

 1

Document Number: DSP0004 2

Date: 2010-03-17 3

Version: 2.6.0 4

 5

Common Information Model (CIM) Infrastructure 6

Document Type: Specification 7

Document Status: DMTF Standard 8

Document Language: E 9

Common Information Model (CIM) Infrastructure DSP0004

2 DMTF Standard Version 2.6.0

Copyright Notice 10

Copyright © 1997, 2010 Distributed Management Task Force, Inc. (DMTF). All rights reserved. 11

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 12
management and interoperability. Members and non-members may reproduce DMTF specifications and 13
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to 14
time, the particular version and release date should always be noted. 15

Implementation of certain elements of this standard or proposed standard may be subject to third party 16
patent rights, including provisional patent rights (herein "patent rights"). DMTF makes no representations 17
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose, 18
or identify any or all such third party patent right, owners or claimants, nor for any incomplete or 19
inaccurate identification or disclosure of such rights, owners or claimants. DMTF shall have no liability to 20
any party, in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, 21
disclose, or identify any such third party patent rights, or for such party’s reliance on the standard or 22
incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any 23
party implementing such standard, whether such implementation is foreseeable or not, nor to any patent 24
owner or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is 25
withdrawn or modified after publication, and shall be indemnified and held harmless by any party 26
implementing the standard from any and all claims of infringement by a patent owner for such 27
implementations. 28

For information about patents held by third-parties which have notified the DMTF that, in their opinion, 29
such patent may relate to or impact implementations of DMTF standards, visit 30
http://www.dmtf.org/about/policies/disclosures.php. 31

Trademarks 32

• Microsoft is a registered trademark of Microsoft Corporation. 33

• UNIX is registered trademark of The Open Group. 34

 35

 36

http://www.dmtf.org/about/policies/disclosures.php

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 3

CONTENTS 37

Foreword ... 6 38
Introduction ... 7 39

Document Conventions ... 7 40
CIM Management Schema ... 8 41
Core Model.. 8 42
Common Model ... 9 43
Extension Schema .. 9 44
CIM Implementations .. 9 45
CIM Implementation Conformance ... 10 46

1 Scope .. 11 47
2 Normative References... 11 48
3 Terms and Definitions ... 13 49
4 Symbols and Abbreviated Terms .. 25 50
5 Meta Schema .. 26 51

5.1 Definition of the Meta Schema.. 26 52
5.1.1 Formal Syntax used in Descriptions .. 29 53
5.1.2 CIM Meta-Elements ... 30 54

5.2 Data Types.. 46 55
5.2.1 UCS and Unicode .. 47 56
5.2.2 String Type... 48 57
5.2.3 Char16 Type .. 49 58
5.2.4 Datetime Type.. 49 59
5.2.5 Indicating Additional Type Semantics with Qualifiers .. 54 60
5.2.6 Comparison of Values ... 54 61

5.3 Supported Schema Modifications ... 55 62
5.3.1 Schema Versions... 63 63

5.4 Class Names... 65 64
5.5 Qualifiers... 65 65

5.5.1 Qualifier Concept ... 65 66
5.5.2 Meta Qualifiers... 69 67
5.5.3 Standard Qualifiers .. 69 68
5.5.4 Optional Qualifiers ... 90 69
5.5.5 User-defined Qualifiers .. 94 70
5.5.6 Mapping Entities of Other Information Models to CIM... 94 71

6 Managed Object Format.. 98 72
6.1 MOF Usage... 98 73
6.2 Class Declarations .. 99 74
6.3 Instance Declarations ... 99 75

7 MOF Components ... 99 76
7.1 Keywords .. 99 77
7.2 Comments... 99 78
7.3 Validation Context... 99 79
7.4 Naming of Schema Elements ... 99 80
7.5 Class Declarations .. 100 81

7.5.1 Declaring a Class... 100 82
7.5.2 Subclasses... 101 83
7.5.3 Default Property Values... 101 84
7.5.4 Key Properties ... 102 85
7.5.5 Static Properties... 103 86

7.6 Association Declarations .. 103 87
7.6.1 Declaring an Association ... 103 88

Common Information Model (CIM) Infrastructure DSP0004

4 DMTF Standard Version 2.6.0

7.6.2 Subassociations... 103 89
7.6.3 Key References and Properties in Associations.. 104 90
7.6.4 Weak Associations and Propagated Keys... 104 91
7.6.5 Object References ... 107 92

7.7 Qualifiers... 108 93
7.7.1 Qualifier Type... 108 94
7.7.2 Qualifier Value ... 108 95

7.8 Instance Declarations ... 111 96
7.8.1 Instance Aliasing.. 113 97
7.8.2 Arrays... 114 98

7.9 Method Declarations... 116 99
7.9.1 Static Methods ... 117 100

7.10 Compiler Directives... 117 101
7.11 Value Constants.. 117 102

7.11.1 String Constants .. 117 103
7.11.2 Character Constants.. 118 104
7.11.3 Integer Constants... 118 105
7.11.4 Floating-Point Constants ... 119 106
7.11.5 Object Reference Constants.. 119 107
7.11.6 NULL.. 119 108

8 Naming .. 119 109
8.1 CIM Namespaces ... 120 110
8.2 Naming CIM Objects... 120 111

8.2.1 Object Paths .. 120 112
8.2.2 Object Path for Namespace Objects ... 121 113
8.2.3 Object Path for Qualifier Type Objects .. 122 114
8.2.4 Object Path for Class Objects.. 123 115
8.2.5 Object Path for Class Objects.. 123 116
8.2.6 Matching CIM Names .. 124 117

8.3 Identity of CIM Objects.. 125 118
8.4 Requirements on Specifications Using Object Paths ... 125 119
8.5 Object Paths Used in CIM MOF ... 125 120
8.6 Mapping CIM Naming and Native Naming ... 126 121

8.6.1 Native Name Contained in Opaque CIM Key .. 127 122
8.6.2 Native Storage of CIM Name... 127 123
8.6.3 Translation Table ... 127 124
8.6.4 No Mapping.. 127 125

9 Mapping Existing Models into CIM.. 127 126
9.1 Technique Mapping .. 127 127
9.2 Recast Mapping .. 128 128
9.3 Domain Mapping... 131 129
9.4 Mapping Scratch Pads.. 131 130

10 Repository Perspective ... 131 131
10.1 DMTF MIF Mapping Strategies... 133 132
10.2 Recording Mapping Decisions .. 133 133

ANNEX A (normative) MOF Syntax Grammar Description.. 136 134
ANNEX B (informative) CIM Meta Schema ... 142 135
ANNEX C (normative) Units... 163 136

C.1 Programmatic Units .. 163 137
C.2 Value for Units Qualifier .. 167 138

ANNEX D (informative) UML Notation ... 170 139
ANNEX E (informative) Guidelines .. 172 140

E.1 SQL Reserved Words... 172 141
ANNEX F (normative) EmbeddedObject and EmbeddedInstance Qualifiers.. 175 142

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 5

F.1 Encoding for MOF... 175 143
F.2 Encoding for CIM Protocols .. 176 144

ANNEX G (informative) Schema Errata... 177 145
ANNEX H (informative) Ambiguous Property and Method Names.. 179 146
ANNEX I (informative) OCL Considerations .. 182 147
ANNEX J (informative) Change Log .. 184 148
Bibliography .. 186 149
 150

Figures 151

Figure 1 – Four Ways to Use CIM .. 9 152
Figure 2 – CIM Meta Schema ... 28 153
Figure 3 – Example with Two Weak Associations and Propagated Keys .. 105 154
Figure 4 – General Component Structure of Object Path... 121 155
Figure 5 – Component Structure of Object Path for Namespaces ... 122 156
Figure 6 – Component Structure of Object Path for Qualifier Types .. 122 157
Figure 7 – Component Structure of Object Path for Classes.. 123 158
Figure 8 – Component Structure of Object Path for Instances... 124 159
Figure 9 – Technique Mapping Example .. 128 160
Figure 10 – MIF Technique Mapping Example... 128 161
Figure 11 – Recast Mapping... 129 162
Figure 12 – Repository Partitions.. 132 163
Figure 13 – Homogeneous and Heterogeneous Export ... 134 164
Figure 14 – Scratch Pads and Mapping.. 134 165

 166

Tables 167

Table 1 – Standards Bodies.. 11 168
Table 2 – Intrinsic Data Types .. 47 169
Table 3 – Compatibility of Schema Modifications ... 57 170
Table 4 – Compatibility of Qualifier Type Modifications.. 62 171
Table 5 – Changes that Increment the CIM Schema Major Version Number .. 64 172
Table 6 – Defined Qualifier Scopes .. 66 173
Table 7 – Defined Qualifier Flavors .. 67 174
Table 8 – Example for Mapping a String Format Based on the General Mapping String Format 96 175
Table 9 – UML Cardinality Notations .. 108 176
Table 10 – Standard Compiler Directives ... 117 177
Table 11 – Domain Mapping Example.. 131 178
Table C-1 – Base Units for Programmatic Units ... 165 179
Table D-1 – Diagramming Notation and Interpretation Summary... 170 180
 181

Common Information Model (CIM) Infrastructure DSP0004

6 DMTF Standard Version 2.6.0

Foreword 182

The Common Information Model (CIM) Infrastructure (DSP0004) was prepared by the DMTF Architecture 183
Working Group. 184

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems 185
management and interoperability. For information about the DMTF, see http://www.dmtf.org. 186

Acknowledgments 187

The DMTF acknowledges the following individuals for their contributions to this document: 188

Editor: 189

• Lawrence Lamers – VMware 190

Contributors: 191

• Jeff Piazza – HP 192
• Andreas Maier – IBM 193
• George Ericson – EMC 194
• Jim Davis – WBEM Solutions 195
• Karl Schopmeyer – Inova Development 196

http://www.dmtf.org/

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 7

Introduction 197

The Common Information Model (CIM) can be used in many ways. Ideally, information for performing 198
tasks is organized so that disparate groups of people can use it. This can be accomplished through an 199
information model that represents the details required by people working within a particular domain. An 200
information model requires a set of legal statement types or syntax to capture the representation and a 201
collection of expressions to manage common aspects of the domain (in this case, complex computer 202
systems). Because of the focus on common aspects, the Distributed Management Task Force (DMTF) 203
refers to this information model as CIM, the Common Information Model. For information on the current 204
core and common schemas developed using this meta model, contact the DMTF. 205

Document Conventions 206

Typographical Conventions 207

The following typographical conventions are used in this document: 208

• Document titles are marked in italics. 209

• Important terms that are used for the first time are marked in italics. 210

• ABNF rules, OCL text and CIM MOF text are in monospaced font. 211

ABNF Usage Conventions 212

Format definitions in this document are specified using ABNF (see RFC5234), with the following 213
deviations: 214

• Literal strings are to be interpreted as case-sensitive UCS/Unicode characters, as opposed to 215
the definition in RFC5234 that interprets literal strings as case-insensitive US-ASCII characters. 216

• By default, ABNF rules (including literals) are to be assembled without inserting any additional 217
whitespace characters, consistent with RFC5234. If an ABNF rule states "whitespace allowed", 218
zero or more of the following whitespace characters are allowed between any ABNF rules 219
(including literals) that are to be assembled: 220

– U+0009 (horizontal tab) 221

– U+000A (linefeed, newline) 222

– U+000C (form feed) 223

– U+000D (carriage return) 224

– U+0020 (space) 225

• In previous versions of this document, the vertical bar (|) was used to indicate a choice. Starting 226
with version 2.6 of this document, the forward slash (/) is used to indicate a choice, as defined in 227
RFC5234. 228

Deprecated Material 229

Deprecated material is not recommended for use in new development efforts. Existing and new 230
implementations may use this material, but they shall move to the favored approach as soon as possible. 231
CIM servers shall implement any deprecated elements as required by this document in order to achieve 232
backwards compatibility. Although CIM clients may use deprecated elements, they are directed to use the 233
favored elements instead. 234

Common Information Model (CIM) Infrastructure DSP0004

8 DMTF Standard Version 2.6.0

Deprecated material should contain references to the last published version that included the deprecated 235
material as normative material and to a description of the favored approach. 236

The following typographical convention indicates deprecated material: 237

DEPRECATED 238

Deprecated material appears here. 239

DEPRECATED 240

In places where this typographical convention cannot be used (for example, tables or figures), the 241
"DEPRECATED" label is used alone. 242

Experimental Material 243

Experimental material has yet to receive sufficient review to satisfy the adoption requirements set forth by 244
the DMTF. Experimental material is included in this document as an aid to implementers who are 245
interested in likely future developments. Experimental material may change as implementation 246
experience is gained. It is likely that experimental material will be included in an upcoming revision of the 247
document. Until that time, experimental material is purely informational. 248

The following typographical convention indicates experimental material: 249

EXPERIMENTAL 250

Experimental material appears here. 251

EXPERIMENTAL 252

In places where this typographical convention cannot be used (for example, tables or figures), the 253
"EXPERIMENTAL" label is used alone. 254

CIM Management Schema 255

Management schemas are the building-blocks for management platforms and management applications, 256
such as device configuration, performance management, and change management. CIM structures the 257
managed environment as a collection of interrelated systems, each composed of discrete elements. 258

CIM supplies a set of classes with properties and associations that provide a well-understood conceptual 259
framework to organize the information about the managed environment. We assume a thorough 260
knowledge of CIM by any programmer writing code to operate against the object schema or by any 261
schema designer intending to put new information into the managed environment. 262

CIM is structured into these distinct layers: core model, common model, extension schemas. 263

Core Model 264

The core model is an information model that applies to all areas of management. The core model is a 265
small set of classes, associations, and properties for analyzing and describing managed systems. It is a 266
starting point for analyzing how to extend the common schema. While classes can be added to the core 267
model over time, major reinterpretations of the core model classes are not anticipated. 268

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 9

Common Model 269

The common model is a basic set of classes that define various technology-independent areas, such as 270
systems, applications, networks, and devices. The classes, properties, associations, and methods in the 271
common model are detailed enough to use as a basis for program design and, in some cases, 272
implementation. Extensions are added below the common model in platform-specific additions that supply 273
concrete classes and implementations of the common model classes. As the common model is extended, 274
it offers a broader range of information. 275

The common model is an information model common to particular management areas but independent of 276
a particular technology or implementation. The common areas are systems, applications, networks, and 277
devices. The information model is specific enough to provide a basis for developing management 278
applications. This schema provides a set of base classes for extension into the area of technology-279
specific schemas. The core and common models together are referred to in this document as the CIM 280
schema. 281

Extension Schema 282

The extension schemas are technology-specific extensions to the common model. Operating systems 283
(such as Microsoft Windows® or UNIX®) are examples of extension schemas. The common model is 284
expected to evolve as objects are promoted and properties are defined in the extension schemas. 285

CIM Implementations 286

Because CIM is not bound to a particular implementation, it can be used to exchange management 287
information in a variety of ways; four of these ways are illustrated in Figure 1. These ways of exchanging 288
information can be used in combination within a management application. 289

CIM Meta Model

–
Store meta model
information for
program access.

Has Instances Realization

Class

Objects (instances of classes)

Core Schema
Common Schema
Extension Schemas

–
Transform conceptual
definition into a physical
schema for particular
database technology (for
example, relational).

–
Define a set of data-
oriented application objects
to instantiate and extend
the targeted technology.

–
Use content of CIM to
structure instances passed
between applications.

Content of CIM Realization of CIM

 290

Figure 1 – Four Ways to Use CIM 291

Common Information Model (CIM) Infrastructure DSP0004

10 DMTF Standard Version 2.6.0

The constructs defined in the model are stored in a database repository. These constructs are not 292
instances of the object, relationship, and so on. Rather, they are definitions to establish objects and 293
relationships. The meta model used by CIM is stored in a repository that becomes a representation of the 294
meta model. The constructs of the meta-model are mapped into the physical schema of the targeted 295
repository. Then the repository is populated with the classes and properties expressed in the core model, 296
common model, and extension schemas. 297

For an application database management system (DBMS), the CIM is mapped into the physical schema 298
of a targeted DBMS (for example, relational). The information stored in the database consists of actual 299
instances of the constructs. Applications can exchange information when they have access to a common 300
DBMS and the mapping is predictable. 301

For application objects, the CIM is used to create a set of application objects in a particular language. 302
Applications can exchange information when they can bind to the application objects. 303

For exchange parameters, the CIM — expressed in some agreed syntax — is a neutral form to exchange 304
management information through a standard set of object APIs. The exchange occurs through a direct set 305
of API calls or through exchange-oriented APIs that can create the appropriate object in the local 306
implementation technology. 307

CIM Implementation Conformance 308

The ability to exchange information between management applications is fundamental to CIM. The 309
current exchange mechanism is the Managed Object Format (MOF). As of now,1 no programming 310
interfaces or protocols are defined by (and thus cannot be considered as) an exchange mechanism. 311
Therefore, a CIM-capable system must be able to import and export properly formed MOF constructs. 312
How the import and export operations are performed is an implementation detail for the CIM-capable 313
system. 314

Objects instantiated in the MOF must, at a minimum, include all key properties and all required properties. 315
Required properties have the Required qualifier present and are set to TRUE. 316

1 The standard CIM application programming interface and/or communication protocol will be defined in

a future version of the CIM Infrastructure specification.

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 11

Common Information Model (CIM) Infrastructure 317

1 Scope 318

The DMTF Common Information Model (CIM) Infrastructure is an approach to the management of 319
systems and networks that applies the basic structuring and conceptualization techniques of the object-320
oriented paradigm. The approach uses a uniform modeling formalism that together with the basic 321
repertoire of object-oriented constructs supports the cooperative development of an object-oriented 322
schema across multiple organizations. 323

This document describes an object-oriented meta model based on the Unified Modeling Language (UML). 324
This model includes expressions for common elements that must be clearly presented to management 325
applications (for example, object classes, properties, methods, and associations). 326

This document does not describe specific CIM implementations, application programming interfaces 327
(APIs), or communication protocols. 328

2 Normative References 329

The following referenced documents are indispensable for the application of this document. For dated or 330
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies. 331
For references without a date or version, the latest published edition of the referenced document 332
(including any corrigenda or DMTF update versions) applies. 333

Table 1 shows standards bodies and their web sites. 334

Table 1 – Standards Bodies 335

Abbreviation Standards Body Web Site

ANSI American National Standards Institute http://www.ansi.org

DMTF Distributed Management Task Force http://www.dmtf.org

EIA Electronic Industries Alliance http://www.eia.org

IEC International Engineering Consortium http://www.iec.ch

IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org

IETF Internet Engineering Task Force http://www.ietf.org

INCITS International Committee for Information Technology Standards http://www.incits.org

ISO International Standards Organization http://www.iso.ch

ITU International Telecommunications Union http://www.itu.int

W3C World Wide Web Consortium http://www.w3.org

 336

http://www.ansi.org/
http://www.dmtf.org/
http://www.eia.org/
http://www.iec.ch/
http://www.ieee.org/
http://www.ietf.org/
http://www.incits.org/
http://www.iso.ch/
http://www.itu.int/
http://www.w3.org/

Common Information Model (CIM) Infrastructure DSP0004

12 DMTF Standard Version 2.6.0

ANSI/IEEE 754-1985, IEEE® Standard for BinaryFloating-Point Arithmetic, August 1985 337
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=30711 338

DMTF DSP0207, WBEM URI Mapping Specification, Version 1.0 339
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf 340

DMTF DSP4004, DMTF Release Process, Version 2.2 341
http://www.dmtf.org/standards/published_documents/DSP4004_2.2.pdf 342

EIA-310, Cabinets, Racks, Panels, and Associated Equipment 343
http://electronics.ihs.com/collections/abstracts/eia-310.htm 344

IEEE Std 1003.1, 2004 Edition, Standard for information technology - portable operating system interface 345
(POSIX). Shell and utilities 346
http://www.unix.org/version3/ieee_std.html 347

IETF RFC3986, Uniform Resource Identifiers (URI): Generic Syntax, August 1998 348
http://tools.ietf.org/html/rfc2396 349

IETF RFC5234, Augmented BNF for Syntax Specifications: ABNF, January 2008 350
http://tools.ietf.org/html/rfc5234 351

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards 352
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype 353

ISO 639-1:2002, Codes for the representation of names of languages — Part 1: Alpha-2 code 354
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109 355

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code 356
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=4767 357

ISO 639-3:2007, Codes for the representation of names of languages — Part 3: Alpha-3 code for 358
comprehensive coverage of languages 359
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39534 360

ISO 1000:1992, SI units and recommendations for the use of their multiples and of certain other units 361
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=5448 362

ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions — Part 1: 363
Country codes 364
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39719 365

ISO 3166-2:2007, Codes for the representation of names of countries and their subdivisions — Part 2: 366
Country subdivision code 367
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39718 368

ISO 3166-3:1999, Codes for the representation of names of countries and their subdivisions — Part 3: 369
Code for formerly used names of countries 370
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2130 371

ISO 8601:2004 (E), Data elements and interchange formats – Information interchange — Representation 372
of dates and times 373
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874 374

ISO/IEC 9075-10:2003, Information technology — Database languages — SQL — Part 10: Object 375
Language Bindings (SQL/OLB) 376
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=34137 377

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=30711
http://www.dmtf.org/standards/published_documents/DSP0207_1.0.pdf
http://www.dmtf.org/standards/published_documents/DSP4004_2.2.pdf
http://electronics.ihs.com/collections/abstracts/eia-310.htm
http://www.unix.org/version3/ieee_std.html
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc5234
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtype
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22109
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=4767
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39534
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=5448
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39719
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39718
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2130
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=34137

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 13

ISO/IEC 10165-4:1992, Information technology — Open Systems Interconnection – Structure of 378
management information — Part 4: Guidelines for the definition of managed objects (GDMO) 379
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18174 380

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS) 381
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip 382

ISO/IEC 10646:2003/Amd 1:2005, Information technology — Universal Multiple-Octet Coded Character 383
Set (UCS) — Amendment 1: Glagolitic, Coptic, Georgian and other characters 384
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040755_ISO_IEC_10646_2003_Amd_1_2005(E).385
zip 386

ISO/IEC 10646:2003/Amd 2:2006, Information technology — Universal Multiple-Octet Coded Character 387
Set (UCS) — Amendment 2: N'Ko, Phags-pa, Phoenician and other characters 388
http://standards.iso.org/ittf/PubliclyAvailableStandards/c041419_ISO_IEC_10646_2003_Amd_2_2006(E).389
zip 390

ISO/IEC 14651:2007, Information technology — International string ordering and comparison — Method 391
for comparing character strings and description of the common template tailorable ordering 392
http://standards.iso.org/ittf/PubliclyAvailableStandards/c044872_ISO_IEC_14651_2007(E).zip 393

ISO/IEC 14750:1999, Information technology — Open Distributed Processing — Interface Definition 394
Language 395
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486 396

ITU X.501, Information Technology — Open Systems Interconnection — The Directory: Models 397
http://www.itu.int/rec/T-REC-X.501/en 398

ITU X.680 (07/02), Information technology — Abstract Syntax Notation One (ASN.1): Specification of 399
basic notation 400
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf 401

OMG, Object Constraint Language, Version 2.0 402
http://www.omg.org/cgi-bin/doc?formal/2006-05-01 403

OMG, Unified Modeling Language: Superstructure, Version 2.1.1 404
http://www.omg.org/cgi-bin/doc?formal/07-02-05 405

The Unicode Consortium, The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization 406
Forms 407
http://www.unicode.org/reports/tr15/ 408

W3C, Namespaces in XML, W3C Recommendation, 14 January 1999 409
http://www.w3.org/TR/REC-xml-names 410

3 Terms and Definitions 411

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms 412
are defined in this clause. 413

The terms "shall" ("required"), "shall not," "should" ("recommended"), "should not" ("not recommended"), 414
"may," "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described 415
in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term, 416
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. ISO/IEC 417
Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional alternatives 418
shall be interpreted in their normal English meaning. 419

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=18174
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039921_ISO_IEC_10646_2003(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040755_ISO_IEC_10646_2003_Amd_1_2005(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040755_ISO_IEC_10646_2003_Amd_1_2005(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c041419_ISO_IEC_10646_2003_Amd_2_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c041419_ISO_IEC_10646_2003_Amd_2_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c044872_ISO_IEC_14651_2007(E).zip
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=25486
http://www.itu.int/rec/T-REC-X.501/en
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/07-02-05
http://www.unicode.org/reports/tr15/
http://www.w3.org/TR/REC-xml-names

Common Information Model (CIM) Infrastructure DSP0004

14 DMTF Standard Version 2.6.0

The terms "clause," "subclause," "paragraph," and "annex" in this document are to be interpreted as 420
described in ISO/IEC Directives, Part 2, Clause 5. 421

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC 422
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do 423
not contain normative content. Notes and examples are always informative elements. 424

The following additional terms are used in this document. 425

3.1 426
address 427
the general concept of a location reference to a CIM object that is accessible through a CIM server, not 428
implying any particular format or protocol 429
More specific kinds of addresses are object paths. 430
Embedded objects are not addressable; they may be accessible indirectly through their embedding 431
instance. Instances of an indication class are not addressable since they only exist while being delivered. 432

3.2 433
aggregation 434
a strong form of association that expresses a whole-part relationship between each instance on the 435
aggregating end and the instances on the other ends, where the instances on the other ends can exist 436
independently from the aggregating instance. 437
For example, the containment relationship between a physical server and its physical components can be 438
considered an aggregation, since the physical components can exist if the server is dismantled. A 439
stronger form of aggregation is a composition. 440

3.3 441
ancestor 442
the ancestor of a schema element is for a class, its direct superclass (if any); for a property or method, its 443
overridden property or method (if any); and for a parameter of a method, the like-named parameter of the 444
overridden method (if any) 445
The ancestor of a schema element plays a role for propagating qualifier values to that schema element 446
for qualifiers with flavor ToSubclass. 447

3.4 448
ancestry 449
the ancestry of a schema element is the set of schema elements that results from recursively determining 450
its ancestor schema elements 451
A schema element is not considered part of its ancestry. 452

3.5 453
arity 454
the number of references exposed by an association class 455

3.6 456
association, CIM association 457
a special kind of class that expresses the relationship between two or more other classes 458
The relationship is established by two or more references defined in the association that are typed to a 459
class the referenced instances are of. 460
For example, an association ACME_SystemDevice may relate the classes ACME_System and 461
ACME_Device by defining references to those classes. 462
A CIM association is a UML association class. Each has the aspects of both a UML association and a 463
UML class, which may expose ordinary properties and methods and may be part of a class inheritance 464
hierarchy. The references belonging to a CIM association belong to it and are also exposed as part of the 465

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 15

association and not as parts of the associated classes. The term "association class" is sometimes used 466
instead of the term "association" when the class aspects of the element are being emphasized. 467
Aggregations and compositions are special kinds of associations. 468
In a CIM server, associations are special kinds of objects. The term "association object" (i.e., object of 469
association type) is sometimes used to emphasize that. The address of such association objects is 470
termed "class path", since associations are special classes. Similarly, association instances are a special 471
kind of instances and are also addressable objects. Associations may also be represented as embedded 472
instances, in which case they are not independently addressable. 473
In a schema, associations are special kinds of schema elements. 474
In the CIM meta-model, associations are represented by the meta-element named "Association". 475

3.7 476
association end 477
a synonym for the reference defined in an association 478

3.8 479
cardinality 480
the number of instances in a set 481

DEPRECATED 482

The use of the term "cardinality" for the allowable range for the number of instances on an association 483
end is deprecated. The term "multiplicity" has been introduced for that, consistent with UML terminology. 484

DEPRECATED 485

3.9 486
Common Information Model 487
CIM 488
CIM (Common Information Model) is: 489
 1. the name of the meta-model used to define schemas (e.g., the CIM schema or extension schemas). 490
 2. the name of the schema published by the DMTF (i.e., the CIM schema). 491

3.10 492
CIM schema 493
the schema published by the DMTF that defines the Common Information Model 494
It is divided into a core model and a common model. Extension schemas are defined outside of the DMTF 495
and are not considered part of the CIM schema. 496

3.11 497
CIM client 498
a role responsible for originating CIM operations for processing by a CIM server 499
This definition does not imply any particular implementation architecture or scope, such as a client library 500
component or an entire management application. 501

3.12 502
CIM listener 503
a role responsible for processing CIM indications originated by a CIM server 504
This definition does not imply any particular implementation architecture or scope, such as a standalone 505
demon component or an entire management application. 506

Common Information Model (CIM) Infrastructure DSP0004

16 DMTF Standard Version 2.6.0

3.13 507
CIM operation 508
an interaction within a CIM protocol that is originated by a CIM client and processed by a CIM server 509

3.14 510
CIM protocol 511
a protocol that is used between CIM client, CIM server and CIM listener 512
This definition does not imply any particular communication protocol stack, or even that the protocol 513
performs a remote communication. 514

3.15 515
CIM server 516
a role responsible for processing CIM operations originated by a CIM client and for originating CIM 517
indications for processing by a CIM listener 518
This definition does not imply any particular implementation architecture, such as a separation into a 519
CIMOM and provider components. 520

3.16 521
class, CIM class 522
a common type for a set of instances that support the same features 523
A class is defined in a schema and models an aspect of a managed object. For a full definition, see 524
 5.1.2.7. 525
For example, a class named "ACME_Modem" may represent a common type for instances of modems 526
and may define common features such as a property named "ActualSpeed" to represent the actual 527
modem speed. 528
Special kinds of classes are ordinary classes, association classes and indication classes. 529
In a CIM server, classes are special kinds of objects. The term "class object" (i.e., object of class type) is 530
sometimes used to emphasize that. The address of such class objects is termed "class path". 531
In a schema, classes are special kinds of schema elements. 532
In the CIM meta-model, classes are represented by the meta-element named "Class". 533

3.17 534
class declaration 535
the definition (or specification) of a class 536
For example, a class that is accessible through a CIM server can be retrieved by a CIM client. What the 537
CIM client receives as a result is actually the class declaration. Although unlikely, the class accessible 538
through the CIM server may already have changed its definition by the time the CIM client receives the 539
class declaration. Similarly, when a class accessible through a CIM server is being modified through a 540
CIM operation, one input parameter might be a class declaration that is used during the processing of the 541
CIM operation to change the class. 542

3.18 543
class path 544
a special kind of object path addressing a class that is accessible through a CIM server 545

3.19 546
class origin 547
the class origin of a feature is the class defining the feature 548

3.20 549
common model 550
the subset of the CIM Schema that is specific to particular domains 551
It is derived from the core model and is actually a collection of models, including (but not limited to) the 552
System model, the Application model, the Network model, and the Device model. 553

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 17

3.21 554
composition 555
a strong form of association that expresses a whole-part relationship between each instance on the 556
aggregating end and the instances on the other ends, where the instances on the other ends cannot exist 557
independently from the aggregating instance 558
For example, the containment relationship between a running operating system and its logical devices 559
can be considered a composition, since the logical devices cannot exist if the operating system does not 560
exist. A composition is also a strong form of aggregation. 561

3.22 562
core model 563
the subset of the CIM Schema that is not specific to any particular domain 564
The core model establishes a basis for derived models such as the common model or extension 565
schemas. 566

3.23 567
creation class 568
the creation class of an instance is the most derived class of the instance 569
The creation class of an instance can also be considered the factory of the instance (although in CIM, 570
instances may come into existence through other means than issuing an instance creation operation 571
against the creation class). 572

3.24 573
domain 574
an area of management or expertise 575

DEPRECATED 576

The following use of the term "domain" is deprecated: The domain of a feature is the class defining the 577
feature. For example, if class ACME_C1 defines property P1, then ACME_C1 is said to be the domain of 578
P1. The domain acts as a space for the names of the schema elements it defines in which these names 579
are unique. Use the terms "class origin" or "class defining the schema element" or "class exposing the 580
schema element" instead. 581

DEPRECATED 582

3.25 583
effective qualifier value 584
For every schema element, an effective qualifier value can be determined for each qualifier scoped to the 585
element. The effective qualifier value on an element is the value that determines the qualifier behavior for 586
the element. 587
For example, qualifier Counter is defined with flavor ToSubclass and a default value of FALSE. If a value 588
of TRUE is specified for Counter on a property NumErrors in a class ACME_Device, then the effective 589
value of qualifier Counter on that property is TRUE. If an ACME_Modem subclass of class ACME_Device 590
overrides NumErrors without specifying the Counter qualifier again, then the effective value of qualifier 591
Counter on that property is also TRUE since its flavor ToSubclass defines that the effective value of 592
qualifier Counter is determined from the next ancestor element of the element that has the qualifier 593
specified. 594

3.26 595
element 596
a synonym for schema element 597

Common Information Model (CIM) Infrastructure DSP0004

18 DMTF Standard Version 2.6.0

3.27 598
embedded class 599
a class declaration that is embedded in the value of a property, parameter or method return value 600

3.28 601
embedded instance 602
an instance declaration that is embedded in the value of a property, parameter or method return value 603

3.29 604
embedded object 605
an embedded class or embedded instance 606

3.30 607
explicit qualifier 608
a qualifier type declared separately from its usage on schema elements 609
See also implicit qualifier. 610

3.31 611
extension schema 612
a schema not owned by the DMTF whose classes are derived from the classes in the CIM Schema 613

3.32 614
feature 615
a property or method defined in a class 616
A feature is exposed if it is available to consumers of a class. The set of features exposed by a class is 617
the union of all features defined in the class and its ancestry. In the case where a feature overrides a 618
feature, the combined effects are exposed as a single feature. 619

3.33 620
flavor 621
meta-data on a qualifier type that defines the rules for propagation, overriding and translatability of 622
qualifiers 623
For example, the Key qualifier has the flavors ToSubclass and DisableOverride, meaning that the qualifier 624
value gets propagated to subclasses and these subclasses cannot override it. 625

3.34 626
implicit qualifier 627
a qualifier type declared as part of the declaration of a schema element 628
See also explicit qualifier. 629

DEPRECATED 630

The concept of implicitly defined qualifier types (i.e., implicit qualifiers) is deprecated. See 5.1.2.16 for 631
details. 632

DEPRECATED 633

3.35 634
indication, CIM indication 635
a special kind of class that expresses the notification about an event that occurred 636
Indications are raised based on a trigger that defines the condition under which an event causes an 637
indication to be raised. Events may be related to objects accessible in a CIM server, such as the creation, 638

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 19

modification, deletion of or access to an object, or execution of a method on the object. Events may also 639
be related to managed objects, such as alerts or errors. 640
For example, an indication ACME_AlertIndication may express the notification about an alert event. 641
The term "indication class" is sometimes used instead of the term "indication" to emphasize that an 642
indication is also a class. 643
In a CIM server, indication instances are not addressable. They exist as embedded instances in the 644
protocol message that delivers the indication. 645
In a schema, indications are special kinds of schema elements. 646
In the CIM meta-model, indications are represented by the meta-element named "Indication". 647
The term "indication" also refers to an interaction within a CIM protocol that is originated on a CIM server 648
and processed by a CIM listener. 649

3.36 650
inheritance 651
a relationship between a more general class and a more specific class 652
An instance of the specific class is also an instance of the general class. The specific class inherits the 653
features of the general class. In an inheritance relationship, the specific class is termed "subclass" and 654
the general class is termed "superclass". 655
For example, if a class ACME_Modem is a subclass of a class ACME_Device, any ACME_Modem 656
instance is also an ACME_Device instance. 657

3.37 658
instance, CIM instance 659
This term has two (different) meanings: 660

1) As instance of a class: 661

An instance of a class has values (including possible NULL) for the properties exposed by its 662
creation class. Embedded instances are also instances. 663

In a CIM server, instances are special kinds of objects. The term "instance object" (i.e., object of 664
instance type) is sometimes used to emphasize that. The address of such instance objects is 665
termed "instance path". 666

In a schema, instances are special kinds of schema elements. 667

In the CIM meta-model, instances are represented by the meta-element named "Instance". 668

2) As instance of a meta-element: 669

A relationship between an element and its meta-element. For example, a class ACME_Modem 670
is said to be an instance of the meta-element Class, and a property ACME_Modem.Speed is 671
said to be an instance of the meta-element Property. 672

3.38 673
instance path 674
a special kind of object path addressing an instance that is accessible through a CIM server 675

3.39 676
instance declaration 677
the definition (or specification) of an instance by means of specifying a creation class for the instance and 678
a set of property values 679
For example, an instance that is accessible through a CIM server can be retrieved by a CIM client. What 680
the CIM client receives as a result, is actually an instance declaration. The instance itself may already 681
have changed its property values by the time the CIM client receives the instance declaration. Similarly, 682
when an instance that is accessible through a CIM server is being modified through a CIM operation, one 683

Common Information Model (CIM) Infrastructure DSP0004

20 DMTF Standard Version 2.6.0

input parameter might be an instance declaration that specifies the intended new property values for the 684
instance. 685

3.40 686
key 687
The key of an instance is synonymous with the model path of the instance (class name, plus set of key 688
property name/value pairs). The key of an instance is required to be unique in the namespace in which it 689
is registered. The key properties of a class are indicated by the Key qualifier. 690
Also, shorthand for the term "key property". 691

3.41 692
managed object 693
a resource in the managed environment of which an aspect is modeled by a class 694
An instance of that class represents that aspect of the represented resource. 695
For example, a network interface card is a managed object whose logical function may be modeled as a 696
class ACME_NetworkPort. 697

3.42 698
meta-element 699
an entity in a meta-model 700
The boxes in Figure 2 represent the meta-elements defined in the CIM meta-model. 701
For example, the CIM meta-model defines a meta-element named "Property" that defines the concept of 702
a structural data item in an object. Specific properties (e.g., property P1) can be thought of as being 703
instances of the meta-element named "Property". 704

3.43 705
meta-model 706
a set of meta-elements and their meta-relationships that expresses the types of things that can be defined 707
in a schema 708
For example, the CIM meta-model includes the meta-elements named "Property" and "Class" which have 709
a meta-relationship such that a Class owns zero or more Properties. 710

3.44 711
meta-relationship 712
a relationship between two entities in a meta-model 713
The links in Figure 2 represent the meta-relationships defined in the CIM meta-model. 714
For example, the CIM meta-model defines a meta-relationship by which the meta-element named 715
"Property" is aggregated into the meta-element named "Class". 716

3.45 717
meta-schema 718
a synonym for meta-model 719

3.46 720
method, CIM method 721
a behavioral feature of a class 722
Methods can be invoked to produce the associated behavior. 723
In a schema, methods are special kinds of schema elements. Method name, return value, parameters 724
and other information about the method are defined in the class declaration. 725
In the CIM meta-model, methods are represented by the meta-element named "Method". 726

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 21

3.47 727
model 728
a set of classes that model a specific domain 729
A schema may contain multiple models (that is the case in the CIM Schema), but a particular domain 730
could also be modeled using multiple schemas, in which case a model would consist of multiple schemas. 731

3.48 732
model path 733
the part of an object path that identifies the object within the namespace 734

3.49 735
multiplicity 736
The multiplicity of an association end is the allowable range for the number of instances that may be 737
associated to each instance referenced by each of the other ends of the association. The multiplicity is 738
defined on a reference using the Min and Max qualifiers. 739

3.50 740
namespace, CIM namespace 741
a special kind of object that is accessible through a CIM server that represents a naming space for 742
classes, instances and qualifier types 743

3.51 744
namespace path 745
a special kind of object path addressing a namespace that is accessible through a CIM server 746
Also, the part of an instance path, class path and qualifier type path that addresses the namespace. 747

3.52 748
name 749
an identifier that each element or meta-element has in order to identify it in some scope 750

DEPRECATED 751

The use of the term "name" for the address of an object that is accessible through a CIM server is 752
deprecated. The term "object path" should be used instead. 753

DEPRECATED 754

3.53 755
object, CIM object 756
a class, instance, qualifier type or namespace that is accessible through a CIM server 757
An object may be addressable, i.e., have an object path. Embedded objects are objects that are not 758
addressable; they are accessible indirectly through their embedding property, parameter or method return 759
value. Instances of indications are objects that are not addressable either, as they are not accessible 760
through a CIM server at all and only exist in the protocol message in which they are being delivered. 761

DEPRECATED 762

The term "object" has historically be used to mean just "class or instance". This use of the term "object" is 763
deprecated. If a restriction of the term "object" to mean just "class or instance" is intended, this is now 764
stated explicitly. 765

DEPRECATED 766

Common Information Model (CIM) Infrastructure DSP0004

22 DMTF Standard Version 2.6.0

3.54 767
object path 768
the address of an object that is accessible through a CIM server 769
An object path consists of a namespace path (addressing the namespace) and optionally a model path 770
(identifying the object within the namespace). 771

3.55 772
ordinary class 773
a class that is neither an association class nor an indication class 774

3.56 775
ordinary property 776
a property that is not a reference 777

3.57 778
override 779
a relationship between like-named elements of the same type of meta-element in an inheritance 780
hierarchy, where the overriding element in a subclass redefines the overridden element in a superclass 781
The purpose of an override relationship is to refine the definition of an element in a subclass. 782
For example, a class ACME_Device may define a string typed property Status that may have the values 783
"powersave", "on", or "off". A class ACME_Modem, subclass of ACME_Device, may override the Status 784
property to have only the values "on" or "off", but not "powersave". 785

3.58 786
parameter, CIM parameter 787
a named and typed argument passed in and out of methods 788
The return value of a method is not considered a parameter; instead it is considered part of the method. 789
In a schema, parameters are special kinds of schema elements. 790
In the CIM meta-model, parameters are represented by the meta-element named "Parameter". 791

3.59 792
polymorphism 793
the ability of an instance to be of a class and all of its subclasses 794
For example, a CIM operation may enumerate all instances of class ACME_Device. If the instances 795
returned may include instances of subclasses of ACME_Device, then that CIM operation is said to 796
implement polymorphic behavior. 797

3.60 798
propagation 799
the ability to derive a value of one property from the value of another property 800
CIM supports propagation via either PropertyConstraint qualifiers utilizing a derivation constraint or via 801
weak associations. 802

3.61 803
property, CIM property 804
a named and typed structural feature of a class 805
Name, data type, default value and other information about the property are defined in a class. Properties 806
have values that are available in the instances of a class. The values of its properties may be used to 807
characterize an instance. 808
For example, a class ACME_Device may define a string typed property named "Status". In an instance of 809
class ACME_Device, the Status property may have a value "on". 810
Special kinds of properties are ordinary properties and references. 811
In a schema, properties are special kinds of schema elements. 812

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 23

In the CIM meta-model, properties are represented by the meta-element named "Property". 813

3.62 814
qualified element 815
a schema element that has a qualifier specified in the declaration of the element 816
For example, the term "qualified element" in the description of the Counter qualifier refers to any property 817
(or other kind of schema element) that has the Counter qualifier specified on it. 818

3.63 819
qualifier, CIM qualifier 820
a named value used to characterize schema elements 821
Qualifier values may change the behavior or semantics of the qualified schema element. Qualifiers can 822
be regarded as metadata that is attached to the schema elements. The scope of a qualifier determines on 823
which kinds of schema elements a specific qualifier can be specified. 824
For example, if property ACME_Modem.Speed has the Key qualifier specified with a value of TRUE, this 825
characterizes the property as a key property for the class. 826

3.64 827
qualifier type 828
a common type for a set of qualifiers 829
In a CIM server, qualifier types are special kinds of objects. The address of qualifier type objects is 830
termed "qualifier type path". 831
In a schema, qualifier types are special kinds of schema elements. 832
In the CIM meta-model, qualifier types are represented by the meta-element named "QualifierType". 833

