.1.2.17 Flavor

The specification of certain characteristics of the qualifier such as its value propagation from the ancestry
of the qualified element, and translatability of the qualifier value.

Generalization: None
Non-default UML characteristics: None

Attributes:

. InheritancePropagation : boolean

Indicates whether the qualifier value is to be propagated from the ancestry of an element in
case the qualifier is not specified on the element.

. OverridePermission : boolean

Indicates whether qualifier values propagated to an element may be overridden by the
specification of that qualifier on the element.

. Translatable : boolean

Indicates whether qualifier value is translatable.

Version 2.8.0 DMTF Standard 45

1564

1565
1566

1567
1568

1569

1570
1571

1572

1573
1574

1575
1576
1577

1578

1579
1580

1581
1582

1583
1584
1585
1586
1587
1588
1589

1590

1591
1592

1593

1594

1595
1596

1597
1598

Common Information Model (CIM) Infrastructure DSP0004

Association ends:

e QualifierType : QualifierType [1] (composition QualifierTypeFlavor, aggregating on its
QualifierType end)

The qualifier type defining the flavor.

Additional constraints: None

5.1.2.18 Instance

Models a CIM instance. A CIM instance is an instance of a CIM class that specifies values for a subset
(including all) of the properties exposed by its defining class.

A CIM instance in a CIM server shall have exactly the properties exposed by its defining class.

A CIM instance cannot redefine the properties or methods exposed by its defining class and cannot have
qualifiers specified.

Generalization: None
Non-default UML characteristics: None
Attributes: None

Association ends:

o OwnedPropertyValue : PropertyValue [*] (composition SpecifiedProperty, aggregating on its
Owninglnstance end)

The property values specified by the instance.

o DefiningClass : Class [1] (association DefiningClass)
The defining class of the instance.

Additional constraints:

1) A particular property shall be specified at most once in a given instance.
5.1.2.19 InstanceProperty
The definition of a property value within a CIM instance.
Generalization: None
Non-default UML characteristics: None

Attributes:

e OwnedValue :Value [1] (composition PropertyValue, aggregating on its
OwninglnstanceProperty end)

The value of the property.

Association ends:

e Owninglnstance : Instance [1] (composition SpecifiedProperty, aggregating on its
Owninglnstance end)

The instance for which a property value is defined.

o DefiningProperty : PropertyValue [1] (association DefiningProperty)

46 DMTF Standard Version 2.8.0

1599
1600

1601
1602
1603
1604
1605
1606
1607
1608

1609
1610

1611
1612

1613

1614
1615

1616

1617
1618

1619

1620
1621

1622

1623
1624

1625
1626
1627
1628

1629
1630

1631
1632

DSP0004 Common Information Model (CIM) Infrastructure

The declaration of the property for which a value is defined.

Additional constraints: None

5.1.2.20 Value
A typed value, used in several contexts.
Generalization: None
Non-default UML characteristics: None
Attributes:
e Value : string [*]
The scalar value or the array of values. Each value is represented as a string.
e IsNull : boolean

The Null indicator of the value. If True, the value is Null. If False, the value is indicated through
the Value attribute.

Association ends:

e OwnedType : Type [1] (composition ValueType, aggregating on its OwningValue end)

The type of this value.

e OwningProperty : Property [0..1] (composition PropertyDefaultValue, aggregating on its
OwningProperty end)

A property declaration that defines this value as its default value.

e OwninglnstanceProperty : InstanceProperty [0..1] (composition PropertyValue, aggregating on
its OwninglnstanceProperty end)

A property defined in an instance that has this value.

e OwningQualifierType : QualifierType [0..1] (composition QualifierTypeDefaultValue,
aggregating on its OwningQualifierType end)

A qualifier type declaration that defines this value as its default value.

e OwningQualifier : Qualifier [0..1] (composition QualifierValue, aggregating on its
OwningQualifier end)

A qualifier defined on a schema element that has this value.
Additional constraints:
1) If the Null indicator is set, no values shall be specified.
Equivalent OCL class constraint:

inv: self.IsNull = True
implies self.Value->size() = 0

2) If values are specified, the Null indicator shall not be set.

Equivalent OCL class constraint:

Version 2.8.0 DMTF Standard 47

1633
1634

1635

1636

1637
1638
1639
1640

1641

1642
1643
1644
1645
1646
1647
1648

1649

1650

1651

1652
1653
1654

Common Information Model (CIM) Infrastructure DSP0004

inv: self.Value->size() > O

implies self.IsNull = False

3) A Value instance shall be owned by only one owner.

Equivalent OCL class constraint:

inv: self.OwningProperty->size() +
self.OwningInstanceProperty->size () +
self.OwningQualifierType->size () +

self.OwningQualifier->size() = 1

5.2 Data Types

Properties, references, parameters, and methods (that is, method return values) have a data type. These
data types are limited to the intrinsic data types or arrays of such. Additional constraints apply to the data
types of some elements, as defined in this document. Structured types are constructed by designing new
classes. There are no subtype relationships among the intrinsic data types uint8, sint8, uint16, sint16,
uint32, sint32, uint64, sint64, string, boolean, real32, real64, datetime, charl6, and arrays of them. CIM
elements of any intrinsic data type (including <classname> REF), and which are not further constrained in
this document, may be initialized to NULL. NULL is a keyword that indicates the absence of value.

Table 2 lists the intrinsic data types and how they are interpreted.

Table 2 — Intrinsic Data Types

Intrinsic Data Type Interpretation

uint8 Unsigned 8-bit integer

sint8 Signed 8-bit integer

uint1l6 Unsigned 16-bit integer

sint16 Signed 16-bit integer

uint32 Unsigned 32-bit integer

sint32 Signed 32-bit integer

uint64 Unsigned 64-bit integer

sint64 Signed 64-bit integer

string String of UCS characters as defined in 5.2.2

boolean Boolean

real32 4-byte floating-point value compatible with IEEE-754® Single format
real64 8-byte floating-point compatible with IEEE-754® Double format
datetime A 7-bit ASCII string containing a date-time, as defined in 5.2.4
<classname> ref Strongly typed reference

charl6 UCS character in UCS-2 coded representation form, as defined in 5.2.3

5.2.1 UCS and Unicode

ISO/IEC 10646:2003 defines the Universal Multiple-Octet Coded Character Set (UCS). The Unicode
Standard defines Unicode. This subclause gives a short overview on UCS and Unicode for the scope of
this document, and defines which of these standards is used by this document.

48 DMTF Standard Version 2.8.0

1655
1656
1657
1658

1659
1660
1661

1662

1663
1664

1665
1666
1667

1668
1669

1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

1684
1685

1686
1687
1688

1689
1690
1691

1692
1693

1694
1695
1696
1697

1698
1699

DSP0004 Common Information Model (CIM) Infrastructure

Even though these two standards define slightly different terminology, they are consistent in the
overlapping area of their scopes. Particularly, there are matching releases of these two standards that
define the same UCS/Unicode character repertoire. In addition, each of these standards covers some
scope that the other does not.

This document uses ISO/IEC 10646:2003 and its terminology. ISO/IEC 10646:2003 references some
annexes of The Unicode Standard. Where it improves the understanding, this document also states terms
defined in The Unicode Standard in parenthesis.

Both standards define two layers of mapping:

e Characters (Unicode Standard: abstract characters) are assigned to UCS code positions
(Unicode Standard: code points) in the value space of the integers 0 to OxX10FFFF.

e In this document, these code positions are referenced using the U+xxxxxx format defined in
ISO/IEC 10646:2003. In that format, the aforementioned value space would be stated as
U+0000 to U+10FFFF.

e Not all UCS code positions are assigned to characters; some code positions have a special
purpose and most code positions are available for future assignment by the standard.

e For some characters, there are multiple ways to represent them at the level of code positions.
For example, the character "LATIN SMALL LETTER A WITH GRAVE" (a) can be represented
as a single precomposed character at code position U+00EOQ (a), or as a sequence of two
characters: A base character at code position U+0061 (a), followed by a combination character
at code position U+0300 (7).ISO/IEC 10646:2003 references The Unicode Standard, Version
5.2.0, Annex #15: Unicode Normalization Forms for the definition of normalization forms. That
annex defines four normalization forms, each of which reduces such multiple ways for
representing characters in the UCS code position space to a single and thus predictable way.
The Character Model for the World Wide Web: String Matching and Searching recommends
using Normalization Form C (NFC) defined in that annex for all content, because this form
avoids potential interoperability problems arising from the use of canonically equivalent, yet
differently represented, character sequences in document formats on the Web. NFC uses
precomposed characters where possible, but not all characters of the UCS character repertoire
can be represented as precomposed characters.

e UCS code position values are assigned to binary data values of a certain size that can be
stored in computer memory.

e The set of rules governing the assignment of a set of UCS code points to a set of binary data
values is called a coded representation form (Unicode Standard: encoding form). Examples are
UCS-2, UTF-16 or UTF-8.

Two sequences of binary data values representing UCS characters that use the same normalization form
and the same coded representation form can be compared for equality of the characters by performing a
binary (e.g., octet-wise) comparison for equality.

5.2.2 String Type
Non-Null string typed values shall contain zero or more UCS characters (see 5.2.1), except U+0000.

Implementations shall support a character repertoire for string typed values that is that defined by
ISO/IEC 10646:2003 with its amendments ISO/IEC 10646:2003/Amd 1:2005 and ISO/IEC
10646:2003/Amd 2:2006 applied (this is the same character repertoire as defined by the Unicode
Standard 5.0).

It is recommended that implementations support the latest published UCS character repertoire in a timely
manner.

Version 2.8.0 DMTF Standard 49

1700
1701

1702
1703
1704
1705
1706
1707

1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

1718
1719
1720
1721

1722
1723

1724

1725

1726
1727
1728

1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Common Information Model (CIM) Infrastructure DSP0004

UCS characters in string typed values should be represented in Normalization Form C (NFC), as defined
in The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization Forms.

UCS characters in string typed values shall be represented in a coded representation form that satisfies
the requirements for the character repertoire stated in this subclause. Other specifications are expected
to specify additional rules on the usage of particular coded representation forms (see DSP0200 as an
example). In order to minimize the need for any conversions between different coded representation
forms, it is recommended that such other specifications mandate the UTF-8 coded representation form
(defined in ISO/IEC 10646:2003).

NOTE: Version 2.6.0 of this document introduced the requirement to support at least the character repertoire of
ISO/IEC 10646:2003 with its amendments ISO/IEC 10646:2003/Amd 1:2005 and ISO/IEC 10646:2003/Amd 2:2006
applied. Previous versions of this document simply stated that the string type is a "UCS-2 string" without offering
further details as to whether this was a definition of the character repertoire or a requirement on the usage of that
coded representation form. UCS-2 does not support the character repertoire required in this subclause, and it does
not satisfy the requirements of a number of countries, including the requirements of the Chinese national standard
GB18030. UCS-2 was superseded by UTF-16 in Unicode 2.0 (released in 1996), although it is still in use today. For
example, CIM clients that still use UCS-2 as an internal representation of string typed values will not be able to
represent all characters that may be returned by a CIM server that supports the character repertoire required in this
subclause.