3.65 834
qualifier type declaration 835
the definition (or specification) of a qualifier type 836
For example, a qualifier type object that is accessible through a CIM server can be retrieved by a CIM 837
client. What the CIM client receives as a result, is actually a qualifier type declaration. Although unlikely, 838
the qualifier type itself may already have changed its definition by the time the CIM client receives the 839
qualifier type declaration. Similarly, when a qualifier type that is accessible through a CIM server is being 840
modified through a CIM operation, one input parameter might be a qualifier type declaration that is used 841
during the processing of the operation to change the qualifier type. 842

3.66 843
qualifier type path 844
a special kind of object path addressing a qualifier type that is accessible through a CIM server 845

3.67 846
qualifier value 847
the value of a qualifier in a general sense, without implying whether it is the specified value, the effective 848
value, or the default value 849

3.68 850
reference, CIM reference 851
an association end 852
References are special kinds of properties that reference an instance. 853
The value of a reference is an instance path. The type of a reference is a class of the referenced 854
instance. The referenced instance may be of a subclass of the class specified as the type of the 855
reference. 856
In a schema, references are special kinds of schema elements. 857
In the CIM meta-model, references are represented by the meta-element named "Reference". 858

Common Information Model (CIM) Infrastructure DSP0004

24 DMTF Standard Version 2.6.0

3.69 859
schema 860
a set of classes with a single defining authority or owning organization 861
In the CIM meta-model, schemas are represented by the meta-element named "Schema". 862

3.70 863
schema element 864
a specific class, property, method or parameter 865
For example, a class ACME_C1 or a property P1 are schema elements. 866

3.71 867
scope 868
part of a qualifier type, indicating the meta-elements on which the qualifier can be specified 869
For example, the Abstract qualifier has scope class, association and indication, meaning that it can be 870
specified only on ordinary classes, association classes, and indication classes. 871

3.72 872
scoping object, scoping instance, scoping class 873
a scoping object provides context for a set of other objects 874
A specific example is an object (class or instance) that propagates some or all of its key properties to a 875
weak object, along a weak association. 876

3.73 877
signature 878
a method name together with the type of its return value and the set of names and types of its parameters 879

3.74 880
subclass 881
See inheritance. 882

3.75 883
superclass 884
See inheritance. 885

3.76 886
top-level object 887

DEPRECATED 888

The use of the terms "top-level object" or "TLO" for an object that has no scoping object is deprecated. 889
Use phrases like "an object that has no scoping object", instead. 890

DEPRECATED 891

3.77 892
trigger 893
a condition that when true, expresses the occurrence of an event 894

3.78 895
weak object, weak instance, weak class 896
an object (class or instance) that gets some or all of its key properties propagated from a scoping object, 897
along a weak association 898

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 25

3.79 899
weak association 900
an association that references a scoping object and weak objects, and along which the values of key 901
properties get propagated from a scoping object to a weak object 902
In the weak object, the key properties to be propagated have qualifier Propagate with an effective value of 903
TRUE, and the weak association has qualifier Weak with an effective value of TRUE on its end 904
referencing the weak object. 905

4 Symbols and Abbreviated Terms 906

The following abbreviations are used in this document. 907

4.1 908
API 909
application programming interface 910

4.2 911
CIM 912
Common Information Model 913

4.3 914
DBMS 915
Database Management System 916

4.4 917
DMI 918
Desktop Management Interface 919

4.5 920
GDMO 921
Guidelines for the Definition of Managed Objects 922

4.6 923
HTTP 924
Hypertext Transfer Protocol 925

4.7 926
MIB 927
Management Information Base 928

4.8 929
MIF 930
Management Information Format 931

4.9 932
MOF 933
Managed Object Format 934

Common Information Model (CIM) Infrastructure DSP0004

26 DMTF Standard Version 2.6.0

4.10 935
OID 936
object identifier 937

4.11 938
SMI 939
Structure of Management Information 940

4.12 941
SNMP 942
Simple Network Management Protocol 943

4.13 944
UML 945
Unified Modeling Language 946

5 Meta Schema 947

The Meta Schema is a formal definition of the model that defines the terms to express the model and its 948
usage and semantics (see ANNEX B). 949

The Unified Modeling Language (UML) (see Unified Modeling Language: Superstructure) defines the 950
structure of the meta schema. In the discussion that follows, italicized words refer to objects in Figure 2. 951
We assume familiarity with UML notation (see www.rational.com/uml) and with basic object-oriented 952
concepts in the form of classes, properties, methods, operations, inheritance, associations, objects, 953
cardinality, and polymorphism. 954

5.1 Definition of the Meta Schema 955

The CIM meta schema provides the basis on which CIM schemas and models are defined. The CIM meta 956
schema defines meta-elements that have attributes and relationships between them. For example, a CIM 957
class is a meta-element that has attributes such as a class name, and relationships such as a 958
generalization relationship to a superclass, or ownership relationships to its properties and methods. 959

The CIM meta schema is defined as a UML user model, using the following UML concepts: 960

• CIM meta-elements are represented as UML classes (UML Class metaclass defined in Unified 961
Modeling Language: Superstructure) 962

• CIM meta-elements may use single inheritance, which is represented as UML generalization 963
(UML Generalization metaclass defined in Unified Modeling Language: Superstructure) 964

• Attributes of CIM meta-elements are represented as UML properties (UML Property metaclass 965
defined in Unified Modeling Language: Superstructure) 966

• Relationships between CIM meta-elements are represented as UML associations (UML 967
Association metaclass defined in Unified Modeling Language: Superstructure) whose 968
association ends are owned by the associated metaclasses. The reason for that ownership is 969
that UML Association metaclasses do not have the ability to own attributes or operations. Such 970
relationships are defined in the "Association ends" sections of each meta-element definition. 971

Languages defining CIM schemas and models (e.g., CIM Managed Object Format) shall use the meta-972
schema defined in this subclause, or an equivalent meta-schema, as a basis. 973

http://www.rational.com/uml

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 27

A meta schema describing the actual run-time objects in a CIM server is not in scope of this CIM meta 974
schema. Such a meta schema may be closely related to the CIM meta schema defined in this subclause, 975
but there are also some differences. For example, a CIM instance specified in a schema or model 976
following this CIM meta schema may specify property values for a subset of the properties its defining 977
class exposes, while a CIM instance in a CIM server always has all properties exposed by its defining 978
class. 979

Any statement made in this document about a kind of CIM element also applies to sub-types of the 980
element. For example, any statement made about classes also applies to indications and associations. In 981
some cases, for additional clarity, the sub-types to which a statement applies, is also indicated in 982
parenthesis (example: "classes (including association and indications)"). 983

If a statement is intended to apply only to a particular type but not to its sub-types, then the additional 984
qualification "ordinary" is used. For example, an ordinary class is a class that is not an indication or an 985
association. 986

Figure 2 shows a UML class diagram with all meta-elements and their relationships defined in the CIM 987
meta schema. 988

Common Information Model (CIM) Infrastructure DSP0004

28 DMTF Standard Version 2.6.0

+Name : string
NamedElement

TypedElement

+TypeName : string
PrimitiveType ReferenceType

Schema

PropertyMethod

Parameter

Indication Association

Reference

+Scope : string
QualifierType

Instance

0..1

1

ElementType

1

*

MethodParameter

1

* SchemaElement

1

*

MethodDomain

+IsArray : boolean
+ArraySize : integer

Type

0..1
*

Generalization

0..1
*

PropertyOverride

0..1
*

MethodOverride

1

*

SpecifiedProperty

InstanceProperty

Trigger

Class

Qualifier
*

0..1

DefiningQualifier

*

1 DefiningClass

1

*DefiningProperty

*

1 SpecifiedQualifier

+InheritancePropagation : boolean
+OverridePermission : boolean
+Translatable : boolean

Flavor

*

1..* TriggeringElement

*

*

TriggeredIndication 1

*

PropertyDomain

1

*

ReferenceRange

1

1

QualifierTypeFlavor

0..1

*

ElementQualifierType

+Value : string
+IsNull : boolean

Value0..1

1 ValueType

0..1

0..1

PropertyDefaultValue

0..1

0..1

QualifierTypeDefaultValue

0..1

1
QualifierValue

0..1

1

PropertyValue

 989

Figure 2 – CIM Meta Schema 990

NOTE: The CIM meta schema has been defined such that it can be defined as a CIM model provides a CIM model 991
representing the CIM meta schema. 992

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 29

5.1.1 Formal Syntax used in Descriptions 993

In 5.1.2, the description of attributes and association ends of CIM meta-elements uses the following 994
formal syntax defined in ABNF. Unless otherwise stated, the ABNF in this subclause has whitespace 995
allowed. Further ABNF rules are defined in ANNEX A. 996

Descriptions of attributes use the attribute-format ABNF rule: 997

attribute-format = attr-name ":" attr-type ("[" attr-multiplicity "]") 998
 ; the format used to describe the attributes of CIM meta-elements 999
 1000
attr-name = IDENTIFIER 1001
 ; the name of the attribute 1002
 1003
attr-type = type 1004
 ; the datatype of the attribute 1005
 1006
type = "string" ; a string of UCS characters of arbitrary length 1007
 / "boolean" ; a boolean value 1008
 / "integer" ; a signed 64-bit integer value 1009
 1010
attr-multiplicity = cardinality-format 1011
 ; the multiplicity of the attribute. The default multiplicity is 1 1012

Descriptions of association ends use the association-end-format ABNF rule: 1013

association-end-format = other-role ":" other-element "[" other-cardinality "]" 1014
 ; the format used to describe association ends of associations 1015
 ; between CIM meta-elements 1016
 1017
other-role = IDENTIFIER 1018
 ; the role of the association end (on this side of the relationship) 1019
 ; that is referencing the associated meta-element 1020
 1021
other-element = IDENTIFIER 1022
 ; the name of the associated meta-element 1023
 1024
other-cardinality = cardinality-format 1025
 ; the cardinality of the associated meta-element 1026
 1027
cardinality-format = positiveIntegerValue ; exactly that 1028
 / "*" ; zero to any 1029
 / integerValue ".." positiveIntegerValue ; min to max 1030
 / integerValue ".." "*" ; min to any 1031
 ; format of a cardinality specification 1032
 1033
integerValue = decimalDigit *decimalDigit ; no whitespace allowed 1034
 1035
positiveIntegerValue = positiveDecimalDigit *decimalDigit ; no whitespace allowed 1036

Common Information Model (CIM) Infrastructure DSP0004

30 DMTF Standard Version 2.6.0

5.1.2 CIM Meta-Elements 1037

5.1.2.1 NamedElement 1038

Abstract class for CIM elements, providing the ability for an element to have a name. 1039

Some kinds of elements provide the ability to have qualifiers specified on them, as described in 1040
subclasses of NamedElement. 1041

Generalization: None 1042

Non-default UML characteristics: isAbstract = true 1043

Attributes: 1044

• Name : string 1045

The name of the element. The format of the name is determined by subclasses of 1046
NamedElement. 1047

The names of elements shall be compared case-insensitively. 1048

Association ends: 1049

• OwnedQualifier : Qualifier [*] (composition SpecifiedQualifier, aggregating on its 1050
OwningElement end) 1051

The qualifiers specified on the element. 1052

• OwningSchema : Schema [1] (composition SchemaElement, aggregating on its 1053
OwningSchema end) 1054

The schema owning the element. 1055

• Trigger : Trigger [*] (association TriggeringElement) 1056

The triggers specified on the element. 1057

• QualifierType : QualifierType [*] (association ElementQualifierType) 1058

The qualifier types implicitly defined on the element. 1059

Note: Qualifier types defined explicitly are not associated to elements; they are global in the 1060
CIM namespace. 1061

DEPRECATED 1062

The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details. 1063

DEPRECATED 1064

Additional constraints: 1065

1) The value of Name shall not be NULL. 1066

5.1.2.2 TypedElement 1067

Abstract class for CIM elements that have a CIM data type. 1068

Not all kinds of CIM data types may be used for all kinds of typed elements. The details are determined 1069
by subclasses of TypedElement. 1070

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 31

Generalization: NamedElement 1071

Non-default UML characteristics: isAbstract = true 1072

Attributes: None 1073

Association ends: 1074

• OwnedType : Type [1] (composition ElementType, aggregating on its OwningElement end) 1075

The CIM data type of the element. 1076

Additional constraints: None 1077

5.1.2.3 Type 1078

Abstract class for any CIM data types, including arrays of such. 1079

Generalizations: None 1080

Non-default UML characteristics: isAbstract = true 1081

Attributes: 1082

• IsArray : boolean 1083

Indicates whether the type is an array type. For details on arrays, see 7.8.2. 1084

• ArraySize : integer 1085

If the type is an array type, a non-NULL value indicates the size of a fixed-size array, and a 1086
NULL value indicates a variable-length array. For details on arrays, see 7.8.2. 1087

Association ends: 1088

• OwningElement : TypedElement [0..1] (composition ElementType, aggregating on its 1089
OwningElement end) 1090

• OwningValue : Value [0..1] (composition ValueType, aggregating on its OwningValue end) 1091

The element that has a CIM data type. 1092

Additional constraints: 1093

1) The value of IsArray shall not be NULL. 1094

2) If the type is no array type, the value of ArraySize shall be NULL. 1095

Equivalent OCL class constraint: 1096

inv: self.IsArray = false 1097
 implies self.ArraySize.IsNull() 1098

3) A Type instance shall be owned by only one owner. 1099

Equivalent OCL class constraint: 1100

inv: self.ElementType[OwnedType].OwningElement->size() + 1101
 self.ValueType[OwnedType].OwningValue->size() = 1 1102

5.1.2.4 PrimitiveType 1103

A CIM data type that is one of the intrinsic types defined in Table 2, excluding references. 1104

Common Information Model (CIM) Infrastructure DSP0004

32 DMTF Standard Version 2.6.0

Generalization: Type 1105

Non-default UML characteristics: None 1106

Attributes: 1107

• TypeName : string 1108

The name of the CIM data type. 1109

Association ends: None 1110

Additional constraints: 1111

1) The value of TypeName shall follow the formal syntax defined by the dataType ABNF rule in 1112
 ANNEX A. 1113

2) The value of TypeName shall not be NULL. 1114

3) This kind of type shall be used only for the following kinds of typed elements: Method, 1115
Parameter, ordinary Property, and QualifierType. 1116

Equivalent OCL class constraint: 1117

inv: let e : _NamedElement = 1118
 self.ElementType[OwnedType].OwningElement 1119
 in 1120
 e.oclIsTypeOf(Method) or 1121
 e.oclIsTypeOf(Parameter) or 1122
 e.oclIsTypeOf(Property) or 1123
 e.oclIsTypeOf(QualifierType) 1124

5.1.2.5 ReferenceType 1125

A CIM data type that is a reference, as defined in Table 2. 1126

Generalization: Type 1127

Non-default UML characteristics: None 1128

Attributes: None 1129

Association ends: 1130

• ReferencedClass : Class [1] (association ReferenceRange) 1131

The class referenced by the reference type. 1132

Additional constraints: 1133

1) This kind of type shall be used only for the following kinds of typed elements: Parameter and 1134
Reference. 1135

Equivalent OCL class constraint: 1136

inv: let e : NamedElement = /* the typed element */ 1137
 self.ElementType[OwnedType].OwningElement 1138
 in 1139
 e.oclIsTypeOf(Parameter) or 1140
 e.oclIsTypeOf(Reference) 1141

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 33

2) When used for a Reference, the type shall not be an array. 1142

Equivalent OCL class constraint: 1143

inv: self.ElementType[OwnedType].OwningElement. 1144
 oclIsTypeOf(Reference) 1145
 implies 1146
 self.IsArray = false 1147

5.1.2.6 Schema 1148

Models a CIM schema. A CIM schema is a set of CIM classes with a single defining authority or owning 1149
organization. 1150

Generalization: NamedElement 1151

Non-default UML characteristics: None 1152

Attributes: None 1153

Association ends: 1154

• OwnedElement : NamedElement [*] (composition SchemaElement, aggregating on its 1155
OwningSchema end) 1156

The elements owned by the schema. 1157

Additional constraints: 1158

1) The value of the Name attribute shall follow the formal syntax defined by the schemaName 1159
ABNF rule in ANNEX A. 1160

2) The elements owned by a schema shall be only of kind Class. 1161

Equivalent OCL class constraint: 1162

inv: self.SchemaElement[OwningSchema].OwnedElement. 1163
 oclIsTypeOf(Class) 1164

5.1.2.7 Class 1165

Models a CIM class. A CIM class is a common type for a set of CIM instances that support the same 1166
features (i.e., properties and methods). A CIM class models an aspect of a managed element. 1167

Classes may be arranged in a generalization hierarchy that represents subtype relationships between 1168
classes. The generalization hierarchy is a rooted, directed graph and does not support multiple 1169
inheritance. 1170

A class may have methods, which represent their behavior, and properties, which represent the data 1171
structure of its instances. 1172

A class may participate in associations as the target of an association end owned by the association. 1173

A class may have instances. 1174

Generalization: NamedElement 1175

Non-default UML characteristics: None 1176

Attributes: None 1177

Common Information Model (CIM) Infrastructure DSP0004

34 DMTF Standard Version 2.6.0

Association ends: 1178

• OwnedProperty : Property [*] (composition PropertyDomain, aggregating on its OwningClass 1179
end) 1180

The properties owned by the class. 1181

• OwnedMethod : Method [*] (composition MethodDomain, aggregating on its OwningClass end) 1182

The methods owned by the class. 1183

• ReferencingType : ReferenceType [*] (association ReferenceRange) 1184

The reference types referencing the class. 1185

• SuperClass : Class [0..1] (association Generalization) 1186

The superclass of the class. 1187

• SubClass : Class [*] (association Generalization) 1188

The subclasses of the class. 1189

• Instance : Instance [*] (association DefiningClass) 1190

The instances for which the class is their defining class. 1191

Additional constraints: 1192

1) The value of the Name attribute (i.e., the class name) shall follow the formal syntax defined by 1193
the className ABNF rule in ANNEX A. 1194

NOTE: The name of the schema containing the class is part of the class name. 1195

2) The class name shall be unique within the schema owning the class. 1196

5.1.2.8 Property 1197

Models a CIM property defined in a CIM class. A CIM property is the declaration of a structural feature of 1198
a CIM class, i.e., the data structure of its instances. 1199

Properties are inherited to subclasses such that instances of the subclasses have the inherited properties 1200
in addition to the properties defined in the subclass. The combined set of properties defined in a class 1201
and properties inherited from superclasses is called the properties exposed by the class. 1202

Classes that define a property without overriding an inherited property of the same name, expose two 1203
properties with that name. This is an undesirable situation since the resolution of property names to the 1204
actual properties is undefined in this document. 1205

DEPRECATED 1206

Within a single given schema (as defined in 5.1.2.6), the definition of properties without overriding 1207
inherited properties of the same name defined in a class of the same schema is deprecated. The 1208
deprecation only applies to the act of establishing that scenario, not necessarily to any schema elements 1209
that are involved. 1210

DEPRECATED 1211

Between an underlying schema (e.g., the DMTF published CIM schema) and a derived schema (e.g., a 1212
vendor schema), the definition of properties in the derived schema without overriding inherited properties 1213
of the same name defined in a class of the underlying schema may occur if both schemas are updated 1214

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 35

independently. Therefore, care should be exercised by the owner of the derived schema when moving to 1215
a new release of the underlying schema in order to avoid this situation. 1216

A class defining a property may indicate that the property overrides an inherited property. In this case, the 1217
class exposes only the overriding property. The characteristics of the overriding property are formed by 1218
using the characteristics of the overridden property as a basis, changing them as defined in the overriding 1219
property, within certain limits as defined in section "Additional constraints". 1220

If a property defines a default value, that default value represents an initialization constraint for the 1221
property. Initialization constraints for properties may also be specified via the PropertyConstraint qualifier 1222
(see 5.5.3.39). An initialization constraint determines the initial value of the property in new CIM 1223
instances. If no initialization constraint is defined for a property, its initial value in new CIM instances is 1224
undefined at the level of the schema, i.e., there is no implied initialization constraint of NULL. 1225

Other specifications may define additional means to determine the initial value of a property in new CIM 1226
instances; for example, management profiles may define initialization constraints, or operation 1227
specifications may define that operations that cause new CIM instances to come into existence support 1228
the ability to override the schema defined initialization constraints. 1229

Default values defined on properties in a class propagate to overriding properties in its subclasses. The 1230
value of the PropertyConstraint qualifier also propagates to overriding properties in subclasses, as 1231
defined in its qualifier type. 1232

Generalization: TypedElement 1233

Non-default UML characteristics: None 1234

Attributes: None. 1235

Association ends: 1236

• OwningClass : Class [1] (composition PropertyDomain, aggregating on its OwningClass end) 1237

The class owning (i.e., defining) the property. 1238

• OverriddenProperty : Property [0..1] (association PropertyOverride) 1239

The property overridden by this property. 1240

• OverridingProperty : Property [*] (association PropertyOverride) 1241

The property overriding this property. 1242

• InstanceProperty : InstanceProperty [*] (association DefiningProperty) 1243

A value of this property in an instance. 1244

• OwnedDefaultValue : Value [0..1] (composition PropertyDefaultValue, aggregating on its 1245
OwningProperty end) 1246

The default value of the property declaration. A Value instance shall be associated if and only if 1247
a default value is defined on the property declaration. 1248

Additional constraints: 1249

1) The value of the Name attribute (i.e., the property name) shall follow the formal syntax defined 1250
by the propertyName ABNF rule in ANNEX A. 1251

2) Property names shall be unique within its owning (i.e., defining) class. 1252

3) An overriding property shall have the same name as the property it overrides. 1253

Equivalent OCL class constraint: 1254

Common Information Model (CIM) Infrastructure DSP0004

36 DMTF Standard Version 2.6.0

inv: self.PropertyOverride[OverridingProperty]-> 1255
 size() = 1 1256
 implies 1257
 self.PropertyOverride[OverridingProperty]. 1258
 OverriddenProperty.Name.toUpper() = 1259
 self.Name.toUpper() 1260

NOTE: As a result of constraints 2) and 3), the set of properties exposed by a class may have duplicate 1261
names if a class defines a property with the same name as a property it inherits without overriding it. 1262

4) The class owning an overridden property shall be a (direct or indirect) superclass of the class 1263
owning the overriding property. 1264

5) For ordinary properties, the data type of the overriding property shall be the same as the data 1265
type of the overridden property. 1266

Equivalent OCL class constraint: 1267

inv: self.oclIsTypeOf(Meta_Property) and 1268
 PropertyOverride[OverridingProperty]-> 1269
 size() = 1 1270
 implies 1271
 let pt :Type = /* type of property */ 1272
 self.ElementType[Element].Type 1273
 in 1274
 let opt : Type = /* type of overridden prop. */ 1275
 self.PropertyOverride[OverridingProperty]. 1276
 OverriddenProperty.Meta_ElementType[Element].Type 1277
 in 1278
 opt.TypeName.toUpper() = pt.TypeName.toUpper() and 1279
 opt.IsArray = pt.IsArray and 1280
 opt.ArraySize = pt.ArraySize 1281

6) For references, the class referenced by the overriding reference shall be the same as, or a 1282
subclass of, the class referenced by the overridden reference. 1283

7) A property shall have no more than one initialization constraint defined (either via its default 1284
value or via the PropertyConstraint qualifier, see 5.5.3.39). 1285

8) A property shall have no more than one derivation constraint defined (via the PropertyConstraint 1286
qualifier, see 5.5.3.39). 1287

5.1.2.9 Method 1288

Models a CIM method. A CIM method is the declaration of a behavioral feature of a CIM class, 1289
representing the ability for invoking an associated behavior. 1290

The CIM data type of the method defines the declared return type of the method. 1291

Methods are inherited to subclasses such that subclasses have the inherited methods in addition to the 1292
methods defined in the subclass. The combined set of methods defined in a class and methods inherited 1293
from superclasses is called the methods exposed by the class. 1294

A class defining a method may indicate that the method overrides an inherited method. In this case, the 1295
class exposes only the overriding method. The characteristics of the overriding method are formed by 1296
using the characteristics of the overridden method as a basis, changing them as defined in the overriding 1297
method, within certain limits as defined in section "Additional constraints". 1298

Classes that define a property without overriding an inherited property of the same name, expose two 1299
properties with that name. This is an undesirable situation since the resolution of property names to the 1300
actual properties is undefined in this document. 1301

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 37

DEPRECATED 1302

Within a single given schema (as defined in 5.1.2.6), the definition of properties without overriding 1303
inherited properties of the same name defined in a class of the same schema is deprecated. The 1304
deprecation only applies to the act of establishing that scenario, not necessarily to any schema elements 1305
that are involved. 1306

DEPRECATED 1307

Between an underlying schema (e.g., the DMTF published CIM schema) and a derived schema (e.g., a 1308
vendor schema), the definition of properties in the derived schema without overriding inherited properties 1309
of the same name defined in a class of the underlying schema may occur if both schemas are updated 1310
independently. Therefore, care should be exercised by the owner of the derived schema when moving to 1311
a new release of the underlying schema in order to avoid this situation. 1312

Generalization: TypedElement 1313

Non-default UML characteristics: None 1314

Attributes: None 1315

Association ends: 1316

• OwningClass : Class [1] (composition MethodDomain, aggregating on its OwningClass end) 1317

The class owning (i.e., defining) the method. 1318

• OwnedParameter : Parameter [*] (composition MethodParameter, aggregating on its 1319
OwningMethod end) 1320

The parameters of the method. The return value of a method is not represented as a parameter. 1321

• OverriddenMethod : Method [0..1] (association MethodOverride) 1322

The method overridden by this method. 1323

• OverridingMethod : Method [*] (association MethodOverride) 1324

The method overriding this method. 1325

Additional constraints: 1326

1) The value of the Name attribute (i.e., the method name) shall follow the formal syntax defined 1327
by the methodName ABNF rule in ANNEX A. 1328

2) Method names shall be unique within its owning (i.e., defining) class. 1329

3) An overriding method shall have the same name as the method it overrides. 1330

Equivalent OCL class constraint: 1331

inv: self.MethodOverride[OverridingMethod]-> 1332
 size() = 1 1333
 implies 1334
 self.MethodOverride[OverridingMethod]. 1335
 OverriddenMethod.Name.toUpper() = 1336
 self.Name.toUpper() 1337

NOTE: As a result of constraints 2) and 3), the set of methods exposed by a class may have duplicate 1338
names if a class defines a method with the same name as a method it inherits without overriding it. 1339

Common Information Model (CIM) Infrastructure DSP0004

38 DMTF Standard Version 2.6.0

4) The return type of a method shall not be an array. 1340

Equivalent OCL class constraint: 1341

inv: self.ElementType[Element].Type.IsArray = false 1342

5) The class owning an overridden method shall be a superclass of the class owning the overriding 1343
method. 1344

6) An overriding method shall have the same signature (i.e., parameters and return type) as the 1345
method it overrides. 1346

Equivalent OCL class constraint: 1347

inv: MethodOverride[OverridingMethod]->size() = 1 1348
 implies 1349
 let om : Method = /* overridden method */ 1350
 self.MethodOverride[OverridingMethod]. 1351
 OverriddenMethod 1352
 in 1353
 om.ElementType[Element].Type.TypeName.toUpper() = 1354
 self.ElementType[Element].Type.TypeName.toUpper() 1355
 and 1356
 Set {1 .. om.MethodParameter[OwningMethod]. 1357
 OwnedParameter->size()} 1358
 ->forAll(i / 1359
 let omp : Parameter = /* parm in overridden method */ 1360
 om.MethodParameter[OwningMethod].OwnedParameter-> 1361
 asOrderedSet()->at(i) 1362
 in 1363
 let selfp : Parameter = /* parm in overriding method */ 1364
 self.MethodParameter[OwningMethod].OwnedParameter-> 1365
 asOrderedSet()->at(i) 1366
 in 1367
 omp.Name.toUpper() = selfp.Name.toUpper() and 1368
 omp.ElementType[Element].Type.TypeName.toUpper() = 1369
 selfp.ElementType[Element].Type.TypeName.toUpper() 1370
) 1371

5.1.2.10 Parameter 1372

Models a CIM parameter. A CIM parameter is the declaration of a parameter of a CIM method. The return 1373
value of a method is not modeled as a parameter. 1374

Generalization: TypedElement 1375

Non-default UML characteristics: None 1376

Attributes: None 1377

Association ends: 1378

• OwningMethod : Method [1] (composition MethodParameter, aggregating on its 1379
OwningMethod end) 1380

The method owning (i.e., defining) the parameter. 1381

Additional constraints: 1382

1) The value of the Name attribute (i.e., the parameter name) shall follow the formal syntax defined 1383
by the parameterName ABNF rule in ANNEX A. 1384

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 39

5.1.2.11 Trigger 1385
Models a CIM trigger. A CIM trigger is the specification of a rule on a CIM element that defines when the 1386
trigger is to be fired. 1387

Triggers may be fired on the following occasions: 1388

• On creation, deletion, modification, or access of CIM instances of ordinary classes and 1389
associations. The trigger is specified on the class in this case and applies to all instances. 1390

• On modification, or access of a CIM property. The trigger is specified on the property in this 1391
case and applies to all instances. 1392

• Before and after the invocation of a CIM method. The trigger is specified on the method in this 1393
case and applies to all invocations of the method. 1394

• When a CIM indication is raised. The trigger is specified on the indication in this case and 1395
applies to all occurrences for when this indication is raised. 1396

The rules for when a trigger is to be fired are specified with the TriggerType qualifier. 1397

The firing of a trigger shall cause the indications to be raised that are associated to the trigger via 1398
TriggeredIndication. 1399

Generalization: NamedElement 1400

Non-default UML characteristics: None 1401

Attributes: None 1402

Association ends: 1403

• Element : NamedElement [1..*] (association TriggeringElement) 1404

The CIM element on which the trigger is specified. 1405

• Indication : Indication [*] (association TriggeredIndication) 1406

The CIM indications to be raised when the trigger fires. 1407

Additional constraints: 1408

1) The value of the Name attribute (i.e., the name of the trigger) shall be unique within the class, 1409
property, or method on which the trigger is specified. 1410

2) Triggers shall be specified only on ordinary classes, associations, properties (including 1411
references), methods and indications. 1412

Equivalent OCL class constraint: 1413

inv: let e : NamedElement = /* the element on which the trigger is specified*/ 1414
 self.TriggeringElement[Trigger].Element 1415
 in 1416
 e.oclIsTypeOf(Class) or 1417
 e.oclIsTypeOf(Association) or 1418
 e.oclIsTypeOf(Property) or 1419
 e.oclIsTypeOf(Reference) or 1420
 e.oclIsTypeOf(Method) or 1421
 e.oclIsTypeOf(Indication) 1422

Common Information Model (CIM) Infrastructure DSP0004

40 DMTF Standard Version 2.6.0

5.1.2.12 Indication 1423

Models a CIM indication. An instance of a CIM indication represents an event that has occurred. If an 1424
instance of an indication is created, the indication is said to be raised. The event causing an indication to 1425
be raised may be that a trigger has fired, but other arbitrary events may cause an indication to be raised 1426
as well. 1427

Generalization: Class 1428

Non-default UML characteristics: None 1429

Attributes: None 1430

Association ends: 1431

• Trigger : Trigger [*] (association TriggeredIndication) 1432

The triggers that when fired cause the indication to be raised. 1433

Additional constraints: 1434

1) An indication shall not own any methods. 1435

Equivalent OCL class constraint: 1436

inv: self.MethodDomain[OwningClass].OwnedMethod->size() = 0 1437

5.1.2.13 Association 1438

Models a CIM association. A CIM association is a special kind of CIM class that represents a relationship 1439
between two or more CIM classes. A CIM association owns its association ends (i.e., references). This 1440
allows for adding associations to a schema without affecting the associated classes. 1441

Generalization: Class 1442

Non-default UML characteristics: None 1443

Attributes: None 1444

Association ends: None 1445

Additional constraints: 1446

1) The superclass of an association shall be an association. 1447

Equivalent OCL class constraint: 1448

inv: self.Generalization[SubClass].SuperClass-> 1449
 oclIsTypeOf(Association) 1450

2) An association shall own two or more references. 1451

Equivalent OCL class constraint: 1452

inv: self.PropertyDomain[OwningClass].OwnedProperty-> 1453
 select(p / p.oclIsTypeOf(Reference))->size() >= 2 1454

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 41

3) The number of references exposed by an association (i.e., its arity) shall not change in its 1455
subclasses. 1456

Equivalent OCL class constraint: 1457

inv: self.PropertyDomain[OwningClass].OwnedProperty-> 1458
 select(p / p.oclIsTypeOf(Reference))->size() = 1459
 self.Generalization[SubClass].SuperClass-> 1460
 PropertyDomain[OwningClass].OwnedProperty-> 1461
 select(p / p.oclIsTypeOf(Reference))->size() 1462

5.1.2.14 Reference 1463

Models a CIM reference. A CIM reference is a special kind of CIM property that represents an association 1464
end, as well as a role the referenced class plays in the context of the association owning the reference. 1465

Generalization: Property 1466

Non-default UML characteristics: None 1467

Attributes: None 1468

Association ends: None 1469

Additional constraints: 1470

1) The value of the Name attribute (i.e., the reference name) shall follow the formal syntax defined 1471
by the referenceName ABNF rule in ANNEX A. 1472

2) A reference shall be owned by an association (i.e., not by an ordinary class or by an indication). 1473

As a result of this, reference names do not need to be unique within any of the associated 1474
classes. 1475

Equivalent OCL class constraint: 1476

inv: self.PropertyDomain[OwnedProperty].OwningClass. 1477
 oclIsTypeOf(Association) 1478

5.1.2.15 Qualifier Type 1479

Models the declaration of a CIM qualifier (i.e., a qualifier type). A CIM qualifier is meta data that provides 1480
additional information about the element on which the qualifier is specified. 1481

The qualifier type is either explicitly defined in the CIM namespace, or implicitly defined on an element as 1482
a result of a qualifier that is specified on an element for which no explicit qualifier type is defined. 1483

DEPRECATED 1484

The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details. 1485

DEPRECATED 1486

Generalization: TypedElement 1487

Non-default UML characteristics: None 1488

Common Information Model (CIM) Infrastructure DSP0004

42 DMTF Standard Version 2.6.0

Attributes: 1489

• Scope : string [*] 1490

The scopes of the qualifier. The qualifier scopes determine to which kinds of elements a 1491
qualifier may be specified on. Each qualifier scope shall be one of the following keywords: 1492

– "any" - the qualifier may be specified on any qualifiable element. 1493

– "class" - the qualifier may be specified on any ordinary class. 1494

– "association" - the qualifier may be specified on any association. 1495

– "indication" - the qualifier may be specified on any indication. 1496

– "property" - the qualifier may be specified on any ordinary property. 1497

– "reference" - the qualifier may be specified on any reference. 1498

– "method" - the qualifier may be specified on any method. 1499

– "parameter" - the qualifier may be specified on any parameter. 1500

Qualifiers cannot be specified on qualifiers. 1501

Association ends: 1502

• Flavor : Flavor [1] (composition QualifierTypeFlavor, aggregating on its QualifierType end) 1503

The flavor of the qualifier type. 1504

• Qualifier : Qualifier [*] (association DefiningQualifier) 1505

The specified qualifiers (i.e., usages) of the qualifier type. 1506

• Element : NamedElement [0..1] (association ElementQualifierType) 1507

For implicitly defined qualifier types, the element on which the qualifier type is defined. 1508

DEPRECATED 1509

The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details. 1510

DEPRECATED 1511

Qualifier types defined explicitly are not associated to elements; they are global in the CIM namespace. 1512

Additional constraints: 1513

1) The value of the Name attribute (i.e., the name of the qualifier) shall follow the formal syntax 1514
defined by the qualifierName ABNF rule in ANNEX A. 1515

2) The names of explicitly defined qualifier types shall be unique within the CIM namespace. 1516
NOTE: Unlike classes, qualifier types are not part of a schema, so name uniqueness cannot be defined at 1517
the definition level relative to a schema, and is instead only defined at the object level relative to a 1518
namespace. 1519

3) The names of implicitly defined qualifier types shall be unique within the scope of the CIM 1520
element on which the qualifiers are specified. 1521

4) Implicitly defined qualifier types shall agree in data type, scope, flavor and default value with 1522
any explicitly defined qualifier types of the same name. 1523

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 43

DEPRECATED 1524

The concept of implicitly defined qualifier types is deprecated. See 5.1.2.16 for details. 1525

DEPRECATED 1526

5.1.2.16 Qualifier 1527

Models the specification (i.e., usage) of a CIM qualifier on an element. A CIM qualifier is meta data that 1528
provides additional information about the element on which the qualifier is specified. The specification of a 1529
qualifier on an element defines a value for the qualifier on that element. 1530

If no explicitly defined qualifier type exists with this name in the CIM namespace, the specification of a 1531
qualifier causes an implicitly defined qualifier type (i.e., a QualifierType element) to be created on the 1532
qualified element. 1533

DEPRECATED 1534

The concept of implicitly defined qualifier types is deprecated. Use explicitly defined qualifiers instead. 1535

DEPRECATED 1536

Generalization: NamedElement 1537

Non-default UML characteristics: None 1538

Attributes: 1539

• Value : string [*] 1540

The value of the qualifier, in its string representation. 1541

Association ends: 1542

• QualifierType : QualifierType [1] (association DefiningQualifier) 1543

The qualifier type defining the characteristics of the qualifier. 1544

• OwningElement : NamedElement [1] (composition SpecifiedQualifier, aggregating on its 1545
OwningElement end) 1546

The element on which the qualifier is specified. 1547

Additional constraints: 1548

1) The value of the Name attribute (i.e., the name of the qualifier) shall follow the formal syntax 1549
defined by the qualifierName ABNF rule in ANNEX A. 1550

5.1.2.17 Flavor 1551

The specification of certain characteristics of the qualifier such as its value propagation from the ancestry 1552
of the qualified element, and translatability of the qualifier value. 1553

Generalization: None 1554

Non-default UML characteristics: None 1555

Common Information Model (CIM) Infrastructure DSP0004

44 DMTF Standard Version 2.6.0

Attributes: 1556

• InheritancePropagation : boolean 1557

Indicates whether the qualifier value is to be propagated from the ancestry of an element in 1558
case the qualifier is not specified on the element. 1559

• OverridePermission : boolean 1560

Indicates whether qualifier values propagated to an element may be overridden by the 1561
specification of that qualifier on the element. 1562

• Translatable : boolean 1563

Indicates whether qualifier value is translatable. 1564

Association ends: 1565

• QualifierType : QualifierType [1] (composition QualifierTypeFlavor, aggregating on its 1566
QualifierType end) 1567

The qualifier type defining the flavor. 1568

Additional constraints: None 1569

5.1.2.18 Instance 1570

Models a CIM instance. A CIM instance is an instance of a CIM class that specifies values for a subset 1571
(including all) of the properties exposed by its defining class. 1572

A CIM instance in a CIM server shall have exactly the properties exposed by its defining class. 1573

A CIM instance cannot redefine the properties or methods exposed by its defining class and cannot have 1574
qualifiers specified. 1575

Generalization: None 1576

Non-default UML characteristics: None 1577

Attributes: None 1578

Association ends: 1579

• OwnedPropertyValue : PropertyValue [*] (composition SpecifiedProperty, aggregating on its 1580
OwningInstance end) 1581

The property values specified by the instance. 1582

• DefiningClass : Class [1] (association DefiningClass) 1583

The defining class of the instance. 1584

Additional constraints: 1585

1) A particular property shall be specified at most once in a given instance. 1586

5.1.2.19 InstanceProperty 1587

The definition of a property value within a CIM instance. 1588

Generalization: None 1589

Non-default UML characteristics: None 1590

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 45

Attributes: 1591

• OwnedValue :Value [1] (composition PropertyValue, aggregating on its 1592
OwningInstanceProperty end) 1593

The value of the property. 1594

Association ends: 1595

• OwningInstance : Instance [1] (composition SpecifiedProperty, aggregating on its 1596
OwningInstance end) 1597

The instance for which a property value is defined. 1598

• DefiningProperty : PropertyValue [1] (association DefiningProperty) 1599

The declaration of the property for which a value is defined. 1600

Additional constraints: None 1601

5.1.2.20 Value 1602

A typed value, used in several contexts. 1603

Generalization: None 1604

Non-default UML characteristics: None 1605

Attributes: 1606

• Value : string [*] 1607

The scalar value or the array of values. Each value is represented as a string. 1608

• IsNull : boolean 1609

The NULL indicator of the value. If true, the value is NULL. If false, the value is indicated 1610
through the Value attribute. 1611

Association ends: 1612

• OwnedType : Type [1] (composition ValueType, aggregating on its OwningValue end) 1613

The type of this value. 1614

• OwningProperty : Property [0..1] (composition PropertyDefaultValue, aggregating on its 1615
OwningProperty end) 1616

A property declaration that defines this value as its default value. 1617

• OwningInstanceProperty : InstanceProperty [0..1] (composition PropertyValue, aggregating on 1618
its OwningInstanceProperty end) 1619

A property defined in an instance that has this value. 1620

• OwningQualifierType : QualifierType [0..1] (composition QualifierTypeDefaultValue, 1621
aggregating on its OwningQualifierType end) 1622

A qualifier type declaration that defines this value as its default value. 1623

• OwningQualifier : Qualifier [0..1] (composition QualifierValue, aggregating on its 1624
OwningQualifier end) 1625

A qualifier defined on a schema element that has this value. 1626

Common Information Model (CIM) Infrastructure DSP0004

46 DMTF Standard Version 2.6.0

Additional constraints: 1627

1) If the NULL indicator is set, no values shall be specified. 1628

Equivalent OCL class constraint: 1629

inv: self.IsNull = true 1630
 implies self.Value->size() = 0 1631

2) If values are specified, the NULL indicator shall not be set. 1632

Equivalent OCL class constraint: 1633

inv: self.Value->size() > 0 1634
 implies self.IsNull = false 1635

3) A Value instance shall be owned by only one owner. 1636

Equivalent OCL class constraint: 1637

inv: self.OwningProperty->size() + 1638
 self.OwningInstanceProperty->size() + 1639
 self.OwningQualifierType->size() + 1640
 self.OwningQualifier->size() = 1 1641

5.2 Data Types 1642

Properties, references, parameters, and methods (that is, method return values) have a data type. These 1643
data types are limited to the intrinsic data types or arrays of such. Additional constraints apply to the data 1644
types of some elements, as defined in this document. Structured types are constructed by designing new 1645
classes. There are no subtype relationships among the intrinsic data types uint8, sint8, uint16, sint16, 1646
uint32, sint32, uint64, sint64, string, boolean, real32, real64, datetime, char16, and arrays of them. CIM 1647
elements of any intrinsic data type (including <classname> REF) may have the special value NULL, 1648
indicating absence of value, unless further constrained in this document. 1649

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 47

Table 2 lists the intrinsic data types and how they are interpreted. 1650

Table 2 – Intrinsic Data Types 1651

Intrinsic Data Type Interpretation

uint8 Unsigned 8-bit integer

sint8 Signed 8-bit integer

uint16 Unsigned 16-bit integer

sint16 Signed 16-bit integer

uint32 Unsigned 32-bit integer

sint32 Signed 32-bit integer

uint64 Unsigned 64-bit integer

sint64 Signed 64-bit integer

string String of UCS characters as defined in 5.2.2

boolean Boolean

real32 4-byte floating-point value compatible with IEEE-754® Single format

real64 8-byte floating-point compatible with IEEE-754® Double format

datetime A 7-bit ASCII string containing a date-time, as defined in 5.2.4

<classname> ref Strongly typed reference

char16 UCS character in UCS-2 coded representation form, as defined in 5.2.3

5.2.1 UCS and Unicode 1652

ISO/IEC 10646:2003 defines the Universal Multiple-Octet Coded Character Set (UCS). The Unicode 1653
Standard defines Unicode. This subclause gives a short overview on UCS and Unicode for the scope of 1654
this document, and defines which of these standards is used by this document. 1655