5.2.3 Charl6 Type

The charl6 type is a 16-bit data entity. Non-Null charl16 typed values shall contain one UCS character
(see 5.2.1), except U+0000, in the coded representation form UCS-2 (defined in ISO/IEC 10646:2003).

DEPRECATED

Due to the limitations of UCS-2 (see 5.2.2), the charl6 type is deprecated since version 2.6.0 of this
document. Use the string type instead.

DEPRECATED

5.2.4 Datetime Type

The datetime type specifies a timestamp (point in time) or an interval. If it specifies a timestamp, the
timezone offset can be preserved. In both cases, datetime specifies the date and time information with
varying precision.

Datetime uses a fixed string-based format. The format for timestamps is:
yyyymmddhhmmss . mmmmmmsutc
The meaning of each field is as follows:
e yyyy is a4-digit year.
¢ mm is the month within the year (starting with 01).
e dd is the day within the month (starting with 01).
e hh is the hour within the day (24-hour clock, starting with 00).
e mm is the minute within the hour (starting with 00).
e ss is the second within the minute (starting with 00).

e mmmmmmn iS the microsecond within the second (starting with 000000).

50 DMTF Standard Version 2.8.0

1739
1740

1741
1742
1743
1744
1745

1746
1747

1748
1749
1750

1751

1752
1753
1754

1755
1756
1757

1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768

1769
1770

1771

1772
1773

1774
1775
1776
1777
1778
1779

DSP0004 Common Information Model (CIM) Infrastructure

e sis'+' (plus) or '-' (minus), indicating that the value is a timestamp, and indicating the sign of
the UTC offset as described for the utc field.

e utc and s indicate the UTC offset of the time zone in which the time expressed by the other
fields is the local time, including any effects of daylight savings time. The value of the utc field is
the absolute of the offset of that time zone from UTC (Universal Coordinated Time) in minutes.
The value of the s field is '+' (plus) for time zones east of Greenwich, and '—' (minus) for time
zones west of Greenwich.

Timestamps are based on the proleptic Gregorian calendar, as defined in section 3.2.1, "The Gregorian
calendar", of ISO 8601:2004.

Because datetime contains the time zone information, the original time zone can be reconstructed from
the value. Therefore, the same timestamp can be specified using different UTC offsets by adjusting the
hour and minutes fields accordingly.

Examples:

e Monday, January 25, 1998, at 1:30:15 PM EST (US Eastern Standard Time) is represented as
19980125133015.0000000-300. The same point in time is represented in the UTC time zone as
19980125183015.0000000+000.

e Monday, May 25, 1998, at 1:30:15 PM EDT (US Eastern Daylight Time) is represented as
19980525133015.0000000-240. The same point in time is represented in the German
(summertime) time zone as 19980525193015.0000000+120.

An alternative representation of the same timestamp is 19980525183015.0000000+000.
The format for intervals is as follows:

ddddddddhhmmss . mmmmmm: 000
The meaning of each field is as follows:

e dddddddd is the number of days.

e hh is the remaining number of hours.

e mm is the remaining number of minutes.

e ssis the remaining number of seconds.

e mmmmmm iS the remaining number of microseconds.

. : (colon) indicates that the value is an interval.

. 000 (the UTC offset field) is always zero for interval values.

For example, an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 0 microseconds would be
represented as follows:

00000001132312.000000:000

For both timestamps and intervals, the field values shall be zero-padded so that the entire string is always
25 characters in length.

For both timestamps and intervals, fields that are not significant shall be replaced with the asterisk (*)
character. Fields that are not significant are beyond the resolution of the data source. These fields
indicate the precision of the value and can be used only for an adjacent set of fields, starting with the
least significant field (mmmmmm) and continuing to more significant fields. The granularity for asterisks is
always the entire field, except for the mmmmmm field, for which the granularity is single digits. The UTC
offset field shall not contain asterisks.

Version 2.8.0 DMTF Standard 51

Common Information Model (CIM) Infrastructure DSP0004

1780 For example, if an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 125 milliseconds is measured
1781 with a precision of 1 millisecond, the formatis: 00000001132312.125***:000.

1782 The following operations are defined on datetime types:

1783 e Arithmetic operations:

1784 — Adding or subtracting an interval to or from an interval results in an interval.
1785 — Adding or subtracting an interval to or from a timestamp results in a timestamp.
1786 — Subtracting a timestamp from a timestamp results in an interval.

1787 — Multiplying an interval by a numeric or vice versa results in an interval.

1788 — Dividing an interval by a numeric results in an interval.

1789 Other arithmetic operations are not defined.

1790 e Comparison operations:

1791 — Testing for equality of two timestamps or two intervals results in a boolean value.
1792 — Testing for the ordering relation (<, <=, >, >=) of two timestamps or two intervals results in
1793 a boolean value.

1794 Other comparison operations are not defined.

1795 Comparison between a timestamp and an interval and vice versa is not defined.

1796 Specifications that use the definition of these operations (such as specifications for query languages)
1797 should state how undefined operations are handled.

1798 Any operations on datetime types in an expression shall be handled as if the following sequential steps
1799 were performed:

1800 1) Each datetime value is converted into a range of microsecond values, as follows:

1801 e The lower bound of the range is calculated from the datetime value, with any asterisks
1802 replaced by their minimum value.

1803 e The upper bound of the range is calculated from the datetime value, with any asterisks
1804 replaced by their maximum value.

1805 e The basis value for timestamps is the oldest valid value (that is, O microseconds

1806 corresponds to 00:00.000000 in the timezone with datetime offset +720, on January 1 in
1807 the year 1 BCE, using the proleptic Gregorian calendar). This definition implicitly performs
1808 timestamp normalization.

1809 NOTE: 1 BCE is the year before 1 CE.

1810 2) The expression is evaluated using the following rules for any datetime ranges:

1811 e Definitions:

1812 T(x,y) The microsecond range for a timestamp with the lower bound x and the upper
1813 bound y

1814 (X, y) The microsecond range for an interval with the lower bound x and the upper
1815 bound y

1816 D(x,y) The microsecond range for a datetime (timestamp or interval) with the lower
1817 bound x and the upper bound y

1818 e Rules:

52 DMTF Standard Version 2.8.0

DSP0004 Common Information Model (CIM) Infrastructure

1819 I(a, b) +I(c,d) := I(a+c, b+d)

1820 I(a, b) - I(c, d) := I(a-d, b-c)

1821 T(a, b) +1(c, d) := T(atc, b+d)

1822 T(a, b) - I(c,d) := T(a-d, b-c)

1823 T(a, b) - T(c,d) := I(a-d, b-c)

1824 I(a, b) *c = I(a*c, b*c)

1825 I(a,b)/c := I(alc, blc)

1826 D(a, b) < D(c, d) := Trueif b <c, False if a >= d, otherwise Null (uncertain)

1827 D(a, b) <= D(c, d) := Trueif b <= c, False if a > d, otherwise Null (uncertain)

1828 D(a, b) > D(c, d) := True if a > d, False if b <= ¢, otherwise Null (uncertain)

1829 D(a, b) >=D(c, d) := True if a >=d, False if b < c, otherwise Null (uncertain)

1830 D(a, b) = D(c,d) := Trueifa=b=c=d, False if b <c OR a > d, otherwise Null

1831 (uncertain)

1832 D(a, b) <> D(c, d) := Trueif b<c OR a>d, False if a=b = ¢ = d, otherwise Null

1833 (uncertain)

1834 These rules follow the well-known mathematical interval arithmetic. For a definition of
1835 mathematical interval arithmetic, see http://en.wikipedia.org/wiki/Interval arithmetic.

1836 NOTE 1: Mathematical interval arithmetic is commutative and associative for addition and

1837 multiplication, as in ordinary arithmetic.

1838 NOTE 2: Mathematical interval arithmetic mandates the use of three-state logic for the result of
1839 comparison operations. A special value called "uncertain” indicates that a decision cannot be made.
1840 The special value of "uncertain” is mapped to NULL in datetime comparison operations.

1841 3) Overflow and underflow condition checking is performed on the result of the expression, as
1842 follows:

1843 For timestamp results:

1844 e Atimestamp older than the oldest valid value in the timezone of the result produces
1845 an arithmetic underflow condition.

1846 e Atimestamp newer than the newest valid value in the timezone of the result produces
1847 an arithmetic overflow condition.

1848 For interval results:

1849 e A negative interval produces an arithmetic underflow condition.

1850 e A positive interval greater than the largest valid value produces an arithmetic overflow
1851 condition.

1852 Specifications using these operations (for instance, query languages) should define how these
1853 conditions are handled.

1854 4) If the result of the expression is a datetime type, the microsecond range is converted into a valid
1855 datetime value such that the set of asterisks (if any) determines a range that matches the actual
1856 result range or encloses it as closely as possible. The GMT timezone shall be used for any
1857 timestamp results.

1858 NOTE: For most fields, asterisks can be used only with the granularity of the entire field.

1859 Examples:

1860 "20051003110000.000000+000" + "00000000002233.000000:000"
1861 evaluates to "20051003112233.000000+000"
1862

Version 2.8.0 DMTF Standard 53

http://en.wikipedia.org/wiki/Interval_arithmetic

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

Common Information Model (CIM) Infrastructure

"20051003110000.******+000" + "00000000002233
evaluates to "20051003112233.******+Q000"

"20051003110000.******+000" + "00000000002233
evaluates to "200510031122** **x**x**x+(QQQ"

"20051003110000.******+000" + "00000000002233
evaluates to W20051L0031122% = wi i w 4000

"20051003110000.******+000" + "00000000005959
evaluates to "20051003*****xx xxkkkxx+(QQQ"

"20051003110000.******+000" + "000000000022**
evaluates to "2005100311****x *x*x*x*x*x*x+(QQQ"

"20051003112233.000000+000"™ - "00000000002233
evaluates to "20051003110000.000000+000"

"20051003112233.******4+000" - "00000000002233
evaluates to "20051003110000.****x**+000"

"20051003112233.******4+000" - "00000000002233
evaluates to "20051003110000.****x**+000"

"20051003112233.******4+000" - "00000000002232
evaluates to "200510031100**, *x*x**x**x+(QQQ"

"20051003112233.******4+000" - "00000000002233
evaluates to "20051003*****xx *x&kk*xx+(QQQ"

"20051003060000.000000-300" + "00000000002233
evaluates to "20051003112233.000000+000"

"20051003060000.******-300" + "00000000002233
evaluates to "20051003112233.***x*x*x+000"

Y00O0000OQOOILIL =2 i s QY * GO
eveluates to YOU0DOUOOILIL =z kg oo™

60 times adding up "000000000011**. ***x*xx*x:000
evaluates to "000000001L1*x** *xtxxx: (000"

"20051003112233.000000+000"
evaluates to True

"20051003112233

"20051003122233.000000+060"
evaluates to True

"20051003112233

"20051003112233.****x**x+000"

"20051003112233

.000000:000"

.00000*:000"

-******:OOO"

-******:OOO"

-******:OOO"

.000000:000"

.000000:000"

.00000*:000"

KRR xxEkk L OQQ"

LRk xx KKk OQQ"

.000000:000"

.000000:000"

.000000+000"

.000000+000"

‘******+000"

DSP0004

54 DMTF Standard

Version 2.8.0

1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

1925
1926

1927
1928

1929
1930

1931
1932

1933
1934
1935
1936
1937
1938
1939
1940
1941
1942

1943
1944

1945
1946
1947
1948

DSP0004

eval

uates to Null (uncertain)

Common Information Model (CIM) Infrastructure

M20051003112233 , F=*==*=*:000" = W2005L003LL22% % =20 Q0™

eval

uates to Null (uncertain)

"20051003112233.*x****x*+000" = "20051003112234.****x**+000"

eval

uates to False

"20051003112233.*x***x*x4+000" < "20051003112234.***x*x**+000"

eval

uates to True

"20051003112233.5****x*+000" < "20051003112233.***x***+000"

eval

A datetime value is valid if the value of each single field is in the valid range. Valid values shall not be

uates to Null (uncertain)

rejected by any validity checking within the CIM infrastructure.

Within these valid ranges, some values are defined as reserved. Values from these reserved ranges shall
not be interpreted as points in time or durations.

Within these reserved ranges, some values have special meaning. The CIM schema should not define

additional class-specific special values from the reserved range.

The valid and reserved ranges and the special values are defined as follows:

For timestamp values:

Oldest valid timestamp:

Oldest useable timestamp:

Youngest useable timestamp:

Youngest valid timestamp:
Special values in the reserved ranges:

"Now":

"Infinite past":

"Infinite future™:

For interval values:

Smallest valid and useable interval:

Largest useable interval:

"00000101000000.000000+720"
Reserved range (1 million values)
"00000101000001.000000+720"
Range interpreted as points in time
"99991231115959.999998-720"
Reserved range (1 value)

"99991231115959.999999-720"

"00000101000000.000000+720"
"00000101000000.999999+720"

"99991231115959.999999-720"

"00000000000000.000000:000"
Range interpreted as durations
"99999999235958.999999:000"

Reserved range (1 million values)

Version 2

.8.0

DMTF Standard

55

Common Information Model (CIM) Infrastructure DSP0004

1949 Largest valid interval: "99999999235959.999999:000"
1950 Special values in reserved range:
1951 "Infinite duration"; "99999999235959.000000:000"

1952 5.2.5 Indicating Additional Type Semantics with Qualifiers

1953 Because counter and gauge types are actually simple integers with specific semantics, they are not
1954 treated as separate intrinsic types. Instead, qualifiers must be used to indicate such semantics when
1955 properties are declared. The following example merely suggests how this can be done; the qualifier
1956 names chosen are not part of this standard:

1957 class ACME Example

1958 {

1959 [Counter]

1960 uint32 NumberOfCycles;

1961

1962 [Gauge]

1963 uint32 MaxTemperature;

1964

1965 [OctetString, ArrayType ("Indexed")]
1966 uint8 IPAddress[10];

1967 }:

1968 For documentation purposes, implementers are permitted to introduce such arbitrary qualifiers. The
1969 semantics are not enforced.

1970 5.2.6 Comparison of Values

1971 This subclause defines comparison of values for equality and ordering.

1972 Values of boolean datatypes shall be compared for equality and ordering as if "True" was 1 and "False
1973 was 0 and the mathematical comparison rules for integer numbers were used on those values.

1974 Values of integer number datatypes shall be compared for equality and ordering according to the
1975 mathematical comparison rules for the integer numbers they represent.

1976 Values of real number datatypes shall be compared for equality and ordering according to the rules
1977 defined in ANSI/IEEE 754-1985.

1978 Values of the string and char16 datatypes shall be compared for equality on a UCS character basis, by
1979 using the string identity matching rules defined in chapter 4 "String Identity Matching" of the Character
1980 Model for the World Wide Web: String Matching and Searching specification. As a result, comparisons
1981 between a charl6 typed value and a string typed value are valid.

1982 In order to minimize the processing involved in UCS normalization, string and char16 typed values should
1983 be stored and transmitted in Normalization Form C (NFC, see 5.2.2) where possible, which allows
1984 skipping the costly normalization when comparing the strings.

1985 This document does not define an order between values of the string and char16 datatypes, since UCS
1986 ordering rules may be compute intensive and their usage should be decided on a case by case basis.
1987 The ordering of the "Common Template Table" defined in ISO/IEC 14651:2007 provides a reasonable
1988 default ordering of UCS strings for human consumption. However, an ordering based on the UCS code
1989 positions, or even based on the octets of a particular UCS coded representation form is typically less
1990 compute intensive and may be sufficient, for example when no human consumption of the ordering result
1991 s needed.

56 DMTF Standard Version 2.8.0

1992
1993
1994
1995
1996
1997
1998
1999

2000
2001
2002

2003
2004
2005

2006
2007

2008
2009
2010

2011

2012
2013

2014
2015
2016
2017

2018
2019

2020

2021
2022
2023

2024
2025
2026

2027
2028
2029
2030

2031

2032
2033
2034
2035

DSP0004 Common Information Model (CIM) Infrastructure

Values of schema elements qualified as octetstrings shall be compared for equality and ordering based
on the sequence of octets they represent. As a result, comparisons across different octetstring
representations (as defined in 5.6.3.35) are valid. Two sequences of octets shall be considered equal if
they contain the same number of octets and have equal octets in each octet pair in the sequences. An
octet sequence S1 shall be considered less than an octet sequence S2, if the first pair of different octets,
reading from left to right, is beyond the end of S1 or has an octet in S1 that is less than the octet in S2.
This comparison rule yields the same results as the comparison rule defined for the strcmp() function in
IEEE Std 1003.1, 2004 Edition.

Two values of the reference datatype shall be considered equal if they resolve to the same CIM object in
the same namespace. This document does not define an order between two values of the reference
datatype.

Two values of the datetime datatype shall be compared based on the time duration or point in time they
represent, according to mathematical comparison rules for these numbers. As a result, two datetime
values that represent the same point in time using different timezone offsets are considered equal.

Two values of compatible datatypes that both are Null shall be considered equal. This document does not
define an order between two values of compatible datatypes where one is Null, and the other is not Null.

Two array values of compatible datatypes shall be considered equal if they contain the same number of
array entries and in each pair of array entries, the two array entries are equal. This document does not
define an order between two array values.

5.3 Backwards Compatibility

This subclause defines the general rules for backwards compatibility between CIM client, CIM server and
CIM listener across versions.

The consequences of these rules for CIM schema definitions are defined in 5.4. The consequences of

these rules for other areas covered by DMTF (such as protocols or management profiles) are defined in
the DMTF documents covering such other areas. The consequences of these rules for areas covered by
business entities other than DMTF (such as APIs or tools) should be defined by these business entities.

Backwards compatibility between CIM client, CIM server and CIM listener is defined from a CIM client
application perspective in relation to a CIM implementation:

e Newer compatible CIM implementations need to work with unchanged CIM client applications.

For the purposes of this rule, a "CIM client application” assumes the roles of CIM client and CIM listener,
and a "CIM implementation" assumes the role of a CIM server. As a result, newer compatible CIM servers
need to work with unchanged CIM clients and unchanged CIM listeners.

For the purposes of this rule, "newer compatible CIM implementations" have implemented DMTF
specifications that have increased only the minor or update version indicators, but not the major version
indicator, and that are relevant for the interface between CIM implementation and CIM client application.

Newer compatible CIM implementations may also have implemented newer compatible specifications of
business entities other than DMTF that are relevant for the interface between CIM implementation and
CIM client application (for example, vendor extension schemas); how that translates to version indicators
of these specifications is left to the owning business entity.

5.4 Supported Schema Modifications

This subclause lists typical modifications of schema definitions and qualifier type declarations and defines
their compatibility. Such modifications might be introduced into an existing CIM environment by upgrading
the schema to a newer schema version. However, any rules for the modification of schema related
objects (i.e., classes and qualifier types) in a CIM server are outside of the scope of this document.

Version 2.8.0 DMTF Standard 57

2036
2037

2038
2039
2040
2041

2042
2043

2044
2045
2046

2047

2048
2049

2050
2051

2052
2053
2054

2055
2056
2057
2058

2059

2060

2061
2062

2063
2064

2065
2066

2067

2068
2069
2070

2071
2072
2073

Common Information Model (CIM) Infrastructure DSP0004

Specifications dealing with modification of schema related objects in a CIM server should define such
rules and should consider the compatibility defined in this subclause.

Table 3 lists modifications of an existing schema definition (including an empty schema). The compatibility
of the modification is indicated for CIM clients that utilize the modified element, and for a CIM server that
implements the modified element. Compatibility for a CIM server that utilizes the modified element (e.g.,
via so called "up-calls") is the same as for a CIM client that utilizes the modified element.

The compatibility for CIM clients as expressed in Table 3 assumes that the CIM client remains unchanged
and is exposed to a CIM server that was updated to fully reflect the schema modification.

The compatibility for CIM servers as expressed in Table 3 assumes that the CIM server remains
unchanged but is exposed to the modified schema that is loaded into the CIM namespace being serviced
by the CIM server.

Compatibility is stated as follows:

e Transparent — the respective component does not need to be changed in order to properly deal
with the modification

e Not transparent — the respective component needs to be changed in order to properly deal with
the modification

Schema modifications qualified as transparent for both CIM clients and CIM servers are allowed in a
minor version update of the schema. Any other schema modifications are allowed only in a major version
update of the schema.

The schema modifications listed in Table 3 cover simple cases, which may be combined to yield more
complex cases. For example, a typical schema change is to move existing properties or methods into a
new superclass. The compatibility of this complex schema modification can be determined by
concatenating simple schema maodifications listed in Table 3, as follows:

1) SM1: Adding a class to the schema:

The new superclass gets added as an empty class with (yet) no superclass

2) SM3: Inserting an existing class that defines no properties or methods into an inheritance
hierarchy of existing classes:

The new superclass gets inserted into an inheritance hierarchy

3) SM8: Moving an existing property from a class to one of its superclasses (zero or more times)

Properties get moved to the newly inserted superclass

4) SM12: Moving a method from a class to one of its superclasses (zero or more times)
Methods get moved to the newly inserted superclass

The resulting compatibility of this complex schema modification for CIM clients is transparent, since all
these schema modifications are transparent. Similarly, the resulting compatibility for CIM servers is
transparent for the same reason.