Even though these two standards define slightly different terminology, they are consistent in the 1656
overlapping area of their scopes. Particularly, there are matching releases of these two standards that 1657
define the same UCS/Unicode character repertoire. In addition, each of these standards covers some 1658
scope that the other does not. 1659

This document uses ISO/IEC 10646:2003 and its terminology. ISO/IEC 10646:2003 references some 1660
annexes of The Unicode Standard. Where it improves the understanding, this document also states terms 1661
defined in The Unicode Standard in parenthesis. 1662

Both standards define two layers of mapping: 1663

• Characters (Unicode Standard: abstract characters) are assigned to UCS code positions (Unicode 1664
Standard: code points) in the value space of the integers 0 to 0x10FFFF. 1665

In this document, these code positions are referenced using the U+xxxxxx format defined in ISO/IEC 1666
10646:2003. In that format, the aforementioned value space would be stated as U+0000 to 1667
U+10FFFF. 1668

Not all UCS code positions are assigned to characters; some code positions have a special purpose 1669
and most code positions are available for future assignment by the standard. 1670

Common Information Model (CIM) Infrastructure DSP0004

48 DMTF Standard Version 2.6.0

For some characters, there are multiple ways to represent them at the level of code positions. For 1671
example, the character "LATIN SMALL LETTER A WITH GRAVE" (à) can be represented as a 1672
single precomposed character at code position U+00E0 (à), or as a sequence of two characters: A 1673
base character at code position U+0061 (a), followed by a combination character at code position 1674
U+0300 (`).ISO/IEC 10646:2003 references The Unicode Standard, Version 5.2.0, Annex #15: 1675
Unicode Normalization Forms for the definition of normalization forms. That annex defines four 1676
normalization forms, each of which reduces such multiple ways for representing characters in the 1677
UCS code position space to a single and thus predictable way. The Character Model for the World 1678
Wide Web 1.0: Normalization recommends using Normalization Form C (NFC) defined in that annex 1679
for all content, because this form avoids potential interoperability problems arising from the use of 1680
canonically equivalent, yet differently represented, character sequences in document formats on the 1681
Web. NFC uses precomposed characters where possible, but not all characters of the UCS 1682
character repertoire can be represented as precomposed characters. 1683

• UCS code position values are assigned to binary data values of a certain size that can be stored in 1684
computer memory. 1685

The set of rules governing the assignment of a set of UCS code points to a set of to binary data 1686
values is called a coded representation form (Unicode Standard: encoding form). Examples are 1687
UCS-2, UTF-16 or UTF-8. 1688

Two sequences of binary data values representing UCS characters that use the same normalization form 1689
and the same coded representation form can be compared for equality of the characters by performing a 1690
binary (e.g., octet-wise) comparison for equality. 1691

5.2.2 String Type 1692

Non-NULL string typed values shall contain zero or more UCS characters (see 5.2.1). 1693

Implementations shall support a character repertoire for string typed values that is that defined by 1694
ISO/IEC 10646:2003 with its amendments ISO/IEC 10646:2003/Amd 1:2005 and ISO/IEC 1695
10646:2003/Amd 2:2006 applied (this is the same character repertoire as defined by the Unicode 1696
Standard 5.0). 1697

It is recommended that implementations support the latest published UCS character repertoire in a timely 1698
manner. 1699

UCS characters in string typed values should be represented in Normalization Form C (NFC), as defined 1700
in The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization Forms. 1701

UCS characters in string typed values shall be represented in a coded representation form that satisfies 1702
the requirements for the character repertoire stated in this subclause. Other specifications are expected 1703
to specify additional rules on the usage of particular coded representation forms (see DSP0200 as an 1704
example). In order to minimize the need for any conversions between different coded representation 1705
forms, it is recommended that such other specifications mandate the UTF-8 coded representation form 1706
(defined in ISO/IEC 10646:2003). 1707
NOTE: Version 2.6.0 of this document introduced the requirement to support at least the character repertoire of 1708
ISO/IEC 10646:2003 with its amendments ISO/IEC 10646:2003/Amd 1:2005 and ISO/IEC 10646:2003/Amd 1709
2:2006 applied. Previous versions of this document simply stated that the string type is a "UCS-2 string" without 1710
offering further details as to whether this was a definition of the character repertoire or a requirement on the usage of 1711
that coded representation form. UCS-2 does not support the character repertoire required in this subclause, and it 1712
does not satisfy the requirements of a number of countries, including the requirements of the Chinese national 1713
standard GB18030. UCS-2 was superseded by UTF-16 in Unicode 2.0 (released in 1996), although it is still in use 1714
today. For example, CIM clients that still use UCS-2 as an internal representation of string typed values will not be 1715
able to represent all characters that may be returned by a CIM server that supports the character repertoire required 1716
in this subclause. 1717

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 49

5.2.3 Char16 Type 1718

The char16 type is a 16-bit data entity. Non-NULL char16 typed values shall contain one UCS character 1719
(see 5.2.1) in the coded representation form UCS-2 (defined in ISO/IEC 10646:2003). 1720

DEPRECATED 1721

Due to the limitations of UCS-2 (see 5.2.2), the char16 type is deprecated since version 2.6.0 of this 1722
document. Use the string type instead. 1723

DEPRECATED 1724

5.2.4 Datetime Type 1725

The datetime type specifies a timestamp (point in time) or an interval. If it specifies a timestamp, the 1726
timezone offset can be preserved. In both cases, datetime specifies the date and time information with 1727
varying precision. 1728

Datetime uses a fixed string-based format. The format for timestamps is: 1729

yyyymmddhhmmss.mmmmmmsutc 1730

The meaning of each field is as follows: 1731

• yyyy is a 4-digit year. 1732

• mm is the month within the year (starting with 01). 1733

• dd is the day within the month (starting with 01). 1734

• hh is the hour within the day (24-hour clock, starting with 00). 1735

• mm is the minute within the hour (starting with 00). 1736

• ss is the second within the minute (starting with 00). 1737

• mmmmmm is the microsecond within the second (starting with 000000). 1738

• s is a + (plus) or – (minus), indicating that the value is a timestamp with the sign of Universal 1739
Coordinated Time (UTC), which is basically the same as Greenwich Mean Time correction field. 1740
A + (plus) is used for time zones east of Greenwich, and a – (minus) is used for time zones 1741
west of Greenwich. 1742

• utc is the offset from UTC in minutes (using the sign indicated by s). 1743

Timestamps are based on the proleptic Gregorian calendar, as defined in section 3.2.1, "The Gregorian 1744
calendar", of ISO 8601:2004. 1745

Because datetime contains the time zone information, the original time zone can be reconstructed from 1746
the value. Therefore, the same timestamp can be specified using different UTC offsets by adjusting the 1747
hour and minutes fields accordingly. 1748

For example, Monday, May 25, 1998, at 1:30:15 PM EST is represented as 1749
19980525133015.0000000-300. 1750

An alternative representation of the same timestamp is 19980525183015.0000000+000. 1751

The format for intervals is as follows: 1752

ddddddddhhmmss.mmmmmm:000 1753

Common Information Model (CIM) Infrastructure DSP0004

50 DMTF Standard Version 2.6.0

The meaning of each field is as follows: 1754

• dddddddd is the number of days. 1755

• hh is the remaining number of hours. 1756

• mm is the remaining number of minutes. 1757

• ss is the remaining number of seconds. 1758

• mmmmmm is the remaining number of microseconds. 1759

• : (colon) indicates that the value is an interval. 1760

• 000 (the UTC offset field) is always zero for interval properties. 1761

For example, an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 0 microseconds would be 1762
represented as follows: 1763

00000001132312.000000:000 1764

For both timestamps and intervals, the field values shall be zero-padded so that the entire string is always 1765
25 characters in length. 1766

For both timestamps and intervals, fields that are not significant shall be replaced with the asterisk (*) 1767
character. Fields that are not significant are beyond the resolution of the data source. These fields 1768
indicate the precision of the value and can be used only for an adjacent set of fields, starting with the 1769
least significant field (mmmmmm) and continuing to more significant fields. The granularity for asterisks is 1770
always the entire field, except for the mmmmmm field, for which the granularity is single digits. The UTC 1771
offset field shall not contain asterisks. 1772

For example, if an interval of 1 day, 13 hours, 23 minutes, 12 seconds, and 125 milliseconds is measured 1773
with a precision of 1 millisecond, the format is: 00000001132312.125***:000. 1774

The following operations are defined on datetime types: 1775

• Arithmetic operations: 1776

– Adding or subtracting an interval to or from an interval results in an interval. 1777

– Adding or subtracting an interval to or from a timestamp results in a timestamp. 1778

– Subtracting a timestamp from a timestamp results in an interval. 1779

– Multiplying an interval by a numeric or vice versa results in an interval. 1780

– Dividing an interval by a numeric results in an interval. 1781

Other arithmetic operations are not defined. 1782

• Comparison operations: 1783

– Testing for equality of two timestamps or two intervals results in a boolean value. 1784

– Testing for the ordering relation (<, <=, >, >=) of two timestamps or two intervals results in 1785
a boolean value. 1786

Other comparison operations are not defined. 1787

Comparison between a timestamp and an interval and vice versa is not defined. 1788

Specifications that use the definition of these operations (such as specifications for query languages) 1789
should state how undefined operations are handled. 1790

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 51

Any operations on datetime types in an expression shall be handled as if the following sequential steps 1791
were performed: 1792

1) Each datetime value is converted into a range of microsecond values, as follows: 1793

• The lower bound of the range is calculated from the datetime value, with any asterisks 1794
replaced by their minimum value. 1795

• The upper bound of the range is calculated from the datetime value, with any asterisks 1796
replaced by their maximum value. 1797

• The basis value for timestamps is the oldest valid value (that is, 0 microseconds 1798
corresponds to 00:00.000000 in the timezone with datetime offset +720, on January 1 in 1799
the year 1 BCE, using the proleptic Gregorian calendar). This definition implicitly performs 1800
timestamp normalization. 1801
NOTE: 1 BCE is the year before 1 CE. 1802

2) The expression is evaluated using the following rules for any datetime ranges: 1803

• Definitions: 1804

T(x, y) The microsecond range for a timestamp with the lower bound x and the upper 1805
 bound y 1806

I(x, y) The microsecond range for an interval with the lower bound x and the upper 1807
 bound y 1808

D(x, y) The microsecond range for a datetime (timestamp or interval) with the lower 1809
 bound x and the upper bound y 1810

• Rules: 1811

I(a, b) + I(c, d) := I(a+c, b+d) 1812
I(a, b) - I(c, d) := I(a-d, b-c) 1813
T(a, b) + I(c, d) := T(a+c, b+d) 1814
T(a, b) - I(c, d) := T(a-d, b-c) 1815
T(a, b) - T(c, d) := I(a-d, b-c) 1816
I(a, b) * c := I(a*c, b*c) 1817
I(a, b) / c := I(a/c, b/c) 1818

D(a, b) < D(c, d) := true if b < c, false if a >= d, otherwise NULL (uncertain) 1819
D(a, b) <= D(c, d) := true if b <= c, false if a > d, otherwise NULL (uncertain) 1820
D(a, b) > D(c, d) := true if a > d, false if b <= c, otherwise NULL (uncertain) 1821
D(a, b) >= D(c, d) := true if a >= d, false if b < c, otherwise NULL (uncertain) 1822
D(a, b) = D(c, d) := true if a = b = c = d, false if b < c OR a > d, otherwise NULL 1823
(uncertain) 1824
D(a, b) <> D(c, d) := true if b < c OR a > d, false if a = b = c = d, otherwise NULL 1825
(uncertain) 1826

These rules follow the well-known mathematical interval arithmetic. For a definition of 1827
mathematical interval arithmetic, see http://en.wikipedia.org/wiki/Interval_arithmetic. 1828
NOTE 1: Mathematical interval arithmetic is commutative and associative for addition and 1829
multiplication, as in ordinary arithmetic. 1830
NOTE 2: Mathematical interval arithmetic mandates the use of three-state logic for the result of 1831
comparison operations. A special value called "uncertain" indicates that a decision cannot be made. 1832
The special value of "uncertain" is mapped to the NULL value in datetime comparison operations. 1833

http://en.wikipedia.org/wiki/Interval_arithmetic

Common Information Model (CIM) Infrastructure DSP0004

52 DMTF Standard Version 2.6.0

3) Overflow and underflow condition checking is performed on the result of the expression, as 1834
follows: 1835

For timestamp results: 1836

• A timestamp older than the oldest valid value in the timezone of the result produces 1837
an arithmetic underflow condition. 1838

• A timestamp newer than the newest valid value in the timezone of the result produces 1839
an arithmetic overflow condition. 1840

For interval results: 1841

• A negative interval produces an arithmetic underflow condition. 1842

• A positive interval greater than the largest valid value produces an arithmetic overflow 1843
condition. 1844

Specifications using these operations (for instance, query languages) should define how these 1845
conditions are handled. 1846

4) If the result of the expression is a datetime type, the microsecond range is converted into a valid 1847
datetime value such that the set of asterisks (if any) determines a range that matches the actual 1848
result range or encloses it as closely as possible. The GMT timezone shall be used for any 1849
timestamp results. 1850
NOTE: For most fields, asterisks can be used only with the granularity of the entire field. 1851

Examples: 1852

"20051003110000.000000+000" + "00000000002233.000000:000" 1853
 evaluates to "20051003112233.000000+000" 1854
 1855
"20051003110000.******+000" + "00000000002233.000000:000" 1856
 evaluates to "20051003112233.******+000" 1857
 1858
"20051003110000.******+000" + "00000000002233.00000*:000" 1859
 evaluates to "200510031122**.******+000" 1860
 1861
"20051003110000.******+000" + "00000000002233.******:000" 1862
 evaluates to "200510031122**.******+000" 1863
 1864
"20051003110000.******+000" + "00000000005959.******:000" 1865
 evaluates to "20051003******.******+000" 1866
 1867
"20051003110000.******+000" + "000000000022**.******:000" 1868
 evaluates to "2005100311****.******+000" 1869
 1870
"20051003112233.000000+000" - "00000000002233.000000:000" 1871
 evaluates to "20051003110000.000000+000" 1872
 1873
"20051003112233.******+000" - "00000000002233.000000:000" 1874
 evaluates to "20051003110000.******+000" 1875
 1876
"20051003112233.******+000" - "00000000002233.00000*:000" 1877
 evaluates to "20051003110000.******+000" 1878
 1879
"20051003112233.******+000" - "00000000002232.******:000" 1880
 evaluates to "200510031100**.******+000" 1881
 1882
"20051003112233.******+000" - "00000000002233.******:000" 1883
 evaluates to "20051003******.******+000" 1884
 1885
"20051003060000.000000-300" + "00000000002233.000000:000" 1886

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 53

 evaluates to "20051003112233.000000+000" 1887
 1888
"20051003060000.******-300" + "00000000002233.000000:000" 1889
 evaluates to "20051003112233.******+000" 1890
 1891
"000000000011**.******:000" * 60 1892
 evaluates to "0000000011****.******:000" 1893
 1894
60 times adding up "000000000011**.******:000" 1895
 evaluates to "0000000011****.******:000" 1896
 1897
"20051003112233.000000+000" = "20051003112233.000000+000" 1898
 evaluates to true 1899
 1900
"20051003122233.000000+060" = "20051003112233.000000+000" 1901
 evaluates to true 1902
 1903
"20051003112233.******+000" = "20051003112233.******+000" 1904
 evaluates to NULL (uncertain) 1905
 1906
"20051003112233.******+000" = "200510031122**.******+000" 1907
 evaluates to NULL (uncertain) 1908
 1909
"20051003112233.******+000" = "20051003112234.******+000" 1910
 evaluates to false 1911
 1912
"20051003112233.******+000" < "20051003112234.******+000" 1913
 evaluates to true 1914
 1915
"20051003112233.5*****+000" < "20051003112233.******+000" 1916
 evaluates to NULL (uncertain) 1917

A datetime value is valid if the value of each single field is in the valid range. Valid values shall not be 1918
rejected by any validity checking within the CIM infrastructure. 1919

Within these valid ranges, some values are defined as reserved. Values from these reserved ranges shall 1920
not be interpreted as points in time or durations. 1921

Within these reserved ranges, some values have special meaning. The CIM schema should not define 1922
additional class-specific special values from the reserved range. 1923

The valid and reserved ranges and the special values are defined as follows: 1924

• For timestamp values: 1925

Oldest valid timestamp: "00000101000000.000000+720" 1926

 Reserved range (1 million values) 1927

Oldest useable timestamp: "00000101000001.000000+720" 1928

 Range interpreted as points in time 1929

Youngest useable timestamp: "99991231115959.999998-720" 1930

 Reserved range (1 value) 1931

Youngest valid timestamp: "99991231115959.999999-720" 1932

Special values in the reserved ranges: 1933

"Now": "00000101000000.000000+720" 1934

Common Information Model (CIM) Infrastructure DSP0004

54 DMTF Standard Version 2.6.0

"Infinite past": "00000101000000.999999+720" 1935

"Infinite future": "99991231115959.999999-720" 1936

• For interval values: 1937

Smallest valid and useable interval: "00000000000000.000000:000" 1938

 Range interpreted as durations 1939

Largest useable interval: "99999999235958.999999:000" 1940

 Reserved range (1 million values) 1941

Largest valid interval: "99999999235959.999999:000" 1942

Special values in reserved range: 1943

"Infinite duration": "99999999235959.000000:000" 1944

5.2.5 Indicating Additional Type Semantics with Qualifiers 1945

Because counter and gauge types are actually simple integers with specific semantics, they are not 1946
treated as separate intrinsic types. Instead, qualifiers must be used to indicate such semantics when 1947
properties are declared. The following example merely suggests how this can be done; the qualifier 1948
names chosen are not part of this standard: 1949

class ACME_Example 1950
{ 1951
 [Counter] 1952
 uint32 NumberOfCycles; 1953
 1954
 [Gauge] 1955
 uint32 MaxTemperature; 1956
 1957
 [OctetString, ArrayType("Indexed")] 1958
 uint8 IPAddress[10]; 1959
}; 1960

For documentation purposes, implementers are permitted to introduce such arbitrary qualifiers. The 1961
semantics are not enforced. 1962

5.2.6 Comparison of Values 1963

This subclause defines comparison of values for equality and ordering. 1964

Values of boolean datatypes shall be compared for equality and ordering as if "true" was 1 and "false" 1965
was 0 and the mathematical comparison rules for integer numbers were used on those values. 1966

Values of integer number datatypes shall be compared for equality and ordering according to the 1967
mathematical comparison rules for the integer numbers they represent. 1968

Values of real number datatypes shall be compared for equality and ordering according to the rules 1969
defined in ANSI/IEEE 754-1985. 1970

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 55

Values of the string and char16 datatypes shall be compared for equality on a UCS character basis, by 1971
using the string identity matching rules defined in chapter 4 "String Identity Matching" of the Character 1972
Model for the World Wide Web 1.0: Normalization specification. As a result, comparisons between a 1973
char16 typed value and a string typed value are valid. 1974

In order to minimize the processing involved in UCS normalization, string and char16 typed values should 1975
be stored and transmitted in Normalization Form C (NFC, see 5.2.2) where possible, which allows 1976
skipping the costly normalization when comparing the strings. 1977

This document does not define an order between values of the string and char16 datatypes, since UCS 1978
ordering rules may be compute intensive and their usage should be decided on a case by case basis. 1979
The ordering of the "Common Template Table" defined in ISO/IEC 14651:2007 provides a reasonable 1980
default ordering of UCS strings for human consumption. However, an ordering based on the UCS code 1981
positions, or even based on the octets of a particular UCS coded representation form is typically less 1982
compute intensive and may be sufficient, for example when no human consumption of the ordering result 1983
is needed. 1984

Values of schema elements qualified as octetstrings shall be compared for equality and ordering based 1985
on the sequence of octets they represent. As a result, comparisons across different octetstring 1986
representations (as defined in 5.5.3.35) are valid. Two sequences of octets shall be considered equal if 1987
they contain the same number of octets and have equal octets in each octet pair in the sequences. An 1988
octet sequence S1 shall be considered less than an octet sequence S2, if the first pair of different octets, 1989
reading from left to right, is beyond the end of S1 or has an octet in S1 that is less than the octet in S2. 1990
This comparison rule yields the same results as the comparison rule defined for the strcmp() function in 1991
IEEE Std 1003.1, 2004 Edition. 1992

Two values of the reference datatype shall be considered equal if they resolve to the same CIM object in 1993
the same namespace. This document does not define an order between two values of the reference 1994
datatype. 1995

Two values of the datetime datatype shall be compared based on the time duration or point in time they 1996
represent, according to mathematical comparison rules for these numbers. As a result, two datetime 1997
values that represent the same point in time using different timezone offsets are considered equal. 1998

Two values of compatible datatypes that both are NULL shall be considered equal. This document does 1999
not define an order between two values of compatible datatypes where one is NULL, and the other is not 2000
NULL. 2001

Two array values of compatible datatypes shall be considered equal if they contain the same number of 2002
array entries and in each pair of array entries, the two array entries are equal. This document does not 2003
define an order between two array values. 2004

5.3 Supported Schema Modifications 2005

This subclause lists typical modifications of schema definitions and qualifier type declarations and defines 2006
their compatibility. Such modifications might be introduced into an existing CIM environment by upgrading 2007
the schema to a newer schema version. However, any rules for the modification of schema related 2008
objects (i.e., classes and qualifier types) in a CIM server are outside of the scope of this document. 2009
Specifications dealing with modification of schema related objects in a CIM server should define such 2010
rules and should consider the compatibility defined in this subclause. 2011

Table 3 lists modifications of an existing schema definition (including an empty schema). The compatibility 2012
of the modification is indicated for CIM clients that utilize the modified element, and for a CIM server that 2013
implements the modified element. Compatibility for a CIM server that utilizes the modified element (e.g., 2014
via so called "up-calls") is the same as for a CIM client that utilizes the modified element. 2015

The compatibility for CIM clients as expressed in Table 3 assumes that the CIM client remains unchanged 2016
and is exposed to a CIM server that was updated to fully reflect the schema modification. 2017

Common Information Model (CIM) Infrastructure DSP0004

56 DMTF Standard Version 2.6.0

The compatibility for CIM servers as expressed in Table 3 assumes that the CIM server remains 2018
unchanged but is exposed to the modified schema that is loaded into the CIM namespace being serviced 2019
by the CIM server. 2020

Compatibility is stated as follows: 2021

• Transparent – the respective component does not need to be changed in order to properly deal 2022
with the modification 2023

• Not transparent – the respective component needs to be changed in order to properly deal with 2024
the modification 2025

Schema modifications qualified as transparent for both CIM clients and CIM servers are allowed in a 2026
minor version update of the schema. Any other schema modifications are allowed only in a major version 2027
update of the schema. 2028

The schema modifications listed in Table 3 cover simple cases, which may be combined to yield more 2029
complex cases. For example, a typical schema change is to move existing properties or methods into a 2030
new superclass. The compatibility of this complex schema modification can be determined by 2031
concatenating simple schema modifications listed in Table 3, as follows: 2032

1) SM1: Adding a class to the schema: 2033

The new superclass gets added as an empty class with (yet) no superclass 2034

2) SM3: Inserting an existing class that defines no properties or methods into an inheritance 2035
hierarchy of existing classes: 2036

The new superclass gets inserted into an inheritance hierarchy 2037

3) SM8: Moving an existing property from a class to one of its superclasses (zero or more times) 2038

Properties get moved to the newly inserted superclass 2039

4) SM12: Moving a method from a class to one of its superclasses (zero or more times) 2040

Methods get moved to the newly inserted superclass 2041

The resulting compatibility of this complex schema modification for CIM clients is transparent, since all 2042
these schema modifications are transparent. Similarly, the resulting compatibility for CIM servers is 2043
transparent for the same reason. 2044

Some schema modifications cause other changes in the schema to happen. For example, the removal of 2045
a class causes any associations or method parameters that reference that class to be updated in some 2046
way. 2047

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 57

Table 3 – Compatibility of Schema Modifications 2048

Schema Modification Compatibility for CIM clients Compatibility for CIM servers

Allowed in a
Minor Version
Update of the
Schema

SM1: Adding a class to
the schema. The new
class may define an
existing class as its
superclass

Transparent.
It is assumed that any CIM
clients that examine classes
are prepared to deal with new
classes in the schema and
with new subclasses of
existing classes

Transparent Yes

SM2: Removing a class
from the schema

Not transparent Not transparent No

SM3: Inserting an existing
class that defines no
properties or methods into
an inheritance hierarchy
of existing classes

Transparent.
It is assumed that any CIM
clients that examine classes
are prepared to deal with such
inserted classes

Transparent Yes

SM4: Removing an
abstract class that defines
no properties or methods
from an inheritance
hierarchy of classes,
without removing the
class from the schema

Not transparent Transparent No

SM5: Removing a
concrete class that
defines no properties or
methods from an
inheritance hierarchy of
classes, without removing
the class from the schema

Not transparent Not transparent No

SM6: Adding a property to
an existing class that is
not overriding a property.
The property may have a
non-NULL default value

Transparent
It is assumed that CIM clients
are prepared to deal with any
new properties in classes and
instances.

Transparent
If the CIM server uses the
factory approach (1) to populate
the properties of any instances
to be returned, the property will
be included in any instances of
the class with its default value.
Otherwise, the (unchanged) CIM
server will not include the new
property in any instances of the
class, and a CIM client that
knows about the new property
will interpret it as having the
NULL value.

Yes

Common Information Model (CIM) Infrastructure DSP0004

58 DMTF Standard Version 2.6.0

Schema Modification Compatibility for CIM clients Compatibility for CIM servers

Allowed in a
Minor Version
Update of the
Schema

SM7: Adding a property to
an existing class that is
overriding a property. The
overriding property does
not define a type or
qualifiers such that the
overridden property is
changed in a non-
transparent way, as
defined in schema
modifications 17, xx. The
overriding property may
define a default value
other than the overridden
property

Transparent Transparent Yes

SM8: Moving an existing
property from a class to
one of its superclasses

Transparent.
It is assumed that any CIM
clients that examine classes
are prepared to deal with such
moved properties. For CIM
clients that deal with instances
of the class from which the
property is moved away, this
change is transparent, since
the set of properties in these
instances does not change.
For CIM clients that deal with
instances of the superclass to
which the property was
moved, this change is also
transparent, since it is an
addition of a property to that
superclass (see SM6).

Transparent.
For the implementation of the
class from which the property is
moved away, this change is
transparent. For the
implementation of the
superclass to which the property
is moved, this change is also
transparent, since it is an
addition of a property to that
superclass (see SM6).

Yes

SM9: Removing a
property from an existing
class, without adding it to
one of its superclasses

Not transparent Not transparent No

SM10: Adding a method
to an existing class that is
not overriding a method

Transparent
It is assumed that any CIM
clients that examine classes
are prepared to deal with such
added methods.

Transparent
It is assumed that a CIM server
is prepared to return an error to
CIM clients indicating that the
added method is not
implemented.

Yes

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 59

Schema Modification Compatibility for CIM clients Compatibility for CIM servers

Allowed in a
Minor Version
Update of the
Schema

SM11: Adding a method
to an existing class that is
overriding a method. The
overriding method does
not define a type or
qualifiers on the method
or its parameters such
that the overridden
method or its parameters
are changed in an non-
transparent way, as
defined in schema
modifications 16, xx

Transparent Transparent Yes

SM12: Moving a method
from a class to one of its
superclasses

Transparent
It is assumed that any CIM
clients that examine classes
are prepared to deal with such
moved methods. For CIM
clients that invoke methods on
the class or instances thereof
from which the method is
moved away, this change is
transparent, since the set of
methods that are invocable on
these classes or their
instances does not change.
For CIM clients that invoke
methods on the superclass or
instances thereof to which the
property was moved, this
change is also transparent,
since it is an addition of a
method to that superclass
(see SM10)

Transparent
For the implementation of the
class from which the method is
moved away, this change is
transparent. For the
implementation of the class from
which the method is moved
away, this change is
transparent. For the
implementation of the
superclass to which the method
is moved, this change is also
transparent, since it is an
addition of a method to that
superclass (see SM10).

Yes

SM13: Removing a
method from an existing
class, without adding it to
one of its superclasses

Not transparent Not transparent No

SM14: Adding a
parameter to an existing
method

Not transparent Not transparent No

SM15: Removing a
parameter from an
existing method

Not transparent Not transparent No

SM16: Changing the non-
reference type of an
existing method
parameter, method (i.e.,
its return value), or
ordinary property

Not transparent Not transparent No

Common Information Model (CIM) Infrastructure DSP0004

60 DMTF Standard Version 2.6.0

Schema Modification Compatibility for CIM clients Compatibility for CIM servers

Allowed in a
Minor Version
Update of the
Schema

SM17: Changing the class
referenced by a reference
in an association to a
subclass of the previously
referenced class

Transparent Not Transparent No

SM18: Changing the class
referenced by a reference
in an association to a
superclass of the
previously referenced
class

Not Transparent Not Transparent No

SM19: Changing the class
referenced by a reference
in an association to any
class other than a
subclass or superclass of
the previously referenced
class

Not Transparent Not Transparent No

SM20: Changing the class
referenced by a method
input parameter of
reference type to a
subclass of the previously
referenced class

Not Transparent Transparent No

SM21: Changing the class
referenced by a method
input parameter of
reference type to a
superclass of the
previously referenced
class

Transparent Not Transparent No

SM22: Changing the class
referenced by a method
input parameter of
reference type to any
class other than a
subclass or superclass of
the previously referenced
class

Not Transparent Not Transparent No

SM23: Changing the class
referenced by a method
output parameter or
method return value of
reference type to a
subclass of the previously
referenced class

Transparent Not Transparent No

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 61

Schema Modification Compatibility for CIM clients Compatibility for CIM servers

Allowed in a
Minor Version
Update of the
Schema

SM24: Changing the class
referenced by a method
output parameter or
method return value of
reference type to a
superclass of the
previously referenced
class

Not Transparent Transparent No

SM25: Changing the class
referenced by a method
output parameter or
method return value of
reference type to any
class other than a
subclass or superclass of
the previously referenced
class

Not Transparent Not Transparent No

SM26: Changing a class
between ordinary class,
association or indication

Not transparent Not transparent No

SM27: Reducing or
increasing the arity of an
association (i.e.,
increasing or decreasing
the number of references
exposed by the
association)

Not transparent Not transparent No

SM28: Changing the
effective value of a
qualifier on an existing
schema element

As defined in the qualifier
description in 5.5

As defined in the qualifier
description in 5.5

Yes, if transparent
for both CIM
clients and CIM
servers, otherwise
No

1) Factory approach to populate the properties of any instances to be returned: 2049

Some CIM server architectures (e.g., CMPI-based CIM providers) support factory methods that 2050
create an internal representation of a CIM instance by inspecting the class object and creating 2051
property values for all properties exposed by the class and setting those values to their class 2052
defined default values. This delegates the knowledge about newly added properties to the 2053
schema definition of the class and will return instances that are compliant to the modified 2054
schema without changing the code of the CIM server. A subsequent release of the CIM server 2055
can then start supporting the new property with more reasonable values than the class defined 2056
default value. 2057

Table 4 lists modifications of qualifier types. The compatibility of the modification is indicated for an 2058
existing schema. Compatibility for CIM clients or CIM servers is determined by Table 4 (in any 2059
modifications that are related to qualifier values). 2060

The compatibility for a schema as expressed in Table 4 assumes that the schema remains unchanged 2061
but is confronted with a qualifier type declaration that reflects the modification. 2062

Common Information Model (CIM) Infrastructure DSP0004

62 DMTF Standard Version 2.6.0

Compatibility is stated as follows: 2063

• Transparent – the schema does not need to be changed in order to properly deal with the 2064
modification 2065

• Not transparent – the schema needs to be changed in order to properly deal with the 2066
modification 2067

CIM supports extension schemas, so the actual usage of qualifiers in such schemas is by definition 2068
unknown and any possible usage needs to be assumed for compatibility considerations. 2069

Table 4 – Compatibility of Qualifier Type Modifications 2070

Qualifier Type Modification
Compatibility for
Existing Schema

Allowed in a Minor Version
Update of the Schema

QM1: Adding a qualifier type declaration Transparent Yes

QM2: Removing a qualifier type declaration Not transparent No

QM3: Changing the data type or array-ness of an existing
qualifier type declaration

Not transparent No

QM4: Adding an element type to the scope of an existing
qualifier type declaration, without adding qualifier value
specifications to the element type added to the scope

Transparent Yes

QM5: Removing an element type from the scope of an
existing qualifier type declaration

Not transparent No

QM6: Changing the inheritance flavors of an existing qualifier
type declaration from ToSubclass DisableOverride to
ToSubclass EnableOverride

Transparent Yes

QM7: Changing the inheritance flavors of an existing qualifier
type declaration from ToSubclass EnableOverride to
ToSubclass DisableOverride

Not transparent No

QM8: Changing the inheritance flavors of an existing qualifier
type declaration from Restricted to ToSubclass
EnableOverride

Transparent
(generally)

Yes, if examination of the
specific change reveals its
compatibility

QM9: Changing the inheritance flavors of an existing qualifier
type declaration from ToSubclass EnableOverride to
Restricted

Transparent
(generally)

Yes, if examination of the
specific change reveals its
compatibility

QM10: Changing the inheritance flavors of an existing
qualifier type declaration from Restricted to ToSubclass
DisableOverride

Not transparent
(generally)

No, unless examination of
the specific change reveals
its compatibility

QM11: Changing the inheritance flavors of an existing
qualifier type declaration from ToSubclass DisableOverride
to Restricted

Transparent
(generally)

Yes, if examination of the
specific change reveals its
compatibility

QM12: Changing the Translatable flavor of an existing
qualifier type declaration

Transparent Yes

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 63

5.3.1 Schema Versions 2071

Schema versioning is described in DSP4004. Versioning takes the form m.n.u, where: 2072

• m = major version identifier in numeric form 2073

• n = minor version identifier in numeric form 2074

• u = update (errata or coordination changes) in numeric form 2075

The usage rules for the Version qualifier in 5.5.3.53 provide additional information. 2076

Classes are versioned in the CIM schemas. The Version qualifier for a class indicates the schema release 2077
of the last change to the class. Class versions in turn dictate the schema version. A major version change 2078
for a class requires the major version number of the schema release to be incremented. All class versions 2079
must be at the same level or a higher level than the schema release because classes and models that 2080
differ in minor version numbers shall be backwards-compatible. In other words, valid instances shall 2081
continue to be valid if the minor version number is incremented. Classes and models that differ in major 2082
version numbers are not backwards-compatible. Therefore, the major version number of the schema 2083
release shall be incremented. 2084

Table 5 lists modifications to the CIM schemas in final status that cause a major version number change. 2085
Preliminary models are allowed to evolve based on implementation experience. These modifications 2086
change application behavior and/or customer code. Therefore, they force a major version update and are 2087
discouraged. Table 5 is an exhaustive list of the possible modifications based on current CIM experience 2088
and knowledge. Items could be added as new issues are raised and CIM standards evolve. 2089

Alterations beyond those listed in Table 5 are considered interface-preserving and require the minor 2090
version number to be incremented. Updates/errata are not classified as major or minor in their impact, but 2091
they are required to correct errors or to coordinate across standards bodies. 2092

Common Information Model (CIM) Infrastructure DSP0004

64 DMTF Standard Version 2.6.0

Table 5 – Changes that Increment the CIM Schema Major Version Number 2093

Description Explanation or Exceptions

Class deletion

Property deletion or data type change

Method deletion or signature change

Reorganization of values in an
enumeration

The semantics and mappings of an enumeration cannot change, but values
can be added in unused ranges as a minor change or update.

Movement of a class upwards in the
inheritance hierarchy; that is, the
removal of superclasses from the
inheritance hierarchy

The removal of superclasses deletes properties or methods. New classes
can be inserted as superclasses as a minor change or update. Inserted
classes shall not change keys or add required properties.

Addition of Abstract, Indication, or
Association qualifiers to an existing
class

Change of an association reference
downward in the object hierarchy to a
subclass or to a different part of the
hierarchy

The change of an association reference to a subclass can invalidate
existing instances.

Addition or removal of a Key or Weak
qualifier

Addition of the Required qualifier to a
method input parameter or a property
that may be written

Changing to require a non-NULL value to be passed to an input parameter
or to be written to a property may break existing CIM clients that pass NULL
under the prior definition.

An addition of the Required qualifier to method output parameters, method
return values and properties that may only be read is considered a
compatible change, as CIM clients written to the new behavior are expected
to determine whether they communicate with the old or new behavior of the
CIM server, as defined in 5.5.3.42.

The description of an existing schema element that added the Required
qualifier in a revision of the schema should indicate the schema version in
which this change was made, as defined in 5.5.3.42.

Removal of the Required qualifier from
a method output parameter, a method
(i.e., its return value) or a property that
may be read

Changing to no longer guarantee a non-NULL value to be returned by an
output parameter, a method return value, or a property that may be read
may break existing CIM clients that relied on the prior guarantee.

A removal of the Required qualifier from method input parameters and
properties that may only be written is a compatible change, as CIM clients
written to the new behavior are expected to determine whether they
communicate with the old or new behavior of the CIM server, as defined in
 5.5.3.42.

The description of an existing schema element that removed the Required
qualifier in a revision of the schema should indicate the schema version in
which this change was made, as defined in 5.5.3.42.

Decrease in MaxLen, decrease in
MaxValue, increase in MinLen, or
increase in MinValue

Decreasing a maximum or increasing a minimum invalidates current data.
The opposite change (increasing a maximum) results in truncated data,
where necessary.

Decrease in Max or increase in Min
cardinalities

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 65

Description Explanation or Exceptions

Addition or removal of Override
qualifier

There is one exception. An Override qualifier can be added if a property is
promoted to a superclass, and it is necessary to maintain the specific
qualifiers and descriptions in the original subclass. In this case, there is no
change to existing instances.

Change in the following qualifiers:
In/Out, Units

5.4 Class Names 2094

Fully-qualified class names are in the form <schema name>_<class name>. An underscore is used as a 2095
delimiter between the <schema name> and the <class name>. The delimiter cannot appear in the 2096
<schema name> although it is permitted in the <class name>. 2097

The format of the fully-qualified name allows the scope of class names to be limited to a schema. That is, 2098
the schema name is assumed to be unique, and the class name is required to be unique only within the 2099
schema. The isolation of the schema name using the underscore character allows user interfaces 2100
conveniently to strip off the schema when the schema is implied by the context. 2101

The following are examples of fully-qualified class names: 2102

• CIM_ManagedSystemElement: the root of the CIM managed system element hierarchy 2103

• CIM_ComputerSystem: the object representing computer systems in the CIM schema 2104

• CIM_SystemComponent: the association relating systems to their components 2105

• Win32_ComputerSystem: the object representing computer systems in the Win32 schema 2106

5.5 Qualifiers 2107

Qualifiers are named and typed values that provide information about CIM elements. Since the qualifier 2108
values are on CIM elements and not on CIM instances, they are considered to be meta-data. 2109

Subclause 5.5.1 describes the concept of qualifiers, independently of their representation in MOF. For 2110
their representation in MOF, see 7.7. 2111

Subclauses 5.5.2, 5.5.3, and 5.5.4 describe the meta, standard, and optional qualifiers, respectively. Any 2112
qualifier type declarations with the names of these qualifiers shall have the name, type, scope, flavor, and 2113
default value defined in these subclauses. 2114

Subclause 5.5.5 describes user-defined qualifiers. 2115

Subclause 5.5.6 describes how the MappingString qualifier can be used to define mappings between CIM 2116
and other information models. 2117

5.5.1 Qualifier Concept 2118

5.5.1.1 Qualifier Value 2119

Any qualifiable CIM element (i.e., classes including associations and indications, properties including 2120
references, methods and parameters) shall have a particular set of qualifier values, as follows. A qualifier 2121
shall have a value on a CIM element if that kind of CIM element is in the scope of the qualifier, as defined 2122
in 5.5.1.3. If a kind of CIM element is in the scope of a qualifier, the qualifier is said to be an applicable 2123
qualifier for that kind of CIM element and for a specific CIM element of that kind. 2124

Common Information Model (CIM) Infrastructure DSP0004

66 DMTF Standard Version 2.6.0

Any applicable qualifier may be specified on a CIM element. When an applicable qualifier is specified on 2125
a CIM element, the qualifier shall have an explicit value on that CIM element. When an applicable 2126
qualifier is not specified on a CIM element, the qualifier shall have an assumed value on that CIM 2127
element, as defined in 5.5.1.5. 2128

The value specified for a qualifier shall be consistent with the data type defined by its qualifier type. 2129

There shall not be more than one qualifier with the same name specified on any CIM element. 2130

5.5.1.2 Qualifier Type 2131

A qualifier type defines name, data type, scope, flavor and default value of a qualifier, as follows: 2132

The name of a qualifier is a string that shall follow the formal syntax defined by the qualifierName 2133
ABNF rule in ANNEX A. 2134

The data type of a qualifier shall be one of the intrinsic data types defined in Table 2, including arrays of 2135
such, excluding references and arrays thereof. If the data type is an array type, the array shall be an 2136
indexed variable length array, as defined in 7.8.2. 2137

The scope of a qualifier determines which kinds of CIM elements have a value of that qualifier, as defined 2138
in 5.5.1.3. 2139

The flavor of a qualifier determines propagation to subclasses, override permissions, and translatability, 2140
as defined in 5.5.1.4. 2141

The default value of a qualifier is used to determine the effective value of qualifiers that are not specified 2142
on a CIM element, as defined in 5.5.1.5. 2143

There shall not exist more than one qualifier type object with the same name in a CIM namespace. 2144
Qualifier types are not part of a schema; therefore name uniqueness of qualifiers cannot be defined within 2145
the boundaries of a schema (like it is done for class names). 2146

5.5.1.3 Qualifier Scope 2147

The scope of a qualifier determines which kinds of CIM elements have a value for that qualifier. 2148

The scope of a qualifier shall be one or more of the scopes defined in Table 6, except for scope (Any) 2149
whose specification shall not be combined with the specification of the other scopes. Qualifiers cannot be 2150
specified on qualifiers. 2151

Table 6 – Defined Qualifier Scopes 2152

Qualifier Scope Qualifier may be specified on …

Class ordinary classes

Association Associations

Indication Indications

Property ordinary properties

Reference References

Method Methods

Parameter method parameters

Any any of the above

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 67

5.5.1.4 Qualifier Flavor 2153

The flavor of a qualifier determines propagation of its value to subclasses, override permissions of the 2154
propagated value, and translatability of the value. 2155

The flavor of a qualifier shall be zero or more of the flavors defined in Table 7, subject to further 2156
restrictions defined in this subclause. 2157

Table 7 – Defined Qualifier Flavors 2158

Qualifier Flavor If the flavor is specified, ...