Some schema modifications cause other changes in the schema to happen. For example, the removal of
a class causes any associations or method parameters that reference that class to be updated in some
way.

58 DMTF Standard Version 2.8.0

DSP0004 Common Information Model (CIM) Infrastructure

2074 Table 3 — Compatibility of Schema Modifications
Allowed in a
Minor Version
Update of the
Schema Modification Compatibility for CIM clients | Compatibility for CIM servers Schema
SML1: Adding a class to Transparent. Transparent Yes
the schema. The new It is assumed that any CIM
class may define an clients that examine classes
existing class as its are prepared to deal with new
superclass classes in the schema and
with new subclasses of
existing classes
SM2: Removing a class Not transparent Not transparent No
from the schema
SM3: Inserting an existing | Transparent. Transparent Yes
class that defines no It is assumed that any CIM
properties or methods into | clients that examine classes
an inheritance hierarchy are prepared to deal with such
of existing classes inserted classes
SM4: Removing an Not transparent Transparent No
abstract class that defines
no properties or methods
from an inheritance
hierarchy of classes,
without removing the
class from the schema
SM5: Removing a Not transparent Not transparent No
concrete class that
defines no properties or
methods from an
inheritance hierarchy of
classes, without removing
the class from the schema
SM6: Adding a property to | Transparent Transparent Yes
an existing class that is It is assumed that CIM clients | If the CIM server uses the
not overriding a property. are prepared to deal with any | factory approach (1) to populate
The property may have a new properties in classes and | the properties of any instances
non-Null default value instances. to be returned, the property will
be included in any instances of
the class with its default value.
Otherwise, the (unchanged) CIM
server will not include the new
property in any instances of the
class, and a CIM client that
knows about the new property
will interpret it as having the Null
value.

Version 2.8.0

DMTF Standard

59

Common Information Model (CIM) Infrastructure

DSP0004

Allowed in a
Minor Version
Update of the

Schema Modification Compatibility for CIM clients | Compatibility for CIM servers Schema
SM7: Adding a property to | Transparent Transparent Yes
an existing class that is
overriding a property. The
overriding property does
not define a type or
qualifiers such that the
overridden property is
changed in a non-
transparent way, as
defined in schema
modifications 17, xx. The
overriding property may
define a default value
other than the overridden
property
SM8: Moving an existing Transparent. Transparent. Yes
property from a class to It is assumed that any CIM For the implementation of the
one of its superclasses clients that examine classes class from which the property is
are prepared to deal with such | moved away, this change is
moved properties. For CIM transparent. For the
clients that deal with instances | implementation of the
of the class from which the superclass to which the property
property is moved away, this is moved, this change is also
change is transparent, since transparent, since itis an
the set of properties in these addition of a property to that
instances does not change. superclass (see SM6).
For CIM clients that deal with
instances of the superclass to
which the property was
moved, this change is also
transparent, since it is an
addition of a property to that
superclass (see SM6).
SM9: Removing a Not transparent Not transparent No
property from an existing
class, without adding it to
one of its superclasses
SM10: Adding a method Transparent Transparent Yes

to an existing class that is
not overriding a method

It is assumed that any CIM
clients that examine classes
are prepared to deal with such
added methods.

It is assumed that a CIM server
is prepared to return an error to
CIM clients indicating that the
added method is not
implemented.

60

DMTF Standard

Version 2.8.0

DSP0004

Common Information Model (CIM) Infrastructure

Allowed in a
Minor Version
Update of the

reference type of an
existing method
parameter, method (i.e.,
its return value), or
ordinary property

Schema Modification Compatibility for CIM clients | Compatibility for CIM servers Schema
SM11: Adding a method Transparent Transparent Yes
to an existing class that is
overriding a method. The
overriding method does
not define a type or
qualifiers on the method
or its parameters such
that the overridden
method or its parameters
are changed in an non-
transparent way, as
defined in schema
modifications 16, xx
SM12: Moving a method Transparent Transparent Yes
from a class to one of its It is assumed that any CIM For the implementation of the
superclasses clients that examine classes class from which the method is
are prepared to deal with such | moved away, this change is
moved methods. For CIM transparent. For the
clients that invoke methods on | implementation of the class from
the class or instances thereof | which the method is moved
from which the method is away, this change is
moved away, this change is transparent. For the
transparent, since the set of implementation of the
methods that are invocable on | superclass to which the method
these classes or their is moved, this change is also
instances does not change. transparent, since it is an
For CIM clients that invoke addition of a method to that
methods on the superclass or | superclass (see SM10).
instances thereof to which the
property was moved, this
change is also transparent,
since it is an addition of a
method to that superclass
(see SM10)
SM13: Removing a Not transparent Not transparent No
method from an existing
class, without adding it to
one of its superclasses
SM14: Adding a Not transparent Not transparent No
parameter to an existing
method
SM15: Removing a Not transparent Not transparent No
parameter from an
existing method
SM16: Changing the non- | Not transparent Not transparent No

Version 2.8.0

DMTF Standard

61

Common Information Model (CIM) Infrastructure DSP0004

Allowed in a
Minor Version
Update of the
Schema Modification Compatibility for CIM clients | Compatibility for CIM servers Schema

SML17: Changing the class | Transparent Not Transparent No
referenced by a reference
in an association to a
subclass of the previously
referenced class

SM18: Changing the class | Not Transparent Not Transparent No
referenced by a reference
in an association to a
superclass of the
previously referenced
class

SM19: Changing the class | Not Transparent Not Transparent No
referenced by a reference
in an association to any
class other than a
subclass or superclass of
the previously referenced
class

SM20: Changing the class | Not Transparent Transparent No
referenced by a method
input parameter of
reference type to a
subclass of the previously
referenced class

SM21: Changing the class | Transparent Not Transparent No
referenced by a method
input parameter of
reference type to a
superclass of the
previously referenced
class

SM22: Changing the class | Not Transparent Not Transparent No
referenced by a method
input parameter of
reference type to any
class other than a
subclass or superclass of
the previously referenced
class

SM23: Changing the class | Transparent Not Transparent No
referenced by a method
output parameter or
method return value of
reference type to a
subclass of the previously
referenced class

62 DMTF Standard Version 2.8.0

DSP0004 Common Information Model (CIM) Infrastructure

Allowed in a
Minor Version
Update of the
Schema Modification Compatibility for CIM clients | Compatibility for CIM servers Schema

SM24: Changing the class | Not Transparent Transparent No
referenced by a method
output parameter or
method return value of
reference type to a
superclass of the
previously referenced
class

SM25: Changing the class | Not Transparent Not Transparent No
referenced by a method
output parameter or
method return value of
reference type to any
class other than a
subclass or superclass of
the previously referenced
class

SM26: Changing a class Not transparent Not transparent No
between ordinary class,
association or indication

SM27: Reducing or Not transparent Not transparent No
increasing the arity of an
association (i.e.,
increasing or decreasing
the number of references
exposed by the
association)

SM28: Changing the As defined in the qualifier As defined in the qualifier Yes, if transparent
effective value of a description in 5.6 description in 5.6 for both CIM
qualifier on an existing clients and CIM
schema element servers, otherwise
No
2075 1) Factory approach to populate the properties of any instances to be returned:
2076 Some CIM server architectures (e.g., CMPI-based CIM providers) support factory methods that
2077 create an internal representation of a CIM instance by inspecting the class object and creating
2078 property values for all properties exposed by the class and setting those values to their class
2079 defined default values. This delegates the knowledge about newly added properties to the
2080 schema definition of the class and will return instances that are compliant to the modified
2081 schema without changing the code of the CIM server. A subsequent release of the CIM server
2082 can then start supporting the new property with more reasonable values than the class defined
2083 default value.

2084 Table 4 lists modifications of qualifier types. The compatibility of the modification is indicated for an
2085 existing schema. Compatibility for CIM clients or CIM servers is determined by Table 4 (in any
2086 modifications that are related to qualifier values).

2087 The compatibility for a schema as expressed in Table 4 assumes that the schema remains unchanged
2088 but is confronted with a qualifier type declaration that reflects the modification.

Version 2.8.0 DMTF Standard 63

2089

2090
2091

2092
2093

2094
2095

2096

2097

2098
2099
2100
2101

Common Information Model (CIM) Infrastructure

Compatibility is stated as follows:

DSP0004

e Transparent — the schema does not need to be changed in order to properly deal with the

modification

e Not transparent — the schema needs to be changed in order to properly deal with the

modification

CIM supports extension schemas, so the actual usage of qualifiers in such schemas is by definition
unknown and any possible usage needs to be assumed for compatibility considerations.

Table 4 — Compatibility of Qualifier Type Modifications

Qualifier Type Modification

Compatibility for
Existing Schema

Allowed in a Minor Version
Update of the Schema

qualifier type declaration from ToSubclass EnableOverride
to ToSubclass DisableOverride

QM1: Adding a qualifier type declaration Transparent Yes
QM2: Removing a qualifier type declaration Not transparent No
QMS3: Changing the data type or array-ness of an existing Not transparent No
qualifier type declaration

QM4: Adding an element type to the scope of an existing Transparent Yes
qualifier type declaration, without adding qualifier value

specifications to the element type added to the scope

QM5: Removing an element type from the scope of an Not transparent No
existing qualifier type declaration

QMB6: Changing the inheritance flavors of an existing Transparent Yes
qualifier type declaration from ToSubclass DisableOverride

to ToSubclass EnableOverride

QM7: Changing the inheritance flavors of an existing Not transparent No

to Restricted

QM8: Changing the inheritance flavors of an existing Transparent Yes, if examination of the
qualifier type declaration from Restricted to ToSubclass (generally) specific change reveals its
EnableOverride compatibility

QM9: Changing the inheritance flavors of an existing Transparent Yes, if examination of the
qualifier type declaration from ToSubclass EnableOverride (generally) specific change reveals its

compatibility

QM10: Changing the inheritance flavors of an existing

Not transparent

No, unless examination of

qualifier type declaration

qualifier type declaration from Restricted to ToSubclass (generally) the specific change reveals
DisableOverride its compatibility

QM11: Changing the inheritance flavors of an existing Transparent Yes, if examination of the
qualifier type declaration from ToSubclass DisableOverride | (generally) specific change reveals its
to Restricted compatibility

QM12: Changing the Translatable flavor of an existing Transparent Yes

5.4.1 Schema Versions

Schema versioning is described in DSP4004. Versioning takes the form m.n.u, where:

e m =major version identifier in numeric form

. n = minor version identifier in numeric form

e U =update (errata or coordination changes) in numeric form

64 DMTF Standard

Version 2.8.0

2102

2103
2104
2105
2106
2107
2108
2109
2110

2111
2112
2113
2114
2115

2116
2117
2118

2119

DSP0004

Common Information Model (CIM) Infrastructure

The usage rules for the Version qualifier in 5.6.3.55 provide additional information.