ToSubclass propagation to subclasses is enabled (the implied default)

Restricted propagation to subclasses is disabled

EnableOverride if propagation to subclasses is enabled, override permission is granted (the implied default)

DisableOverride if propagation to subclasses is enabled, override permission is not granted

Translatable specification of localized qualifiers is enabled (by default it is disabled)

Flavor (ToSubclass) and flavor (Restricted) shall not be specified both on the same qualifier type. If none 2159
of these two flavors is specified on a qualifier type, flavor (ToSubclass) shall be the implied default. 2160

If flavor (Restricted) is specified, override permission is meaningless. Thus, flavor (EnableOverride) and 2161
flavor (DisableOverride) should not be specified and are meaningless if specified. 2162

Flavor (EnableOverride) and flavor (DisableOverride) shall not be specified both on the same qualifier 2163
type. If none of these two flavors is specified on a qualifier type, flavor (EnableOverride) shall be the 2164
implied default. 2165

This results in three meaningful combinations of these flavors: 2166

• Restricted – propagation to subclasses is disabled 2167

• EnableOverride – propagation to subclasses is enabled and override permission is granted 2168

• DisableOverride – propagation to subclasses is enabled and override permission is not granted 2169

If override permission is not granted for a qualifier type, then for a particular CIM element in the scope of 2170
that qualifier type, a qualifier with that name may be specified multiple times in the ancestry of its class, 2171
but each occurrence shall specify the same value. This semantics allows the qualifier to change its 2172
effective value at most once along the ancestry of an element. 2173

If flavor (Translatable) is specified on a qualifier type, the specification of localized qualifiers shall be 2174
enabled for that qualifier, otherwise it shall be disabled. Flavor (Translatable) shall be specified only on 2175
qualifier types that have data type string or array of strings. For details, see 5.5.1.6. 2176

5.5.1.5 Effective Qualifier Values 2177

When there is a qualifier type defined for a qualifier, and the qualifier is applicable but not specified on a 2178
CIM element, the CIM element shall have an assumed value for that qualifier. This assumed value is 2179
called the effective value of the qualifier. 2180

The effective value of a particular qualifier on a given CIM element shall be determined as follows: 2181

If the qualifier is specified on the element, the effective value is the value of the specified qualifier. In 2182
MOF, qualifiers may be specified without specifying a value, in which case a value is implied, as 2183
described in 7.7. 2184

Common Information Model (CIM) Infrastructure DSP0004

68 DMTF Standard Version 2.6.0

If the qualifier is not specified on the element and propagation to subclasses is disabled, the effective 2185
value is the default value defined on the qualifier type declaration. 2186

If the qualifier is not specified on the element and propagation to subclasses is enabled, the effective 2187
value is the value of the nearest like-named qualifier that is specified in the ancestry of the element. If the 2188
qualifier is not specified anywhere in the ancestry of the element, the effective value is the default value 2189
defined on the qualifier type declaration. 2190

The ancestry of an element is the set of elements that results from recursively determining its ancestor 2191
elements. An element is not considered part of its ancestry. 2192

The ancestor of an element depends on the kind of element, as follows: 2193

• For a class, its superclass is its ancestor element. If the class does not have a superclass, it has 2194
no ancestor. 2195

• For a property (including references) or method, the overridden element is its ancestor. If the 2196
element is not overriding another element, it does not have an ancestor. 2197

• For a parameter of a method, the like-named parameter of the overridden method is its 2198
ancestor. If the method is not overriding another method, its parameters do not have an 2199
ancestor. 2200

5.5.1.6 Localized Qualifiers 2201

Localized qualifiers allow the specification of qualifier values in a specific language. 2202

DEPRECATED 2203

Localized qualifiers and the flavor (Translatable) as described in this subclause have been deprecated. 2204
The usage of localized qualifiers is discouraged. 2205

DEPRECATED 2206

The qualifier type on which flavor (Translatable) is specified, is called the base qualifier of its localized 2207
qualifiers. 2208

The name of any localized qualifiers shall conform to the following formal syntax defined in ABNF: 2209

localized-qualifier-name = qualifier-name "_" locale 2210
 2211
locale = language-code "_" country code 2212
 ; the locale of the localized qualifier 2213

Where: 2214

qualifier-name is the name of the base qualifier of the localized qualifier 2215

language-code is a language code as defined in ISO 639-1:2002, ISO 639-2:1996, or ISO 639-2216
3:2007 2217

country-code is a country code as defined in ISO 3166-1:2006, ISO 3166-2:2007, or ISO 3166-2218
3:1999 2219

EXAMPLE: 2220
For the base qualifier named Description, the localized qualifier for Mexican Spanish language is named 2221

Description_es_MX. 2222

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 69

The string value of a localized qualifier shall be a translation of the string value of its base qualifier from 2223
the language identified by the locale of the base qualifier into the language identified by the locale 2224
specified in the name of the localized qualifier. 2225

For MOF, the locale of the base qualifier shall be the locale defined by the preceding #pragma locale 2226
directive. 2227

For any localized qualifiers specified on a CIM element, a qualifier type with the same name (i.e., 2228
including the locale suffix) may be declared. If such a qualifier type is declared, its type, scope, flavor and 2229
default value shall match the type, scope, flavor and default value of the base qualifier. If such a qualifier 2230
type is not declared, it is implied from the qualifier type declaration of the base qualifier, with unchanged 2231
type, scope, flavor and default value. 2232

5.5.2 Meta Qualifiers 2233

The following subclauses list the meta qualifiers required for all CIM-compliant implementations. Meta 2234
qualifiers change the type of meta-element of the qualified schema element. 2235

5.5.2.1 Association 2236

The Association qualifier takes boolean values, has Scope (Association) and has Flavor 2237
(DisableOverride). The default value is FALSE. 2238

This qualifier indicates that the class is defining an association, i.e., its type of meta-element becomes 2239
Association. 2240

5.5.2.2 Indication 2241

The Indication qualifier takes boolean values, has Scope (Class, Indication) and has Flavor 2242
(DisableOverride). The default value is FALSE. 2243

This qualifier indicates that the class is defining an indication, i.e., its type of meta-element becomes 2244
Indication. 2245

5.5.3 Standard Qualifiers 2246

The following subclauses list the standard qualifiers required for all CIM-compliant implementations. 2247
Additional qualifiers can be supplied by extension classes to provide instances of the class and other 2248
operations on the class. 2249

Not all of these qualifiers can be used together. The following principles apply: 2250

• Not all qualifiers can be applied to all meta-model constructs. For each qualifier, the constructs 2251
to which it applies are listed. 2252

• For a particular meta-model construct, such as associations, the use of the legal qualifiers may 2253
be further constrained because some qualifiers are mutually exclusive or the use of one qualifier 2254
implies restrictions on the value of another, and so on. These usage rules are documented in 2255
the subclause for each qualifier. 2256

• Legal qualifiers are not inherited by meta-model constructs. For example, the MaxLen qualifier 2257
that applies to properties is not inherited by references. 2258

• The meta-model constructs that can use a particular qualifier are identified for each qualifier. 2259
For qualifiers such as Association (see 5.5.2), there is an implied usage rule that the meta 2260
qualifier must also be present. For example, the implicit usage rule for the Aggregation qualifier 2261
(see 5.5.3.3) is that the Association qualifier must also be present. 2262

Common Information Model (CIM) Infrastructure DSP0004

70 DMTF Standard Version 2.6.0

• The allowed set of values for scope is (Class, Association, Indication, Property, Reference, 2263
Parameter, Method). Each qualifier has one or more of these scopes. If the scope is Class it 2264
does not apply to Association or Indication. If the scope is Property it does not apply to 2265
Reference. 2266

5.5.3.1 Abstract 2267

The Abstract qualifier takes boolean values, has Scope (Class, Association, Indication) and has Flavor 2268
(Restricted). The default value is FALSE. 2269

This qualifier indicates that the class is abstract and serves only as a base for new classes. It is not 2270
possible to create instances of such classes. 2271

5.5.3.2 Aggregate 2272

The Aggregate qualifier takes boolean values, has Scope (Reference) and has Flavor (DisableOverride). 2273
The default value is FALSE. 2274

The Aggregation and Aggregate qualifiers are used together. The Aggregation qualifier relates to the 2275
association, and the Aggregate qualifier specifies the parent reference. 2276

5.5.3.3 Aggregation 2277

The Aggregation qualifier takes boolean values, has Scope (Association) and has Flavor 2278
(DisableOverride). The default value is FALSE. 2279

The Aggregation qualifier indicates that the association is an aggregation. 2280

5.5.3.4 ArrayType 2281

The ArrayType qualifier takes string values, has Scope (Property, Parameter) and has Flavor 2282
(DisableOverride). The default value is "Bag". 2283

The ArrayType qualifier is the type of the qualified array. Valid values are "Bag", "Indexed," and 2284
"Ordered." 2285

For definitions of the array types, refer to 7.8.2. 2286

The ArrayType qualifier shall be applied only to properties and method parameters that are arrays 2287
(defined using the square bracket syntax specified in ANNEX A). 2288

The effective value of the ArrayType qualifier shall not change in the ancestry of the qualified element. 2289
This prevents incompatible changes in the behavior of the array element in subclasses. 2290
NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied 2291

default value to an explicitly specified value. 2292

5.5.3.5 Bitmap 2293

The Bitmap qualifier takes string array values, has Scope (Property, Parameter, Method) and has Flavor 2294
(EnableOverride). The default value is NULL. 2295

The Bitmap qualifier indicates the bit positions that are significant in a bitmap. The bitmap is evaluated 2296
from the right, starting with the least significant value. This value is referenced as 0 (zero). For example, 2297
using a uint8 data type, the bits take the form Mxxx xxxL, where M and L designate the most and least 2298
significant bits, respectively. The least significant bits are referenced as 0 (zero), and the most significant 2299
bit is 7. The position of a specific value in the Bitmap array defines an index used to select a string literal 2300
from the BitValues array. 2301

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 71

The number of entries in the BitValues and Bitmap arrays shall match. 2302

5.5.3.6 BitValues 2303

The BitValues qualifier takes string array values, has Scope (Property, Parameter, Method) and has 2304
Flavor (EnableOverride, Translatable). The default value is NULL. 2305

The BitValues qualifier translates between a bit position value and an associated string. See 5.5.3.5 for 2306
the description for the Bitmap qualifier. 2307

The number of entries in the BitValues and Bitmap arrays shall match. 2308

5.5.3.7 ClassConstraint 2309

The ClassConstraint qualifier takes string array values, has Scope (Class, Association, Indication) and 2310
has Flavor (EnableOverride). The default value is NULL. 2311

The qualified element specifies one or more constraints that are defined in the OMG Object Constraint 2312
Language (OCL), as specified in the Object Constraint Language specification. 2313

The ClassConstraint array contains string values that specify OCL definition and invariant constraints. 2314
The OCL context of these constraints (that is, what "self" in OCL refers to) is an instance of the qualified 2315
class, association, or indication. 2316

OCL definition constraints define OCL attributes and OCL operations that are reusable by other OCL 2317
constraints in the same OCL context. 2318

The attributes and operations in the OCL definition constraints shall be visible for: 2319

• OCL definition and invariant constraints defined in subsequent entries in the same 2320
ClassConstraint array 2321

• OCL constraints defined in PropertyConstraint qualifiers on properties and references in a class 2322
whose value (specified or inherited) of the ClassConstraint qualifier defines the OCL definition 2323
constraint 2324

• Constraints defined in MethodConstraint qualifiers on methods defined in a class whose value 2325
(specified or inherited) of the ClassConstraint qualifier defines the OCL definition constraint 2326

A string value specifying an OCL definition constraint shall conform to the following formal syntax defined 2327
in ABNF (whitespace allowed): 2328

ocl_definition_string = "def" [ocl_name] ":" ocl_statement 2329

Where: 2330

ocl_name is the name of the OCL constraint. 2331

ocl_statement is the OCL statement of the definition constraint, which defines the reusable 2332
attribute or operation. 2333

An OCL invariant constraint is expressed as a typed OCL expression that specifies whether the constraint 2334
is satisfied. The type of the expression shall be boolean. The invariant constraint shall be satisfied at any 2335
time in the lifetime of the instance. 2336

A string value specifying an OCL invariant constraint shall conform to the following formal syntax defined 2337
in ABNF (whitespace allowed): 2338

ocl_invariant_string = "inv" [ocl_name] ":" ocl_statement 2339

Where: 2340

Common Information Model (CIM) Infrastructure DSP0004

72 DMTF Standard Version 2.6.0

ocl_name is the name of the OCL constraint. 2341

ocl_statement is the OCL statement of the invariant constraint, which defines the boolean 2342
expression. 2343

EXAMPLE 1: For example, to check that both property x and property y cannot be NULL in any instance of a class, 2344
use the following qualifier, defined on the class: 2345

ClassConstraint { 2346
 "inv: not (self.x.oclIsUndefined() and self.y.oclIsUndefined())" 2347
} 2348

EXAMPLE 2: The same check can be performed by first defining OCL attributes. Also, the invariant constraint is 2349
named in the following example: 2350

ClassConstraint { 2351
 "def: xNull : Boolean = self.x.oclIsUndefined()", 2352
 "def: yNull : Boolean = self.y.oclIsUndefined()", 2353
 "inv xyNullCheck: xNull = false or yNull = false)" 2354
} 2355

5.5.3.8 Composition 2356

The Composition qualifier takes boolean values, has Scope (Association) and has Flavor 2357
(DisableOverride). The default value is FALSE. 2358

The Composition qualifier refines the definition of an aggregation association, adding the semantics of a 2359
whole-part/compositional relationship to distinguish it from a collection or basic aggregation. This 2360
refinement is necessary to map CIM associations more precisely into UML where whole-part relationships 2361
are considered compositions. The semantics conveyed by composition align with that of the Unified 2362
Modeling Language: Superstructure. Following is a quote (with emphasis added) from its section 7.3.3: 2363

"Composite aggregation is a strong form of aggregation that requires a part instance be included 2364
in at most one composite at a time. If a composite is deleted, all of its parts are normally deleted 2365
with it." 2366

Use of this qualifier imposes restrictions on the membership of the ‘collecting’ object (the whole). Care 2367
should be taken when entities are added to the aggregation, because they shall be "parts" of the whole. 2368
Also, if the collecting entity (the whole) is deleted, it is the responsibility of the implementation to dispose 2369
of the parts. The behavior may vary with the type of collecting entity whether the parts are also deleted. 2370
This is very different from that of a collection, because a collection may be removed without deleting the 2371
entities that are collected. 2372

The Aggregation and Composition qualifiers are used together. Aggregation indicates the general nature 2373
of the association, and Composition indicates more specific semantics of whole-part relationships. This 2374
duplication of information is necessary because Composition is a more recent addition to the list of 2375
qualifiers. Applications can be built only on the basis of the earlier Aggregation qualifier. 2376

5.5.3.9 Correlatable 2377

The Correlatable qualifier takes string array values, has Scope (Property) and has Flavor 2378
(EnableOverride). The default value is NULL. 2379

The Correlatable qualifier is used to define sets of properties that can be compared to determine if two 2380
CIM instances represent the same resource entity. For example, these instances may cross 2381
logical/physical boundaries, CIM server scopes, or implementation interfaces. 2382

The sets of properties to be compared are defined by first specifying the organization in whose context 2383
the set exists (organization_name), and then a set name (set_name). In addition, a property is given a 2384

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 73

role name (role_name) to allow comparisons across the CIM Schema (that is, where property names may 2385
vary although the semantics are consistent). 2386

The value of each entry in the Correlatable qualifier string array shall follow the formal syntax defined in 2387
ABNF: 2388

correlatablePropertyID = organization_name ":" set_name ":" role_name 2389

The determination whether two CIM instances represent the same resource entity is done by comparing 2390
one or more property values of each instance (where the properties are tagged by their role name), as 2391
follows: The property values of all role names within at least one matching organization name / set name 2392
pair shall match in order to conclude that the two instances represent the same resource entity. 2393
Otherwise, no conclusion can be reached and the instances may or may not represent the same resource 2394
entity. 2395

correlatablePropertyID values shall be compared case-insensitively. For example, 2396

"Acme:Set1:Role1" and "ACME:set1:role1" 2397

are considered matching. 2398
NOTE: The values of any string properties in CIM are defined to be compared case-sensitively. 2399

To assure uniqueness of a correlatablePropertyID: 2400

• organization_name shall include a copyrighted, trademarked or otherwise unique name that is 2401
owned by the business entity defining set_name, or is a registered ID that is assigned to the 2402
business entity by a recognized global authority. organization_name shall not contain a colon 2403
(":"). For DMTF defined correlatablePropertyID values, the organization_name shall be 2404
"CIM". 2405

• set_name shall be unique within the context of organization_name and identifies a specific set 2406
of correlatable properties. set_name shall not contain a colon (":"). 2407

• role_name shall be unique within the context of organization_name and set_name and identifies 2408
the semantics or role that the property plays within the Correlatable comparison. 2409

The Correlatable qualifier may be defined on only a single class. In this case, instances of only that class 2410
are compared. However, if the same correlation set (defined by organization_name and set_name) is 2411
specified on multiple classes, then comparisons can be done across those classes. 2412
EXAMPLE: As an example, assume that instances of two classes can be compared: Class1 with properties PropA, 2413

PropB, and PropC, and Class2 with properties PropX, PropY and PropZ. There are two correlation sets 2414
defined, one set with two properties that have the role names Role1 and Role2, and the other set with 2415
one property with the role name OnlyRole. The following MOF represents this example: 2416

Class1 { 2417
 2418
 [Correlatable {"Acme:Set1:Role1"}] 2419
 string PropA; 2420
 2421
 [Correlatable {"Acme:Set2:OnlyRole"}] 2422
 string PropB; 2423
 2424
 [Correlatable {"Acme:Set1:Role2"}] 2425
 string PropC; 2426
}; 2427
 2428
Class2 { 2429

Common Information Model (CIM) Infrastructure DSP0004

74 DMTF Standard Version 2.6.0

 2430
 [Correlatable {"Acme:Set1:Role1"}] 2431
 string PropX; 2432
 2433
 [Correlatable {"Acme:Set2:OnlyRole"}] 2434
 string PropY; 2435
 2436
 [Correlatable {"Acme:Set1:Role2"}] 2437
 string PropZ; 2438
}; 2439

Following the comparison rules defined above, one can conclude that an instance of Class1 and an 2440
instance of Class2 represent the same resource entity if PropB and PropY's values match, or if 2441
PropA/PropX and PropC/PropZ's values match, respectively. 2442

The Correlatable qualifier can be used to determine if multiple CIM instances represent the same 2443
underlying resource entity. Some may wonder if an instance’s key value (such as InstanceID) is meant to 2444
perform the same role. This is not the case. InstanceID is merely an opaque identifier of a CIM instance, 2445
whereas Correlatable is not opaque and can be used to draw conclusions about the identity of the 2446
underlying resource entity of two or more instances. 2447

DMTF-defined Correlatable qualifiers are defined in the CIM Schema on a case-by-case basis. There is 2448
no central document that defines them. 2449

5.5.3.10 Counter 2450

The Counter qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor 2451
(EnableOverride). The default value is FALSE. 2452

The Counter qualifier applies only to unsigned integer types. 2453

It represents a non-negative integer that monotonically increases until it reaches a maximum value of 2454
2^n-1, when it wraps around and starts increasing again from zero. N can be 8, 16, 32, or 64 depending 2455
on the data type of the object to which the qualifier is applied. Counters have no defined initial value, so a 2456
single value of a counter generally has no information content. 2457

5.5.3.11 Deprecated 2458

The Deprecated qualifier takes string array values, has Scope (Class, Association, Indication, Property, 2459
Reference, Parameter, Method) and has Flavor (Restricted). The default value is NULL. 2460

The Deprecated qualifier indicates that the CIM element (for example, a class or property) that the 2461
qualifier is applied to is considered deprecated. The qualifier may specify replacement elements. Existing 2462
CIM servers shall continue to support the deprecated element so that current CIM clients do not break. 2463
Existing CIM servers should add support for any replacement elements. A deprecated element should not 2464
be used in new CIM clients. Existing and new CIM clients shall tolerate the deprecated element and 2465
should move to any replacement elements as soon as possible. The deprecated element may be 2466
removed in a future major version release of the CIM schema, such as CIM 2.x to CIM 3.0. 2467

The qualifier acts inclusively. Therefore, if a class is deprecated, all the properties, references, and 2468
methods in that class are also considered deprecated. However, no subclasses or associations or 2469
methods that reference that class are deprecated unless they are explicitly qualified as such. For clarity 2470
and to specify replacement elements, all such implicitly deprecated elements should be specifically 2471
qualified as deprecated. 2472

The Deprecated qualifier’s string value should specify one or more replacement elements. Replacement 2473
elements shall be specified using the following formal syntax defined in ABNF: 2474

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 75

deprecatedEntry = className [[embeddedInstancePath] "." elementSpec] 2475

where: 2476

elementSpec = propertyName / methodName "(" [parameterName *("," parameterName)] ")" 2477

is a specification of the replacement element. 2478

embeddedInstancePath = 1*("." propertyName) 2479

is a specification of a path through embedded instances. 2480

The qualifier is defined as a string array so that a single element can be replaced by multiple elements. 2481

If there is no replacement element, then the qualifier string array shall contain a single entry with the 2482
string "No value". 2483

When an element is deprecated, its description shall indicate why it is deprecated and how any 2484
replacement elements are used. Following is an acceptable example description: 2485

"The X property is deprecated in lieu of the Y method defined in this class because the property actually 2486
causes a change of state and requires an input parameter." 2487

The parameters of the replacement method may be omitted. 2488
NOTE 1: Replacing a deprecated element with a new element results in duplicate representations of the element. 2489
This is of particular concern when deprecated classes are replaced by new classes and instances may be duplicated. 2490
To allow a CIM client to detect such duplication, implementations should document (in a ReadMe, MOF, or other 2491
documentation) how such duplicate instances are detected. 2492
NOTE 2: Key properties may be deprecated, but they shall continue to be key properties and shall satisfy all rules for 2493
key properties. When a key property is no longer intended to be a key, only one option is available. It is necessary to 2494
deprecate the entire class and therefore its properties, methods, references, and so on, and to define a new class 2495
with the changed key structure. 2496

5.5.3.12 Description 2497

The Description qualifier takes string values, has Scope (Class, Association, Indication, Property, 2498
Reference, Parameter, Method) and has Flavor (EnableOverride, Translatable). The default value is 2499
NULL. 2500

The Description qualifier describes a named element. 2501

5.5.3.13 DisplayName 2502

The DisplayName qualifier takes string values, has Scope (Class, Association, Indication, Property, 2503
Reference, Parameter, Method) and has Flavor (EnableOverride, Translatable). The default value is 2504
NULL. 2505

The DisplayName qualifier defines a name that is displayed on a user interface instead of the actual 2506
name of the element. 2507

5.5.3.14 DN 2508

The DN qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor 2509
(DisableOverride). The default value is FALSE. 2510

When applied to a string element, the DN qualifier specifies that the string shall be a distinguished name 2511
as defined in Section 9 of ITU X.501 and the string representation defined in RFC2253. This qualifier shall 2512
not be applied to qualifiers that are not of the intrinsic data type string. 2513

Common Information Model (CIM) Infrastructure DSP0004

76 DMTF Standard Version 2.6.0

5.5.3.15 EmbeddedInstance 2514

The EmbeddedInstance qualifier takes string values, has Scope (Property, Parameter, Method) and has 2515
Flavor (EnableOverride). The default value is NULL. 2516

A non-NULL effective value of this qualifier indicates that the qualified string typed element contains an 2517
embedded instance. The encoding of the instance contained in the string typed element qualified by 2518
EmbeddedInstance shall follow the rules defined in ANNEX F. 2519

This qualifier may be used only on elements of string type. 2520

If not NULL the qualifier value shall specify the name of a CIM class in the same namespace as the class 2521
owning the qualified element. The embedded instance shall be an instance of the specified class, 2522
including instances of its subclasses. 2523

The value of the EmbeddedInstance qualifier may be changed in subclasses to narrow the originally 2524
specified class to one of its subclasses. Other than that, the effective value of the EmbeddedInstance 2525
qualifier shall not change in the ancestry of the qualified element. This prevents incompatible changes 2526
between representing and not representing an embedded instance in subclasses. 2527

See ANNEX F for examples. 2528

5.5.3.16 EmbeddedObject 2529

The EmbeddedObject qualifier takes boolean values, has Scope (Property, Parameter, Method) and has 2530
Flavor (DisableOverride). The default value is FALSE. 2531

This qualifier indicates that the qualified string typed element contains an encoding of an instance's data 2532
or an encoding of a class definition. The encoding of the object contained in the string typed element 2533
qualified by EmbeddedObject shall follow the rules defined in ANNEX F. 2534

This qualifier may be used only on elements of string type. 2535

The effective value of the EmbeddedObject qualifier shall not change in the ancestry of the qualified 2536
element. This prevents incompatible changes between representing and not representing an embedded 2537
object in subclasses. 2538
NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied 2539

default value to an explicitly specified value. 2540

See ANNEX F for examples. 2541

5.5.3.17 Exception 2542

The Exception qualifier takes boolean values, has Scope (Class, Indication) and has Flavor 2543
(DisableOverride). The default value is FALSE. 2544

This qualifier indicates that the class and all subclasses of this class describe transient exception 2545
information. The definition of this qualifier is identical to that of the Abstract qualifier except that it cannot 2546
be overridden. It is not possible to create instances of exception classes. 2547

The Exception qualifier denotes a class hierarchy that defines transient (very short-lived) exception 2548
objects. Instances of Exception classes communicate exception information between CIM entities. The 2549
Exception qualifier cannot be used with the Abstract qualifier. The subclass of an exception class shall be 2550
an exception class. 2551

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 77

5.5.3.18 Experimental 2552

The Experimental qualifier takes boolean values, has Scope (Class, Association, Indication, Property, 2553
Reference, Parameter, Method) and has Flavor (Restricted). The default value is FALSE. 2554

If the Experimental qualifier is specified, the qualified element has experimental status. The implications 2555
of experimental status are specified by the schema owner. 2556

In a DMTF-produced schema, experimental elements are subject to change and are not part of the final 2557
schema. In particular, the requirement to maintain backwards compatibility across minor schema versions 2558
does not apply to experimental elements. Experimental elements are published for developing 2559
implementation experience. Based on implementation experience, changes may occur to this element in 2560
future releases, it may be standardized "as is," or it may be removed. An implementation does not have to 2561
support an experimental feature to be compliant to a DMTF-published schema. 2562

When applied to a class, the Experimental qualifier conveys experimental status to the class itself, as well 2563
as to all properties and features defined on that class. Therefore, if a class already bears the 2564
Experimental qualifier, it is unnecessary also to apply the Experimental qualifier to any of its properties or 2565
features, and such redundant use is discouraged. 2566

No element shall be both experimental and deprecated (as with the Deprecated qualifier). Experimental 2567
elements whose use is considered undesirable should simply be removed from the schema. 2568

5.5.3.19 Gauge 2569

The Gauge qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor 2570
(EnableOverride). The default value is FALSE. 2571

The Gauge qualifier is applicable only to unsigned integer types. It represents an integer that may 2572
increase or decrease in any order of magnitude. 2573

The value of a gauge is capped at the implied limits of the property’s data type. If the information being 2574
modeled exceeds an implied limit, the value represented is that limit. Values do not wrap. For unsigned 2575
integers, the limits are zero (0) to 2^n-1, inclusive. For signed integers, the limits are –(2^(n-1)) to 2576
2^(n-1)-1, inclusive. N can be 8, 16, 32, or 64 depending on the data type of the property to which the 2577
qualifier is applied. 2578

5.5.3.20 In 2579

The In qualifier takes boolean values, has Scope (Parameter) and has Flavor (DisableOverride). The 2580
default value is TRUE. 2581

This qualifier indicates that the qualified parameter is used to pass values to a method. 2582

The effective value of the In qualifier shall not change in the ancestry of the qualified parameter. This 2583
prevents incompatible changes in the direction of parameters in subclasses. 2584
NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied 2585

default value to an explicitly specified value. 2586

5.5.3.21 IsPUnit 2587

The IsPUnit qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor 2588
(EnableOverride). The default value is FALSE. 2589

The qualified string typed property, method return value, or method parameter represents a programmatic 2590
unit of measure. The value of the string element follows the syntax for programmatic units. 2591

Common Information Model (CIM) Infrastructure DSP0004

78 DMTF Standard Version 2.6.0

The qualifier must be used on string data types only. A value of NULL for the string element indicates that 2592
the programmatic unit is unknown. The syntax for programmatic units is defined in ANNEX C. 2593

5.5.3.22 Key 2594

The Key qualifier takes boolean values, has Scope (Property, Reference) and has Flavor 2595
(DisableOverride). The default value is FALSE. 2596

The property or reference is part of the model path (see 8.2.5 for information on the model path). If more 2597
than one property or reference has the Key qualifier, then all such elements collectively form the key (a 2598
compound key). 2599

The values of key properties and key references are determined once at instance creation time and shall 2600
not be modified afterwards. Properties of an array type shall not be qualified with Key. Properties qualified 2601
with EmbeddedObject or EmbeddedInstance shall not be qualified with Key. Key properties and Key 2602
references shall not be NULL. 2603

5.5.3.23 MappingStrings 2604

The MappingStrings qualifier takes string array values, has Scope (Class, Association, Indication, 2605
Property, Reference, Parameter, Method) and has Flavor (EnableOverride). The default value is NULL. 2606

This qualifier indicates mapping strings for one or more management data providers or agents. See 5.5.6 2607
for details. 2608

5.5.3.24 Max 2609

The Max qualifier takes uint32 values, has Scope (Reference) and has Flavor (EnableOverride). The 2610
default value is NULL. 2611

The Max qualifier specifies the maximum cardinality of the reference, which is the maximum number of 2612
values a given reference may have for each set of other reference values in the association. For example, 2613
if an association relates A instances to B instances, and there shall be at most one A instance for each B 2614
instance, then the reference to A should have a Max(1) qualifier. 2615

The NULL value means that the maximum cardinality is unlimited. 2616

5.5.3.25 MaxLen 2617

The MaxLen qualifier takes uint32 values, has Scope (Property, Parameter, Method) and has Flavor 2618
(EnableOverride). The default value is NULL. 2619

The MaxLen qualifier specifies the maximum length, in characters, of a string data item. MaxLen may be 2620
used only on string data types. If MaxLen is applied to CIM elements with a string array data type, it 2621
applies to every element of the array. A value of NULL implies unlimited length. 2622

An overriding property that specifies the MAXLEN qualifier must specify a maximum length no greater 2623
than the maximum length for the property being overridden. 2624

5.5.3.26 MaxValue 2625

The MaxValue qualifier takes sint64 values, has Scope (Property, Parameter, Method) and has Flavor 2626
(EnableOverride). The default value is NULL. 2627

The MaxValue qualifier specifies the maximum value of this element. MaxValue may be used only on 2628
numeric data types. If MaxValue is applied to CIM elements with a numeric array data type, it applies to 2629
every element of the array. A value of NULL means that the maximum value is the highest value for the 2630
data type. 2631

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 79

An overriding property that specifies the MaxValue qualifier must specify a maximum value no greater 2632
than the maximum value of the property being overridden. 2633

5.5.3.27 MethodConstraint 2634

The MethodConstraint qualifier takes string array values, has Scope (Method) and has Flavor 2635
(EnableOverride). The default value is NULL. 2636

The qualified element specifies one or more constraints, which are defined using the OMG Object 2637
Constraint Language (OCL), as specified in the Object Constraint Language specification. 2638

The MethodConstraint array contains string values that specify OCL precondition, postcondition, and 2639
body constraints. 2640

The OCL context of these constraints (that is, what "self" in OCL refers to) is the object on which the 2641
qualified method is invoked. 2642

An OCL precondition constraint is expressed as a typed OCL expression that specifies whether the 2643
precondition is satisfied. The type of the expression shall be boolean. For the method to complete 2644
successfully, all preconditions of a method shall be satisfied before it is invoked. 2645

A string value specifying an OCL precondition constraint shall conform to the formal syntax defined in 2646
ABNF (whitespace allowed): 2647

ocl_precondition_string = "pre" [ocl_name] ":" ocl_statement 2648

Where: 2649

ocl_name is the name of the OCL constraint. 2650
ocl_statement is the OCL statement of the precondition constraint, which defines the boolean 2651
expression. 2652

An OCL postcondition constraint is expressed as a typed OCL expression that specifies whether the 2653
postcondition is satisfied. The type of the expression shall be boolean. All postconditions of the method 2654
shall be satisfied immediately after successful completion of the method. 2655

A string value specifying an OCL post-condition constraint shall conform to the following formal syntax 2656
defined in ABNF (whitespace allowed): 2657

ocl_postcondition_string = "post" [ocl_name] ":" ocl_statement 2658

Where: 2659

ocl_name is the name of the OCL constraint. 2660
ocl_statement is the OCL statement of the post-condition constraint, which defines the boolean 2661
expression. 2662

An OCL body constraint is expressed as a typed OCL expression that specifies the return value of a 2663
method. The type of the expression shall conform to the CIM data type of the return value. Upon 2664
successful completion, the return value of the method shall conform to the OCL expression. 2665

A string value specifying an OCL body constraint shall conform to the following formal syntax defined in 2666
ABNF (whitespace allowed): 2667

ocl_body_string = "body" [ocl_name] ":" ocl_statement 2668

Common Information Model (CIM) Infrastructure DSP0004

80 DMTF Standard Version 2.6.0

Where: 2669

ocl_name is the name of the OCL constraint. 2670
ocl_statement is the OCL statement of the body constraint, which defines the method return 2671
value. 2672

EXAMPLE: The following qualifier defined on the RequestedStateChange() method of the 2673
CIM_EnabledLogicalElement class specifies that if a Job parameter is returned as not NULL, then an 2674
CIM_OwningJobElement association must exist between the CIM_EnabledLogicalElement class and the Job. 2675

MethodConstraint { 2676
 "post AssociatedJob: " 2677
 "not Job.oclIsUndefined() " 2678
 "implies " 2679
 "self.cIM_OwningJobElement.OwnedElement = Job" 2680
} 2681

5.5.3.28 Min 2682

The Min qualifier takes uint32 values, has Scope (Reference) and has Flavor (EnableOverride). The 2683
default value is 0. 2684

The Min qualifier specifies the minimum cardinality of the reference, which is the minimum number of 2685
values a given reference may have for each set of other reference values in the association. For example, 2686
if an association relates A instances to B instances and there shall be at least one A instance for each B 2687
instance, then the reference to A should have a Min(1) qualifier. 2688

The qualifier value shall not be NULL. 2689

5.5.3.29 MinLen 2690

The MinLen qualifier takes uint32 values, has Scope (Property, Parameter, Method) and has Flavor 2691
(EnableOverride). The default value is 0. 2692

The MinLen qualifier specifies the minimum length, in characters, of a string data item. MinLen may be 2693
used only on string data types. If MinLen is applied to CIM elements with a string array data type, it 2694
applies to every element of the array. The NULL value is not allowed for MinLen. 2695

An overriding property that specifies the MinLen qualifier must specify a minimum length no smaller than 2696
the minimum length of the property being overridden. 2697

5.5.3.30 MinValue 2698

The MinValue qualifier takes sint64 values, has Scope (Property, Parameter, Method) and has Flavor 2699
(EnableOverride). The default value is NULL. 2700

The MinValue qualifier specifies the minimum value of this element. MinValue may be used only on 2701
numeric data types. If MinValue is applied to CIM elements with a numeric array data type, it applies to 2702
every element of the array. A value of NULL means that the minimum value is the lowest value for the 2703
data type. 2704

An overriding property that specifies the MinValue qualifier must specify a minimum value no smaller than 2705
the minimum value of the property being overridden. 2706

5.5.3.31 ModelCorrespondence 2707

The ModelCorrespondence qualifier takes string array values, has Scope (Class, Association, Indication, 2708
Property, Reference, Parameter, Method) and has Flavor (EnableOverride). The default value is NULL. 2709

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 81

The ModelCorrespondence qualifier indicates a correspondence between two elements in the CIM 2710
schema. The referenced elements shall be defined in a standard or extension MOF file, such that the 2711
correspondence can be examined. If possible, forward referencing of elements should be avoided. 2712

Object elements are identified using the following formal syntax defined in ABNF: 2713

modelCorrespondenceEntry = className [*("." (propertyName / referenceName)) 2714
 ["." methodName 2715
 ["(" [parameterName *("," parameterName)] ")"]]] 2716

The basic relationship between the referenced elements is a "loose" correspondence, which simply 2717
indicates that the elements are coupled. This coupling may be unidirectional. Additional qualifiers may be 2718
used to describe a tighter coupling. 2719

The following list provides examples of several correspondences found in CIM and vendor schemas: 2720

• A vendor defines an Indication class corresponding to a particular CIM property or method so 2721
that Indications are generated based on the values or operation of the property or method. In 2722
this case, the ModelCorrespondence may only be on the vendor's Indication class, which is an 2723
extension to CIM. 2724

• A property provides more information for another. For example, an enumeration has an allowed 2725
value of "Other", and another property further clarifies the intended meaning of "Other." In 2726
another case, a property specifies status and another property provides human-readable strings 2727
(using an array construct) expanding on this status. In these cases, ModelCorrespondence is 2728
found on both properties, each referencing the other. Also, referenced array properties may not 2729
be ordered but carry the default ArrayType qualifier definition of "Bag." 2730

• A property is defined in a subclass to supplement the meaning of an inherited property. In this 2731
case, the ModelCorrespondence is found only on the construct in the subclass. 2732

• Multiple properties taken together are needed for complete semantics. For example, one 2733
property may define units, another property may define a multiplier, and another property may 2734
define a specific value. In this case, ModelCorrespondence is found on all related properties, 2735
each referencing all the others. 2736

• Multi-dimensional arrays are desired. For example, one array may define names while another 2737
defines the name formats. In this case, the arrays are each defined with the 2738
ModelCorrespondence qualifier, referencing the other array properties or parameters. Also, they 2739
are indexed and they carry the ArrayType qualifier with the value "Indexed." 2740

The semantics of the correspondence are based on the elements themselves. ModelCorrespondence is 2741
only a hint or indicator of a relationship between the elements. 2742

5.5.3.32 NonLocal (removed) 2743

This instance-level qualifier and the corresponding pragma were removed as an erratum in version 2.3.0 2744
of this document. 2745

5.5.3.33 NonLocalType (removed) 2746

This instance-level qualifier and the corresponding pragma were removed as an erratum in version 2.3.0 2747
of this document. 2748

5.5.3.34 NullValue 2749

The NullValue qualifier takes string values, has Scope (Property) and has Flavor (DisableOverride). The 2750
default value is NULL. 2751

Common Information Model (CIM) Infrastructure DSP0004

82 DMTF Standard Version 2.6.0

The NullValue qualifier defines a value that indicates that the associated property is NULL. That is, the 2752
property is considered to have a valid or meaningful value. 2753

The NullValue qualifier may be used only with properties that have string and integer values. When used 2754
with an integer type, the qualifier value is a MOF decimal value as defined by the decimalValue ABNF 2755
rule defined in ANNEX A. 2756

The content, maximum number of digits, and represented value are constrained by the data type of the 2757
qualified property. 2758

This qualifier cannot be overridden because it seems unreasonable to permit a subclass to return a 2759
different null value than that of the superclass. 2760

5.5.3.35 OctetString 2761

The OctetString qualifier takes boolean values, has Scope (Property, Parameter, Method) and has Flavor 2762
(DisableOverride). The default value is FALSE. 2763

This qualifier indicates that the qualified element is an octet string. An octet string is a sequence of octets 2764
and allows the representation of binary data. 2765

The OctetString qualifier shall be specified only on elements of type array of uint8 or array of string. 2766

When specified on elements of type array of uint8, the OctetString qualifier indicates that the entire array 2767
represents a single octet string. The first four array entries shall represent a length field, and any 2768
subsequent entries shall represent the octets in the octet string. The four uint8 values in the length field 2769
shall be interpreted as a 32-bit unsigned number where the first array entry is the most significant byte. 2770
The number represented by the length field shall be the number of octets in the octet string plus four. For 2771
example, the empty octet string is represented as { 0x00, 0x00, 0x00, 0x04 }. 2772

When specified on elements of type array of string, the OctetString qualifier indicates that each array 2773
entry represents a separate octet string. The string value of each array entry shall be interpreted as a 2774
textual representation of the octet string. The string value of each array entry shall conform to the 2775
following formal syntax defined in ABNF: 2776

"0x" 4*(hexDigit hexDigit) 2777

The first four pairs of hexadecimal digits of the string value shall represent a length field, and any 2778
subsequent pairs shall represent the octets in the octet string. The four pairs of hexadecimal digits in the 2779
length field shall be interpreted as a 32-bit unsigned number where the first pair is the most significant 2780
byte. The number represented by the length field shall be the number of octets in the octet string plus 2781
four. For example, the empty octet string is represented as "0x00000004". 2782

The effective value of the OctetString qualifier shall not change in the ancestry of the qualified element. 2783
This prevents incompatible changes in the interpretation of the qualified element in subclasses. 2784
NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied 2785

default value to an explicitly specified value. 2786

5.5.3.36 Out 2787

The Out qualifier takes boolean values, has Scope (Parameter) and has Flavor (DisableOverride). The 2788
default value is FALSE. 2789

This qualifier indicates that the qualified parameter is used to return values from a method. 2790

The effective value of the Out qualifier shall not change in the ancestry of the qualified parameter. This 2791
prevents incompatible changes in the direction of parameters in subclasses. 2792

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 83

NOTE: The DisableOverride flavor alone is not sufficient to ensure this, since it allows one change from the implied 2793
default value to an explicitly specified value. 2794

5.5.3.37 Override 2795

The Override qualifier takes string values, has Scope (Property, Parameter, Method) and has Flavor 2796
(Restricted). The default value is NULL. 2797

If non-NULL, the qualified element in the derived (containing) class takes the place of another element (of 2798
the same name) defined in the ancestry of that class. 2799

The flavor of the qualifier is defined as 'Restricted' so that the Override qualifier is not repeated in 2800
(inherited by) each subclass. The effect of the override is inherited, but not the identification of the 2801
Override qualifier itself. This enables new Override qualifiers in subclasses to be easily located and 2802
applied. 2803

An effective value of NULL (the default) indicates that the element is not overriding any element. If not 2804
NULL, the value shall conform to the following formal syntax defined in ABNF: 2805

[className"."] IDENTIFIER 2806

where IDENTIFIER shall be the name of the overridden element and if present, className shall 2807
be the name of a class in the ancestry of the derived class. The className ABNF rule shall be 2808
present if the class exposes more than one element with the same name (see 7.5.1). 2809

If className is omitted, the overridden element is found by searching the ancestry of the class until a 2810
definition of an appropriately-named subordinate element (of the same meta-schema class) is found. 2811

If className is specified, the element being overridden is found by searching the named class and its 2812
ancestry until a definition of an element of the same name (of the same meta-schema class) is found. 2813

The Override qualifier may only refer to elements of the same meta-schema class. For example, 2814
properties can only override properties, etc. An element’s name or signature shall not be changed when 2815
overriding. 2816

5.5.3.38 Propagated 2817

The Propagated qualifier takes string values, has Scope (Property) and has Flavor (DisableOverride). 2818
The default value is NULL. 2819

When the Propagated qualifier is specified with a non-NULL value on a property, the Key qualifier shall be 2820
specified with a value of TRUE on the qualified property. 2821

A non-NULL value of the Propagated qualifier indicates that the value of the qualified key property is 2822
propagated from a property in another instance that is associated via a weak association. That associated 2823
instance is referred to as the scoping instance of the instance receiving the property value. 2824