Classes are versioned in the CIM schemas. The Version qualifier for a class indicates the schema release
of the last change to the class. Class versions in turn dictate the schema version. A major version change
for a class requires the major version number of the schema release to be incremented. All class versions
must be at the same level or a higher level than the schema release because classes and models that
differ in minor version numbers shall be backwards-compatible. In other words, valid instances shall
continue to be valid if the minor version number is incremented. Classes and models that differ in major
version numbers are not backwards-compatible. Therefore, the major version number of the schema

release shall be incremented.

Table 5 lists modifications to the CIM schemas in final status that cause a major version number change.
Preliminary models are allowed to evolve based on implementation experience. These modifications
change application behavior and/or customer code. Therefore, they force a major version update and are
discouraged. Table 5 is an exhaustive list of the possible modifications based on current CIM experience
and knowledge. Items could be added as new issues are raised and CIM standards evolve.

Alterations beyond those listed in Table 5 are considered interface-preserving and require the minor
version number to be incremented. Updates/errata are not classified as major or minor in their impact, but
they are required to correct errors or to coordinate across standards bodies.

Table 5 — Changes that Increment the CIM Schema Major Version Number

Description

Explanation or Exceptions

Class deletion

Property deletion or data type change

Method deletion or signature change

Reorganization of values in an
enumeration

The semantics and mappings of an enumeration cannot change, but values
can be added in unused ranges as a minor change or update.

Movement of a class upwards in the
inheritance hierarchy; that is, the
removal of superclasses from the
inheritance hierarchy

The removal of superclasses deletes properties or methods. New classes
can be inserted as superclasses as a minor change or update. Inserted
classes shall not change keys or add required properties.

Addition of Abstract, Indication, or
Association qualifiers to an existing
class

Change of an association reference
downward in the object hierarchy to a
subclass or to a different part of the
hierarchy

The change of an association reference to a subclass can invalidate
existing instances.

Addition or removal of a Key or Weak
qualifier

Addition of the Required qualifier to a
method input parameter or a property
that may be written

Changing to require a non-Null value to be passed to an input parameter or
to be written to a property may break existing CIM clients that pass Null
under the prior definition.

An addition of the Required qualifier to method output parameters, method
return values and properties that may only be read is considered a
compatible change, as CIM clients written to the new behavior are expected
to determine whether they communicate with the old or new behavior of the
CIM server, as defined in 5.6.3.43.

The description of an existing schema element that added the Required
qualifier in a revision of the schema should indicate the schema version in
which this change was made, as defined in 5.6.3.43.

Version 2.8.0

DMTF Standard 65

2120

2121
2122
2123

2124
2125
2126
2127

2128
2129
2130
2131
2132

2133

2134
2135

2136
2137

2138
2139
2140

Common Information Model (CIM) Infrastructure DSP0004

Description Explanation or Exceptions

Removal of the Required qualifier from | Changing to no longer guarantee a non-Null value to be returned by an
a method output parameter, a method | output parameter, a method return value, or a property that may be read
(i.e., its return value) or a property that | may break existing CIM clients that relied on the prior guarantee.

may be read A removal of the Required qualifier from method input parameters and
properties that may only be written is a compatible change, as CIM clients
written to the new behavior are expected to determine whether they
communicate with the old or new behavior of the CIM server, as defined in
5.6.3.43.

The description of an existing schema element that removed the Required
qualifier in a revision of the schema should indicate the schema version in
which this change was made, as defined in 5.6.3.43.

Decrease in MaxLen, decrease in Decreasing a maximum or increasing a minimum invalidates current data.
MaxValue, increase in MinLen, or The opposite change (increasing a maximum) results in truncated data,
increase in MinValue where necessary.

Decrease in Max or increase in Min

cardinalities

Addition or removal of Override There is one exception. An Override qualifier can be added if a property is
qualifier promoted to a superclass, and it is necessary to maintain the specific

qualifiers and descriptions in the original subclass. In this case, there is ho
change to existing instances.

Change in the following qualifiers:
In/Out, Units

5.5 Class Names

Fully-qualified class hames are in the form <schema name>_<class name>. An underscore is used as a
delimiter between the <schema name> and the <class name>. The delimiter cannot appear in the
<schema name> although it is permitted in the <class name>.

The format of the fully-qualified name allows the scope of class names to be limited to a schema. That is,
the schema name is assumed to be unique, and the class name is required to be unique only within the
schema. The isolation of the schema name using the underscore character allows user interfaces
conveniently to strip off the schema when the schema is implied by the context.

The following are examples of fully-qualified class names:
¢ CIM_ManagedSystemElement: the root of the CIM managed system element hierarchy
e CIM_ComputerSystem: the object representing computer systems in the CIM schema
¢ CIM_SystemComponent: the association relating systems to their components

e Win32_ComputerSystem: the object representing computer systems in the Win32 schema

5.6 Qualifiers

Qualifiers are named and typed values that provide information about CIM elements. Since the qualifier
values are on CIM elements and not on CIM instances, they are considered to be meta-data.

Subclause 5.6.1 describes the concept of qualifiers, independently of their representation in MOF. For
their representation in MOF, see 7.8.

Subclauses 5.6.2, 5.6.3, and 5.6.4 describe the meta, standard, and optional qualifiers, respectively. Any
qualifier type declarations with the names of these qualifiers shall have the name, type, scope, flavor, and
default value defined in these subclauses.

66 DMTF Standard Version 2.8.0

2141

2142
2143

2144

2145

2146
2147
2148
2149
2150

2151
2152
2153
2154

2155
2156

2157
2158

2159
2160

2161
2162
2163

2164
2165

2166
2167

2168
2169

2170
2171
2172

2173
2174

2175
2176
2177

DSP0004 Common Information Model (CIM) Infrastructure

Subclause 5.6.5 describes user-defined qualifiers.

Subclause 5.6.6 describes how the MappingString qualifier can be used to define mappings between CIM
and other information models.

5.6.1 Qualifier Concept

5.6.1.1 Qualifier Value

Any qualifiable CIM element (i.e., classes including associations and indications, properties including
references, methods and parameters) shall have a particular set of qualifier values, as follows. A qualifier
shall have a value on a CIM element if that kind of CIM element is in the scope of the qualifier, as defined
in 5.6.1.3. If a kind of CIM element is in the scope of a qualifier, the qualifier is said to be an applicable
qualifier for that kind of CIM element and for a specific CIM element of that kind.

Any applicable qualifier may be specified on a CIM element. When an applicable qualifier is specified on
a CIM element, the qualifier shall have an explicit value on that CIM element. When an applicable
qualifier is not specified on a CIM element, the qualifier shall have an assumed value on that CIM
element, as defined in 5.6.1.5.

The value specified for a qualifier shall be consistent with the data type defined by its qualifier type.

There shall not be more than one qualifier with the same name specified on any CIM element.

5.6.1.2 Qualifier Type
A qualifier type defines name, data type, scope, flavor and default value of a qualifier, as follows:

The name of a qualifier is a string that shall follow the formal syntax defined by the qualifierName
ABNF rule in ANNEX A.

The data type of a qualifier shall be one of the intrinsic data types defined in Table 2, including arrays of
such, excluding references and arrays thereof. If the data type is an array type, the array shall be an
indexed variable length array, as defined in 7.9.2.

The scope of a qualifier determines which kinds of CIM elements have a value of that qualifier, as defined
in5.6.1.3.

The flavor of a qualifier determines propagation to subclasses, override permissions, and translatability,
as defined in 5.6.1.4.

The default value of a qualifier is used to determine the effective value of qualifiers that are not specified
on a CIM element, as defined in 5.6.1.5.

There shall not exist more than one qualifier type object with the same name in a CIM namespace.
Qualifier types are not part of a schema; therefore name uniqueness of qualifiers cannot be defined within
the boundaries of a schema (like it is done for class names).

5.6.1.3 Qualifier Scope
The scope of a qualifier determines which kinds of CIM elements have a value for that qualifier.

The scope of a qualifier shall be one or more of the scopes defined in Table 6, except for scope (Any)
whose specification shall not be combined with the specification of the other scopes. Qualifiers cannot be
specified on qualifiers.

Version 2.8.0 DMTF Standard 67

2178

2179

2180
2181

2182
2183

2184

2185
2186

2187
2188

2189
2190
2191

2192
2193
2194
2195

2196
2197
2198
2199

Common Information Model (CIM) Infrastructure DSP0004

Table 6 — Defined Qualifier Scopes

Qualifier Scope Qualifier may be specified on ...
Class ordinary classes

Association Associations

Indication Indications

Property ordinary properties

Reference References

Method Methods

Parameter method parameters

Any any of the above

5.6.1.4 Qualifier Flavor

The flavor of a qualifier determines propagation of its value to subclasses, override permissions of the
propagated value, and translatability of the value.

The flavor of a qualifier shall be zero or more of the flavors defined in Table 7, subject to further
restrictions defined in this subclause.

Table 7 — Defined Qualifier Flavors

Qualifier Flavor If the flavor is specified, ...

ToSubclass propagation to subclasses is enabled (the implied default)
Restricted propagation to subclasses is disabled
EnableOverride if propagation to subclasses is enabled, override permission is granted (the implied default)

DisableOverride if propagation to subclasses is enabled, override permission is not granted

Translatable specification of localized qualifiers is enabled (by default it is disabled)

Flavor (ToSubclass) and flavor (Restricted) shall not be specified both on the same qualifier type. If none
of these two flavors is specified on a qualifier type, flavor (ToSubclass) shall be the implied default.

If flavor (Restricted) is specified, override permission is meaningless. Thus, flavor (EnableOverride) and
flavor (DisableOverride) should not be specified and are meaningless if specified.

Flavor (EnableOverride) and flavor (DisableOverride) shall not be specified both on the same qualifier
type. If none of these two flavors is specified on a qualifier type, flavor (EnableOverride) shall be the
implied default.

This results in three meaningful combinations of these flavors:
e Restricted — propagation to subclasses is disabled
e EnableOverride — propagation to subclasses is enabled and override permission is granted

e DisableOverride — propagation to subclasses is enabled and override permission is not granted

If override permission is not granted for a qualifier type, then for a particular CIM element in the scope of
that qualifier type, a qualifier with that name may be specified multiple times in the ancestry of its class,
but each occurrence shall specify the same value. This semantics allows the qualifier to change its
effective value at most once along the ancestry of an element.