A non-NULL value of the Propagated qualifier shall identify the property in the scoping instance and shall 2825
conform to the formal syntax defined in ABNF: 2826

[className "."] propertyName 2827

where propertyName is the name of the property in the scoping instance, and className is the name 2828
of a class exposing that property. The specification of a class name may be needed in order to 2829
disambiguate like-named properties in associations with an arity of three or higher. It is recommended to 2830
specify the class name in any case. 2831

For a description of the concepts of weak associations and key propagation as well as further rules 2832
around them, see 8.2 2833

Common Information Model (CIM) Infrastructure DSP0004

84 DMTF Standard Version 2.6.0

5.5.3.39 PropertyConstraint 2834

The PropertyConstraint qualifier takes string array values, has Scope (Property, Reference) and has 2835
Flavor (EnableOverride). The default value is NULL. 2836

The qualified element specifies one or more constraints that are defined using the Object Constraint 2837
Language (OCL) as specified in the Object Constraint Language specification. 2838

The PropertyConstraint array contains string values that specify OCL initialization and derivation 2839
constraints. The OCL context of these constraints (that is, what "self" in OCL refers to) is an instance of 2840
the class, association, or indication that exposes the qualified property or reference. 2841

An OCL initialization constraint is expressed as a typed OCL expression that specifies the permissible 2842
initial value for a property. The type of the expression shall conform to the CIM data type of the property. 2843

A string value specifying an OCL initialization constraint shall conform to the following formal syntax 2844
defined in ABNF (whitespace allowed): 2845

ocl_initialization_string = "init" ":" ocl_statement 2846

Where: 2847

ocl_statement is the OCL statement of the initialization constraint, which defines the typed 2848
expression. 2849

An OCL derivation constraint is expressed as a typed OCL expression that specifies the permissible 2850
value for a property at any time in the lifetime of the instance. The type of the expression shall conform to 2851
the CIM data type of the property. 2852

A string value specifying an OCL derivation constraint shall conform to the following formal syntax defined 2853
in ABNF (whitespace allowed): 2854

ocl_derivation_string = "derive" ":" ocl_statement 2855

Where: 2856

ocl_statement is the OCL statement of the derivation constraint, which defines the typed 2857
expression. 2858

For example, PolicyAction has a SystemName property that must be set to the name of the system 2859
associated with CIM_PolicySetInSystem. The following qualifier defined on 2860
CIM_PolicyAction.SystemName specifies that constraint: 2861

PropertyConstraint { 2862
 "derive: self.CIM_PolicySetInSystem.Antecedent.Name" 2863
} 2864

A default value defined on a property also represents an initialization constraint, and no more than one 2865
initialization constraint is allowed on a property, as defined in 5.1.2.8. 2866

No more than one derivation constraint is allowed on a property, as defined in 5.1.2.8. 2867

5.5.3.40 PUnit 2868

The PUnit qualifier takes string values, has Scope (Property, Parameter, Method) and has Flavor 2869
(EnableOverride). The default value is NULL. 2870

The PUnit qualifier indicates the programmatic unit of measure of the schema element. The qualifier 2871
value shall follow the syntax for programmatic units, as defined in ANNEX C. 2872

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 85

The PUnit qualifier shall be specified only on schema elements of a numeric datatype. An effective value 2873
of NULL indicates that a programmatic unit is unknown for or not applicable to the schema element. 2874

String typed schema elements that are used to represent numeric values in a string format cannot have 2875
the PUnit qualifier specified, since the reason for using string typed elements to represent numeric values 2876
is typically that the type of value changes over time, and hence a programmatic unit for the element 2877
needs to be able to change along with the type of value. This can be achieved with a companion schema 2878
element whose value specifies the programmatic unit in case the first schema element holds a numeric 2879
value. This companion schema element would be string typed and the IsPUnit qualifier be set to true. 2880

5.5.3.41 Read 2881

The Read qualifier takes boolean values, has Scope (Property) and has Flavor (EnableOverride). The 2882
default value is TRUE. 2883

The Read qualifier indicates that the property is readable. 2884

5.5.3.42 Required 2885

The Required qualifier takes boolean values, has Scope (Property, Reference, Parameter, Method) and 2886
has Flavor (DisableOverride). The default value is FALSE. 2887

A non-NULL value is required for the element. For CIM elements with an array type, the Required 2888
qualifier affects the array itself, and the elements of the array may be NULL regardless of the Required 2889
qualifier. 2890

Properties of a class that are inherent characteristics of a class and identify that class are such properties 2891
as domain name, file name, burned-in device identifier, IP address, and so on. These properties are likely 2892
to be useful for CIM clients as query entry points that are not KEY properties but should be Required 2893
properties. 2894

References of an association that are not KEY references shall be Required references. There are no 2895
particular usage rules for using the Required qualifier on parameters of a method outside of the meaning 2896
defined in this clause. 2897

A property that overrides a required property shall not specify REQUIRED(false). 2898

Compatible schema changes may add the Required qualifier to method output parameters, methods (i.e., 2899
their return values) and properties that may only be read. Compatible schema changes may remove the 2900
Required qualifier from method input parameters and properties that may only be written. If such 2901
compatible schema changes are done, the description of the changed schema element should indicate 2902
the schema version in which the change was made. This information can be used for example by 2903
management profile implementations in order to decide whether it is appropriate to implement a schema 2904
version higher than the one minimally required by the profile, and by CIM clients in order to decide 2905
whether they need to support both behaviors. 2906

5.5.3.43 Revision (deprecated) 2907

DEPRECATED 2908

The Revision qualifier is deprecated (See 5.5.3.53 for the description of the Version qualifier). 2909

The Revision qualifier takes string values, has Scope (Class, Association, Indication) and has Flavor 2910
(EnableOverride, Translatable). The default value is NULL. 2911

The Revision qualifier provides the minor revision number of the schema object. 2912

Common Information Model (CIM) Infrastructure DSP0004

86 DMTF Standard Version 2.6.0

The Version qualifier shall be present to supply the major version number when the Revision qualifier is 2913
used. 2914

DEPRECATED 2915

5.5.3.44 Schema (deprecated) 2916

DEPRECATED 2917

The Schema string qualifier is deprecated. The schema for any feature can be determined by examining 2918
the complete class name of the class defining that feature. 2919

The Schema string qualifier takes string values, has Scope (Property, Method) and has Flavor 2920
(DisableOverride, Translatable). The default value is NULL. 2921

The Schema qualifier indicates the name of the schema that contains the feature. 2922

DEPRECATED 2923

5.5.3.45 Source (removed) 2924

This instance-level qualifier and the corresponding pragma were removed as an erratum in version 2.3.0 2925
of this document. 2926

5.5.3.46 SourceType (removed) 2927

This instance-level qualifier and the corresponding pragma were removed as an erratum in version 2.3.0 2928
of this document. 2929

5.5.3.47 Static 2930

The Static qualifier takes boolean values, has Scope (Property, Method) and has Flavor 2931
(DisableOverride). The default value is FALSE. 2932

The property or method is static. For a definition of static properties, see 7.5.5. For a definition of static 2933
methods, see 7.9.1. 2934

An element that overrides a non-static element shall not be a static element. 2935

5.5.3.48 Terminal 2936

The Terminal qualifier takes boolean values, has Scope (Class, Association, Indication) and has Flavor 2937
(EnableOverride). The default value is FALSE. 2938

The class can have no subclasses. If such a subclass is declared, the compiler generates an error. 2939

This qualifier cannot coexist with the Abstract qualifier. If both are specified, the compiler generates an 2940
error. 2941

5.5.3.49 UMLPackagePath 2942

The UMLPackagePath qualifier takes string values, has Scope (Class, Association, Indication) and has 2943
Flavor (EnableOverride). The default value is NULL. 2944

This qualifier specifies a position within a UML package hierarchy for a CIM class. 2945

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 87

The qualifier value shall consist of a series of package names, each interpreted as a package within the 2946
preceding package, separated by '::'. The first package name in the qualifier value shall be the schema 2947
name of the qualified CIM class. 2948

For example, consider a class named "CIM_Abc" that is in a package named "PackageB" that is in a 2949
package named "PackageA" that, in turn, is in a package named "CIM." The resulting qualifier 2950
specification for this class "CIM_Abc" is as follows: 2951

UMLPACKAGEPATH ("CIM::PackageA::PackageB") 2952

A value of NULL indicates that the following default rule shall be used to create the UML package path: 2953
The name of the UML package path is the schema name of the class, followed by "::default". 2954

For example, a class named "CIM_Xyz" with a UMLPackagePath qualifier value of NULL has the UML 2955
package path "CIM::default". 2956

5.5.3.50 Units (deprecated) 2957

DEPRECATED 2958

The Units qualifier is deprecated. Instead, the PUnit qualifier should be used for programmatic access, 2959
and the CIM client should use its own conventions to construct a string to be displayed from the PUnit 2960
qualifier. 2961

The Units qualifier takes string values, has Scope (Property, Parameter, Method) and has Flavor 2962
(EnableOverride, Translatable). The default value is NULL. 2963

The Units qualifier specifies the unit of measure of the qualified property, method return value, or method 2964
parameter. For example, a Size property might have a unit of "Bytes." 2965

NULL indicates that the unit is unknown. An empty string indicates that the qualified property, method 2966
return value, or method parameter has no unit and therefore is dimensionless. The complete set of DMTF 2967
defined values for the Units qualifier is presented in ANNEX C. 2968

DEPRECATED 2969

5.5.3.51 ValueMap 2970

The ValueMap qualifier takes string array values, has Scope (Property, Parameter, Method) and has 2971
Flavor (EnableOverride). The default value is NULL. 2972

The ValueMap qualifier defines the set of permissible values for the qualified property, method return, or 2973
method parameter. 2974

The ValueMap qualifier can be used alone or in combination with the Values qualifier. When it is used 2975
with the Values qualifier, the location of the value in the ValueMap array determines the location of the 2976
corresponding entry in the Values array. 2977

ValueMap may be used only with string or integer types. 2978

When used with a string typed element the following rules apply: 2979

• a ValueMap entry shall be a string value as defined by the stringValue ABNF rule defined in 2980
 ANNEX A. 2981

• the set of ValueMap entries defined on a schema element may be extended in overriding 2982
schema elements in subclasses or in revisions of a schema within the same major version of 2983
the schema. 2984

Common Information Model (CIM) Infrastructure DSP0004

88 DMTF Standard Version 2.6.0

When used with an integer typed element the following rules apply: 2985

• a ValueMap entry shall be a string value as defined by the stringValue ABNF rule defined in 2986
 ANNEX A, whose string value conforms to the integerValueMapEntry ABNF rule: 2987

integerValueMapEntry = integerValue / integerValueRange 2988
 2989
integerValueRange = [integerValue] ".." [integerValue] 2990

Where integerValue is defined in ANNEX A. 2991

When used with an integer type, a ValueMap entry of: 2992

"x" claims the value x. 2993

"..x" claims all values less than and including x. 2994

"x.." claims all values greater than and including x. 2995

".." claims all values not otherwise claimed. 2996

The values claimed are constrained by the value range of the data type of the qualified schema element. 2997

The usage of ".." as the only entry in the ValueMap array is not permitted. 2998

If the ValueMap qualifier is used together with the Values qualifier, then all values claimed by a particular 2999
ValueMap entry apply to the corresponding Values entry. 3000
EXAMPLE: 3001

 [Values {"zero&one", "2to40", "fifty", "the unclaimed", "128-255"}, 3002
 ValueMap {"..1","2..40" "50", "..", "x80.." }] 3003
uint8 example; 3004

In this example, where the type is uint8, the following mappings are made: 3005

"..1" and "zero&one" map to 0 and 1. 3006

"2..40" and "2to40" map to 2 through 40. 3007

".." and "the unclaimed" map to 41 through 49 and to 51 through 127. 3008

"0x80.." and "128-255" map to 128 through 255. 3009

An overriding property that specifies the ValueMap qualifier shall not map any values not allowed by the 3010
overridden property. In particular, if the overridden property specifies or inherits a ValueMap qualifier, 3011
then the overriding ValueMap qualifier must map only values that are allowed by the overridden 3012
ValueMap qualifier. However, the overriding property may organize these values differently than does the 3013
overridden property. For example, ValueMap {"0..10"} may be overridden by ValueMap {"0..1", "2..9"}. An 3014
overriding ValueMap qualifier may specify fewer values than the overridden property would otherwise 3015
allow. 3016

5.5.3.52 Values 3017

The Values qualifier takes string array values, has Scope (Property, Parameter, Method) and has Flavor 3018
(EnableOverride, Translatable). The default value is NULL. 3019

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 89

The Values qualifier translates between integer values and strings (such as abbreviations or English 3020
terms) in the ValueMap array, and an associated string at the same index in the Values array. If a 3021
ValueMap qualifier is not present, the Values array is indexed (zero relative) using the value in the 3022
associated property, method return type, or method parameter. If a ValueMap qualifier is present, the 3023
Values index is defined by the location of the property value in the ValueMap. If both Values and 3024
ValueMap are specified or inherited, the number of entries in the Values and ValueMap arrays shall 3025
match. 3026

5.5.3.53 Version 3027

The Version qualifier takes string values, has Scope (Class, Association, Indication) and has Flavor 3028
(Restricted, Translatable). The default value is NULL. 3029

The Version qualifier provides the version information of the object, which increments when changes are 3030
made to the object. 3031

Starting with CIM Schema 2.7 (including extension schema), the Version qualifier shall be present on 3032
each class to indicate the version of the last update to the class. 3033

The string representing the version comprises three decimal integers separated by periods; that is, 3034
M.N.U, as defined by the following ABNF: 3035

versionFormat = decimalValue "." decimalValue "." decimalValue 3036

The meaning of M.N.U is as follows: 3037

M – The major version in numeric form of the change to the class. 3038

N – The minor version in numeric form of the change to the class. 3039

U – The update (for example, errata, patch, ...) in numeric form of the change to the class. 3040
NOTE 1: The addition or removal of the Experimental qualifier does not require the version information to be 3041
updated. 3042
NOTE 2: The version change applies only to elements that are local to the class. In other words, the version change 3043
of a superclass does not require the version in the subclass to be updated. 3044
EXAMPLES: 3045

Version("2.7.0") 3046
 3047
Version("1.0.0") 3048

5.5.3.54 Weak 3049

The Weak qualifier takes boolean values, has Scope (Reference) and has Flavor (DisableOverride). The 3050
default value is FALSE. 3051

This qualifier indicates that the qualified reference is weak, rendering its owning association a weak 3052
association. 3053

For a description of the concepts of weak associations and key propagation as well as further rules 3054
around them, see 8.2. 3055

5.5.3.55 Write 3056

The Write qualifier takes boolean values, has Scope (Property) and has Flavor (EnableOverride). The 3057
default value is FALSE. 3058

Common Information Model (CIM) Infrastructure DSP0004

90 DMTF Standard Version 2.6.0

The modeling semantics of a property support modification of that property by consumers. The purpose of 3059
this qualifier is to capture modeling semantics and not to address more dynamic characteristics such as 3060
provider capability or authorization rights. 3061

5.5.3.56 XMLNamespaceName 3062

The XMLNamespaceName qualifier takes string values, has Scope (Property, Method, Parameter) and 3063
has Flavor (EnableOverride). The default value is NULL. 3064

The XMLNamespaceName qualifier shall be specified only on elements of type string or array of string. 3065

If the effective value of the qualifier is not NULL, this indicates that the value of the qualified element is an 3066
XML instance document. The value of the qualifier in this case shall be the namespace name of the XML 3067
schema to which the XML instance document conforms. 3068

As defined in Namespaces in XML, the format of the namespace name shall be that of a URI reference 3069
as defined in RFC3986. Two such URI references may be equivalent even if they are not equal according 3070
to a character-by-character comparison (e.g., due to usage of URI escape characters or different lexical 3071
case). 3072

If a specification of the XMLNamespaceName qualifier overrides a non-NULL qualifier value specified on 3073
an ancestor of the qualified element, the XML schema specified on the qualified element shall be a 3074
subset or restriction of the XML schema specified on the ancestor element, such that any XML instance 3075
document that conforms to the XML schema specified on the qualified element also conforms to the XML 3076
schema specified on the ancestor element. 3077

No particular XML schema description language (e.g., W3C XML Schema as defined in XML Schema 3078
Part 0: Primer Second Edition or RELAX NG as defined in ISO/IEC 19757-2:2008) is implied by usage of 3079
this qualifier. 3080

5.5.4 Optional Qualifiers 3081

The following subclauses list the optional qualifiers that address situations that are not common to all 3082
CIM-compliant implementations. Thus, CIM-compliant implementations can ignore optional qualifiers 3083
because they are not required to interpret or understand them. The optional qualifiers are provided in the 3084
specification to avoid random user-defined qualifiers for these recurring situations. 3085

5.5.4.1 Alias 3086

The Alias qualifier takes string values, has Scope (Property, Reference, Method) and has Flavor 3087
(EnableOverride, Translatable). The default value is NULL. 3088

The Alias qualifier establishes an alternate name for a property or method in the schema. 3089

5.5.4.2 Delete 3090

The Delete qualifier takes boolean values, has Scope (Association, Reference) and has Flavor 3091
(EnableOverride). The default value is FALSE. 3092

For associations: The qualified association shall be deleted if any of the objects referenced in the 3093
association are deleted and the respective object referenced in the association is qualified with IfDeleted. 3094

For references: The referenced object shall be deleted if the association containing the reference is 3095
deleted and qualified with IfDeleted. It shall also be deleted if any objects referenced in the association 3096
are deleted and the respective object referenced in the association is qualified with IfDeleted. 3097

CIM clients shall chase associations according to the modeled semantic and delete objects appropriately. 3098
NOTE: This usage rule must be verified when the CIM security model is defined. 3099

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 91

5.5.4.3 DisplayDescription 3100

The DisplayDescription qualifier takes string values, has Scope (Class, Association, Indication, Property, 3101
Reference, Parameter, Method) and has Flavor (EnableOverride, Translatable). The default value is 3102
NULL. 3103

The DisplayDescription qualifier defines descriptive text for the qualified element for display on a human 3104
interface — for example, fly-over Help or field Help. 3105

The DisplayDescription qualifier is for use within extension subclasses of the CIM schema to provide 3106
display descriptions that conform to the information development standards of the implementing product. 3107
A value of NULL indicates that no display description is provided. Therefore, a display description 3108
provided by the corresponding schema element of a superclass can be removed without substitution. 3109

5.5.4.4 Expensive 3110

The Expensive qualifier takes boolean values, has Scope (Class, Association, Indication, Property, 3111
Reference, Parameter, Method) and has Flavor (EnableOverride).The default value is FALSE. 3112

The Expensive qualifier indicates that the element is expensive to manipulate and/or compute. 3113

5.5.4.5 IfDeleted 3114

The IfDeleted qualifier takes boolean values, has Scope (Association, Reference) and has Flavor 3115
(EnableOverride). The default value is FALSE. 3116

All objects qualified by Delete within the association shall be deleted if the referenced object or the 3117
association, respectively, is deleted. 3118

5.5.4.6 Invisible 3119

The Invisible qualifier takes boolean values, has Scope (Class, Association, Property, Reference, 3120
Method) and has Flavor (EnableOverride). The default value is FALSE. 3121

The Invisible qualifier indicates that the element is defined only for internal purposes and should not be 3122
displayed or otherwise relied upon. For example, an intermediate value in a calculation or a value to 3123
facilitate association semantics is defined only for internal purposes. 3124

5.5.4.7 Large 3125

The Large qualifier takes boolean values, has Scope (Class, Property) and has Flavor (EnableOverride). 3126
The default value is FALSE. 3127

The Large qualifier property or class requires a large amount of storage space. 3128

5.5.4.8 PropertyUsage 3129

The PropertyUsage qualifier takes string values, has Scope (Property) and has Flavor (EnableOverride). 3130
The default value is "CURRENTCONTEXT". 3131

This qualifier allows properties to be classified according to how they are used by managed elements. 3132
Therefore, the managed element can convey intent for property usage. The qualifier does not convey 3133
what access CIM has to the properties. That is, not all configuration properties are writeable. Some 3134
configuration properties may be maintained by the provider or resource that the managed element 3135
represents, and not by CIM. The PropertyUsage qualifier enables the programmer to distinguish between 3136
properties that represent attributes of the following: 3137

• A managed resource versus capabilities of a managed resource 3138

Common Information Model (CIM) Infrastructure DSP0004

92 DMTF Standard Version 2.6.0

• Configuration data for a managed resource versus metrics about or from a managed resource 3139

• State information for a managed resource. 3140

If the qualifier value is set to CurrentContext (the default value), then the value of PropertyUsage should 3141
be determined by looking at the class in which the property is placed. The rules for which default 3142
PropertyUsage values belong to which classes/subclasses are as follows: 3143

Class>CurrentContext PropertyUsage Value 3144
Setting > Configuration 3145
Configuration > Configuration 3146
Statistic > Metric ManagedSystemElement > State Product > Descriptive 3147
FRU > Descriptive 3148
SupportAccess > Descriptive 3149
Collection > Descriptive 3150

The valid values for this qualifier are as follows: 3151

• UNKNOWN. The property's usage qualifier has not been determined and set. 3152

• OTHER. The property's usage is not Descriptive, Capabilities, Configuration, Metric, or State. 3153

• CURRENTCONTEXT. The PropertyUsage value shall be inferred based on the class placement 3154
of the property according to the following rules: 3155

– If the property is in a subclass of Setting or Configuration, then the PropertyUsage value of 3156
CURRENTCONTEXT should be treated as CONFIGURATION. 3157

– If the property is in a subclass of Statistics, then the PropertyUsage value of 3158
CURRENTCONTEXT should be treated as METRIC. 3159

– If the property is in a subclass of ManagedSystemElement, then the PropertyUsage value 3160
of CURRENTCONTEXT should be treated as STATE. 3161

– If the property is in a subclass of Product, FRU, SupportAccess or Collection, then the 3162
PropertyUsage value of CURRENTCONTEXT should be treated as DESCRIPTIVE. 3163

• DESCRIPTIVE. The property contains information that describes the managed element, such 3164
as vendor, description, caption, and so on. These properties are generally not good candidates 3165
for representation in Settings subclasses. 3166

• CAPABILITY. The property contains information that reflects the inherent capabilities of the 3167
managed element regardless of its configuration. These are usually specifications of a product. 3168
For example, VideoController.MaxMemorySupported=128 is a capability. 3169

• CONFIGURATION. The property contains information that influences or reflects the 3170
configuration state of the managed element. These properties are candidates for representation 3171
in Settings subclasses. For example, VideoController.CurrentRefreshRate is a configuration 3172
value. 3173

• STATE indicates that the property contains information that reflects or can be used to derive the 3174
current status of the managed element. 3175

• METRIC indicates that the property contains a numerical value representing a statistic or metric 3176
that reports performance-oriented and/or accounting-oriented information for the managed 3177
element. This would be appropriate for properties containing counters such as 3178
"BytesProcessed". 3179

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 93

5.5.4.9 Provider 3180

The Provider qualifier takes string values, has Scope (Class, Association, Indication, Property, Reference, 3181
Parameter, Method) and has Flavor (EnableOverride). The default value is NULL. 3182

An implementation-specific handle to a class implementation within a CIM server. 3183

5.5.4.10 Syntax 3184

The Syntax qualifier takes string values, has Scope (Property, Reference, Parameter, Method) and has 3185
Flavor (EnableOverride). The default value is NULL. 3186

The Syntax qualifier indicates the specific type assigned to a data item. It must be used with the 3187
SyntaxType qualifier. 3188

5.5.4.11 SyntaxType 3189

The SyntaxType qualifier takes string values, has Scope (Property, Reference, Parameter, Method) and 3190
has Flavor (EnableOverride). The default value is NULL. 3191

The SyntaxType qualifier defines the format of the Syntax qualifier. It must be used with the Syntax 3192
qualifier. 3193

5.5.4.12 TriggerType 3194

The TriggerType qualifier takes string values, has Scope (Class, Association, Indication, Property, 3195
Reference, Method) and has Flavor (EnableOverride). The default value is NULL. 3196

The TriggerType qualifier specifies the circumstances that cause a trigger to be fired. 3197

The trigger types vary by meta-model construct. For classes and associations, the legal values are 3198
CREATE, DELETE, UPDATE, and ACCESS. For properties and references, the legal values are 3199
UPDATE and ACCESS. For methods, the legal values are BEFORE and AFTER. For indications, the 3200
legal value is THROWN. 3201

5.5.4.13 UnknownValues 3202

The UnknownValues qualifier takes string array values, has Scope (Property) and has Flavor 3203
(DisableOverride). The default value is NULL. 3204

The UnknownValues qualifier specifies a set of values that indicates that the value of the associated 3205
property is unknown. Therefore, the property cannot be considered to have a valid or meaningful value. 3206

The conventions and restrictions for defining unknown values are the same as those for the ValueMap 3207
qualifier. 3208

The UnknownValues qualifier cannot be overridden because it is unreasonable for a subclass to treat as 3209
known a value that a superclass treats as unknown. 3210

5.5.4.14 UnsupportedValues 3211

The UnsupportedValues qualifier takes string array values, has Scope (Property) and has Flavor 3212
(DisableOverride). The default value is NULL. 3213

The UnsupportedValues qualifier specifies a set of values that indicates that the value of the associated 3214
property is unsupported. Therefore, the property cannot be considered to have a valid or meaningful 3215
value. 3216

Common Information Model (CIM) Infrastructure DSP0004

94 DMTF Standard Version 2.6.0

The conventions and restrictions for defining unsupported values are the same as those for the ValueMap 3217
qualifier. 3218

The UnsupportedValues qualifier cannot be overridden because it is unreasonable for a subclass to treat 3219
as supported a value that a superclass treats as unknown. 3220

5.5.5 User-defined Qualifiers 3221

The user can define any additional arbitrary named qualifiers. However, it is recommended that only 3222
defined qualifiers be used and that the list of qualifiers be extended only if there is no other way to 3223
accomplish the objective. 3224

5.5.6 Mapping Entities of Other Information Models to CIM 3225

The MappingStrings qualifier can be used to map entities of other information models to CIM or to 3226
express that a CIM element represents an entity of another information model. Several mapping string 3227
formats are defined in this clause to use as values for this qualifier. The CIM schema shall use only the 3228
mapping string formats defined in this document. Extension schemas should use only the mapping string 3229
formats defined in this document. 3230

The mapping string formats defined in this document conform to the following formal syntax defined in 3231
ABNF: 3232

mappingstrings_format = mib_format / oid_format / general_format / mif_format 3233

NOTE: As defined in the respective clauses, the "MIB", "OID", and "MIF" formats support a limited form of extensibility 3234
by allowing an open set of defining bodies. However, the syntax defined for these formats does not allow variations 3235
by defining body; they need to conform. A larger degree of extensibility is supported in the general format, where the 3236
defining bodies may define a part of the syntax used in the mapping. 3237

5.5.6.1 SNMP-Related Mapping String Formats 3238

The two SNMP-related mapping string formats, Management Information Base (MIB) and globally unique 3239
object identifier (OID), can express that a CIM element represents a MIB variable. As defined in 3240
RFC1155, a MIB variable has an associated variable name that is unique within a MIB and an OID that is 3241
unique within a management protocol. 3242

The "MIB" mapping string format identifies a MIB variable using naming authority, MIB name, and variable 3243
name. It may be used only on CIM properties, parameters, or methods. The format is defined as follows, 3244
using ABNF: 3245

mib_format = "MIB" "." mib_naming_authority "|" mib_name "." mib_variable_name 3246

Where: 3247

mib_naming_authority = 1*(stringChar) 3248

is the name of the naming authority defining the MIB (for example, "IETF"). The dot (.) and vertical 3249
bar (|) characters are not allowed. 3250

mib_name = 1*(stringChar) 3251

is the name of the MIB as defined by the MIB naming authority (for example, "HOST-RESOURCES-3252
MIB"). The dot (.) and vertical bar (|) characters are not allowed. 3253

mib_variable_name = 1*(stringChar) 3254

is the name of the MIB variable as defined in the MIB (for example, "hrSystemDate"). The dot (.) 3255
and vertical bar (|) characters are not allowed. 3256

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 95

The MIB name should be the ASN.1 module name of the MIB (that is, not the RFC number). For example, 3257
instead of using "RFC1493", the string "BRIDGE-MIB" should be used. 3258
EXAMPLE: 3259

 [MappingStrings { "MIB.IETF|HOST-RESOURCES-MIB.hrSystemDate" }] 3260
datetime LocalDateTime; 3261

The "OID" mapping string format identifies a MIB variable using a management protocol and an object 3262
identifier (OID) within the context of that protocol. This format is especially important for mapping 3263
variables defined in private MIBs. It may be used only on CIM properties, parameters, or methods. The 3264
format is defined as follows, using ABNF: 3265

oid_format = "OID" "." oid_naming_authority "|" oid_protocol_name "." oid 3266

Where: 3267

oid_naming_authority = 1*(stringChar) 3268

is the name of the naming authority defining the MIB (for example, "IETF"). The dot (.) and vertical 3269
bar (|) characters are not allowed. 3270

oid_protocol_name = 1*(stringChar) 3271

is the name of the protocol providing the context for the OID of the MIB variable (for example, 3272
"SNMP"). The dot (.) and vertical bar (|) characters are not allowed. 3273

oid = 1*(stringChar) 3274

is the object identifier (OID) of the MIB variable in the context of the protocol (for example, 3275
"1.3.6.1.2.1.25.1.2"). 3276

EXAMPLE: 3277

 [MappingStrings { "OID.IETF|SNMP.1.3.6.1.2.1.25.1.2" }] 3278
datetime LocalDateTime; 3279

For both mapping string formats, the name of the naming authority defining the MIB shall be one of the 3280
following: 3281

• The name of a standards body (for example, IETF), for standard MIBs defined by that standards 3282
body 3283

• A company name (for example, Acme), for private MIBs defined by that company 3284

5.5.6.2 General Mapping String Format 3285

This clause defines the mapping string format, which provides a basis for future mapping string formats. 3286
Future mapping string formats defined in this document should be based on the general mapping string 3287
format. A mapping string format based on this format shall define the kinds of CIM elements with which it 3288
is to be used. 3289

The format is defined as follows, using ABNF. The division between the name of the format and the 3290
actual mapping is slightly different than for the "MIF", "MIB", and "OID" formats: 3291

general_format = general_format_fullname "|" general_format_mapping 3292

Where: 3293

general_format_fullname = general_format_name "." general_format_defining_body 3294

general_format_name = 1*(stringChar) 3295

Common Information Model (CIM) Infrastructure DSP0004

96 DMTF Standard Version 2.6.0

is the name of the format, unique within the defining body. The dot (.) and vertical bar (|) 3296
characters are not allowed. 3297

general_format_defining_body = 1*(stringChar) 3298

is the name of the defining body. The dot (.) and vertical bar (|) characters are not allowed. 3299

general_format_mapping = 1*(stringChar) 3300

is the mapping of the qualified CIM element, using the named format. 3301

The text in Table 8 is an example that defines a mapping string format based on the general mapping 3302
string format. 3303

Table 8 – Example for Mapping a String Format Based on the General Mapping String Format 3304

General Mapping String Formats Defined for InfiniBand Trade Association (IBTA)

IBTA defines the following mapping string formats, which are based on the general mapping string format:

"MAD.IBTA"

This format expresses that a CIM element represents an IBTA MAD attribute. It shall be used only on CIM
properties, parameters, or methods. It is based on the general mapping string format as follows, using ABNF:

general_format_fullname = "MAD" "." "IBTA"

general_format_mapping = mad_class_name "|" mad_attribute_name

Where:

mad_class_name = 1*(stringChar)

is the name of the MAD class. The dot (.) and vertical bar (|) characters are not allowed.

mad_attribute_name = 1*(stringChar)

is the name of the MAD attribute, which is unique within the MAD class. The dot (.) and vertical bar (|) characters
are not allowed.

5.5.6.3 MIF-Related Mapping String Format 3305

Management Information Format (MIF) attributes can be mapped to CIM elements using the 3306
MappingStrings qualifier. This qualifier maps DMTF and vendor-defined MIF groups to CIM classes or 3307
properties using either domain or recast mapping. 3308

DEPRECATED 3309

MIF is defined in the DMTF Desktop Management Interface Specification, which completed DMTF end of 3310
life in 2005 and is therefore no longer considered relevant. Any occurrence of the MIF format in values of 3311
the MappingStrings qualifier is considered deprecated. Any other usage of MIF in this document is also 3312
considered deprecated. The MappingStrings qualifier itself is not deprecated because it is used for 3313
formats other than MIF. 3314

DEPRECATED 3315

As stated in the DMTF Desktop Management Interface Specification, every MIF group defines a unique 3316
identification that uses the MIF class string, which has the following formal syntax defined in ABNF: 3317

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 97

mif_class_string = mif_defining_body "|" mif_specific_name "|" mif_version 3318

Where: 3319

mif_defining_body = 1*(stringChar) 3320

is the name of the body defining the group. The dot (.) and vertical bar (|) characters are not 3321
allowed. 3322

mif_specific_name = 1*(stringChar) 3323

is the unique name of the group. The dot (.) and vertical bar (|) characters are not allowed. 3324

mif_version = 3(decimalDigit) 3325

is a three-digit number that identifies the version of the group definition. 3326

The DMTF Desktop Management Interface Specification considers MIF class strings to be opaque 3327
identification strings for MIF groups. MIF class strings that differ only in whitespace characters are 3328
considered to be different identification strings. 3329

In addition, each MIF attribute has a unique numeric identifier, starting with the number one, using the 3330
following formal syntax defined in ABNF: 3331

mif_attribute_id = positiveDecimalDigit *decimalDigit 3332

A MIF domain mapping maps an individual MIF attribute to a particular CIM property. A MIF recast 3333
mapping maps an entire MIF group to a particular CIM class. 3334

The MIF format for use as a value of the MappingStrings qualifier has the following formal syntax defined 3335
in ABNF: 3336

mif_format = mif_attribute_format | mif_group_format 3337

Where: 3338

mif_attribute_format = "MIF" "." mif_class_string "." mif_attribute_id 3339

is used for mapping a MIF attribute to a CIM property. 3340

mif_group_format = "MIF" "." mif_class_string 3341

is used for mapping a MIF group to a CIM class. 3342

For example, a MIF domain mapping of a MIF attribute to a CIM property is as follows: 3343

 [MappingStrings { "MIF.DMTF|ComponentID|001.4" }] 3344
string SerialNumber; 3345

A MIF recast mapping maps an entire MIF group into a CIM class, as follows: 3346

 [MappingStrings { "MIF.DMTF|Software Signature|002" }] 3347
class SoftwareSignature 3348
{ 3349
 ... 3350
}; 3351

Common Information Model (CIM) Infrastructure DSP0004

98 DMTF Standard Version 2.6.0

6 Managed Object Format 3352

The management information is described in a language based on ISO/IEC 14750:1999 called the 3353
Managed Object Format (MOF). In this document, the term "MOF specification" refers to a collection of 3354
management information described in a way that conforms to the MOF syntax. Elements of MOF syntax 3355
are introduced on a case-by-case basis with examples. In addition, a complete description of the MOF 3356
syntax is provided in ANNEX A. 3357

The MOF syntax describes object definitions in textual form and therefore establishes the syntax for 3358
writing definitions. The main components of a MOF specification are textual descriptions of classes, 3359
associations, properties, references, methods, and instance declarations and their associated qualifiers. 3360
Comments are permitted. 3361

In addition to serving the need for specifying the managed objects, a MOF specification can be processed 3362
using a compiler. To assist the process of compilation, a MOF specification consists of a series of 3363
compiler directives. 3364

MOF files shall be represented in Normalization Form C (NFC, defined in), and in one of the coded 3365
representation forms UTF-8, UTF-16BE or UTF-16LE (defined in ISO/IEC 10646:2003). UTF-8 is the 3366
recommended form for MOF files. 3367

MOF files represented in UTF-8 should not have a signature sequence (EF BB BF, as defined in Annex H 3368
of ISO/IEC 10646:2003). 3369

MOF files represented in UTF-16BE contain a big endian representation of the 16-bit data entities in the 3370
file; Likewise, MOF files represented in UTF-16LE contain little endian data entities. In both cases, they 3371
shall have a signature sequence (FEFF, as defined in Annex H of ISO/IEC 10646:2003). 3372

Consumers of MOF files should use the signature sequence or absence thereof to determine the coded 3373
representation form. 3374

This can be achieved by evaluating the first few Bytes in the file: 3375

• FE FF UTF-16BE 3376

• FF FE UTF-16LE 3377

• EF BB BF UTF-8 3378

• otherwise UTF-8 3379

In order to test whether the 16-bit entities in the two UTF-16 cases need to be byte-wise swapped before 3380
processing, evaluate the first 16-bit data entity as a 16-bit unsigned integer. If it evaluates to 0xFEFF, 3381
there is no need to swap, otherwise (0xFFEF), there is a need to swap. 3382

Consumers of MOF files shall ignore the UCS character the signature represents, if present. 3383

6.1 MOF Usage 3384

The managed object descriptions in a MOF specification can be validated against an active namespace 3385
(see clause 8). Such validation is typically implemented in an entity acting in the role of a CIM server. This 3386
clause describes the behavior of an implementation when introducing a MOF specification into a 3387
namespace. Typically, such a process validates both the syntactic correctness of a MOF specification and 3388
its semantic correctness against a particular implementation. In particular, MOF declarations must be 3389
ordered correctly with respect to the target implementation state. For example, if the specification 3390
references a class without first defining it, the reference is valid only if the CIM server already has a 3391
definition of that class. A MOF specification can be validated for the syntactic correctness alone, in a 3392
component such as a MOF compiler. 3393

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 99

6.2 Class Declarations 3394

A class declaration is treated as an instruction to create a new class. Whether the process of introducing 3395
a MOF specification into a namespace can add classes or modify classes is a local matter. If the 3396
specification references a class without first defining it, the CIM server must reject it as invalid if it does 3397
not already have a definition of that class. 3398

6.3 Instance Declarations 3399

Any instance declaration is treated as an instruction to create a new instance where the key values of the 3400
object do not already exist or an instruction to modify an existing instance where an object with identical 3401
key values already exists. 3402

7 MOF Components 3403

The following subclauses describe the components of MOF syntax. 3404

7.1 Keywords 3405

All keywords in the MOF syntax are case-insensitive. 3406

7.2 Comments 3407

Comments may appear anywhere in MOF syntax and are indicated by either a leading double slash (//) 3408
or a pair of matching /* and */ sequences. 3409

A // comment is terminated by carriage return, line feed, or the end of the MOF specification (whichever 3410
comes first). 3411
EXAMPLE: 3412

// This is a comment 3413

A /* comment is terminated by the next */ sequence or by the end of the MOF specification (whichever 3414
comes first). The meta model does not recognize comments, so they are not preserved across 3415
compilations. Therefore, the output of a MOF compilation is not required to include any comments. 3416

7.3 Validation Context 3417

Semantic validation of a MOF specification involves an explicit or implied namespace context. This is 3418
defined as the namespace against which the objects in the MOF specification are validated and the 3419
namespace in which they are created. Multiple namespaces typically indicate the presence of multiple 3420
management spaces or multiple devices. 3421

7.4 Naming of Schema Elements 3422

This clause describes the rules for naming schema elements, including classes, properties, qualifiers, 3423
methods, and namespaces. 3424

CIM is a conceptual model that is not bound to a particular implementation. Therefore, it can be used to 3425
exchange management information in a variety of ways, examples of which are described in the 3426
Introduction clause. Some implementations may use case-sensitive technologies, while others may use 3427
case-insensitive technologies. The naming rules defined in this clause allow efficient implementation in 3428
either environment and enable the effective exchange of management information among all compliant 3429
implementations. 3430

Common Information Model (CIM) Infrastructure DSP0004

100 DMTF Standard Version 2.6.0

All names are case-insensitive, so two schema item names are identical if they differ only in case. This is 3431
mandated so that scripting technologies that are case-insensitive can leverage CIM technology. However, 3432
string values assigned to properties and qualifiers are not covered by this rule and must be treated as 3433
case-sensitive. 3434

The case of a name is set by its defining occurrence and must be preserved by all implementations. This 3435
is mandated so that implementations can be built using case-sensitive technologies such as Java and 3436
object databases. This also allows names to be consistently displayed using the same user-friendly 3437
mixed-case format. For example, an implementation, if asked to create a Disk class must reject the 3438
request if there is already a DISK class in the current schema. Otherwise, when returning the name of the 3439
Disk class it must return the name in mixed case as it was originally specified. 3440

CIM does not currently require support for any particular query language. It is assumed that 3441
implementations will specify which query languages are supported by the implementation and will adhere 3442
to the case conventions that prevail in the specified language. That is, if the query language is case-3443
insensitive, statements in the language will behave in a case-insensitive way. 3444

For the full rules for schema element names, see ANNEX A. 3445

7.5 Class Declarations 3446

A class is an object describing a grouping of data items that are conceptually related and that model an 3447
object. Class definitions provide a type system for instance construction. 3448

7.5.1 Declaring a Class 3449

A class is declared by specifying these components: 3450

• Qualifiers of the class, which can be empty, or a list of qualifier name/value bindings separated 3451
by commas (,) and enclosed with square brackets ([and]). 3452

• Class name. 3453

• Name of the class from which this class is derived, if any. 3454

• Class properties, which define the data members of the class. A property may also have an 3455
optional qualifier list expressed in the same way as the class qualifier list. In addition, a property 3456
has a data type, and (optionally) a default (initializer) value. 3457

• Methods supported by the class. A method may have an optional qualifier list, and it has a 3458
signature consisting of its return type plus its parameters and their type and usage. 3459

• A CIM class may expose more than one element (property or method) with a given name, but it 3460
is not permitted to define more than one element with a particular name. This can happen if a 3461
base class defines an element with the same name as an element defined in a derived class 3462
without overriding the base class element. (Although considered rare, this could happen in a 3463
class defined in a vendor extension schema that defines a property or method that uses the 3464
same name that is later chosen by an addition to an ancestor class defined in the common 3465
schema.) 3466

This sample shows how to declare a class: 3467

 [abstract] 3468
class Win32_LogicalDisk 3469
{ 3470
 [read] 3471
 string DriveLetter; 3472
 3473
 [read, Units("KiloBytes")] 3474

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 101

 sint32 RawCapacity = 0; 3475
 3476
 [write] 3477
 string VolumeLabel; 3478
 3479
 [Dangerous] 3480
 boolean Format([in] boolean FastFormat); 3481
}; 3482

7.5.2 Subclasses 3483

To indicate that a class is a subclass of another class, the derived class is declared by using a colon 3484
followed by the superclass name. For example, if the class ACME_Disk_v1 is derived from the class 3485
CIM_Media: 3486

class ACME_Disk_v1 : CIM_Media 3487
{ 3488
 // Body of class definition here ... 3489
}; 3490

The terms base class, superclass, and supertype are used interchangeably, as are derived class, 3491
subclass, and subtype. The superclass declaration must appear at a prior point in the MOF specification 3492
or already be a registered class definition in the namespace in which the derived class is defined. 3493

7.5.3 Default Property Values 3494

Any properties (including references) in a class definition may have default values defined. The default 3495
value of a property represents an initialization constraint for the property and propagates to subclasses; 3496
for details see 5.1.2.8. 3497

The format for the specification of a default value in CIM MOF depends on the property data type, and 3498
shall be: 3499

• For the string datatype, as defined by the stringValue ABNF rule defined in ANNEX A. 3500