68 DMTF Standard Version 2.8.0

2200
2201
2202

2203

2204
2205
2206

2207

2208
2209
2210

2211
2212

2213
2214
2215
2216

2217
2218

2219

2220
2221

2222
2223
2224

2225
2226
2227

2228
2229

2230

2231
2232

2233
2234
2235

2236

2237
2238

DSP0004 Common Information Model (CIM) Infrastructure

If flavor (Translatable) is specified on a qualifier type, the specification of localized qualifiers shall be
enabled for that qualifier, otherwise it shall be disabled. Flavor (Translatable) shall be specified only on
qualifier types that have data type string or array of strings. For details, see 5.6.1.6.

5.6.1.5 Effective Qualifier Values

When there is a qualifier type defined for a qualifier, and the qualifier is applicable but not specified on a
CIM element, the CIM element shall have an assumed value for that qualifier. This assumed value is
called the effective value of the qualifier.

The effective value of a particular qualifier on a given CIM element shall be determined as follows:

If the qualifier is specified on the element, the effective value is the value of the specified qualifier. In
MOF, qualifiers may be specified without specifying a value, in which case a value is implied, as
described in 7.8.

If the qualifier is not specified on the element and propagation to subclasses is disabled, the effective
value is the default value defined on the qualifier type declaration.

If the qualifier is not specified on the element and propagation to subclasses is enabled, the effective
value is the value of the nearest like-named qualifier that is specified in the ancestry of the element. If the
qualifier is not specified anywhere in the ancestry of the element, the effective value is the default value
defined on the qualifier type declaration.

The ancestry of an element is the set of elements that results from recursively determining its ancestor
elements. An element is not considered part of its ancestry.

The ancestor of an element depends on the kind of element, as follows:

e For aclass, its superclass is its ancestor element. If the class does not have a superclass, it has
no ancestor.

e For an overriding property (including references) or method, the overridden element is its
ancestor. If the property or method is not overriding another element, it does not have an
ancestor.

e For a parameter of an overriding method, the like-named parameter of the overridden method is
its ancestor. If the method is not overriding another method, its parameters do not have an
ancestor.

5.6.1.6 Localized Qualifiers

Localized qualifiers allow the specification of qualifier values in a specific language.

DEPRECATED

Localized qualifiers and the flavor (Translatable) as described in this subclause have been deprecated.
The usage of localized qualifiers is discouraged.

DEPRECATED

The qualifier type on which flavor (Translatable) is specified, is called the base qualifier of its localized
qualifiers.

The name of any localized qualifiers shall conform to the following formal syntax defined in ABNF:

localized-qualifier-name = qualifier-name " " locale

Version 2.8.0 DMTF Standard 69

2239
2240

2241
2242

2243
2244

2245
2246

2247

2248
2249

2250
2251
2252

2253
2254

2255
2256
2257
2258
2259

2260

2261
2262

2263

2264
2265

2266
2267

2268

2269
2270

2271
2272

2273

2274
2275
2276

Common Information Model (CIM) Infrastructure DSP0004

locale = language-code " " country code

; the locale of the localized qualifier
Where:
qualifier-name is the name of the base qualifier of the localized qualifier

language-code is a language code as defined in 1ISO 639-1:2002, 1SO 639-2:1996, or ISO 639-
3:2007

country-code is a country code as defined in ISO 3166-1:2006, 1SO 3166-2:2007, or ISO 3166-
3:1999

EXAMPLE:

For the base qualifier named Description, the localized qualifier for Mexican Spanish language is named
Description_es_MX.

The string value of a localized qualifier shall be a translation of the string value of its base qualifier from
the language identified by the locale of the base qualifier into the language identified by the locale
specified in the name of the localized qualifier.

For MOF, the locale of the base qualifier shall be the locale defined by the preceding #pragma locale
directive.

For any localized qualifiers specified on a CIM element, a qualifier type with the same name (i.e.,
including the locale suffix) may be declared. If such a qualifier type is declared, its type, scope, flavor and
default value shall match the type, scope, flavor and default value of the base qualifier. If such a qualifier
type is not declared, it is implied from the qualifier type declaration of the base qualifier, with unchanged
type, scope, flavor and default value.

5.6.2 Meta Qualifiers

The following subclauses list the meta qualifiers required for all CIM-compliant implementations. Meta
qualifiers change the type of meta-element of the qualified schema element.

5.6.2.1 Association

The Association qualifier takes boolean values, has Scope (Association) and has Flavor
(DisableOverride). The default value is False.

This qualifier indicates that the class is defining an association, i.e., its type of meta-element becomes
Association.

5.6.2.2 Indication

The Indication qualifier takes boolean values, has Scope (Class, Indication) and has Flavor
(DisableOverride). The default value is False.

This qualifier indicates that the class is defining an indication, i.e., its type of meta-element becomes
Indication.

5.6.3 Standard Qualifiers

The following subclauses list the standard qualifiers required for all CIM-compliant implementations.
Additional qualifiers can be supplied by extension classes to provide instances of the class and other
operations on the class.

70 DMTF Standard Version 2.8.0

2277

2278

2279
2280

2281
2282
2283
2284

2285
2286

2287
2288
2289
2290

2291
2292
2293
2294

2295

2296
2297

2298
2299

2300

2301
2302

2303
2304

2305

2306
2307

2308

2309

2310
2311

2312
2313

2314

2315
2316

DSP0004 Common Information Model (CIM) Infrastructure

Note: The CIM schema published by DMTF defines these standard qualifiers in its version 2.38 and later.

Not all of these qualifiers can be used together. The following principles apply:

¢ Not all qualifiers can be applied to all meta-model constructs. For each qualifier, the constructs

to which it applies are listed.

e For a particular meta-model construct, such as associations, the use of the legal qualifiers may
be further constrained because some qualifiers are mutually exclusive or the use of one qualifier

implies restrictions on the value of another, and so on. These usage rules are documented in

the subclause for each qualifier.

e Legal qualifiers are not inherited by meta-model constructs. For example, the MaxLen qualifier

that applies to properties is not inherited by references.

e The meta-model constructs that can use a particular qualifier are identified for each qualifier.
For qualifiers such as Association (see 5.6.2), there is an implied usage rule that the meta

qualifier must also be present. For example, the implicit usage rule for the Aggregation qualifier

(see 5.6.3.3) is that the Association qualifier must also be present.

e The allowed set of values for scope is (Class, Association, Indication, Property, Reference,
Parameter, Method). Each qualifier has one or more of these scopes. If the scope is Class it

does not apply to Association or Indication. If the scope is Property it does not apply to
Reference.

5.6.3.1 Abstract

The Abstract qualifier takes boolean values, has Scope (Class, Association, Indication) and has Flavor

(Restricted). The default value is False.

This qualifier indicates that the class is abstract and serves only as a base for new classes. It is not

possible to create instances of such classes.

5.6.3.2 Aggregate

The Aggregate qualifier takes boolean values, has Scope (Reference) and has Flavor (DisableOverride).

The default value is False.

The Aggregation and Aggregate qualifiers are used together. The Aggregation qualifier relates to the

association, and the Aggregate qualifier specifies the parent reference.

5.6.3.3 Aggregation

The Aggregation qualifier takes boolean values, has Scope (Association) and has Flavor
(DisableOverride). The default value is False.

The Aggregation qualifier indicates that the association is an aggregation.

5.6.3.4 ArrayType

The ArrayType qualifier takes string values, has Scope (Property, Parameter) and has Flavor
(DisableOverride). The default value is "Bag".

The ArrayType qualifier is the type of the qualified array. Valid values are "Bag", "Indexed," and
"Ordered."

For definitions of the array types, refer to 7.9.2.

The ArrayType qualifier shall be applied only to properties and method parameters that are arrays
(defined using the square bracket syntax specified in ANNEX A).

Version 2.8.0 DMTF Standard

71

2317
2318

2319
2320

2321

2322
2323

2324
2325
2326
2327
2328
2329

2330

2331

2332
2333

2334
2335

2336

2337

2338
2339

2340
2341

2342
2343
2344

2345
2346

2347

2348
2349

2350
2351
2352

2353
2354

2355
2356

Common Information Model (CIM) Infrastructure DSP0004

The effective value of the ArrayType qualifier shall not change in the ancestry of the qualified element.
This prevents incompatible changes in the behavior of the array element in subclasses.

NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied
default value to an explicitly specified value.

5.6.3.5 Bitmap

The Bitmap qualifier takes string array values, has Scope (Property, Parameter, Method) and has Flavor
(EnableOverride). The default value is Null.

The Bitmap qualifier indicates the bit positions that are significant in a bitmap. The bitmap is evaluated
from the right, starting with the least significant value. This value is referenced as 0 (zero). For example,
using a uint8 data type, the bits take the form Mxxx xxxL, where M and L designate the most and least
significant bits, respectively. The least significant bits are referenced as 0 (zero), and the most significant
bit is 7. The position of a specific value in the Bitmap array defines an index used to select a string literal
from the BitValues array.

The number of entries in the BitValues and Bitmap arrays shall match.

5.6.3.6 BitValues

The BitValues qualifier takes string array values, has Scope (Property, Parameter, Method) and has
Flavor (EnableOverride, Translatable). The default value is Null.

The BitValues qualifier translates between a bit position value and an associated string. See 5.6.3.5 for
the description for the Bitmap qualifier.

The number of entries in the BitValues and Bitmap arrays shall match.

5.6.3.7 ClassConstraint

The ClassConstraint qualifier takes string array values, has Scope (Class, Association, Indication) and
has Flavor (EnableOverride). The default value is Null.

The qualified element specifies one or more constraints that are defined in the OMG Object Constraint
Language (OCL), as specified in the Object Constraint Language specification.

The ClassConstraint array contains string values that specify OCL definition and invariant constraints.
The OCL context of these constraints (that is, what "self" in OCL refers to) is an instance of the qualified
class, association, or indication.

OCL definition constraints define OCL attributes and OCL operations that are reusable by other OCL
constraints in the same OCL context.

The attributes and operations in the OCL definition constraints shall be visible for:

e OCL definition and invariant constraints defined in subsequent entries in the same
ClassConstraint array

e OCL constraints defined in PropertyConstraint qualifiers on properties and references in a class
whose value (specified or inherited) of the ClassConstraint qualifier defines the OCL definition
constraint

e Constraints defined in MethodConstraint qualifiers on methods defined in a class whose value
(specified or inherited) of the ClassConstraint qualifier defines the OCL definition constraint

A string value specifying an OCL definition constraint shall conform to the following formal syntax defined
in ABNF (whitespace allowed):

72 DMTF Standard Version 2.8.0

2357
2358
2359

2360
2361

2362
2363
2364

2365
2366

2367
2368
2369

2370
2371

2372
2373

2374
2375
2376

2377
2378

2379
2380
2381
2382
2383

2384

2385
2386

2387
2388
2389
2390
2391

2392
2393
2394

2395
2396
2397

DSP0004 Common Information Model (CIM) Infrastructure

ocl definition string = "def" [ocl name] ":" ocl statement
Where:
ocl name is the name of the OCL constraint.

ocl statement is the OCL statement of the definition constraint, which defines the reusable
attribute or operation.