• For the char16 datatype, as defined by the charValue or integerValue ABNF rules defined 3501
in ANNEX A. 3502

• For the datetime datatype, the (unescaped) value of the datetime string as defined in 5.2.4. 3503
Since this is a string, it may be specified in multiple pieces, as defined by the stringValue 3504
ABNF rule defined in ANNEX A. 3505

• For the boolean datatype, as defined by the booleanValue ABNF rule defined in ANNEX A. 3506

• For integer datatypes, as defined by the integerValue ABNF rule defined in ANNEX A. 3507

For real datatypes, as defined by the realValue ABNF rule defined in ANNEX A. 3508

• For <classname> REF datatypes, the string representation of the instance path as described in 3509
 8.5. 3510

In addition, NULL may be specified as a default value for any data type. 3511
EXAMPLE: 3512

class ACME_Disk 3513
{ 3514
 string Manufacturer = "Acme"; 3515

Common Information Model (CIM) Infrastructure DSP0004

102 DMTF Standard Version 2.6.0

 string ModelNumber = "123-AAL"; 3516
}; 3517

As defined in 7.8.2, arrays can be defined to be of type Bag, Ordered, or Indexed. For any of these array 3518
types, a default value for the array may be specified by specifying the values of the array elements in a 3519
comma-separated list delimited with curly brackets, as defined in the arrayInitializer ABNF rule in 3520
 ANNEX A. 3521

EXAMPLE: 3522

class ACME_ExampleClass 3523
{ 3524
 [ArrayType ("Indexed")] 3525
 string ip_addresses [] = { "1.2.3.4", "1.2.3.5", "1.2.3.7" }; 3526
 // This variable length array has three elements as a default. 3527
 3528
 sint32 sint32_values [10] = { 1, 2, 3, 5, 6 }; 3529
 // Since fixed arrays always have their defined number 3530
 // of elements, default value defines a default value of NULL 3531
 // for the remaining elements. 3532
}; 3533

7.5.4 Key Properties 3534

Instances of a class can be identified within a namespace. Designating one or more properties with the 3535
Key qualifier provides for such instance identification. For example, this class has one property (Volume) 3536
that serves as its key: 3537

class ACME_Drive 3538
{ 3539
 [Key] 3540
 string Volume; 3541
 3542
 string FileSystem; 3543
 3544
 sint32 Capacity; 3545
}; 3546

The designation of a property as a key is inherited by subclasses of the class that specified the Key 3547
qualifier on the property. For example, the ACME_Modem class in the following example which 3548
subclasses the ACME_LogicalDevice class from the previous example, has the same two key properties 3549
as its superclass: 3550

class ACME_Modem : ACME_LogicalDevice 3551
{ 3552
 uint32 ActualSpeed; 3553
}; 3554

A subclass that inherits key properties shall not designate additional properties as keys (by specifying the 3555
Key qualifier on them) and it shall not remove the designation as a key from any inherited key properties 3556
(by specifying the Key qualifier with a value of FALSE on them). 3557

Any non-abstract class shall expose key properties. 3558

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 103

7.5.5 Static Properties 3559

If a property is declared as a static property, it has the same value for all CIM instances that have the 3560
property in the same namespace. Therefore, any change in the value of a static property for a CIM 3561
instance also affects the value of that property for the other CIM instances that have it. As for any 3562
property, a change in the value of a static property of a CIM instance in one namespace may or may not 3563
affect its value in CIM instances in other namespaces. 3564

Overrides on static properties are prohibited. Overrides of static methods are allowed. 3565

7.6 Association Declarations 3566

An association is a special kind of class describing a link between other classes. Associations also 3567
provide a type system for instance constructions. Associations are just like other classes with a few 3568
additional semantics, which are explained in the following subclauses. 3569

7.6.1 Declaring an Association 3570

An association is declared by specifying these components: 3571

• Qualifiers of the association (at least the Association qualifier, if it does not have a supertype). 3572
Further qualifiers may be specified as a list of qualifier/name bindings separated by commas 3573
(,) . The entire qualifier list is enclosed in square brackets ([and]) . 3574

• Association name. The name of the association from which this association derives (if any). 3575

• Association references. Define pointers to other objects linked by this association. References 3576
may also have qualifier lists that are expressed in the same way as the association qualifier list 3577
— especially the qualifiers to specify cardinalities of references (see 5.1.2.14). In addition, a 3578
reference has a data type, and (optionally) a default (initializer) value. 3579

• Additional association properties that define further data members of this association. They are 3580
defined in the same way as for ordinary classes. 3581

• The methods supported by the association. They are defined in the same way as for ordinary 3582
classes. 3583

EXAMPLE: The following example shows how to declare an association (assuming given classes CIM_A and 3584
CIM_B): 3585

 [Association] 3586
class CIM_LinkBetweenAandB : CIM_Dependency 3587
{ 3588
 [Override ("Antecedent")] 3589
 CIM_A REF Antecedent; 3590
 3591
 [Override ("Dependent")] 3592
 CIM_B REF Dependent; 3593
}; 3594

7.6.2 Subassociations 3595

To indicate a subassociation of another association, the same notation as for ordinary classes is used. 3596
The derived association is declared using a colon followed by the superassociation name. (An example is 3597
provided in 7.6.1). 3598

Common Information Model (CIM) Infrastructure DSP0004

104 DMTF Standard Version 2.6.0

7.6.3 Key References and Properties in Associations 3599

Instances of an association class also can be identified within a namespace, because associations are 3600
just a special kind of a class. Designating one or more references or properties with the Key qualifier 3601
provides for such instance identification. 3602

For example, this association class designates both of its references as keys: 3603

 [Association, Aggregation] 3604
class ACME_Component 3605
{ 3606
 [Aggregate, Key] 3607
 ACME_ManagedSystemElement REF GroupComponent; 3608
 3609
 [Key] 3610
 ACME_ManagedSystemElement REF PartComponent; 3611
}; 3612

The key definition for associations follows the same rules as for ordinary classes: Compound keys are 3613
supported in the same way; keys are inherited by subassociations; Subassociations shall not add or 3614
remove keys. 3615

These rules imply that associations may designate ordinary properties (i.e., properties that are not 3616
references) as keys and that associations may designate only a subset of its references as keys. 3617

7.6.4 Weak Associations and Propagated Keys 3618

CIM provides a mechanism to identify instances within the context of other associated instances. The 3619
class providing such context is called a scoping class, the class whose instances are identified within the 3620
context of the scoping class is called a weak class, and the association establishing the relation between 3621
these classes is called a weak association. Similarly, the instances of a scoping class are referred to as 3622
scoping instances, and the instances of a weak class are referred to as weak instances. 3623

This mechanism allows weak instances to be identifiable in a global scope even though its own key 3624
properties do not provide such uniqueness on their own. The remaining keys come from the scoping 3625
class and provide the necessary context. These keys are called propagated keys, because they are 3626
propagated from the scoping instance to the weak instance. 3627

A class that is not weak with respect to any other class (i.e., no references to that class are marked as 3628
weak) is referred to as a top-level class. More generally, a class is a top-level class if it exposes only keys 3629
that are not propagated keys. 3630

An association is designated to be a weak association by qualifying the reference to the weak class with 3631
the Weak qualifier, as defined in 5.5.3.54. The propagated keys in the weak class are designated to be 3632
propagated by qualifying them with the Propagated qualifier, as defined in 5.5.3.38. 3633

Figure 3 shows an example with two weak associations. There are three classes: 3634
ACME_ComputerSystem, ACME_OperatingSystem and ACME_LocalUser. ACME_OperatingSystem is 3635
weak with respect to ACME_ComputerSystem because the ACME_RunningOS association is marked as 3636
weak on its reference to ACME_OperatingSystem. Similarly, ACME_LocalUser is weak with respect to 3637
ACME_OperatingSystem because the ACME_HasUser association is marked as weak on its reference to 3638
ACME_LocalUser. 3639

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 105

Acme_ComputerSystem

Acme_RunsOS

Acme_HasUser

Weak

Model... Instances...

Propagated Keys

CSName = "myhost.acme.com"
Name = "MyLinux"

CSName = "myhost..."
OSName = "MyLinux"
uid = 33

Name = "myhost.acme.com"

CSName = "myhost..."
OSName = "MyLinux"
uid = 44

Acme_OperatingSystem

Acme_LocalUser

Weak

CSName (from OS.CSName)
OSName (from OS.Name)
uid

CSName (from CS.Name)
Name

Name
CS1 : Acme_ComputerSystem

OS1 : Acme_OperatingSystem

LU1 : Acme_LocalUser LU2 : Acme_LocalUser

 3640

Figure 3 – Example with Two Weak Associations and Propagated Keys 3641

The following MOF classes represent the example shown in Figure 3: 3642

class ACME_ComputerSystem 3643
{ 3644
 [Key] 3645
 string Name; 3646
}; 3647
 3648
class ACME_OperatingSystem 3649
{ 3650
 [Key] 3651
 string Name; 3652
 3653
 [Key, Propagated ("ACME_ComputerSystem.Name")] 3654
 string CSName; 3655
}; 3656
 3657
class ACME_LocalUser 3658
{ 3659
 [Key] 3660
 String uid; 3661
 3662
 [Key, Propagated("ACME_OperatingSystem.Name")] 3663

Common Information Model (CIM) Infrastructure DSP0004

106 DMTF Standard Version 2.6.0

 String OSName; 3664
 3665
 [Key, Propagated("ACME_OperatingSystem.CSName")] 3666
 String CSName; 3667
}; 3668
 3669
 [Association] 3670
class ACME_RunningOs 3671
{ 3672
 [Key] 3673
 ACME_ComputerSystem REF ComputerSystem; 3674
 3675
 [Key, Weak] 3676
 ACME_OperatingSystem REF OperatingSystem; 3677
}; 3678
 3679
 [Association] 3680
class ACME_HasUser 3681
{ 3682
 [Key] 3683
 ACME_OperatingSystem REF OperatingSystem; 3684
 3685
 [Key, Weak] 3686
 ACME_LocalUser REF User; 3687
}; 3688

The following rules apply: 3689

• The keys of top-level classes should be sufficiently unique with respect to the scope of the 3690
managed environment. For example, if a global enterprise is to be managed, the keys of any 3691
top-level classes should be unique at least within that enterprise. In the example, 3692
ACME_ComputerSystem uses domain names for its key property Name, which provides even 3693
for global uniqueness. 3694

• A weak class may in turn be a scoping class for another class. In the example, 3695
ACME_OperatingSystem is scoped by ACME_ComputerSystem and scopes ACME_LocalUser. 3696
Therefore, all classes can be arranged as directed graphs with the top-level classes as their 3697
roots and the weak associations as their edges. 3698

• The property in the scoping instance that gets propagated does not need to be a key property. 3699

• The association between the weak class and the scoping class shall expose a weak reference 3700
(see 5.5.3.54 "Weak") that targets the weak class. 3701

• No more than one association may reference a weak class with a weak reference. 3702

• An association may expose no more than one weak reference. 3703

• Key properties may propagate across multiple weak associations. In the example, property 3704
Name in the ACME_ComputerSystem class is first propagated into class 3705
ACME_OperatingSystem as property CSName, and then from there into class 3706
ACME_LocalUser as property CSName (not changing its name this time). Still, only 3707
ACME_OperatingSystem is considered the scoping class for ACME_LocalUser. 3708

NOTE: Since a reference to an instance always includes key values for the keys exposed by the class, a reference to 3709
an instance of a weak class includes the propagated keys of that class. 3710

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 107

7.6.5 Object References 3711

Object references are special properties whose values are links or pointers to other objects that are 3712
classes or instances. The value of an object reference is the string representation of an object path, as 3713
defined in 8.2. Consequently, the actual string value depends on the context the object reference is used 3714
in. For example, when used in the context of a particular protocol, the string value is the string 3715
representation defined for that protocol; when used in CIM MOF, the string value is the string 3716
representation of object paths for CIM MOF as defined in 8.5. 3717

The data type of an object reference is declared as "XXX Ref", indicating a strongly typed reference to 3718
objects (instances or classes) of the class with name "XXX" or a subclass of this class. Object references 3719
in associations shall reference instances only and shall not have the special NULL value. Object 3720
references in method parameters shall reference instances or classes or both. Only associations may 3721
define references, ordinary classes and indications shall not define references, as defined in 5.1.2.13. 3722
EXAMPLE 1: 3723

 [Association] 3724
class ACME_ExampleAssoc 3725
{ 3726
 ACME_AnotherClass REF Inst1; 3727
 ACME_Aclass REF Inst2; 3728
}; 3729

In this declaration, Inst1 can be set to point only to instances of type ACME_AnotherClass, including 3730
instances of its subclasses. 3731
EXAMPLE 2: 3732

class ACME_Modem 3733
{ 3734
 uint32 UseSettingsOf (3735
 ACME_Modem REF OtherModem // references an instance object 3736
); 3737
}; 3738

In this method, parameter OtherModem is used to reference an instance object. 3739
EXAMPLE 3: 3740

class ACME_PolicyActivationService 3741
{ 3742
 uint32 ActivatePolicyClass (3743
 ACME_Policy REF PolicyClass // references a class object 3744
); 3745
}; 3746

In this method, parameter PolicyClass is used to reference a class object. The distinction between 3747
referencing class or instance objects is not formally declared in the reference type. 3748

The initialization of object references in association instances with object reference constants or aliases is 3749
defined in 7.8. 3750

In associations, object references have cardinalities that are denoted using the Min and Max qualifiers. 3751
Examples of UML cardinality notations and their respective combinations of Min and Max values are 3752
shown in Table 9. 3753

Common Information Model (CIM) Infrastructure DSP0004

108 DMTF Standard Version 2.6.0

Table 9 – UML Cardinality Notations 3754

UML MIN MAX Required MOF Text* Description

* 0 NULL Many

1..* 1 NULL Min(1) At least one

1 1 1 Min(1), Max(1) One

0,1 (or 0..1) 0 1 Max(1) At most one

7.7 Qualifiers 3755

Qualifiers are named and typed values that provide information about CIM elements. Since the qualifier 3756
values are on CIM elements and not on CIM instances, they are considered to be meta-data. 3757

This subclause describes how qualifiers are defined in MOF. For a description of the concept of qualifiers, 3758
see 5.5.1. 3759

7.7.1 Qualifier Type 3760

As defined in 5.5.1.2, the declaration of a qualifier type allows the definition of its name, data type, scope, 3761
flavor and default value. 3762

The declaration of a qualifier type shall follow the formal syntax defined by the qualifierDeclaration 3763
ABNF rule defined in ANNEX A. 3764
EXAMPLE 1: 3765

The MaxLen qualifier which defines the maximum length of the string typed qualified element is declared 3766
as follows: 3767

qualifier MaxLen : uint32 = null, 3768
 scope (Property, Method, Parameter); 3769

This declaration establishes a qualifier named "MaxLen" that has a data type uint32 and can therefore 3770
specify length values between 0 and 2^32-1. It has scope (Property Method Parameter) and can therefore 3771
be specified on ordinary properties, method parameters and methods. It has no flavor specified, so it has 3772
the default flavor (ToSubclass EnableOverride) and therefore propagates to subclasses and is permitted 3773
to be overridden there. Its default value is NULL. 3774
EXAMPLE 2: 3775

The Deprecated qualifier which indicates that the qualified element is deprecated and allows the 3776
specification of replacement elements is declared as follows: 3777

qualifier Deprecated : string[], 3778
 scope (Any), 3779
 flavor (Restricted); 3780

This declaration establishes a qualifier named "Deprecated" that has a data type of array of string. It has 3781
scope (Any) and can therefore be defined on ordinary classes, associations, indications, ordinary 3782
properties, references, methods and method parameters. It has flavor (Restricted) and therefore does not 3783
propagate to subclasses. It has no default value defined, so its implied default value is NULL. 3784

7.7.2 Qualifier Value 3785

As defined in 5.5.1.1, the specification of a qualifier defines a value for that qualifier on the qualified CIM 3786
element. 3787

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 109

The specification of a set of qualifiers for a CIM element shall follow the formal syntax defined by the 3788
qualifierList ABNF rule defined in ANNEX A. 3789

As defined there, specification of the qualifierList syntax element is optional, and if specified it shall 3790
be placed before the declaration of the CIM element the qualifiers apply to. 3791

A specification of a qualifier in MOF requires that its qualifier type declaration be placed before the first 3792
specification of the qualifier on a CIM element. 3793
EXAMPLE 1: 3794

// Some qualifier type declarations 3795
 3796
qualifier Abstract : boolean = false, 3797
 scope (Class, Association, Indication), 3798
 flavor (Restricted); 3799
 3800
qualifier Description : string = null, 3801
 scope (Any), 3802
 flavor (ToSubclass, EnableOverride, Translatable); 3803
 3804
qualifier MaxLen : uint32 = null, 3805
 scope (Property, Method, Parameter), 3806
 flavor (ToSubclass, EnableOverride); 3807
 3808
qualifier ValueMap : string[], 3809
 scope (Property, Method, Parameter), 3810
 flavor (ToSubclass, EnableOverride); 3811
 3812
qualifier Values : string[], 3813
 scope (Property, Method, Parameter), 3814
 flavor (ToSubclass, EnableOverride, Translatable); 3815
 3816
// ... 3817
 3818
// A class specifying these qualifiers 3819
 3820
 [Abstract (true), Description (3821
 "A system.\n" 3822
 "Details are defined in subclasses.")] 3823
class ACME_System 3824
{ 3825
 [MaxLen (80)] 3826
 string Name; 3827
 3828
 [ValueMap {"0", "1", "2", "3", "4..65535"}, 3829
 Values {"Not Applicable", "Unknown", "Other", 3830
 "General Purpose", "Switch", "DMTF Reserved"}] 3831
 uint16 Type; 3832
}; 3833

In this example, the following qualifier values are specified: 3834

Common Information Model (CIM) Infrastructure DSP0004

110 DMTF Standard Version 2.6.0

• On class ACME_System: 3835

– A value of True for the Abstract qualifier 3836

– A value of "A system.\nDetails are defined in subclasses." for the Description qualifier 3837

• On property Name: 3838

– A value of 80 for the MaxLen qualifier 3839

• On property Type: 3840

– A specific array of values for the ValueMap qualifier 3841

– A specific array of values for the Values qualifier 3842

As defined in 5.5.1.5, these CIM elements do have implied values for all qualifiers that are not specified 3843
but for which qualifier type declarations exist. Therefore, the following qualifier values are implied in 3844
addition in this example: 3845

• On property Name: 3846

– A value of Null for the Description qualifier 3847

– An empty array for the ValueMap qualifier 3848

– An empty array for the Values qualifier 3849

• On property Type: 3850

– A value of Null for the Description qualifier 3851

Qualifiers may be specified without specifying a value. In this case, a default value is implied for the 3852
qualifier. The implied default value depends on the data type of the qualifier, as follows: 3853

• For data type boolean, the implied default value is True 3854

• For numeric data types, the implied default value is Null 3855

• For string and char16 data types, the implied default value is Null 3856

• For arrays of any data type, the implied default is that the array is empty. 3857

EXAMPLE 2 (assuming the qualifier type declarations from example 1 in this subclause): 3858

 [Abstract] 3859
class ACME_Device 3860
{ 3861
 // ... 3862
}; 3863

In this example, the Abstract qualifier is specified without a value, therefore a value of True is implied on 3864
this boolean typed qualifier. 3865

The concept of implying default values for qualifiers that are specified without a value is different from the 3866
concept of using the default values defined in the qualifier type declaration. The difference is that the 3867
latter is used when the qualifier is not specified. Consider the following example: 3868
EXAMPLE 3 (assuming the declarations from examples 1 and 2 in this subclause): 3869

class ACME_LogicalDevice : ACME_Device 3870
{ 3871
 // ... 3872
}; 3873

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 111

In this example, the Abstract qualifier is not specified, so its effective value is determined as defined in 3874
 5.5.1.5: Since the Abstract qualifier has flavor (Restricted), its effective value for class 3875
ACME_LogicalDevice is the default value defined in its qualifier type declaration, i.e., False, regardless of 3876
the value of True the Abstract qualifier has for class ACME_Device. 3877

7.8 Instance Declarations 3878

Instances are declared using the keyword sequence "instance of" and the class name. The property 3879
values of the instance may be initialized within an initialization block. Any qualifiers specified for the 3880
instance shall already be present in the defining class and shall have the same value and flavors. 3881

Property initialization consists of an optional list of preceding qualifiers, the name of the property, and an 3882
optional value which defines the default value for the property as defined in 7.5.3. Any qualifiers specified 3883
for the property shall already be present in the property definition from the defining class, and they shall 3884
have the same value and flavors. 3885

The format of initializer values for properties in instance declarations in CIM MOF depends on the data 3886
type of the property, and shall be: 3887

• For the string datatype, as defined by the stringValue ABNF rule defined in ANNEX A. 3888

• For the char16 datatype, as defined by the charValue or integerValue ABNF rules defined 3889
in ANNEX A. 3890

• For the datetime datatype, the (unescaped) value of the datetime string as defined in 5.2.4. 3891
Since this is a string, it may be specified in multiple pieces, as defined by the stringValue 3892
ABNF rule defined in ANNEX A. 3893

• For the boolean datatype, as defined by the booleanValue ABNF rule defined in ANNEX A. 3894

• For integer datatypes, as defined by the integerValue ABNF rule defined in ANNEX A. 3895

• For real datatypes, as defined by the realValue ABNF rule defined in ANNEX A. 3896

• For <classname> REF datatypes, as defined by the referenceInitializer ABNF rule defined in 3897
 ANNEX A. This includes both object paths and instance aliases. 3898

In addition, NULL may be specified as an initializer value for any data type. 3899

As defined in 7.8.2, arrays can be defined to be of type Bag, Ordered, or Indexed. For any of these array 3900
types, an array property can be initialized in an instance declaration by specifying the values of the array 3901
elements in a comma-separated list delimited with curly brackets, as defined in the arrayInitializer 3902
ABNF rule in ANNEX A. 3903

For subclasses, all properties in the superclass may have their values initialized along with the properties 3904
in the subclass. 3905

Any property values not initialized have default values as specified in the class definition, or (if no default 3906
value is specified) the special value NULL to indicate absence of value. 3907

As defined in the description of the Key qualifier, the values of all key properties must be non-NULL. 3908

As described in item 21-E of subclause 5.1, a class may have, by inheritance, more than one property 3909
with a particular name. If a property initialization has a property name that applies to more than one 3910
property in the class, the initialization applies to the property defined closest to the class of the instance. 3911
That is, the property can be located by starting at the class of the instance. If the class defines a property 3912
with the name from the initialization, then that property is initialized. Otherwise, the search is repeated 3913
from the direct superclass of the class. See ANNEX H for more information about ambiguous property 3914
and method names. 3915

Common Information Model (CIM) Infrastructure DSP0004

112 DMTF Standard Version 2.6.0

For example, given the class definition: 3916

class ACME_LogicalDisk : CIM_Partition 3917
{ 3918
 [Key] 3919
 string DriveLetter; 3920
 3921
 [Units("kilo bytes")] 3922
 sint32 RawCapacity = 128000; 3923
 3924
 [Write] 3925
 string VolumeLabel; 3926
 3927
 [Units("kilo bytes")] 3928
 sint32 FreeSpace; 3929
}; 3930

an instance of this class can be declared as follows: 3931

instance of ACME_LogicalDisk 3932
{ 3933
 DriveLetter = "C"; 3934
 VolumeLabel = "myvol"; 3935
}; 3936

The resulting instance takes these property values: 3937

• DriveLetter is assigned the value "C". 3938

• RawCapacity is assigned the default value 128000. 3939

• VolumeLabel is assigned the value "myvol". 3940

• FreeSpace is assigned the value NULL. 3941
EXAMPLE: The following is an example with array properties: 3942

class ACME_ExampleClass 3943
{ 3944
 [ArrayType ("Indexed")] 3945
 string ip_addresses []; // Indexed array of variable length 3946
 3947
 sint32 sint32_values [10]; // Bag array of fixed length = 10 3948
}; 3949
 3950
instance of ACME_ExampleClass 3951
{ 3952
 ip_addresses = { "1.2.3.4", "1.2.3.5", "1.2.3.7" }; 3953
 // This variable length array now has three elements. 3954
 3955
 sint32_values = { 1, 2, 3, 5, 6 }; 3956
 // Since fixed arrays always have their defined number 3957
 // of elements, the remaining elements have the NULL value. 3958
}; 3959

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 113

EXAMPLE: The following is an example with instances of associations: 3960

class ACME_Object 3961
{ 3962
 string Name; 3963
}; 3964
 3965
class ACME_Dependency 3966
{ 3967
 ACME_Object REF Antecedent; 3968
 ACME_Object REF Dependent; 3969
}; 3970
 3971
instance of ACME_Dependency 3972
{ 3973
 Dependent = "CIM_Object.Name = \"obj1\""; 3974
 Antecedent = "CIM_Object.Name = \"obj2\""; 3975
}; 3976

7.8.1 Instance Aliasing 3977

Aliases are symbolic references to instances located elsewhere in the MOF specification. They have 3978
significance only within the MOF specification in which they are defined, and they are no longer available 3979
and have been resolved to instance paths once the MOF specification of instances has been loaded into 3980
a CIM server. 3981

An alias can be assigned to an instance using the syntax defined for the alias ABNF rule in ANNEX A. 3982
Such an alias can later be used within the same MOF specification as a value for an object reference 3983
property. 3984

Forward-referencing and circular aliases are permitted. 3985

EXAMPLE: 3986

class ACME_Node 3987
{ 3988
 string Color; 3989
}; 3990

These two instances define the aliases $Bluenode and $RedNode: 3991

instance of ACME_Node as $BlueNode 3992
{ 3993
 Color = "blue"; 3994
}; 3995
 3996
instance of ACME_Node as $RedNode 3997
{ 3998
 Color = "red"; 3999
}; 4000
 4001
class ACME_Edge 4002
{ 4003

Common Information Model (CIM) Infrastructure DSP0004

114 DMTF Standard Version 2.6.0

 string Color; 4004
 ACME_Node REF Node1; 4005
 ACME_Node REF Node2; 4006
}; 4007

These aliases $Bluenode and $RedNode are used in an association instance in order to reference the 4008
two instances. 4009

instance of ACME_Edge 4010
{ 4011
 Color = "green"; 4012
 Node1 = $BlueNode; 4013
 Node2 = $RedNode; 4014
}; 4015

7.8.2 Arrays 4016

Arrays of any of the basic data types can be declared in the MOF specification by using square brackets 4017
after the property or parameter identifier. If there is an unsigned integer constant within the square 4018
brackets, the array is a fixed-length array and the constant indicates the size of the array; if there is 4019
nothing within the square brackets, the array is a variable-length array. Otherwise, the array definition is 4020
invalid. 4021

Fixed-length arrays always have the specified number of elements. Elements cannot be added to or 4022
deleted from fixed-length arrays, but the values of elements can be changed. 4023

Variable-length arrays have a number of elements between 0 and an implementation-defined maximum. 4024
Elements can be added to or deleted from variable-length array properties, and the values of existing 4025
elements can be changed. 4026

Element addition, deletion, or modification is defined only for array properties because array parameters 4027
are only transiently instantiated when a CIM method is invoked. For array parameters, the array is 4028
thought to be created by the CIM client for input parameters and by the CIM server for output parameters. 4029
The array is thought to be retrieved and deleted by the CIM server for input parameters and by the CIM 4030
client for output parameters. 4031

Array indexes start at 0 and have no gaps throughout the entire array, both for fixed-length and variable-4032
length arrays. The special NULL value signifies the absence of a value for an element, not the absence of 4033
the element itself. In other words, array elements that are NULL exist in the array and have a value of 4034
NULL. They do not represent gaps in the array. 4035

Like any CIM type, an array itself may have the special NULL value to indicate absence of value. 4036
Conceptually, the value of the array itself, if not absent, is the set of its elements. An empty array (that is, 4037
an array with no elements) must be distinguishable from an array that has the special NULL value. For 4038
example, if an array contains error messages, it makes a difference to know that there are no error 4039
messages rather than to be uncertain about whether there are any error messages. 4040

The type of an array is defined by the ArraryType qualifier with values of Bag, Ordered, or Indexed. The 4041
default array type is Bag. 4042

For a Bag array type, no significance is attached to the array index other than its convenience for 4043
accessing the elements of the array. There can be no assumption that the same index returns the same 4044
element for every retrieval, even if no element of the array is changed. The only valid assumption is that a 4045
retrieval of the entire array contains all of its elements and the index can be used to enumerate the 4046
complete set of elements within the retrieved array. The Bag array type should be used in the CIM 4047
schema when the order of elements in the array does not have a meaning. There is no concept of 4048
corresponding elements between Bag arrays. 4049

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 115

For an Ordered array type, the CIM server maintains the order of elements in the array as long as no 4050
array elements are added, deleted, or changed. Therefore, the CIM server does not honor any order of 4051
elements presented by the CIM client when creating the array (during creation of the CIM instance for an 4052
array property or during CIM method invocation for an input array parameter) or when modifying the 4053
array. Instead, the CIM server itself determines the order of elements on these occasions and therefore 4054
possibly reorders the elements. The CIM server then maintains the order it has determined during 4055
successive retrievals of the array. However, as soon as any array elements are added, deleted, or 4056
changed, the CIM server again determines a new order and from then on maintains that new order. For 4057
output array parameters, the CIM server determines the order of elements and the CIM client sees the 4058
elements in that same order upon retrieval. The Ordered array type should be used when the order of 4059
elements in the array does have a meaning and should be controlled by the CIM server. The order the 4060
CIM server applies is implementation-defined unless the class defines particular ordering rules. 4061
Corresponding elements between Ordered arrays are those that are retrieved at the same index. 4062

For an Indexed array type, the array maintains the reliability of indexes so that the same index returns the 4063
same element for successive retrievals. Therefore, particular semantics of elements at particular index 4064
positions can be defined. For example, in a status array property, the first array element might represent 4065
the major status and the following elements represent minor status modifications. Consequently, element 4066
addition and deletion is not supported for this array type. The Indexed array type should be used when 4067
the relative order of elements in the array has a meaning and should be controlled by the CIM client, and 4068
reliability of indexes is needed. Corresponding elements between Indexed arrays are those at the same 4069
index. 4070

The current release of CIM does not support n-dimensional arrays. 4071

Arrays of any basic data type are legal for properties. Arrays of references are not legal for properties. 4072
Arrays must be homogeneous; arrays of mixed types are not supported. In MOF, the data type of an 4073
array precedes the array name. Array size, if fixed-length, is declared within square brackets after the 4074
array name. For a variable-length array, empty square brackets follow the array name. 4075

Arrays are declared using the following MOF syntax: 4076

class ACME_A 4077
{ 4078
 [Description("An indexed array of variable length"), ArrayType("Indexed")] 4079
 uint8 MyIndexedArray[]; 4080
 4081
 [Description("A bag array of fixed length")] 4082
 uint8 MyBagArray[17]; 4083
}; 4084

If default values are to be provided for the array elements, this MOF syntax is used: 4085

class ACME_A 4086
{ 4087
 [Description("A bag array property of fixed length")] 4088
 uint8 MyBagArray[17] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}; 4089
}; 4090

EXAMPLE: The following MOF presents further examples of Bag, Ordered, and Indexed array declarations: 4091

class ACME_Example 4092
{ 4093
 char16 Prop1[]; // Bag (default) array of chars, Variable length 4094
 4095
 [ArrayType ("Ordered")] // Ordered array of double-precision reals, 4096

Common Information Model (CIM) Infrastructure DSP0004

116 DMTF Standard Version 2.6.0

 real64 Prop2[]; // Variable length 4097
 4098
 [ArrayType ("Bag")] // Bag array containing 4 32-bit signed integers 4099
 sint32 Prop3[4]; 4100
 4101
 [ArrayType ("Ordered")] // Ordered array of strings, Variable length 4102
 string Prop4[] = {"an", "ordered", "list"}; 4103
 // Prop4 is variable length with default values defined at the 4104
 // first three positions in the array 4105
 4106
 [ArrayType ("Indexed")] // Indexed array of 64-bit unsigned integers 4107
 uint64 Prop5[]; 4108
}; 4109

7.9 Method Declarations 4110

A method is defined as an operation with a signature that consists of a possibly empty list of parameters 4111
and a return type. There are no restrictions on the type of parameters other than they shall be a fixed- or 4112
variable-length array of one of the data types described in 5.2. Method return types defined in MOF must 4113
be one of the data types described in 5.2. Return types cannot be arrays but are otherwise unrestricted. 4114

Methods are expected, but not required, to return a status value indicating the result of executing the 4115
method. Methods may use their parameters to pass arrays. 4116

Syntactically, the only thing that distinguishes a method from a property is the parameter list. The fact that 4117
methods are expected to have side-effects is outside the scope of this document. 4118
EXAMPLE 1: In the following example, Start and Stop methods are defined on the CIM_Service class. Each method 4119

returns an integer value: 4120

class CIM_Service : CIM_LogicalElement 4121
{ 4122
 [Key] 4123
 string Name; 4124
 string StartMode; 4125
 boolean Started; 4126
 uint32 StartService(); 4127
 uint32 StopService(); 4128
}; 4129

EXAMPLE 2: In the following example, a Configure method is defined on the Physical DiskDrive class. It takes a 4130
DiskPartitionConfiguration object reference as a parameter and returns a boolean value: 4131

class ACME_DiskDrive : CIM_Media 4132
{ 4133
 sint32 BytesPerSector; 4134
 sint32 Partitions; 4135
 sint32 TracksPerCylinder; 4136
 sint32 SectorsPerTrack; 4137
 string TotalCylinders; 4138
 string TotalTracks; 4139
 string TotalSectors; 4140
 string InterfaceType; 4141
 boolean Configure([IN] DiskPartitionConfiguration REF config); 4142

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 117

}; 4143

7.9.1 Static Methods 4144

If a method is declared as a static method, it does not depend on any per-instance data. Non-static 4145
methods are invoked in the context of an instance; for static methods, the context of a class is sufficient. 4146
Overrides on static properties are prohibited. Overrides of static methods are allowed. 4147

7.10 Compiler Directives 4148

Compiler directives are provided as the keyword "pragma" preceded by a hash (#) character and 4149
followed by a string parameter. The current standard compiler directives are listed in Table 10. 4150

Table 10 – Standard Compiler Directives 4151

Compiler Directive Interpretation

#pragma include() Has a file name as a parameter. The file is assumed to be a MOF file. The pragma has
the effect of textually inserting the contents of the include file at the point where the
include pragma is encountered.

#pragma
instancelocale()

Declares the locale used for instances described in a MOF file. This pragma specifies
the locale when "INSTANCE OF" MOF statements include string or char16 properties
and the locale is not the same as the locale specified by a #pragma locale() statement.
The locale is specified as a parameter of the form ll_cc where ll is a language code as
defined in ISO 639-1:2002, ISO649-2:1999, or ISO 639-3:2007 and cc is a country
code as defined in ISO 3166-1:2006, ISO 3166-2:2007, or ISO 3166-3:1999.

#pragma locale() Declares the locale used for a particular MOF file. The locale is specified as a
parameter of the form ll_cc, where ll is a language code as defined in ISO 639-1:2002,
ISO649-2:1999, or ISO 639-3:2007 and cc is a country code as defined in ISO 3166-
1:2006, ISO 3166-2:2007, or ISO 3166-3:1999. When the pragma is not specified, the
assumed locale is "en_US".

This pragma does not apply to the syntax structures of MOF. Keywords, such as
"class" and "instance", are always in en_US.

#pragma namespace() This pragma is used to specify a Namespace path.

#pragma nonlocal()

#pragma nonlocaltype()

#pragma source()

#pragma sourcetype()

These compiler directives and the corresponding instance-level qualifiers were
removed as an erratum in version 2.3.0 of this document.

Pragma directives may be added as a MOF extension mechanism. Unless standardized in a future CIM 4152
infrastructure specification, such new pragma definitions must be considered vendor-specific. Use of non-4153
standard pragma affects the interoperability of MOF import and export functions. 4154

7.11 Value Constants 4155

The constant types supported in the MOF syntax are described in the subclauses that follow. These are 4156
used in initializers for classes and instances and in the parameters to named qualifiers. 4157

For a formal specification of the representation, see ANNEX A. 4158

7.11.1 String Constants 4159

A string constant in MOF is represented as a sequence of one or more string constant parts, separated 4160
by whitespace or comments. Each string constant part is enclosed in double-quotes (") and contains zero 4161

Common Information Model (CIM) Infrastructure DSP0004

118 DMTF Standard Version 2.6.0

or more UCS characters or escape sequences. Double quotes shall be escaped. The character repertoire 4162
for these UCS characters is defined in 5.2.2. 4163

The following escape sequences are defined for string constants: 4164

\b // U+0008: backspace 4165

\t // U+0009: horizontal tab 4166

\n // U+000A: linefeed 4167

\f // U+000C: form feed 4168

\r // U+000D: carriage return 4169

\" // U+0022: double quote (") 4170

\' // U+0027: single quote (') 4171

\\ // U+005C: backslash (\) 4172

\x<hex> // a UCS character, where <hex> is one to four hex digits, representing its UCS code 4173
position 4174

\X<hex> // a UCS character, where <hex> is one to four hex digits, representing its UCS code 4175
position 4176

The \x<hex> and \X<hex> forms are limited to represent only the UCS-2 character set. 4177

For example, the following is a valid string constant: 4178

"This is a string" 4179

Successive quoted strings are concatenated as long as only whitespace or a comment intervenes: 4180

"This" " becomes a long string" 4181
"This" /* comment */ " becomes a long string" 4182

7.11.2 Character Constants 4183

A character constant in MOF is represented as one UCS character or escape sequence enclosed in 4184
single quotes ('), or as an integer constant as defined in 7.11.3. The character repertoire for the UCS 4185
character is defined in 5.2.3. The valid escape sequences are defined in 7.11.1. Single quotes shall be 4186
escaped. An integer constant represents the code position of a UCS character and its character 4187
repertoire is defined in 5.2.3. 4188

For example, the following are valid character constants: 4189

'a' // U+0061: 'a' 4190
'\n' // U+000A: linefeed 4191
'1' // U+0031: '1' 4192
'\x32' // U+0032: '2' 4193
65 // U+0041: 'A' 4194
0x41 // U+0041: 'A' 4195

7.11.3 Integer Constants 4196

Integer constants may be decimal, binary, octal, or hexadecimal. For example, the following constants are 4197
all legal: 4198

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 119

1000 4199
-12310 4200
0x100 4201
01236 4202
100101B 4203

Binary constants have a series of 1 and 0 digits, with a "b" or "B" suffix to indicate that the value is binary. 4204

The number of digits permitted depends on the current type of the expression. For example, it is not legal 4205
to assign the constant 0xFFFF to a property of type uint8. 4206

7.11.4 Floating-Point Constants 4207

Floating-point constants are declared as specified by ANSI/IEEE 754-1985. For example, the following 4208
constants are legal: 4209

3.14 4210
-3.14 4211
-1.2778E+02 4212

The range for floating-point constants depends on whether float or double properties are used, and they 4213
must fit within the range specified for 4-byte and 8-byte floating-point values, respectively. 4214

7.11.5 Object Reference Constants 4215

As defined in 7.6.5, object references are special properties whose values are links or pointers to other 4216
objects, which may be classes or instances. Object reference constants are string representations of 4217
object paths for CIM MOF, as defined in 8.5. 4218

The usage of object reference constants as initializers for instance declarations is defined in 7.8, and as 4219
default values for properties in 7.5.3. 4220

7.11.6 NULL 4221

All types can be initialized to the predefined constant NULL, which indicates that no value is provided. 4222
The details of the internal implementation of the NULL value are not mandated by this document. 4223

8 Naming 4224

Because CIM is not bound to a particular technology or implementation, it promises to facilitate sharing 4225
management information among a variety of management platforms. The CIM naming mechanism 4226
addresses the following requirements: 4227

• Ability to unambiguously reference CIM objects residing in a CIM server. 4228

• Ability for CIM object names to be represented in multiple protocols, and for these 4229
representations the ability to be transformed across such protocols in an efficient manner. 4230

• Support the following types of CIM objects to be referenced: instances, classes, qualifier types 4231
and namespaces. 4232

• Ability to determine when two object names reference the same CIM object. This entails 4233
location transparency so that there is no need for a consumer of an object name to understand 4234
which management platforms proxy the instrumentation of other platforms. 4235

The Key qualifier is the CIM Meta-Model mechanism to identify the properties that uniquely identify an 4236
instance of a class (including an instance of an association) within a CIM namespace. This clause defines 4237

Common Information Model (CIM) Infrastructure DSP0004

120 DMTF Standard Version 2.6.0

how CIM instances, classes, qualifier types and namespaces are referenced using the concept of CIM 4238
object paths. 4239

8.1 CIM Namespaces 4240

Because CIM allows multiple implementations, it is not sufficient to think of the name of a CIM instance as 4241
just the combination of its key properties. The instance name must also identify the implementation that 4242
actually hosts the instances. In order to separate the concept of a run-time container for CIM objects 4243
represented by a CIM server from the concept of naming, CIM defines the notion of a CIM namespace. 4244
This separation of concepts allows separating the design of a model along the boundaries of namespaces 4245
from the placement of namespaces in CIM servers. 4246

A namespace provides a scope of uniqueness for some types of object. Specifically, the names of class 4247
objects and of qualifier type objects shall be unique in a namespace. The compound key of instance 4248
objects shall be unique across all instances of the class (not including subclasses) within the namespace. 4249

In addition, a namespace is considered a CIM object since it is addressable using an object name. 4250
However, a namespace cannot host other namespaces, in other words the set of namespaces in a CIM 4251
server is flat. A namespace has a name which shall be unique within the CIM server. 4252

A namespace is also considered a run-time container within a CIM server which can host objects. For 4253
example, CIM objects are said to reside in namespaces as well as in CIM servers. Also, a common notion 4254
is to load the definition of qualifier types, classes and instances into a namespace, where they become 4255
objects that can be referenced. The run-time aspect of a CIM namespace makes it different from other 4256
definitions of namespace concepts that are addressing only the name uniqueness aspect, such as 4257
namespaces in Java, C++ or XML. 4258

8.2 Naming CIM Objects 4259

This subclause defines a concept for naming the objects residing in a CIM server. The naming concept 4260
allows for unambiguously referencing these objects and supports the following types of objects: 4261

• namespaces 4262

• qualifier types 4263

• classes 4264

• instances 4265

8.2.1 Object Paths 4266

The construct that references an object residing in a CIM server is called an object path. Since CIM is 4267
independent of implementations and protocols, object paths are defined in an abstract way that allows for 4268
defining different representations of the object paths. Protocols using object paths are expected to define 4269
representations of object paths as detailed in this subclause. A representation of object paths for CIM 4270
MOF is defined in 8.5. 4271

DEPRECATED 4272

Before version 2.6.0 of this document, object paths were referred to as "object names". The term "object 4273
name" is deprecated since version 2.6.0 of this document and the term "object path" should be used 4274
instead. 4275

DEPRECATED 4276

An object path is defined as a hierarchy of naming components. The leaf components in that hierarchy 4277
have a string value that is defined in this document. It is up to specifications using object paths to define 4278

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 121

how the string values of the leaf components are assembled into their own string representation of an 4279
object path, as defined in 8.4. 4280

Figure 4 shows the general hierarchy of naming components of an object path. The naming components 4281
are defined more specifically for each type of object supported by CIM naming. The leaf components are 4282
shown with gray background. 4283