An OCL invariant constraint is expressed as a typed OCL expression that specifies whether the constraint
is satisfied. The type of the expression shall be boolean. The invariant constraint shall be satisfied at any
time in the lifetime of the instance.

A string value specifying an OCL invariant constraint shall conform to the following formal syntax defined
in ABNF (whitespace allowed):

ocl invariant string = "inv" [ocl name] ":" ocl statement
Where:
ocl name is the name of the OCL constraint.

ocl statement is the OCL statement of the invariant constraint, which defines the boolean
expression.

EXAMPLE 1: For example, to check that both property x and property y cannot be Null in any instance of
a class, use the following qualifier, defined on the class:

ClassConstraint {

inv: not (self.x.oclIsUndefined() and self.y.oclIsUndefined())"
}

EXAMPLE 2: The same check can be performed by first defining OCL attributes. Also, the invariant
constraint is named in the following example:

ClassConstraint {
"def: xNull : Boolean = self.x.oclIsUndefined()",
"def: yNull : Boolean = self.y.oclIsUndefined()",
"inv xyNullCheck: xNull = False or yNull = False)"
}

5.6.3.8 Composition

The Composition qualifier takes boolean values, has Scope (Association) and has Flavor
(DisableOverride). The default value is False.

The Composition qualifier refines the definition of an aggregation association, adding the semantics of a
whole-part/compositional relationship to distinguish it from a collection or basic aggregation. This
refinement is necessary to map CIM associations more precisely into UML where whole-part relationships
are considered compositions. The semantics conveyed by composition align with that of the Unified
Modeling Language: Superstructure. Following is a quote from its section 7.3.3:

"Composite aggregation is a strong form of aggregation that requires a part instance be included in
at most one composite at a time. If a composite is deleted, all of its parts are normally deleted with
it."

Use of this qualifier imposes restrictions on the membership of the ‘collecting’ object (the whole). Care
should be taken when entities are added to the aggregation, because they shall be "parts" of the whole.
Also, if the collecting entity (the whole) is deleted, it is the responsibility of the implementation to dispose

Version 2.8.0 DMTF Standard 73

2398
2399
2400

2401
2402
2403
2404

2405

2406
2407

2408
2409
2410

2411
2412
2413
2414

2415
2416

2417

2418
2419
2420
2421
2422
2423

2424
2425

2426
2427

2428

2429
2430
2431
2432
2433

2434
2435

2436
2437

2438
2439
2440

Common Information Model (CIM) Infrastructure DSP0004

of the parts. The behavior may vary with the type of collecting entity whether the parts are also deleted.
This is very different from that of a collection, because a collection may be removed without deleting the
entities that are collected.

The Aggregation and Composition qualifiers are used together. Aggregation indicates the general nature
of the association, and Composition indicates more specific semantics of whole-part relationships. This
duplication of information is necessary because Composition is a more recent addition to the list of
gualifiers. Applications can be built only on the basis of the earlier Aggregation qualifier.

5.6.3.9 Correlatable

The Correlatable qualifier takes string array values, has Scope (Property) and has Flavor
(EnableOverride). The default value is Null.

The Correlatable qualifier is used to define sets of properties that can be compared to determine if two
CIM instances represent the same resource entity. For example, these instances may cross
logical/physical boundaries, CIM server scopes, or implementation interfaces.

The sets of properties to be compared are defined by first specifying the organization in whose context
the set exists (organization_name), and then a set name (set_name). In addition, a property is given a
role name (role_name) to allow comparisons across the CIM Schema (that is, where property names may
vary although the semantics are consistent).

The value of each entry in the Correlatable qualifier string array shall follow the formal syntax defined in
ABNF:

correlatablePropertyID = organization name ":" set name ":" role name

The determination whether two CIM instances represent the same resource entity is done by comparing
one or more property values of each instance (where the properties are tagged by their role name), as
follows: The property values of all role names within at least one matching organization name / set name
pair shall match in order to conclude that the two instances represent the same resource entity.
Otherwise, no conclusion can be reached and the instances may or may not represent the same resource
entity.

correlatablePropertyID values shall be compared case-insensitively. For example,

"Acme:Setl:Rolel" and "ACME:setl:rolel"

are considered matching.

NOTE: The values of any string properties in CIM are defined to be compared case-sensitively.

To assure uniqueness of a correlatablePropertyID:

e organization_name shall include a copyrighted, trademarked or otherwise uniqgue name that is
owned by the business entity defining set_name, or is a registered ID that is assigned to the
business entity by a recognized global authority. organization_name shall not contain a colon
(":"). For DMTF defined correlatablePropertyID values, the organization_name shall be
"CIM".

e set_name shall be unique within the context of organization_name and identifies a specific set
of correlatable properties. set_name shall not contain a colon (*:").

e role_name shall be unique within the context of organization_name and set_name and identifies
the semantics or role that the property plays within the Correlatable comparison.

The Correlatable qualifier may be defined on only a single class. In this case, instances of only that class
are compared. However, if the same correlation set (defined by organization_name and set_name) is
specified on multiple classes, then comparisons can be done across those classes.

74 DMTF Standard Version 2.8.0

2441
2442
2443
2444

2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467

2468
2469
2470

2471
2472
2473
2474
2475

2476
2477

2478

2479
2480

2481

2482
2483
2484
2485

DSP0004 Common Information Model (CIM) Infrastructure

EXAMPLE: As an example, assume that instances of two classes can be compared: Class1 with
properties PropA, PropB, and PropC, and Class2 with properties PropX, PropY and PropZ. There are two
correlation sets defined, one set with two properties that have the role names Rolel and Role2, and the
other set with one property with the role name OnlyRole. The following MOF represents this example:

Classl {

[Correlatable {"Acme:Setl:Rolel"}]
string PropA;

[Correlatable {"Acme:Set2:0nlyRole"}]
string PropB;

[Correlatable {"Acme:Setl:Role2"}]
string PropC;
}i

Class2 {

[Correlatable {"Acme:Setl:Rolel"}]
string PropX;

[Correlatable {"Acme:Set2:0nlyRole"}]
string PropY;

[Correlatable {"Acme:Setl:Role2"}]
string PropZ;
bi

Following the comparison rules defined above, one can conclude that an instance of Class1 and an
instance of Class2 represent the same resource entity if PropB and PropY's values match, or if
PropA/PropX and PropC/PropZ's values match, respectively.

The Correlatable qualifier can be used to determine if multiple CIM instances represent the same
underlying resource entity. Some may wonder if an instance’s key value (such as InstancelD) is meant to
perform the same role. This is not the case. InstancelD is merely an opaque identifier of a CIM instance,
whereas Correlatable is not opaque and can be used to draw conclusions about the identity of the
underlying resource entity of two or more instances.

DMTF-defined Correlatable qualifiers are defined in the CIM Schema on a case-by-case basis. There is
no central document that defines them.

5.6.3.10 Counter

The Counter qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor
(EnableOverride). The default value is False.

The Counter qualifier applies only to unsigned integer types.

It represents a non-negative integer that monotonically increases until it reaches a maximum value of
2"n-1, when it wraps around and starts increasing again from zero. N can be 8, 16, 32, or 64 depending
on the data type of the object to which the qualifier is applied. Counters have no defined initial value, so a
single value of a counter generally has no information content.

Version 2.8.0 DMTF Standard 75

2486

2487
2488

2489
2490
2491
2492
2493
2494
2495

2496
2497
2498
2499
2500

2501
2502

2503

2504
2505

2506
2507

2508
2509

2510
2511

2512
2513

2514
2515

2516

2517
2518
2519
2520

2521
2522
2523
2524

2525

2526
2527

Common Information Model (CIM) Infrastructure DSP0004

5.6.3.11 Deprecated

The Deprecated qualifier takes string array values, has Scope (Class, Association, Indication, Property,
Reference, Parameter, Method) and has Flavor (Restricted). The default value is Null.

The Deprecated qualifier indicates that the CIM element (for example, a class or property) that the
qualifier is applied to is considered deprecated. The qualifier may specify replacement elements. Existing
CIM servers shall continue to support the deprecated element so that current CIM clients do not break.
Existing CIM servers should add support for any replacement elements. A deprecated element should not
be used in new CIM clients. Existing and new CIM clients shall tolerate the deprecated element and
should move to any replacement elements as soon as possible. The deprecated element may be
removed in a future major version release of the CIM schema, such as CIM 2.x to CIM 3.0.

The qualifier acts inclusively. Therefore, if a class is deprecated, all the properties, references, and
methods in that class are also considered deprecated. However, no subclasses or associations or
methods that reference that class are deprecated unless they are explicitly qualified as such. For clarity
and to specify replacement elements, all such implicitly deprecated elements should be specifically
qualified as deprecated.

The Deprecated qualifier’s string value should specify one or more replacement elements. Replacement
elements shall be specified using the following formal syntax defined in ABNF:

deprecatedEntry = className [[embeddedInstancePath] "." elementSpec]
where:
elementSpec = propertyName / methodName " (" [parameterName * ("," parameterName)] ")"

is a specification of the replacement element.

embeddedInstancePath = 1*("." propertyName)
is a specification of a path through embedded instances.
The qualifier is defined as a string array so that a single element can be replaced by multiple elements.

If there is no replacement element, then the qualifier string array shall contain a single entry with the
string "No value".

When an element is deprecated, its description shall indicate why it is deprecated and how any
replacement elements are used. Following is an acceptable example description:

"The X property is deprecated in lieu of the Y method defined in this class because the property actually
causes a change of state and requires an input parameter.”

The parameters of the replacement method may be omitted.

NOTE 1: Replacing a deprecated element with a new element results in duplicate representations of the element.
This is of particular concern when deprecated classes are replaced by new classes and instances may be duplicated.
To allow a CIM client to detect such duplication, implementations should document (in a ReadMe, MOF, or other
documentation) how such duplicate instances are detected.

NOTE 2: Key properties may be deprecated, but they shall continue to be key properties and shall satisfy all rules for
key properties. When a key property is no longer intended to be a key, only one option is available. It is necessary to
deprecate the entire class and therefore its properties, methods, references, and so on, and to define a new class
with the changed key structure.

5.6.3.12 Description

The Description qualifier takes string values, has Scope (Class, Association, Indication, Property,
Reference, Parameter, Method) and has Flavor (EnableOverride, Translatable). The default value is Null.