Object Path

Namespace Path Model Path

.
 4284

Figure 4 – General Component Structure of Object Path 4285

Generally, an object path consists of two naming components: 4286

• namespace path – an unambiguous reference to the namespace in a CIM server, and 4287

• model path – an unambiguous identification of the object relative to that namespace. 4288

This document does not define the internal structure of a namespace path, but it defines requirements on 4289
specifications using object paths in 8.4, including a requirement for a string representation of the 4290
namespace path. 4291

A model path can be described using CIM model elements only. Therefore, this document defines the 4292
naming components of the model path for each type of object supported by CIM naming. Since the leaf 4293
components of model paths are CIM model elements, their string representation is well defined and 4294
specifications using object paths only need to define how these strings are assembled into an object path, 4295
as defined in 8.4. 4296

The definition of a string representation for object paths is left to specifications using object paths, as 4297
described in 8.4. 4298

Two object paths match if their namespace path components match, and their model path components (if 4299
any) have matching leaf components. As a result, two object paths that match reference the same CIM 4300
object. 4301
NOTE: The matching of object paths is not just a simple string comparison of the string representations of object 4302

paths. 4303

8.2.2 Object Path for Namespace Objects 4304

The object path for namespace objects is called namespace path. It consists of only the Namespace Path 4305
component, as shown in Figure 5. A Model Path component is not present. 4306

Common Information Model (CIM) Infrastructure DSP0004

122 DMTF Standard Version 2.6.0

 4307

Figure 5 – Component Structure of Object Path for Namespaces 4308

The definition of a string representation for namespace paths is left to specifications using object paths, 4309
as described in 8.4. 4310

Two namespace paths match if they reference the same namespace. The definition of a method for 4311
determining whether two namespace paths reference the same namespace is left to specifications using 4312
object paths, as described in 8.4. 4313

The resulting method may or may not be able to determine whether two namespace paths reference the 4314
same namespace. For example, there may be alias names for namespaces, or different ports exposing 4315
access to the same namespace. Often, specifications using object paths need to revert to the minimally 4316
possible conclusion which is that namespace paths with equal string representations reference the same 4317
namespace, and that for namespace paths with unequal string representations no conclusion can be 4318
made about whether or not they reference the same namespace. 4319

8.2.3 Object Path for Qualifier Type Objects 4320

The object path for qualifier type objects is called qualifier type path. Its naming components have the 4321
structure defined in Figure 6. 4322

Qualifier Type Path

Namespace Path Model Path

Qualifier Name
 4323

Figure 6 – Component Structure of Object Path for Qualifier Types 4324

The Namespace Path component is defined in 8.2.2. 4325

The string representation of the Qualifier Name component shall be the name of the qualifier, preserving 4326
the case defined in the namespace. For example, the string representation of the Qualifier Name 4327
component for the MappingStrings qualifier is "MappingStrings". 4328

Two Qualifier Names match as described in 8.2.6. 4329

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 123

8.2.4 Object Path for Class Objects 4330

The object path for class objects is called class path. Its naming components have the structure defined 4331
in Figure 7. 4332

Class Path

Namespace Path Model Path

Class Name

 4333

Figure 7 – Component Structure of Object Path for Classes 4334

The Namespace Path component is defined in 8.2.2. 4335

The string representation of the Qualifier Name component shall be the name of the qualifier, preserving 4336
the case defined in the namespace. For example, the string representation of the Qualifier Name 4337
component for the MappingStrings qualifier is "MappingStrings". 4338

Two Qualifier Names match as described in 8.2.6. 4339

8.2.5 Object Path for Class Objects 4340

The object path for class objects is called class path. Its naming components have the structure defined 4341
in Figure 7. 4342

Common Information Model (CIM) Infrastructure DSP0004

124 DMTF Standard Version 2.6.0

Instance Path

Namespace Path Model Path

Class Name KeyKey

Key Name Key Value

 4343

Figure 8 – Component Structure of Object Path for Instances 4344

The Namespace Path component is defined in 8.2.2. 4345

The Class Name component is defined in 8.2.4. 4346

The Model Path component consists of a Class Name component and an unordered set of one or more 4347
Key components. There shall be one Key component for each key property (including references) 4348
exposed by the class of the instance. The set of key properties includes any propagated keys, as defined 4349
in 7.6.4. There shall not be Key components for properties (including references) that are not keys. 4350
Classes that do not expose any keys cannot have instances that are addressable with an object path for 4351
instances. 4352

The string representation of the Key Name component shall be the name of the key property, preserving 4353
the case defined in the class residing in the namespace. For example, the string representation of the 4354
Key Name component for a property ActualSpeed defined in a class ACME_Device is "ActualSpeed". 4355

Two Key Names match as described in 8.2.6. 4356

The Key Value component represents the value of the key property. The string representation of the Key 4357
Value component is defined by specifications using object names, as defined in 8.4. 4358

Two Key Values match as defined for the datatype of the key property. 4359

8.2.6 Matching CIM Names 4360

Matching of CIM names (which consist of UCS characters) as defined in this document shall be 4361
performed as if the following algorithm was applied: 4362

Any lower case UCS characters in the CIM names are translated to upper case. 4363

The CIM names are considered to match if the string identity matching rules defined in chapter 4 "String 4364
Identity Matching" of Character Model for the World Wide Web 1.0: Normalization match when applied to 4365
the upper case CIM names. 4366

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 125

In order to eliminate the costly processing involved in this, specifications using object paths may define 4367
simplified processing for applying this algorithm. One way to achieve this is to mandate that Normalization 4368
Form C (NFC), defined in The Unicode Standard, Version 5.2.0, Annex #15: Unicode Normalization 4369
Forms, which allows the normalization to be skipped when comparing the names. 4370

8.3 Identity of CIM Objects 4371

As defined in 8.2.1, two CIM objects are identical if their object paths match. Since this depends on 4372
whether their namespace paths match, it may not be possible to determine this (for details, see 8.2.2). 4373

Two different CIM objects (e.g., instances) can still represent aspects of the same managed object. In 4374
other words, identity at the level of CIM objects is separate from identity at the level of the represented 4375
managed objects. 4376

8.4 Requirements on Specifications Using Object Paths 4377

This subclause comprehensively defines the CIM naming related requirements on specifications using 4378
CIM object paths: 4379

Such specifications shall define a string representation of a namespace path (referred to as 4380
"namespace path string") using an ABNF syntax that defines its specification dependent 4381
components. The ABNF syntax shall not have any ABNF rules that are considered opaque or 4382
undefined. The ABNF syntax shall contain an ABNF rule for the namespace name. 4383

A namespace path string as defined with that ABNF syntax shall be able to reference a namespace 4384
object in a way that is unambiguous in the environment where the CIM server hosting the namespace is 4385
expected to be used. This typically translates to enterprise wide addressing using Internet Protocol 4386
addresses. 4387

Such specifications shall define a method for determining from the namespace path string the particular 4388
object path representation defined by the specification. This method should be based on the ABNF syntax 4389
defined for the namespace path string. 4390

Such specifications shall define a method for determining whether two namespace path strings reference 4391
the same namespace. As described in 8.2.2, this method may not support this in any case. 4392

Such specifications shall define how a string representation of the object paths for qualifier types, classes 4393
and instances is assembled from the string representations of the leaf components defined in 8.2.1 to 4394
 8.2.5, using an ABNF syntax. 4395

Such specifications shall define string representations for all CIM datatypes that can be used as keys, 4396
using an ABNF syntax. 4397

8.5 Object Paths Used in CIM MOF 4398

Object paths are used in CIM MOF to reference instance objects in the following situations: 4399

• when specifying default values for references in association classes, as defined in 7.5.3. 4400

• when specifying initial values for references in association instances, as defined in 7.8. 4401

In CIM MOF, object paths are not used to reference namespace objects, class objects or qualifier type 4402
objects. 4403

The string representation of instance paths used in CIM MOF shall conform to the WBEM-URI-4404
UntypedInstancePath ABNF rule defined in subclause 4.5 "Collected BNF for WBEM URI" of 4405
DSP0207. 4406

Common Information Model (CIM) Infrastructure DSP0004

126 DMTF Standard Version 2.6.0

That subclause also defines: 4407

• a string representation for the namespace path. 4408

• how a string representation of an instance path is assembled from the string representations of 4409
the leaf components defined in 8.2.1 to 8.2.5. 4410

• how the namespace name is determined from the string representation of an instance path. 4411

That specification does not presently define a method for determining whether two namespace path 4412
strings reference the same namespace. 4413

The string representations for key values shall be: 4414

• For the string datatype, as defined by the stringValue ABNF rule defined in ANNEX A, as 4415
one single string. 4416

• For the char16 datatype, as defined by the charValue ABNF rule defined in ANNEX A. 4417

• For the datetime datatype, the (unescaped) value of the datetime string as defined in 5.2.4, as 4418
one single string. 4419

• For the boolean datatype, as defined by the booleanValue ABNF rule defined in ANNEX A. 4420

• For integer datatypes, as defined by the integerValue ABNF rule defined in ANNEX A. 4421

• For real datatypes, as defined by the realValue ABNF rule defined in ANNEX A. 4422

• For <classname> REF datatypes, the string representation of the instance path as described in 4423
this subclause. 4424

EXAMPLE: Examples for string representations of instance paths in CIM MOF are as follows: 4425

"http://myserver.acme.com/root/cimv2:ACME_LogicalDisk.SystemName=\"acme\",Drive=\"C\"" 4426
"//myserver.acme.com:5988/root/cimv2:ACME_BooleanKeyClass.KeyProp=True" 4427
"/root/cimv2:ACME_IntegerKeyClass.KeyProp=0x2A" 4428
"ACME_CharKeyClass.KeyProp='\x41'" 4429

Instance paths referencing instances of association classes that have key references require special care 4430
regarding the escaping of the key values, which in this case are instance paths themselves. As defined in 4431
 ANNEX A, the objectHandle ABNF rule is a string constant whose value conforms to the objectName 4432
ABNF rule. As defined in 7.11.1, representing a string value as a string in CIM MOF includes the 4433
escaping of any double quotes and backslashes present in the string value. 4434
EXAMPLE: The following example shows the string representation of an instance path referencing an instance of an 4435

association class with two key references. For better readability, the string is represented in three parts: 4436

"/root/cimv2:ACME_SystemDevice." 4437
"System=\"/root/cimv2:ACME_System.Name=\\\"acme\\\"" 4438
",Device=\"/root/cimv2:ACME_LogicalDisk.SystemName=\\\"acme\\\",Drive=\\\"C\\\"\"" 4439

8.6 Mapping CIM Naming and Native Naming 4440

A managed environment may identify its managed objects in some way that is not necessarily the way 4441
they are identified in their CIM modeled appearance. The identification for managed objects used by the 4442
managed environment is called "native naming" in this document. 4443

At the level of interactions between a CIM client and a CIM server, CIM naming is used. This implies that 4444
a CIM server needs to be able to map CIM naming to the native naming used by the managed 4445
environment. This mapping needs to be performed in both directions: If a CIM operation references an 4446
instance with a CIM name, the CIM server needs to map the CIM name into the native name in order to 4447
reference the managed object by its native name. Similarly, if a CIM operation requests the enumeration 4448

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 127

of all instances of a class, the CIM server needs to map the native names by which the managed 4449
environment refers to the managed objects, into their CIM names before returning the enumerated 4450
instances. 4451

This subclause describes some techniques that can be used by CIM servers to map between CIM names 4452
and native names. 4453

8.6.1 Native Name Contained in Opaque CIM Key 4454

For CIM classes that have a single opaque key (e.g., InstanceId), it is possible to represent the native 4455
name in the opaque key in some (possibly class specific) way. This allows a CIM server to construct the 4456
native name from the key value, and vice versa. 4457

8.6.2 Native Storage of CIM Name 4458

If the native environment is able to maintain additional properties on its managed objects, the CIM name 4459
may be stored on each managed object as an additional property. For larger amounts of instances, this 4460
technique requires that there are lookup services available for the CIM server to look up managed objects 4461
by CIM name. 4462

8.6.3 Translation Table 4463

The CIM server can maintain a translation table between native names and CIM names, which allows to 4464
look up the names in both directions. Any entries created in the table are based on a defined mapping 4465
between native names and CIM names for the class. The entries in the table are automatically adjusted to 4466
the existence of instances as known by the CIM server. 4467

8.6.4 No Mapping 4468

Obviously, if the native naming is the same as the CIM naming, then no mapping needs to be performed. 4469
This may be the case for environments in which the native representation can be influenced to use CIM 4470
naming. An example for that is a relational database, where the relational model is defined such that CIM 4471
classes are used as tables, CIM properties as columns, and the index is defined on the columns 4472
corresponding to the key properties of the class. 4473

9 Mapping Existing Models into CIM 4474

Existing models have their own meta model and model. Three types of mappings can occur between 4475
meta schemas: technique, recast, and domain. Each mapping can be applied when MIF syntax is 4476
converted to MOF syntax. 4477

9.1 Technique Mapping 4478

A technique mapping uses the CIM meta-model constructs to describe the meta constructs of the source 4479
modeling technique (for example, MIF, GDMO, and SMI). Essentially, the CIM meta model is a meta 4480
meta-model for the source technique (see Figure 9). 4481

Common Information Model (CIM) Infrastructure DSP0004

128 DMTF Standard Version 2.6.0

meta
constructs

expressions

Technique Specific Model

CIM Meta Model

 4482

Figure 9 – Technique Mapping Example 4483

The DMTF uses the management information format (MIF) as the meta model to describe distributed 4484
management information in a common way. Therefore, it is meaningful to describe a technique mapping 4485
in which the CIM meta model is used to describe the MIF syntax. 4486

The mapping presented here takes the important types that can appear in a MIF file and then creates 4487
classes for them. Thus, component, group, attribute, table, and enum are expressed in the CIM meta 4488
model as classes. In addition, associations are defined to document how these classes are combined. 4489
Figure 10 illustrates the results. 4490

 4491

Figure 10 – MIF Technique Mapping Example 4492

9.2 Recast Mapping 4493

A recast mapping maps the meta constructs of the sources into the targeted meta constructs so that a 4494
model expressed in the source can be translated into the target (Figure 11). The major design work is to 4495
develop a mapping between the meta model of the sources and the CIM meta model. When this is done, 4496
the source expressions are recast. 4497

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 129

Expression or Instances of CIM Meta Model

CIM Meta Model

meta
constructs

expressions

 4498

Figure 11 – Recast Mapping 4499

Following is an example of a recast mapping for MIF, assuming the following mapping: 4500

DMI attributes -> CIM properties 4501
DMI key attributes -> CIM key properties 4502
DMI groups -> CIM classes 4503
DMI components -> CIM classes 4504

The standard DMI ComponentID group can be recast into a corresponding CIM class: 4505

Start Group 4506
Name = "ComponentID" 4507
Class = "DMTF|ComponentID|001" 4508
ID = 1 4509
Description = "This group defines the attributes common to all " 4510
 "components. This group is required." 4511
Start Attribute 4512
 Name = "Manufacturer" 4513
 ID = 1 4514
 Description = "Manufacturer of this system." 4515
 Access = Read-Only 4516
 Storage = Common 4517
 Type = DisplayString(64) 4518
 Value = "" 4519
End Attribute 4520
Start Attribute 4521
 Name = "Product" 4522
 ID = 2 4523
 Description = "Product name for this system." 4524
 Access = Read-Only 4525
 Storage = Common 4526
 Type = DisplayString(64) 4527
 Value = "" 4528
End Attribute 4529
Start Attribute 4530
 Name = "Version" 4531
 ID = 3 4532
 Description = "Version number of this system." 4533
 Access = Read-Only 4534

Common Information Model (CIM) Infrastructure DSP0004

130 DMTF Standard Version 2.6.0

 Storage = Specific 4535
 Type = DisplayString(64) 4536
 Value = "" 4537
End Attribute 4538
Start Attribute 4539
 Name = "Serial Number" 4540
 ID = 4 4541
 Description = "Serial number for this system." 4542
 Access = Read-Only 4543
 Storage = Specific 4544
 Type = DisplayString(64) 4545
 Value = "" 4546
End Attribute 4547
Start Attribute 4548
 Name = "Installation" 4549
 ID = 5 4550
 Description = "Component installation time and date." 4551
 Access = Read-Only 4552
 Storage = Specific 4553
 Type = Date 4554
 Value = "" 4555
End Attribute 4556
Start Attribute 4557
 Name = "Verify" 4558
 ID = 6 4559
 Description = "A code that provides a level of verification that the " 4560
 "component is still installed and working." 4561
 Access = Read-Only 4562
 Storage = Common 4563
 Type = Start ENUM 4564
 0 = "An error occurred; check status code." 4565
 1 = "This component does not exist." 4566
 2 = "Verification is not supported." 4567
 3 = "Reserved." 4568
 4 = "This component exists, but the functionality is untested." 4569
 5 = "This component exists, but the functionality is unknown." 4570
 6 = "This component exists, and is not functioning correctly." 4571
 7 = "This component exists, and is functioning correctly." 4572
 End ENUM 4573
 Value = 1 4574
End Attribute 4575
End Group 4576

A corresponding CIM class might be the following. Notice that properties in the example include an ID 4577
qualifier to represent the ID of the corresponding DMI attribute. Here, a user-defined qualifier may be 4578
necessary: 4579
[Name ("ComponentID"), ID (1), Description (4580
 "This group defines the attributes common to all components. " 4581
 "This group is required.")] 4582
class DMTF|ComponentID|001 { 4583
 [ID (1), Description ("Manufacturer of this system."), maxlen (64)] 4584
 string Manufacturer; 4585
 [ID (2), Description ("Product name for this system."), maxlen (64)] 4586
 string Product; 4587
 [ID (3), Description ("Version number of this system."), maxlen (64)] 4588

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 131

 string Version; 4589
 [ID (4), Description ("Serial number for this system."), maxlen (64)] 4590
 string Serial_Number; 4591
 [ID (5), Description("Component installation time and date.")] 4592
 datetime Installation; 4593
 [ID (6), Description("A code that provides a level of verification " 4594
 "that the component is still installed and working."), 4595
 Value (1)] 4596
 string Verify; 4597
}; 4598

9.3 Domain Mapping 4599

A domain mapping takes a source expressed in a particular technique and maps its content into either the 4600
core or common models or extension sub-schemas of the CIM. This mapping does not rely heavily on a 4601
meta-to-meta mapping; it is primarily a content-to-content mapping. In one case, the mapping is actually a 4602
re-expression of content in a more common way using a more expressive technique. 4603

Following is an example of how DMI can supply CIM properties using information from the DMI disks 4604
group ("DMTF|Disks|002"). For a hypothetical CIM disk class, the CIM properties are expressed as shown 4605
in Table 11. 4606

Table 11 – Domain Mapping Example 4607

CIM "Disk" Property Can Be Sourced from DMI Group/Attribute

StorageType
StorageInterface
RemovableDrive
RemovableMedia
DiskSize

"MIF.DMTF|Disks|002.1"
"MIF.DMTF|Disks|002.3"
"MIF.DMTF|Disks|002.6"
"MIF.DMTF|Disks|002.7"
"MIF.DMTF|Disks|002.16"

9.4 Mapping Scratch Pads 4608

In general, when the contents of models are mapped between different meta schemas, information is lost 4609
or missing. To fill this gap, scratch pads are expressed in the CIM meta model using qualifiers, which are 4610
actually extensions to the meta model (for example, see 10.2). These scratch pads are critical to the 4611
exchange of core, common, and extension model content with the various technologies used to build 4612
management applications. 4613

10 Repository Perspective 4614

This clause describes a repository and presents a complete picture of the potential to exploit it. A 4615
repository stores definitions and structural information, and it includes the capability to extract the 4616
definitions in a form that is useful to application developers. Some repositories allow the definitions to be 4617
imported into and exported from the repository in multiple forms. The notions of importing and exporting 4618
can be refined so that they distinguish between three types of mappings. 4619

Using the mapping definitions in Clause 9, the repository can be organized into the four partitions: meta, 4620
technique, recast, and domain (see Figure 12). 4621

Common Information Model (CIM) Infrastructure DSP0004

132 DMTF Standard Version 2.6.0

Repository –
store meta model
information for
program access.

CIM Meta Model

core schema
common schema
extension schemas

Has Instances realized in

Repository

Meta

Domain

RecastTechniqueImport
 Syntax Definition

 Expressions

Export

sub-partitions

Content of CIM Realization of CIM

 4622

Figure 12 – Repository Partitions 4623

The repository partitions have the following characteristics: 4624

• Each partition is discrete: 4625

– The meta partition refers to the definitions of the CIM meta model. 4626

– The technique partition refers to definitions that are loaded using technique mappings. 4627

– The recast partition refers to definitions that are loaded using recast mappings. 4628

– The domain partition refers to the definitions associated with the core and common models 4629
and the extension schemas. 4630

• The technique and recast partitions can be organized into multiple sub-partitions to capture 4631
each source uniquely. For example, there is a technique sub-partition for each unique meta 4632
language encountered (that is, one for MIF, one for GDMO, one for SMI, and so on). In the re-4633
cast partition, there is a sub-partition for each meta language. 4634

• The act of importing the content of an existing source can result in entries in the recast or 4635
domain partition. 4636

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 133

10.1 DMTF MIF Mapping Strategies 4637

When the meta-model definition and the baseline for the CIM schema are complete, the next step is to 4638
map another source of management information (such as standard groups) into the repository. The main 4639
goal is to do the work required to import one or more of the standard groups. The possible import 4640
scenarios for a DMTF standard group are as follows: 4641

• To Technique Partition: Create a technique mapping for the MIF syntax that is the same for all 4642
standard groups and needs to be updated only if the MIF syntax changes. 4643

• To Recast Partition: Create a recast mapping from a particular standard group into a sub-4644
partition of the recast partition. This mapping allows the entire contents of the selected group to 4645
be loaded into a sub-partition of the recast partition. The same algorithm can be used to map 4646
additional standard groups into that same sub-partition. 4647

• To Domain Partition: Create a domain mapping for the content of a particular standard group 4648
that overlaps with the content of the CIM schema. 4649

• To Domain Partition: Create a domain mapping for the content of a particular standard group 4650
that does not overlap with CIM schema into an extension sub-schema. 4651

• To Domain Partition: Propose extensions to the content of the CIM schema and then create a 4652
domain mapping. 4653

Any combination of these five scenarios can be initiated by a team that is responsible for mapping an 4654
existing source into the CIM repository. Many other details must be addressed as the content of any of 4655
the sources changes or when the core or common model changes. When numerous existing sources are 4656
imported using all the import scenarios, we must consider the export side. Ignoring the technique 4657
partition, the possible export scenarios are as follows: 4658

• From Recast Partition: Create a recast mapping for a sub-partition in the recast partition to a 4659
standard group (that is, inverse of import 2). The desired method is to use the recast mapping to 4660
translate a standard group into a GDMO definition. 4661

• From Recast Partition: Create a domain mapping for a recast sub-partition to a known 4662
management model that is not the original source for the content that overlaps. 4663

• From Domain Partition: Create a recast mapping for the complete contents of the CIM schema 4664
to a selected technique (for MIF, this remapping results in a non-standard group). 4665

• From Domain Partition: Create a domain mapping for the contents of the CIM schema that 4666
overlaps with the content of an existing management model. 4667

• From Domain Partition: Create a domain mapping for the entire contents of the CIM schema to 4668
an existing management model with the necessary extensions. 4669

10.2 Recording Mapping Decisions 4670

To understand the role of the scratch pad in the repository (see Figure 13), it is necessary to look at the 4671
import and export scenarios for the different partitions in the repository (technique, recast, and 4672
application). These mappings can be organized into two categories: homogeneous and heterogeneous. 4673
In the homogeneous category, the imported syntax and expressions are the same as the exported syntax 4674
and expressions (for example, software MIF in and software MIF out). In the heterogeneous category, the 4675
imported syntax and expressions are different from the exported syntax and expressions (for example, 4676
MIF in and GDMO out). For the homogenous category, the information can be recorded by creating 4677
qualifiers during an import operation so the content can be exported properly. For the heterogeneous 4678
category, the qualifiers must be added after the content is loaded into a partition of the repository. 4679
Figure 13 shows the X schema imported into the Y schema and then homogeneously exported into X or 4680
heterogeneously exported into Z. Each export arrow works with a different scratch pad. 4681

Common Information Model (CIM) Infrastructure DSP0004

134 DMTF Standard Version 2.6.0

 4682

Figure 13 – Homogeneous and Heterogeneous Export 4683

The definition of the heterogeneous category is actually based on knowing how a schema is loaded into 4684
the repository. To assist in understanding the export process, we can think of this process as using one of 4685
multiple scratch pads. One scratch pad is created when the schema is loaded, and the others are added 4686
to handle mappings to schema techniques other than the import source (Figure 14). 4687

export

export

export

import

Add mapping details
after the import or
definition

Scratch Pads
 4688

Figure 14 – Scratch Pads and Mapping 4689

Figure 14 shows how the scratch pads of qualifiers are used without factoring in the unique aspects of 4690
each partition (technique, recast, applications) within the CIM repository. The next step is to consider 4691
these partitions. 4692

For the technique partition, there is no need for a scratch pad because the CIM meta model is used to 4693
describe the constructs in the source meta schema. Therefore, by definition, there is one homogeneous 4694
mapping for each meta schema covered by the technique partition. These mappings create CIM objects 4695

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 135

for the syntactic constructs of the schema and create associations for the ways they can be combined. 4696
(For example, MIF groups include attributes.) 4697

For the recast partition, there are multiple scratch pads for each sub-partition because one is required for 4698
each export target and there can be multiple mapping algorithms for each target. Multiple mapping 4699
algorithms occur because part of creating a recast mapping involves mapping the constructs of the 4700
source into CIM meta-model constructs. Therefore, for the MIF syntax, a mapping must be created for 4701
component, group, attribute, and so on, into appropriate CIM meta-model constructs such as object, 4702
association, property, and so on. These mappings can be arbitrary. For example, one decision to be 4703
made is whether a group or a component maps into an object. Two different recast mapping algorithms 4704
are possible: one that maps groups into objects with qualifiers that preserve the component, and one that 4705
maps components into objects with qualifiers that preserve the group name for the properties. Therefore, 4706
the scratch pads in the recast partition are organized by target technique and employed algorithm. 4707

For the domain partitions, there are two types of mappings: 4708

• A mapping similar to the recast partition in that part of the domain partition is mapped into the 4709
syntax of another meta schema. These mappings can use the same qualifier scratch pads and 4710
associated algorithms that are developed for the recast partition. 4711

• A mapping that facilitates documenting the content overlap between the domain partition and 4712
another model (for example, software groups). 4713

These mappings cannot be determined in a generic way at import time; therefore, it is best to consider 4714
them in the context of exporting. The mapping uses filters to determine the overlaps and then performs 4715
the necessary conversions. The filtering can use qualifiers to indicate that a particular set of domain 4716
partition constructs maps into a combination of constructs in the target/source model. The conversions 4717
are documented in the repository using a complex set of qualifiers that capture how to write or insert the 4718
overlapped content into the target model. The mapping qualifiers for the domain partition are organized 4719
like the recasting partition for the syntax conversions, and there is a scratch pad for each model for 4720
documenting overlapping content. 4721

In summary, pick the partition, develop a mapping, and identify the qualifiers necessary to capture 4722
potentially lost information when mapping details are developed for a particular source. On the export 4723
side, the mapping algorithm verifies whether the content to be exported includes the necessary qualifiers 4724
for the logic to work. 4725

 4726

Common Information Model (CIM) Infrastructure DSP0004

136 DMTF Standard Version 2.6.0

ANNEX A 4727
(normative) 4728

 4729
MOF Syntax Grammar Description 4730

This annex presents the grammar for MOF syntax. While the grammar is convenient for describing the 4731
MOF syntax clearly, the same MOF language can also be described by a different, LL(1)-parsable, 4732
grammar, which enables low-footprint implementations of MOF compilers. In addition, the following 4733
applies: 4734

1) All keywords are case-insensitive. 4735

2) In the current release, the MOF syntax does not support initializing an array value to empty (an 4736
array with no elements). In version 3 of this document, the DMTF plans to extend the MOF 4737
syntax to support this functionality as follows: 4738

arrayInitialize = "{" [arrayElementList] "}" 4739

arrayElementList = constantValue *("," constantValue) 4740

To ensure interoperability with implementations of version 2 of this document, the DMTF 4741
recommends that, where possible, the value of NULL rather than empty ({ }) be used to 4742
represent the most common use cases. However, if this practice should cause confusion or 4743
other issues, implementations may use the syntax of version 3 of this document to initialize an 4744
empty array. 4745

The following is the grammar for the MOF syntax, defined in ABNF. Unless otherwise stated, the ABNF in 4746
this annex has whitespace allowed. 4747

 4748
mofSpecification = *mofProduction

mofProduction = compilerDirective /
 classDeclaration /
 assocDeclaration /
 indicDeclaration /
 qualifierDeclaration /
 instanceDeclaration

compilerDirective = PRAGMA pragmaName "(" pragmaParameter ")"

pragmaName = IDENTIFIER

pragmaParameter = stringValue

classDeclaration = [qualifierList]
 CLASS className [superClass]
 "{" *classFeature "}" ";"

assocDeclaration = "[" ASSOCIATION *("," qualifier) "]"
 CLASS className [superClass]
 "{" *associationFeature "}" ";"
 ; Context:

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 137

 ; The remaining qualifier list must not include
; the ASSOCIATION qualifier again. If the
; association has no super association, then at
; least two references must be specified! The
; ASSOCIATION qualifier may be omitted in
; sub-associations.

indicDeclaration = "[" INDICATION *("," qualifier) "]"
 CLASS className [superClass]
 "{" *classFeature "}" ";"

namespaceName = IDENTIFIER *("/" IDENTIFIER)

className = schemaName "_" IDENTIFIER ; NO whitespace !
 ; Context:
 ; Schema name must not include "_" !

alias = AS aliasIdentifer

aliasIdentifer = "$" IDENTIFIER ; NO whitespace !

superClass = ":" className

classFeature = propertyDeclaration / methodDeclaration

associationFeature = classFeature / referenceDeclaration

qualifierList = "[" qualifier *("," qualifier) "]"

qualifier = qualifierName [qualifierParameter] [":" 1*flavor]

; DEPRECATED: The ABNF rule [":" 1*flavor] is used
; for the concept of implicitly defined qualifier types
; and is deprecated. See 5.1.2.16 for details.

qualifierParameter = "(" constantValue ")" / arrayInitializer

flavor = ENABLEOVERRIDE / DISABLEOVERRIDE / RESTRICTED /
 TOSUBCLASS / TRANSLATABLE

propertyDeclaration = [qualifierList] dataType propertyName
 [array] [defaultValue] ";"

referenceDeclaration = [qualifierList] objectRef referenceName
 [defaultValue] ";"

methodDeclaration = [qualifierList] dataType methodName
 "(" [parameterList] ")" ";"

propertyName = IDENTIFIER

referenceName = IDENTIFIER

methodName = IDENTIFIER

dataType = DT_UINT8 / DT_SINT8 / DT_UINT16 / DT_SINT16 /
 DT_UINT32 / DT_SINT32 / DT_UINT64 / DT_SINT64 /
 DT_REAL32 / DT_REAL64 / DT_CHAR16 /
 DT_STR / DT_BOOL / DT_DATETIME

objectRef = className REF

parameterList = parameter *("," parameter)

Common Information Model (CIM) Infrastructure DSP0004

138 DMTF Standard Version 2.6.0

parameter = [qualifierList] (dataType / objectRef) parameterName
[array]

parameterName = IDENTIFIER

array = "[" [positiveDecimalValue] "]"

positiveDecimalValue = positiveDecimalDigit *decimalDigit

defaultValue = "=" initializer

initializer = ConstantValue / arrayInitializer / referenceInitializer

arrayInitializer = "{" constantValue*("," constantValue)"}"

constantValue = integerValue / realValue / charValue / stringValue /
 datetimeValue / booleanValue / nullValue

integerValue = binaryValue / octalValue / decimalValue / hexValue

referenceInitializer = objectPath / aliasIdentifier

objectPath = stringValue

; the(unescaped)contents of stringValue shall conform
; to the string representation for object paths as
; defined in 8.5.

qualifierDeclaration = QUALIFIER qualifierName qualifierType scope
 [defaultFlavor] ";"

qualifierName = IDENTIFIER

qualifierType = ":" dataType [array] [defaultValue]

scope = "," SCOPE "(" metaElement *("," metaElement) ")"

metaElement = CLASS / ASSOCIATION / INDICATION / QUALIFIER
 PROPERTY / REFERENCE / METHOD / PARAMETER / ANY

defaultFlavor = "," FLAVOR "(" flavor *("," flavor) ")"

instanceDeclaration = [qualifierList] INSTANCE OF className [alias]
 "{" 1*valueInitializer "}" ";"

valueInitializer = [qualifierList]
 (propertyName / referenceName) "=" initializer ";"

These ABNF rules do not allow whitespace, unless stated otherwise: 4749

 4750
schemaName = IDENTIFIER
 ; Context:
 ; Schema name must not include "_" !

fileName = stringValue

binaryValue = ["+" / "-"] 1*binaryDigit ("b" / "B")

binaryDigit = "0" / "1"

octalValue = ["+" / "-"] "0" 1*octalDigit

octalDigit = "0" / "1" / "2" / "3" / "4" / "5" / "6" / "7"

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 139

decimalValue = ["+" / "-"] (positiveDecimalDigit *decimalDigit / "0")

decimalDigit = "0" / positiveDecimalDigit

positiveDecimalDigit = "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9"

hexValue = ["+" / "-"] ("0x" / "0X") 1*hexDigit

hexDigit = decimalDigit / "a" / "A" / "b" / "B" / "c" / "C" /
 "d" / "D" / "e" / "E" / "f" / "F"

realValue = ["+" / "-"] *decimalDigit "." 1*decimalDigit
 [("e" / "E") ["+" / "-"] 1*decimalDigit]

charValue = "’" char16Char "’" / integerValue

; Single quotes shall be escaped.
; For details, see 7.11.2

stringValue = 1*(""" *stringChar """)

; Whitespace and comment is allowed between double
; quoted parts.
; Double quotes shall be escaped.
; For details, see 7.11.1

stringChar = UCScharString / stringEscapeSequence

Char16Char = UCScharChar16 / stringEscapeSequence

UCScharString is any UCS character for use in string constants as

defined in 7.11.1.

UCScharChar16 is any UCS character for use in char16 constants as

defined in 7.11.2.

stringEscapeSequence is any escape sequence for string and char16 constants, as
defined in 7.11.1.

booleanValue = TRUE / FALSE

nullValue = NULL

IDENTIFIER = firstIdentifierChar *(nextIdentifierChar)

firstIdentifierChar = UPPERALPHA / LOWERALPHA / UNDERSCORE / UCS0080TOFFEF

; DEPRECATED: The use of the UCS0080TOFFEF ABNF rule
; within the firstIdentifierChar ABNF rule is deprecated
; since version 2.6.0 of this document.

nextIdentifierChar = firstIdentifierChar / DIGIT

UPPERALPHA = U+0041...U+005A ; "A" ... "Z"

LOWERALPHA = U+0061...U+007A ; "a" ... "z"

UNDERSCORE = U+005F ; "_"

DIGIT = U+0030...U+0039 ; "0" ... "9"

UCS0080TOFFEF is any assigned UCS character with code positions in the

range U+0080..U+FFEF

Common Information Model (CIM) Infrastructure DSP0004

140 DMTF Standard Version 2.6.0

datetimeValue = 1*(""" *stringChar """)
; Whitespace is allowed between the double quoted parts.
; The combined string value shall conform to the format
; defined by the dt-format ABNF rule.

dt-format = dt-timestampValue / dt-intervalValue

dt-timestampValue = 14*14(decimalDigit) "." dt-microseconds

("+"/"-") dt-timezone /
dt-yyyymmddhhmmss "." 6*6("*") ("+"/"-") dt-timezone
; With further constraints on the field values
; as defined in subclause 5.2.4.

dt-intervalValue = 14*14(decimalDigit) "." dt-microseconds ":" "000" /

dt-ddddddddhhmmss "." 6*6("*") ":" "000"
; With further constraints on the field values
; as defined in subclause 5.2.4.

dt-yyyymmddhhmmss = 12*12(decimalDigit) 2*2("*") /

10*10(decimalDigit) 4*4("*") /
8*8(decimalDigit) 6*6("*") /
6*6(decimalDigit) 8*8("*") /
4*4(decimalDigit) 10*10("*") /
14*14("*")

dt-ddddddddhhmmss = 12*12(decimalDigit) 2*2("*") /

10*10(decimalDigit) 4*4("*") /
8*8(decimalDigit) 6*6("*") /
14*14("*")

dt-microseconds = 6*6(decimalDigit) /

5*5(decimalDigit) 1*1("*") /
4*4(decimalDigit) 2*2("*") /
3*3(decimalDigit) 3*3("*") /
2*2(decimalDigit) 4*4("*") /
1*1(decimalDigit) 5*5("*") /
6*6("*")

dt-timezone = 3*3(decimalDigit)

The remaining ABNF rules are case-insensitive keywords: 4751

ANY = "any"

AS = "as"

ASSOCIATION = "association"

CLASS = "class"

DISABLEOVERRIDE = "disableOverride"

DT_BOOL = "boolean"

DT_CHAR16 = "char16"

DT_DATETIME = "datetime"

DT_REAL32 = "real32"

DT_REAL64 = "real64"

DT_SINT16 = "sint16"

DT_SINT32 = "sint32"

DT_SINT64 = "sint64"

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 141

DT_SINT8 = "sint8"

DT_STR = "string"

DT_UINT16 = "uint16"

DT_UINT32 = "uint32"

DT_UINT64 = "uint64"

DT_UINT8 = "uint8"

ENABLEOVERRIDE = "enableoverride"

FALSE = "false"

FLAVOR = "flavor"

INDICATION = "indication"

INSTANCE = "instance"

METHOD = "method"

NULL = "null"

OF = "of"

PARAMETER = "parameter"

PRAGMA = "#pragma"

PROPERTY = "property"

QUALIFIER = "qualifier"

REF = "ref"

REFERENCE = "reference"

RESTRICTED = "restricted"

SCHEMA = "schema"

SCOPE = "scope"

TOSUBCLASS = "tosubclass"

TRANSLATABLE = "translatable"

TRUE = "true"

Common Information Model (CIM) Infrastructure DSP0004

142 DMTF Standard Version 2.6.0

ANNEX B 4752
(informative) 4753

 4754
CIM Meta Schema 4755

This annex defines a CIM model that represents the CIM meta schema defined in 5.1. UML associations 4756
are represented as CIM associations. 4757

CIM associations always own their association ends (i.e., the CIM references), while in UML, they are 4758
owned either by the association or by the associated class. For sake of simplicity of the description, the 4759
UML definition of the CIM meta schema defined in 5.1 had the association ends owned by the associated 4760
classes. The CIM model defined in this annex has no other choice but having them owned by the 4761
associations. The resulting CIM model is still a correct description of the CIM meta schema. 4762

 [Version("2.6.0"), Abstract, Description (4763
 "Abstract class for CIM elements, providing the ability for " 4764
 "an element to have a name.\n" 4765
 "Some kinds of elements provide the ability to have qualifiers " 4766
 "specified on them, as described in subclasses of " 4767
 "Meta_NamedElement.")] 4768
class Meta_NamedElement 4769
{ 4770
 [Required, Description (4771
 "The name of the element. The format of the name is " 4772
 "determined by subclasses of Meta_NamedElement.\n" 4773
 "The names of elements shall be compared " 4774
 "case-insensitively.")] 4775
 string Name; 4776
}; 4777
 4778
// == 4779
// TypedElement 4780
// == 4781
 [Version("2.6.0"), Abstract, Description (4782
 "Abstract class for CIM elements that have a CIM data " 4783
 "type.\n" 4784
 "Not all kinds of CIM data types may be used for all kinds of " 4785
 "typed elements. The details are determined by subclasses of " 4786
 "Meta_TypedElement.")] 4787
class Meta_TypedElement : Meta_NamedElement 4788
{ 4789
}; 4790
 4791
// == 4792
// Type 4793
// == 4794
 [Version("2.6.0"), Abstract, Description (4795
 "Abstract class for any CIM data types, including arrays of " 4796

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 143

 "such."), 4797
 ClassConstraint { 4798
 "/* If the type is no array type, the value of ArraySize shall " 4799
 "be NULL. */\n" 4800
 "inv: self.IsArray = false\n" 4801
 " implies self.ArraySize.IsNull()"}] 4802
 "/* A Type instance shall be owned by only one owner. */\n" 4803
 "inv: self.Meta_ElementType[OwnedType].OwningElement->size() +\n" 4804
 " self.Meta_ValueType[OwnedType].OwningValue->size() = 1"}] 4805
class Meta_Type 4806
{ 4807
 [Required, Description (4808
 "Indicates whether the type is an array type. For details " 4809
 "on arrays, see 7.8.2.")]")] 4810
 boolean IsArray; 4811
 4812
 [Description (4813
 "If the type is an array type, a non-NULL value indicates " 4814
 "the size of a fixed-size array, and a NULL value indicates " 4815
 "a variable-length array. For details on arrays, see " 4816
 " 7.8.2.")] 4817
 sint64 ArraySize; 4818
}; 4819
 4820
// == 4821
// PrimitiveType 4822
// == 4823
 [Version("2.6.0"), Description (4824
 "A CIM data type that is one of the intrinsic types defined in " 4825
 "Table 2, excluding references."), 4826
 ClassConstraint { 4827
 "/* This kind of type shall be used only for the following " 4828
 "kinds of typed elements: Method, Parameter, ordinary Property, " 4829
 "and QualifierType. */\n" 4830
 "inv: let e : Meta_NamedElement =\n" 4831
 " self.Meta_ElementType[OwnedType].OwningElement\n" 4832
 " in\n" 4833
 " e.oclIsTypeOf(Meta_Method) or\n" 4834
 " e.oclIsTypeOf(Meta_Parameter) or\n" 4835
 " e.oclIsTypeOf(Meta_Property) or\n" 4836
 " e.oclIsTypeOf(Meta_QualifierType)"}] 4837
class Meta_PrimitiveType : Meta_Type 4838
{ 4839
 [Required, Description (4840
 "The name of the CIM data type.\n" 4841
 "The type name shall follow the formal syntax defined by " 4842
 "the dataType ABNF rule in ANNEX A.")] 4843
 string TypeName; 4844
}; 4845