76 DMTF Standard Version 2.8.0

2528

2529

2530
2531

2532
2533

2534

2535
2536

2537
2538
2539

2540

2541
2542

2543
2544
2545

2546

2547
2548
2549

2550
2551
2552

2553
2554
2555
2556

2557

2558

2559
2560

2561
2562
2563

2564

2565
2566
2567

DSP0004 Common Information Model (CIM) Infrastructure

The Description qualifier describes a named element.

5.6.3.13 DisplayName

The DisplayName qualifier takes string values, has Scope (Class, Association, Indication, Property,
Reference, Parameter, Method) and has Flavor (EnableOverride, Translatable). The default value is Null.

The DisplayName qualifier defines a name that is displayed on a user interface instead of the actual
name of the element.

5.6.3.14 DN

The DN qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor
(DisableOverride). The default value is False.

When applied to a string element, the DN qualifier specifies that the string shall be a distinguished name
as defined in Section 9 of ITU X.501 and the string representation defined in REC2253. This qualifier shall
not be applied to qualifiers that are not of the intrinsic data type string.

5.6.3.15 Embeddedinstance

The Embeddedinstance qualifier takes string values, has Scope (Property, Parameter, Method) and has
Flavor (EnableOverride). The default value is Null.

A non-Null effective value of this qualifier indicates that the qualified string typed element contains an
embedded instance. The encoding of the instance contained in the string typed element qualified by
Embeddedinstance shall follow the rules defined in ANNEX F.

This qualifier may be used only on elements of string type.

If not Null the qualifier value shall specify the name of a CIM class. The embedded instance shall be an
instance of the specified class, including instances of its subclasses. The specified class shall exist in the
namespace of the class that defines the qualified element.

The specified class may be abstract if the class exposing the qualified element (that is, qualified property,
or method with the qualified parameter) is abstract. The specified class shall be concrete if the class
exposing the qualified element is concrete.

The value of the Embeddedinstance qualifier may be changed in subclasses to narrow the originally
specified class to one of its subclasses. Other than that, the effective value of the EmbeddedIinstance
qualifier shall not change in the ancestry of the qualified element. This prevents incompatible changes
between representing and not representing an embedded instance in subclasses.

See ANNEX F for examples.

5.6.3.16 EmbeddedObject

The EmbeddedObiject qualifier takes boolean values, has Scope (Property, Parameter, Method) and has
Flavor (DisableOverride). The default value is False.

This qualifier indicates that the qualified string typed element contains an encoding of an instance's data
or an encoding of a class definition. The encoding of the object contained in the string typed element
qualified by EmbeddedObject shall follow the rules defined in ANNEX F.

This qualifier may be used only on elements of string type.

The effective value of the EmbeddedObject qualifier shall not change in the ancestry of the qualified
element. This prevents incompatible changes between representing and not representing an embedded
object in subclasses.

Version 2.8.0 DMTF Standard 77

2568
2569

2570

2571

2572
2573

2574
2575
2576

2577
2578

2579

2580
2581

2582
2583

2584
2585
2586
2587
2588
2589

2590
2591
2592
2593

2594
2595

2596

2597
2598

2599
2600

2601
2602
2603
2604
2605

2606

2607
2608

Common Information Model (CIM) Infrastructure DSP0004

NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied
default value to an explicitly specified value.

See ANNEX F for examples.

5.6.3.17 Exception

The Exception qualifier takes boolean values, has Scope (Indication) and has Flavor (DisableOverride).
The default value is False.

This qualifier indicates that the class and all subclasses of this class are exception classes. Exception
classes describe transient (very short-lived) exception objects. Instances of exception classes
communicate exception information between CIM entities.

It is not possible to create addressable instances of exception classes. Exception classes shall be
concrete classes. The subclass of an exception class shall be an exception class.

5.6.3.18 Experimental

The Experimental qualifier takes boolean values, has Scope (Class, Association, Indication, Property,
Reference, Parameter, Method) and has Flavor (Restricted). The default value is False.

If the Experimental qualifier is specified, the qualified element has experimental status. The implications
of experimental status are specified by the schema owner.

In a DMTF-produced schema, experimental elements are subject to change and are not part of the final
schema. In particular, the requirement to maintain backwards compatibility across minor schema versions
does not apply to experimental elements. Experimental elements are published for developing
implementation experience. Based on implementation experience, changes may occur to this element in
future releases, it may be standardized "as is," or it may be removed. An implementation does not have to
support an experimental feature to be compliant to a DMTF-published schema.

When applied to a class, the Experimental qualifier conveys experimental status to the class itself, as well
as to all properties and features defined on that class. Therefore, if a class already bears the
Experimental qualifier, it is unnecessary also to apply the Experimental qualifier to any of its properties or
features, and such redundant use is discouraged.

No element shall be both experimental and deprecated (as with the Deprecated qualifier). Experimental
elements whose use is considered undesirable should simply be removed from the schema.

5.6.3.19 Gauge

The Gauge qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor
(EnableOverride). The default value is False.

The Gauge qualifier is applicable only to unsigned integer types. It represents an integer that may
increase or decrease in any order of magnitude.

The value of a gauge is capped at the implied limits of the property’s data type. If the information being
modeled exceeds an implied limit, the value represented is that limit. Values do not wrap. For unsigned
integers, the limits are zero (0) to 2”n-1, inclusive. For signed integers, the limits are —(2(n-1)) to
27(n-1)-1, inclusive. N can be 8, 16, 32, or 64 depending on the data type of the property to which the
qualifier is applied.

5.6.3.20 In

The In qualifier takes boolean values, has Scope (Parameter) and has Flavor (DisableOverride). The
default value is True.

78 DMTF Standard Version 2.8.0

2609
2610
2611
2612
2613

2614

2615
2616

2617
2618

2619
2620

2621

2622
2623

2624
2625
2626

2627
2628
2629
2630
2631

2632

2633
2634

2635
2636

2637

2638
2639

2640
2641
2642
2643

2644

2645

2646
2647

DSP0004 Common Information Model (CIM) Infrastructure

This qualifier indicates that the qualified parameter is used to pass values to a method.

The effective value of the In qualifier shall not change in the ancestry of the qualified parameter. This
prevents incompatible changes in the direction of parameters in subclasses.

NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied
default value to an explicitly specified value.

5.6.3.21 IsPUnit

The IsPUnit qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor
(EnableOverride). The default value is False.

The qualified string typed property, method return value, or method parameter represents a programmatic
unit of measure. The value of the string element follows the syntax for programmatic units.

The qualifier must be used on string data types only. A value of Null for the string element indicates that
the programmatic unit is unknown. The syntax for programmatic units is defined in ANNEX C.

5.6.3.22 Key

The Key qualifier takes boolean values, has Scope (Property, Reference) and has Flavor
(DisableOverride). The default value is False.

The property or reference is part of the model path (see 8.2.5 for information on the model path). If more
than one property or reference has the Key qualifier, then all such elements collectively form the key (a
compound key).

The values of key properties and key references are determined once at instance creation time and shall
not be modified afterwards. Properties of an array type shall not be qualified with Key. Properties qualified
with EmbeddedObject or Embeddedinstance shall not be qualified with Key. Key properties and key
references of non-embedded instances shall not be Null. Key properties and key references of embedded
instances may be Null.

5.6.3.23 MappingStrings

The MappingStrings qualifier takes string array values, has Scope (Class, Association, Indication,
Property, Reference, Parameter, Method) and has Flavor (EnableOverride). The default value is Null.

This qualifier indicates mapping strings for one or more management data providers or agents. See 5.6.6
for detalils.

5.6.3.24 Max

The Max qualifier takes uint32 values, has Scope (Reference) and has Flavor (EnableOverride). The
default value is Null.

The Max qualifier specifies the maximum cardinality of the reference, which is the maximum number of
values a given reference may have for each set of other reference values in the association. For example,
if an association relates A instances to B instances, and there shall be at most one A instance for each B
instance, then the reference to A should have a Max(1) qualifier.

The Null value means that the maximum cardinality is unlimited.

5.6.3.25 MaxLen

The MaxLen qualifier takes uint32 values, has Scope (Property, Parameter, Method) and has Flavor
(EnableOverride). The default value is Null.

Version 2.8.0 DMTF Standard 79

2648
2649
2650

2651
2652

2653

2654
2655

2656
2657
2658
2659

2660
2661

2662

2663
2664

2665
2666

2667
2668

2669
2670

2671
2672
2673

2674
2675

2676

2677
2678

2679
2680

2681
2682
2683

2684
2685

2686
2687

Common Information Model (CIM) Infrastructure DSP0004

The MaxLen qualifier specifies the maximum length, in characters, of a string data item. MaxLen may be
used only on string data types. If MaxLen is applied to CIM elements with a string array data type, it
applies to every element of the array. A value of Null implies unlimited length.

An overriding property that specifies the MAXLEN qualifier must specify a maximum length no greater
than the maximum length for the property being overridden.

5.6.3.26 MaxValue

The MaxValue qualifier takes sint64 values, has Scope (Property, Parameter, Method) and has Flavor
(EnableOverride). The default value is Null.

The MaxValue qualifier specifies the maximum value of this element. MaxValue may be used only on
numeric data types. If MaxValue is applied to CIM elements with a numeric array data type, it applies to
every element of the array. A value of Null means that the maximum value is the highest value for the
data type.

An overriding property that specifies the MaxValue qualifier must specify a maximum value no greater
than the maximum value of the property being overridden.

5.6.3.27 MethodConstraint

The MethodConstraint qualifier takes string array values, has Scope (Method) and has Flavor
(EnableOverride). The default value is Null.

The qualified element specifies one or more constraints, which are defined using the OMG Object
Constraint Language (OCL), as specified in the Object Constraint Language specification.

The MethodConstraint array contains string values that specify OCL precondition, postcondition, and
body constraints.

The OCL context of these constraints (that is, what "self" in OCL refers to) is the object on which the
qualified method is invoked.

An OCL precondition constraint is expressed as a typed OCL expression that specifies whether the
precondition is satisfied. The type of the expression shall be boolean. For the method to complete
successfully, all preconditions of a method shall be satisfied before it is invoked.

A string value specifying an OCL precondition constraint shall conform to the formal syntax defined in
ABNF (whitespace allowed):

ocl precondition string = "pre" [ocl name] ":" ocl statement

Where:

ocl name is the name of the OCL constraint.

ocl_statement is the OCL statement of the precondition constraint, which defines the boolean
expression.

An OCL postcondition constraint is expressed as a typed OCL expression that specifies whether the
postcondition is satisfied. The type of the expression shall be boolean. All postconditions of the method
shall be satisfied immediately after successful completion of the method.

A string valu