Common Information Model (CIM) Infrastructure DSP0004

144 DMTF Standard Version 2.6.0

 4846
// == 4847
// ReferenceType 4848
// == 4849
 [Version("2.6.0"), Description (4850
 "A CIM data type that is a reference, as defined in Table 2."), 4851
 ClassConstraint { 4852
 "/* This kind of type shall be used only for the following " 4853
 "kinds of typed elements: Parameter and Reference. */\n" 4854
 "inv: let e : Meta_NamedElement = /* the typed element */\n" 4855
 " self.Meta_ElementType[OwnedType].OwningElement\n" 4856
 " in\n" 4857
 " e.oclIsTypeOf(Meta_Parameter) or\n" 4858
 " e.oclIsTypeOf(Meta_Reference)", 4859
 "/* When used for a Reference, the type shall not be an " 4860
 "array. */\n" 4861
 "inv: self.Meta_ElementType[OwnedType].OwningElement.\n" 4862
 " oclIsTypeOf(Meta_Reference)\n" 4863
 " implies\n" 4864
 " self.IsArray = false"}] 4865
class Meta_ReferenceType : Meta_Type 4866
{ 4867
}; 4868
// == 4869
// Schema 4870
// == 4871
 [Version("2.6.0"), Description (4872
 "Models a CIM schema. A CIM schema is a set of CIM classes with " 4873
 "a single defining authority or owning organization."), 4874
 ClassConstraint { 4875
 "/* The elements owned by a schema shall be only of kind " 4876
 "Class. */\n" 4877
 "inv: self.Meta_SchemaElement[OwningSchema].OwnedElement.\n" 4878
 " oclIsTypeOf(Meta_Class)"}] 4879
class Meta_Schema : Meta_NamedElement 4880
{ 4881
 [Override ("Name"), Description (4882
 "The name of the schema. The schema name shall follow the " 4883
 "formal syntax defined by the schemaName ABNF rule in " 4884
 " ANNEX A.\n" 4885
 "Schema names shall be compared case insensitively.")] 4886
 string Name; 4887
}; 4888
 4889
// == 4890
// Class 4891
// == 4892
 4893
 [Version("2.6.0"), Description (4894

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 145

 "Models a CIM class. A CIM class is a common type for a set of " 4895
 "CIM instances that support the same features (i.e. properties " 4896
 "and methods). A CIM class models an aspect of a managed " 4897
 "element.\n" 4898
 "Classes may be arranged in a generalization hierarchy that " 4899
 "represents subtype relationships between classes. The " 4900
 "generalization hierarchy is a rooted, directed graph and " 4901
 "does not support multiple inheritance.\n" 4902
 "A class may have methods, which represent their behavior, " 4903
 "and properties, which represent the data structure of its " 4904
 "instances.\n" 4905
 "A class may participate in associations as the target of a " 4906
 "reference owned by the association.\n" 4907
 "A class may have instances.")] 4908
class Meta_Class : Meta_NamedElement 4909
{ 4910
 [Override ("Name"), Description (4911
 "The name of the class.\n" 4912
 "The class name shall follow the formal syntax defined by " 4913
 "the className ABNF rule in ANNEX A. The name of " 4914
 "the schema containing the class is part of the class " 4915
 "name.\n" 4916
 "Class names shall be compared case insensitively.\n" 4917
 "The class name shall be unique within the schema owning " 4918
 "the class.")] 4919
 string Name; 4920
}; 4921
 4922
// == 4923
// Property 4924
// == 4925
 [Version("2.6.0"), Description (4926
 "Models a CIM property defined in a CIM class. A CIM property " 4927
 "is the declaration of a structural feature of a CIM class, " 4928
 "i.e. the data structure of its instances.\n" 4929
 "Properties are inherited to subclasses such that instances of " 4930
 "the subclasses have the inherited properties in addition to " 4931
 "the properties defined in the subclass. The combined set of " 4932
 "properties defined in a class and properties inherited from " 4933
 "superclasses is called the properties exposed by the class.\n" 4934
 "A class defining a property may indicate that the property " 4935
 "overrides an inherited property. In this case, the class " 4936
 "exposes only the overriding property. The characteristics of " 4937
 "the overriding property are formed by using the " 4938
 "characteristics of the overridden property as a basis, " 4939
 "changing them as defined in the overriding property, within " 4940
 "certain limits as defined in additional constraints.\n" 4941
 "The class owning an overridden property shall be a (direct " 4942
 "or indirect) superclass of the class owning the overriding " 4943

Common Information Model (CIM) Infrastructure DSP0004

146 DMTF Standard Version 2.6.0

 "property.\n" 4944
 "For references, the class referenced by the overriding " 4945
 "reference shall be the same as, or a subclass of, the class " 4946
 "referenced by the overridden reference."), 4947
 ClassConstraint { 4948
 "/* An overriding property shall have the same name as the " 4949
 "property it overrides. */\n" 4950
 "inv: self.Meta_PropertyOverride[OverridingProperty]->\n" 4951
 " size() = 1\n" 4952
 " implies\n" 4953
 " self.Meta_PropertyOverride[OverridingProperty].\n" 4954
 " OverriddenProperty.Name.toUpper() =\n" 4955
 " self.Name.toUpper()", 4956
 "/* For ordinary properties, the data type of the overriding " 4957
 "property shall be the same as the data type of the overridden " 4958
 "property. */\n" 4959
 "inv: self.oclIsTypeOf(Meta_Property) and\n" 4960
 " Meta_PropertyOverride[OverridingProperty]->\n" 4961
 " size() = 1\n" 4962
 " implies\n" 4963
 " let pt : Meta_Type = /* type of property */\n" 4964
 " self.Meta_ElementType[Element].Type\n" 4965
 " in\n" 4966
 " let opt : Meta_Type = /* type of overridden prop. */\n" 4967
 " self.Meta_PropertyOverride[OverridingProperty].\n" 4968
 " OverriddenProperty.Meta_ElementType[Element].Type\n" 4969
 " in\n" 4970
 " opt.TypeName.toUpper() = pt.TypeName.toUpper() and\n" 4971
 " opt.IsArray = pt.IsArray and\n" 4972
 " opt.ArraySize = pt.ArraySize"}] 4973
class Meta_Property : Meta_TypedElement 4974
{ 4975
 [Override ("Name"), Description (4976
 "The name of the property. The property name shall follow " 4977
 "the formal syntax defined by the propertyName ABNF rule " 4978
 "in ANNEX A.\n" 4979
 "Property names shall be compared case insensitively.\n" 4980
 "Property names shall be unique within its owning (i.e. " 4981
 "defining) class.\n" 4982
 "NOTE: The set of properties exposed by a class may have " 4983
 "duplicate names if a class defines a property with the " 4984
 "same name as a property it inherits without overriding " 4985
 "it.")] 4986
 string Name; 4987
 4988
 [Description (4989
 "The default value of the property, in its string " 4990
 "representation.")] 4991
 string DefaultValue []; 4992

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 147

}; 4993
 4994
// == 4995
// Method 4996
// == 4997
 4998
 [Version("2.6.0"), Description (4999
 "Models a CIM method. A CIM method is the declaration of a " 5000
 "behavioral feature of a CIM class, representing the ability " 5001
 "for invoking an associated behavior.\n" 5002
 "The CIM data type of the method defines the declared return " 5003
 "type of the method.\n" 5004
 "Methods are inherited to subclasses such that subclasses have " 5005
 "the inherited methods in addition to the methods defined in " 5006
 "the subclass. The combined set of methods defined in a class " 5007
 "and methods inherited from superclasses is called the methods " 5008
 "exposed by the class.\n" 5009
 "A class defining a method may indicate that the method " 5010
 "overrides an inherited method. In this case, the class exposes " 5011
 "only the overriding method. The characteristics of the " 5012
 "overriding method are formed by using the characteristics of " 5013
 "the overridden method as a basis, changing them as defined in " 5014
 "the overriding method, within certain limits as defined in " 5015
 "additional constraints.\n" 5016
 "The class owning an overridden method shall be a superclass " 5017
 "of the class owning the overriding method."), 5018
 ClassConstraint { 5019
 "/* An overriding method shall have the same name as the " 5020
 "method it overrides. */\n" 5021
 "inv: self.Meta_MethodOverride[OverridingMethod]->\n" 5022
 " size() = 1\n" 5023
 " implies\n" 5024
 " self.Meta_MethodOverride[OverridingMethod].\n" 5025
 " OverriddenMethod.Name.toUpper() =\n" 5026
 " self.Name.toUpper()", 5027
 "/* The return type of a method shall not be an array. */\n" 5028
 "inv: self.Meta_ElementType[Element].Type.IsArray = false", 5029
 "/* An overriding method shall have the same signature " 5030
 "(i.e. parameters and return type) as the method it " 5031
 "overrides. */\n" 5032
 "inv: Meta_MethodOverride[OverridingMethod]->size() = 1\n" 5033
 " implies\n" 5034
 " let om : Meta_Method = /* overridden method */\n" 5035
 " self.Meta_MethodOverride[OverridingMethod].\n" 5036
 " OverriddenMethod\n" 5037
 " in\n" 5038
 " om.Meta_ElementType[Element].Type.TypeName.toUpper() =\n" 5039
 " self.Meta_ElementType[Element].Type.TypeName.toUpper()\n" 5040
 " and\n" 5041

Common Information Model (CIM) Infrastructure DSP0004

148 DMTF Standard Version 2.6.0

 " Set {1 .. om.Meta_MethodParameter[OwningMethod].\n" 5042
 " OwnedParameter->size()}\n" 5043
 " ->forAll(i |\n" 5044
 " let omp : Meta_Parameter = /* parm in overridden method */\n" 5045
 " om.Meta_MethodParameter[OwningMethod].OwnedParameter->\n" 5046
 " asOrderedSet()->at(i)\n" 5047
 " in\n" 5048
 " let selfp : Meta_Parameter = /* parm in overriding method */\n" 5049
 " self.Meta_MethodParameter[OwningMethod].OwnedParameter->\n" 5050
 " asOrderedSet()->at(i)\n" 5051
 " in\n" 5052
 " omp.Name.toUpper() = selfp.Name.toUpper() and\n" 5053
 " omp.Meta_ElementType[Element].Type.TypeName.toUpper() =\n" 5054
 " selfp.Meta_ElementType[Element].Type.TypeName.toUpper()\n" 5055
 ")"}] 5056
class Meta_Method : Meta_TypedElement 5057
{ 5058
 [Override ("Name"), Description (5059
 "The name of the method. The method name shall follow " 5060
 "the formal syntax defined by the methodName ABNF rule in " 5061
 " ANNEX A.\n" 5062
 "Method names shall be compared case insensitively.\n" 5063
 "Method names shall be unique within its owning (i.e. " 5064
 "defining) class.\n" 5065
 "NOTE: The set of methods exposed by a class may have " 5066
 "duplicate names if a class defines a method with the same " 5067
 "name as a method it inherits without overriding it.")] 5068
 string Name; 5069
}; 5070
 5071
// == 5072
// Parameter 5073
// == 5074
 [Version("2.6.0"), Description (5075
 "Models a CIM parameter. A CIM parameter is the declaration of " 5076
 "a parameter of a CIM method. The return value of a " 5077
 "method is not modeled as a parameter.")] 5078
class Meta_Parameter : Meta_TypedElement 5079
{ 5080
 [Override ("Name"), Description (5081
 "The name of the parameter. The parameter name shall follow " 5082
 "the formal syntax defined by the parameterName ABNF rule " 5083
 "in ANNEX A.\n" 5084
 "Parameter names shall be compared case insensitively.")] 5085
 string Name; 5086
}; 5087
 5088
// == 5089
// Trigger 5090

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 149

// == 5091
 5092
 [Version("2.6.0"), Description (5093
 "Models a CIM trigger. A CIM trigger is the specification of a " 5094
 "rule on a CIM element that defines when the trigger is to be " 5095
 "fired.\n" 5096
 "Triggers may be fired on the following occasions:\n" 5097
 "* On creation, deletion, modification, or access of CIM " 5098
 "instances of ordinary classes and associations. The trigger is " 5099
 "specified on the class in this case and applies to all " 5100
 "instances.\n" 5101
 "* On modification, or access of a CIM property. The trigger is " 5102
 "specified on the property in this case and and applies to all " 5103
 "instances.\n" 5104
 "* Before and after the invocation of a CIM method. The trigger " 5105
 "is specified on the method in this case and and applies to all " 5106
 "invocations of the method.\n" 5107
 "* When a CIM indication is raised. The trigger is specified on " 5108
 "the indication in this case and and applies to all occurences " 5109
 "for when this indication is raised.\n" 5110
 "The rules for when a trigger is to be fired are specified with " 5111
 "the TriggerType qualifier.\n" 5112
 "The firing of a trigger shall cause the indications to be " 5113
 "raised that are associated to the trigger via " 5114
 "Meta_TriggeredIndication."), 5115
 ClassConstraint { 5116
 "/* Triggers shall be specified only on ordinary classes, " 5117
 "associations, properties (including references), methods and " 5118
 "indications. */\n" 5119
 "inv: let e : Meta_NamedElement = /* the element on which\n" 5120
 " the trigger is specified */\n" 5121
 " self.Meta_TriggeringElement[Trigger].Element\n" 5122
 " in\n" 5123
 " e.oclIsTypeOf(Meta_Class) or\n" 5124
 " e.oclIsTypeOf(Meta_Association) or\n" 5125
 " e.oclIsTypeOf(Meta_Property) or\n" 5126
 " e.oclIsTypeOf(Meta_Reference) or\n" 5127
 " e.oclIsTypeOf(Meta_Method) or\n" 5128
 " e.oclIsTypeOf(Meta_Indication)"}] 5129
class Meta_Trigger : Meta_NamedElement 5130
{ 5131
 [Override ("Name"), Description (5132
 "The name of the trigger.\n" 5133
 "Trigger names shall be compared case insensitively.\n" 5134
 "Trigger names shall be unique " 5135
 "within the property, class or method to which the trigger " 5136
 "applies.")] 5137
 string Name; 5138
}; 5139

Common Information Model (CIM) Infrastructure DSP0004

150 DMTF Standard Version 2.6.0

 5140
// == 5141
// Indication 5142
// == 5143
 5144
 [Version("2.6.0"), Description (5145
 "Models a CIM indication. An instance of a CIM indication " 5146
 "represents an event that has occurred. If an instance of an " 5147
 "indication is created, the indication is said to be raised. " 5148
 "The event causing an indication to be raised may be that a " 5149
 "trigger has fired, but other arbitrary events may cause an " 5150
 "indication to be raised as well."), 5151
 ClassConstraint { 5152
 "/* An indication shall not own any methods. */\n" 5153
 "inv: self.MethodDomain[OwningClass].OwnedMethod->size() = 0"}] 5154
class Meta_Indication : Meta_Class 5155
{ 5156
}; 5157
 5158
// == 5159
// Association 5160
// == 5161
 5162
 [Version("2.6.0"), Description (5163
 "Models a CIM association. A CIM association is a special kind " 5164
 "of CIM class that represents a relationship between two or more " 5165
 "CIM classes. A CIM association owns its association ends (i.e. " 5166
 "references). This allows for adding associations to a schema " 5167
 "without affecting the associated classes."), 5168
 ClassConstraint { 5169
 "/* The superclass of an association shall be an association. */\n" 5170
 "inv: self.Meta_Generalization[SubClass].SuperClass->\n" 5171
 " oclIsTypeOf(Meta_Association)", 5172
 "/* An association shall own two or more references. */\n" 5173
 "inv: self.Meta_PropertyDomain[OwningClass].OwnedProperty->\n" 5174
 " select(p | p.oclIsTypeOf(Meta_Reference))->size() >= 2", 5175
 "/* The number of references exposed by an association (i.e. " 5176
 "its arity) shall not change in its subclasses. */\n" 5177
 "inv: self.Meta_PropertyDomain[OwningClass].OwnedProperty->\n" 5178
 " select(p | p.oclIsTypeOf(Meta_Reference))->size() =\n" 5179
 " self.Meta_Generalization[SubClass].SuperClass->\n" 5180
 " Meta_PropertyDomain[OwningClass].OwnedProperty->\n" 5181
 " select(p | p.oclIsTypeOf(Meta_Reference))->size()"}] 5182
class Meta_Association : Meta_Class 5183
{ 5184
}; 5185
 5186
// == 5187
// Reference 5188

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 151

// == 5189
 5190
 [Version("2.6.0"), Description (5191
 "Models a CIM reference. A CIM reference is a special kind of " 5192
 "CIM property that represents an association end, as well as a " 5193
 "role the referenced class plays in the context of the " 5194
 "association owning the reference."), 5195
 ClassConstraint { 5196
 "/* A reference shall be owned by an association (i.e. not " 5197
 "by an ordinary class or by an indication). As a result " 5198
 "of this, reference names do not need to be unique within any " 5199
 "of the associated classes. */\n" 5200
 "inv: self.Meta_PropertyDomain[OwnedProperty].OwningClass.\n" 5201
 " oclIsTypeOf(Meta_Association)"}] 5202
class Meta_Reference : Meta_Property 5203
{ 5204
 [Override ("Name"), Description (5205
 "The name of the reference. The reference name shall follow " 5206
 "the formal syntax defined by the referenceName ABNF rule " 5207
 "in ANNEX A.\n" 5208
 "Reference names shall be compared case insensitively.\n" 5209
 "Reference names shall be unique within its owning (i.e. " 5210
 "defining) association.")] 5211
 string Name; 5212
}; 5213
 5214
// == 5215
// QualifierType 5216
// == 5217
 [Version("2.6.0"), Description (5218
 "Models the declaration of a CIM qualifier (i.e. a qualifier " 5219
 "type). A CIM qualifier is meta data that provides additional " 5220
 "information about the element on which the qualifier is " 5221
 "specified.\n" 5222
 "The qualifier type is either explicitly defined in the CIM " 5223
 "namespace, or implicitly defined on an element as a result of " 5224
 "a qualifier that is specified on an element for which no " 5225
 "explicit qualifier type is defined.\n" 5226
 "Implicitly defined qualifier types shall agree in data type, " 5227
 "scope, flavor and default value with any explicitly defined " 5228
 "qualifier types of the same name. \n 5229
 "DEPRECATED: The concept of implicitly defined qualifier " 5230
 "types is deprecated.")] 5231
class Meta_QualifierType : Meta_TypedElement 5232
{ 5233
 [Override ("Name"), Description (5234
 "The name of the qualifier. The qualifier name shall follow " 5235
 "the formal syntax defined by the qualifierName ABNF rule " 5236
 "in ANNEX A.\n" 5237

Common Information Model (CIM) Infrastructure DSP0004

152 DMTF Standard Version 2.6.0

 "The names of explicitly defined qualifier types shall be " 5238
 "unique within the CIM namespace. Unlike classes, " 5239
 "qualifier types are not part of a schema, so name " 5240
 "uniqueness cannot be defined at the definition level " 5241
 "relative to a schema, and is instead only defined at " 5242
 "the object level relative to a namespace.\n" 5243
 "The names of implicitly defined qualifier types shall be " 5244
 "unique within the scope of the CIM element on which the " 5245
 "qualifiers are specified.")] 5246
 string Name; 5247
 5248
 [Description (5249
 "The scopes of the qualifier. The qualifier scopes determine " 5250
 "to which kinds of elements a qualifier may be specified on. " 5251
 "Each qualifier scope shall be one of the following keywords:\n" 5252
 " \"any\" - the qualifier may be specified on any qualifiable element.\n" 5253
 " \"class\" - the qualifier may be specified on any ordinary class.\n" 5254
 " \"association\" - the qualifier may be specified on any association.\n" 5255
 " \"indication\" - the qualifier may be specified on any indication.\n" 5256
 " \"property\" - the qualifier may be specified on any ordinary property.\n" 5257
 " \"reference\" - the qualifier may be specified on any reference.\n" 5258
 " \"method\" - the qualifier may be specified on any method.\n" 5259
 " \"parameter\" - the qualifier may be specified on any parameter.\n" 5260
 "Qualifiers cannot be specified on qualifiers.")] 5261
 string Scope []; 5262
}; 5263
 5264
// == 5265
// Qualifier 5266
// == 5267
 5268
 [Version("2.6.0"), Description (5269
 "Models the specification (i.e. usage) of a CIM qualifier on an " 5270
 "element. A CIM qualifier is meta data that provides additional " 5271
 "information about the element on which the qualifier is " 5272
 "specified. The specification of a qualifier on an element " 5273
 "defines a value for the qualifier on that element.\n" 5274
 "If no explicitly defined qualifier type exists with this name " 5275
 "in the CIM namespace, the specification of a qualifier causes an " 5276
 "implicitly defined qualifier type (i.e. a Meta_QualifierType " 5277
 "element) to be created on the qualified element. \n 5278
 "DEPRECATED: The concept of implicitly defined qualifier " 5279
 "types is deprecated.")] 5280
class Meta_Qualifier : Meta_NamedElement 5281
{ 5282
 [Override ("Name"), Description (5283
 "The name of the qualifier. The qualifier name shall follow " 5284
 "the formal syntax defined by the qualifierName ABNF rule " 5285
 "in ANNEX A. \n 5286

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 153

 "The names of explicitly defined qualifier types shall be " 5287
 "unique within the CIM namespace. Unlike classes, " 5288
 "qualifier types are not part of a schema, so name " 5289
 "uniqueness cannot be defined at the definition level " 5290
 "relative to a schema, and is instead only defined at " 5291
 "the object level relative to a namespace.\n" 5292
 "The names of implicitly defined qualifier types shall be " 5293
 "unique within the scope of the CIM element on which the " 5294
 "qualifiers are specified." \n 5295
 "DEPRECATED: The concept of implicitly defined qualifier " 5296
 "types is deprecated.")] 5297
 string Name; 5298
 5299
 [Description (5300
 "The scopes of the qualifier. The qualifier scopes determine " 5301
 "to which kinds of elements a qualifier may be specified on. " 5302
 "Each qualifier scope shall be one of the following keywords:\n" 5303
 " \"any\" - the qualifier may be specified on any qualifiable element.\n" 5304
 " \"class\" - the qualifier may be specified on any ordinary class.\n" 5305
 " \"association\" - the qualifier may be specified on any association.\n" 5306
 " \"indication\" - the qualifier may be specified on any indication.\n" 5307
 " \"property\" - the qualifier may be specified on any ordinary property.\n" 5308
 " \"reference\" - the qualifier may be specified on any reference.\n" 5309
 " \"method\" - the qualifier may be specified on any method.\n" 5310
 " \"parameter\" - the qualifier may be specified on any parameter.\n" 5311
 "Qualifiers cannot be specified on qualifiers.")] 5312
 string Scope []; 5313
}; 5314
 5315
// == 5316
// Flavor 5317
// == 5318
 [Version("2.6.0"), Description (5319
 "The specification of certain characteristics of the qualifier " 5320
 "such as its value propagation from the ancestry of the " 5321
 "qualified element, and translatability of the qualifier " 5322
 "value.")] 5323
class Meta_Flavor 5324
{ 5325
 [Description (5326
 "Indicates whether the qualifier value is to be propagated " 5327
 "from the ancestry of an element in case the qualifier is " 5328
 "not specified on the element.")] 5329
 boolean InheritancePropagation; 5330
 5331
 [Description (5332
 "Indicates whether qualifier values propagated to an " 5333
 "element may be overridden by the specification of that " 5334
 "qualifier on the element.")] 5335

Common Information Model (CIM) Infrastructure DSP0004

154 DMTF Standard Version 2.6.0

 boolean OverridePermission; 5336
 5337
 [Description (5338
 "Indicates whether qualifier value is translatable.")] 5339
 boolean Translatable; 5340
}; 5341
 5342
// == 5343
// Instance 5344
// == 5345
 [Version("2.6.0"), Description (5346
 "Models a CIM instance. A CIM instance is an instance of a CIM " 5347
 "class that specifies values for a subset (including all) of the " 5348
 "properties exposed by its defining class.\n" 5349
 "A CIM instance in a CIM server shall have exactly the properties " 5350
 "exposed by its defining class.\n" 5351
 "A CIM instance cannot redefine the properties " 5352
 "or methods exposed by its defining class and cannot have " 5353
 "qualifiers specified.\n" 5354
 "A particular property shall be specified at most once in a " 5355
 "given instance.")] 5356
class Meta_Instance 5357
{ 5358
}; 5359
 5360
// == 5361
// InstanceProperty 5362
// == 5363
 [Version("2.6.0"), Description (5364
 "The definition of a property value within a CIM instance.")] 5365
class Meta_InstanceProperty 5366
{ 5367
}; 5368
 5369
// == 5370
// Value 5371
// == 5372
 [Version("2.6.0"), Description (5373
 "A typed value, used in several contexts."), 5374
 ClassConstraint { 5375
 "/* If the NULL indicator is set, no values shall be specified. " 5376
 "*/\n" 5377
 "inv: self.IsNull = true\n" 5378
 " implies self.Value->size() = 0", 5379
 "/* If values are specified, the NULL indicator shall not be " 5380
 "set. */\n" 5381
 "inv: self.Value->size() > 0\n" 5382
 " implies self.IsNull = false", 5383
 "/* A Value instance shall be owned by only one owner. */\n" 5384

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 155

 "inv: self.OwningProperty->size() +\n" 5385
 " self.OwningInstanceProperty->size() +\n" 5386
 " self.OwningQualifierType->size() +\n" 5387
 " self.OwningQualifier->size() = 1"}] 5388
class Meta_Value 5389
{ 5390
 [Description (5391
 "The scalar value or the array of values. " 5392
 "Each value is represented as a string.")] 5393
 string Value []; 5394
 5395
 [Description (5396
 "The NULL indicator of the value. " 5397
 "If true, the value is NULL. " 5398
 "If false, the value is indicated through the Value " 5399
 attribute.")] 5400
 boolean IsNull; 5401
}; 5402
 5403
// == 5404
// SpecifiedQualifier 5405
// == 5406
 [Association, Composition, Version("2.6.0")] 5407
class Meta_SpecifiedQualifier 5408
{ 5409
 [Aggregate, Min (1), Max (1), Description (5410
 "The element on which the qualifier is specified.")] 5411
 Meta_NamedElement REF OwningElement; 5412
 5413
 [Min (0), Max (NULL), Description (5414
 "The qualifier specified on the element.")] 5415
 Meta_Qualifier REF OwnedQualifier; 5416
}; 5417
 5418
// == 5419
// ElementType 5420
// == 5421
 [Association, Composition, Version("2.6.0")] 5422
class Meta_ElementType 5423
{ 5424
 [Aggregate, Min (0), Max (1), Description (5425
 "The element that has a CIM data type.")] 5426
 Meta_TypedElement REF OwningElement; 5427
 5428
 [Min (1), Max (1), Description (5429
 "The CIM data type of the element.")] 5430
 Meta_Type REF OwnedType; 5431
}; 5432
 5433

Common Information Model (CIM) Infrastructure DSP0004

156 DMTF Standard Version 2.6.0

// == 5434
// PropertyDomain 5435
// == 5436
 5437
 [Association, Composition, Version("2.6.0")] 5438
class Meta_PropertyDomain 5439
{ 5440
 [Aggregate, Min (1), Max (1), Description (5441
 "The class owning (i.e. defining) the property.")] 5442
 Meta_Class REF OwningClass; 5443
 5444
 [Min (0), Max (NULL), Description (5445
 "The property owned by the class.")] 5446
 Meta_Property REF OwnedProperty; 5447
}; 5448
 5449
// == 5450
// MethodDomain 5451
// == 5452
 5453
 [Association, Composition, Version("2.6.0")] 5454
class Meta_MethodDomain 5455
{ 5456
 [Aggregate, Min (1), Max (1), Description (5457
 "The class owning (i.e. defining) the method.")] 5458
 Meta_Class REF OwningClass; 5459
 5460
 [Min (0), Max (NULL), Description (5461
 "The method owned by the class.")] 5462
 Meta_Method REF OwnedMethod; 5463
}; 5464
 5465
// == 5466
// ReferenceRange 5467
// == 5468
 5469
 [Association, Version("2.6.0")] 5470
class Meta_ReferenceRange 5471
{ 5472
 [Min (0), Max (NULL), Description (5473
 "The reference type referencing the class.")] 5474
 Meta_ReferenceType REF ReferencingType; 5475
 5476
 [Min (1), Max (1), Description (5477
 "The class referenced by the reference type.")] 5478
 Meta_Class REF ReferencedClass; 5479
}; 5480
 5481
// == 5482

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 157

// QualifierTypeFlavor 5483
// == 5484
 5485
 [Association, Composition, Version("2.6.0")] 5486
class Meta_QualifierTypeFlavor 5487
{ 5488
 [Aggregate, Min (1), Max (1), Description (5489
 "The qualifier type defining the flavor.")] 5490
 Meta_QualifierType REF QualifierType; 5491
 5492
 [Min (1), Max (1), Description (5493
 "The flavor of the qualifier type.")] 5494
 Meta_Flavor REF Flavor; 5495
}; 5496
 5497
// == 5498
// Generalization 5499
// == 5500
 5501
 [Association, Version("2.6.0")] 5502
class Meta_Generalization 5503
{ 5504
 [Min (0), Max (NULL), Description (5505
 "The subclass of the class.")] 5506
 Meta_Class REF SubClass; 5507
 5508
 [Min (0), Max (1), Description (5509
 "The superclass of the class.")] 5510
 Meta_Class REF SuperClass; 5511
}; 5512
 5513
// == 5514
// PropertyOverride 5515
// == 5516
 5517
 [Association, Version("2.6.0")] 5518
class Meta_PropertyOverride 5519
{ 5520
 [Min (0), Max (NULL), Description (5521
 "The property overriding this property.")] 5522
 Meta_Property REF OverridingProperty; 5523
 5524
 [Min (0), Max (1), Description (5525
 "The property overridden by this property.")] 5526
 Meta_Property REF OverriddenProperty; 5527
}; 5528
 5529
// == 5530
// MethodOverride 5531

Common Information Model (CIM) Infrastructure DSP0004

158 DMTF Standard Version 2.6.0

// == 5532
 5533
 [Association, Version("2.6.0")] 5534
class Meta_MethodOverride 5535
{ 5536
 [Min (0), Max (NULL), Description (5537
 "The method overriding this method.")] 5538
 Meta_Method REF OverridingMethod; 5539
 5540
 [Min (0), Max (1), Description (5541
 "The method overridden by this method.")] 5542
 Meta_Method REF OverriddenMethod; 5543
}; 5544
 5545
// == 5546
// SchemaElement 5547
// == 5548
 5549
 [Association, Composition, Version("2.6.0")] 5550
class Meta_SchemaElement 5551
{ 5552
 [Aggregate, Min (1), Max (1), Description (5553
 "The schema owning the element.")] 5554
 Meta_Schema REF OwningSchema; 5555
 5556
 [Min (0), Max (NULL), Description (5557
 "The elements owned by the schema.")] 5558
 Meta_NamedElement REF OwnedElement; 5559
}; 5560
 5561
// == 5562
// MethodParameter 5563
// == 5564
 [Association, Composition, Version("2.6.0")] 5565
class Meta_MethodParameter 5566
{ 5567
 [Aggregate, Min (1), Max (1), Description (5568
 "The method owning (i.e. defining) the parameter.")] 5569
 Meta_Method REF OwningMethod; 5570
 5571
 [Min (0), Max (NULL), Description (5572
 "The parameter of the method. The return value " 5573
 "is not represented as a parameter.")] 5574
 Meta_Parameter REF OwnedParameter; 5575
}; 5576
 5577
// == 5578
// SpecifiedProperty 5579
// == 5580

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 159

 [Association, Composition, Version("2.6.0")] 5581
class Meta_SpecifiedProperty 5582
{ 5583
 [Aggregate, Min (1), Max (1), Description (5584
 "The instance for which a property value is defined.")] 5585
 Meta_Instance REF OwningInstance; 5586
 5587
 [Min (0), Max (NULL), Description (5588
 "The property value specified by the instance.")] 5589
 Meta_PropertyValue REF OwnedPropertyValue; 5590
}; 5591
 5592
// == 5593
// DefiningClass 5594
// == 5595
 [Association, Version("2.6.0")] 5596
class Meta_DefiningClass 5597
{ 5598
 [Min (0), Max (NULL), Description (5599
 "The instances for which the class is their defining class.")] 5600
 Meta_Instance REF Instance; 5601
 5602
 [Min (1), Max (1), Description (5603
 "The defining class of the instance.")] 5604
 Meta_Class REF DefiningClass; 5605
}; 5606
 5607
// == 5608
// DefiningQualifier 5609
// == 5610
 [Association, Version("2.6.0")] 5611
class Meta_DefiningQualifier 5612
{ 5613
 [Min (0), Max (NULL), Description (5614
 "The specification (i.e. usage) of the qualifier.")] 5615
 Meta_Qualifier REF Qualifier; 5616
 5617
 [Min (1), Max (1), Description (5618
 "The qualifier type defining the characteristics of the " 5619
 "qualifier.")] 5620
 Meta_QualifierType REF QualifierType; 5621
}; 5622
 5623
// == 5624
// DefiningProperty 5625
// == 5626
 [Association, Version("2.6.0")] 5627
class Meta_DefiningProperty 5628
{ 5629

Common Information Model (CIM) Infrastructure DSP0004

160 DMTF Standard Version 2.6.0

 [Min (1), Max (1), Description (5630
 "A value of this property in an instance.")] 5631
 Meta_PropertyValue REF InstanceProperty; 5632
 5633
 [Min (0), Max (NULL), Description (5634
 "The declaration of the property for which a value is " 5635
 "defined.")] 5636
 Meta_Property REF DefiningProperty; 5637
}; 5638
 5639
// == 5640
// ElementQualifierType 5641
// == 5642
 [Association, Version("2.6.0"), Description (5643
 "DEPRECATED: The concept of implicitly defined qualifier " 5644
 "types is deprecated.")] 5645
class Meta_ElementQualifierType 5646
{ 5647
 [Min (0), Max (1), Description (5648
 "For implicitly defined qualifier types, the element on " 5649
 "which the qualifier type is defined.\n" 5650
 "Qualifier types defined explicitly are not " 5651
 "associated to elements, they are global in the CIM " 5652
 "namespace.")] 5653
 Meta_NamedElement REF Element; 5654
 5655
 [Min (0), Max (NULL), Description (5656
 "The qualifier types implicitly defined on the element.\n" 5657
 "Qualifier types defined explicitly are not " 5658
 "associated to elements, they are global in the CIM " 5659
 "namespace.")] 5660
 Meta_QualifierType REF QualifierType; 5661
}; 5662
 5663
// == 5664
// TriggeringElement 5665
// == 5666
 [Association, Version("2.6.0")] 5667
class Meta_TriggeringElement 5668
{ 5669
 [Min (0), Max (NULL), Description (5670
 "The triggers specified on the element.")] 5671
 Meta_Trigger REF Trigger; 5672
 5673
 [Min (1), Max (NULL), Description (5674
 "The CIM element on which the trigger is specified.")] 5675
 Meta_NamedElement REF Element; 5676
}; 5677
 5678

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 161

// == 5679
// TriggeredIndication 5680
// == 5681
 [Association, Version("2.6.0")] 5682
class Meta_TriggeredIndication 5683
{ 5684
 [Min (0), Max (NULL), Description (5685
 "The triggers specified on the element.")] 5686
 Meta_Trigger REF Trigger; 5687
 5688
 [Min (0), Max (NULL), Description (5689
 "The CIM element on which the trigger is specified.")] 5690
 Meta_Indication REF Indication; 5691
}; 5692
// == 5693
// ValueType 5694
// == 5695
 [Association, Composition, Version("2.6.0")] 5696
class Meta_ValueType 5697
{ 5698
 [Aggregate, Min (0), Max (1), Description (5699
 "The value that has a CIM data type.")] 5700
 Meta_Value REF OwningValue; 5701
 5702
 [Min (1), Max (1), Description (5703
 "The type of this value.")] 5704
 Meta_Type REF OwnedType; 5705
}; 5706
 5707
// == 5708
// PropertyDefaultValue 5709
// == 5710
 [Association, Composition, Version("2.6.0")] 5711
class Meta_PropertyDefaultValue 5712
{ 5713
 [Aggregate, Min (0), Max (1), Description (5714
 "A property declaration that defines this value as its " 5715
 "default value.")] 5716
 Meta_Property REF OwningProperty; 5717
 5718
 [Min (0), Max (1), Description (5719
 "The default value of the property declaration. A Value " 5720
 "instance shall be associated if and only if a default " 5721
 "value is defined on the property declaration.")] 5722
 Meta_Value REF OwnedDefaultValue; 5723
}; 5724
 5725
// == 5726
// QualifierTypeDefaultValue 5727

Common Information Model (CIM) Infrastructure DSP0004

162 DMTF Standard Version 2.6.0

// == 5728
 [Association, Composition, Version("2.6.0")] 5729
class Meta_QualifierTypeDefaultValue 5730
{ 5731
 [Aggregate, Min (0), Max (1), Description (5732
 "A qualifier type declaration that defines this value as " 5733
 "its default value.")] 5734
 Meta_QualifierType REF OwningQualifierType; 5735
 5736
 [Min (0), Max (1), Description (5737
 "The default value of the qualifier declaration. A Value " 5738
 "instance shall be associated if and only if a default " 5739
 "value is defined on the qualifier declaration.")] 5740
 Meta_Value REF OwnedDefaultValue; 5741
}; 5742
 5743
// == 5744
// PropertyValue 5745
// == 5746
 [Association, Composition, Version("2.6.0")] 5747
class Meta_PropertyValue 5748
{ 5749
 [Aggregate, Min (0), Max (1), Description (5750
 "A property defined in an instance that has this value.")] 5751
 Meta_InstanceProperty REF OwningInstanceProperty; 5752
 5753
 [Min (1), Max (1), Description (5754
 "The value of the property.")] 5755
 Meta_Value REF OwnedValue; 5756
 5757
// == 5758
// QualifierValue 5759
// == 5760
 [Association, Composition, Version("2.6.0")] 5761
class Meta_QualifierValue 5762
{ 5763
 [Aggregate, Min (0), Max (1), Description (5764
 "A qualifier defined on a schema element that has this " 5765
 "value.")] 5766
 Meta_Qualifier REF OwningQualifier; 5767
 5768
 [Min (1), Max (1), Description (5769
 "The value of the qualifier.")] 5770
 Meta_Value REF OwnedValue; 5771
}; 5772

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 163

ANNEX C 5773
(normative) 5774

 5775
Units 5776

C.1 Programmatic Units 5777

This annex defines the concept and syntax of a programmatic unit, which is an expression of a unit of 5778
measure for programmatic access. It makes it easy to recognize the base units of which the actual unit is 5779
made, as well as any numerical multipliers. Programmatic units are used as a value for the PUnit qualifier 5780
and also as a value for any (string typed) CIM elements that represent units. The boolean IsPUnit qualifier 5781
is used to declare that a string typed element follows the syntax for programmatic units. 5782

Programmatic units must be processed case-sensitively and white-space-sensitively. 5783

As defined in the Augmented BNF (ABNF) syntax, the programmatic unit consists of a base unit that is 5784
optionally followed by other base units that are each either multiplied or divided into the first base unit. 5785
Furthermore, two optional multipliers can be applied. The first is simply a scalar, and the second is an 5786
exponential number consisting of a base and an exponent. The optional multipliers enable the 5787
specification of common derived units of measure in terms of the allowed base units. The base units 5788
defined in this subclause include a superset of the SI base units. When a unit is the empty string, the 5789
value has no unit; that is, it is dimensionless. The multipliers must be understood as part of the definition 5790
of the derived unit; that is, scale prefixes of units are replaced with their numerical value. For example, 5791
"kilometer" is represented as "meter * 1000", replacing the "kilo" scale prefix with the numerical factor 5792
1000. 5793

A string representing a programmatic unit must follow the format defined by the programmatic-unit 5794
ABNF rule in the syntax defined in this annex. This format supports any type of unit, including SI units, 5795
United States units, and any other standard or non-standard units. 5796

The ABNF syntax is defined as follows. This ABNF explicitly states any whitespace characters that may 5797
be used, and whitespace characters in addition to those are not allowed. 5798

programmatic-unit = ("" / base-unit *([WS] multiplied-base-unit) 5799
 *([WS] divided-base-unit) [[WS] modifier1] [[WS] modifier2]) 5800
 5801
multiplied-base-unit = "*" [WS] base-unit 5802
 5803
divided-base-unit = "/" [WS] base-unit 5804
 5805
modifier1 = operator [WS] number 5806
 5807
modifier2 = operator [WS] base [WS] "^" [WS] exponent 5808
 5809
operator = "*" / "/" 5810
 5811
number = ["+" / "-"] positive-number 5812
 5813
base = positive-whole-number 5814
 5815
exponent = ["+" / "-"] positive-whole-number 5816

Common Information Model (CIM) Infrastructure DSP0004

164 DMTF Standard Version 2.6.0

 5817
positive-whole-number = NON-ZERO-DIGIT *(DIGIT) 5818
 5819
positive-number = positive-whole-number 5820
 / ((positive-whole-number / ZERO) "." *(DIGIT)) 5821
 5822
base-unit = simple-name / decibel-base-unit 5823
 5824
simple-name = FIRST-UNIT-CHAR *([S] UNIT-CHAR) 5825
 5826
decibel-base-unit = "decibel" [[S] "(" [S] simple-name [S] ")"] 5827
 5828
FIRST-UNIT-CHAR = UPPERALPHA / LOWERALPHA / UNDERSCORE / UCS0080TOFFEF 5829
 ; DEPRECATED: The use of the UCS0080TOFFEF ABNF rule within 5830
 ; the FIRST-UNIT-CHAR ABNF rule is deprecated since 5831
 ; version 2.6.0 of this document. 5832
 5833
UNIT-CHAR = FIRST-UNIT-CHAR / S / HYPHEN / DIGIT 5834
 5835
ZERO = "0" 5836
 5837
NON-ZERO-DIGIT = ("1"..."9") 5838
 5839
DIGIT = ZERO / NON-ZERO-DIGIT 5840
 5841
WS = (S / TAB / NL) 5842
 5843
S = U+0020 ; " " (space) 5844
 5845
TAB = U+0009 ; "\t" (tab) 5846
 5847
NL = U+000A ; "\n" (newline, linefeed) 5848
 5849
HYPHEN = U+000A ; "-" (hyphen, minus) 5850

The ABNF rules UPPERALPHA, LOWERALPHA, UNDERSCORE, UCS0080TOFFEF are defined in 5851
 ANNEX A. 5852

For example, a speedometer may be modeled so that the unit of measure is kilometers per hour. It is 5853
necessary to express the derived unit of measure "kilometers per hour" in terms of the allowed base units 5854
"meter" and "second". One kilometer per hour is equivalent to 5855

1000 meters per 3600 seconds 5856
or 5857
one meter / second / 3.6 5858

so the programmatic unit for "kilometers per hour" is expressed as: "meter / second / 3.6", using the 5859
syntax defined here. 5860

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 165

Other examples are as follows: 5861

"meter * meter * 10^-6" → square millimeters 5862
"byte * 2^10" → kBytes as used for memory ("kibobyte") 5863
"byte * 10^3" → kBytes as used for storage ("kilobyte") 5864
"dataword * 4" → QuadWords 5865
"decibel(m) * -1" → -dBm 5866
"second * 250 * 10^-9" → 250 nanoseconds 5867
"foot * foot * foot / minute" → cubic feet per minute, CFM 5868
"revolution / minute" → revolutions per minute, RPM 5869
"pound / inch / inch" → pounds per square inch, PSI 5870
"foot * pound" → foot-pounds 5871

In the "PU Base Unit" column, Table C-1 defines the allowed values for the base-unit ABNF rule in the 5872
syntax, as well as the empty string indicating no unit. The "Symbol" column recommends a symbol to be 5873
used in a human interface. The "Calculation" column relates units to other units. The "Quantity" column 5874
lists the physical quantity measured by the unit. 5875

The base units in Table C-1 consist of the SI base units and the SI derived units amended by other 5876
commonly used units. "SI" is the international abbreviation for the International System of Units (French: 5877
"Système International d’Unites"), defined in ISO 1000:1992. Also, ISO 1000:1992 defines the notational 5878
conventions for units, which are used in Table C-1. 5879

Table C-1 – Base Units for Programmatic Units 5880

PU Base Unit Symbol Calculation Quantity

 No unit, dimensionless unit (the empty string)

percent % 1 % = 1/100 Ratio (dimensionless unit)

permille ‰ 1 ‰ = 1/1000 Ratio (dimensionless unit)

decibel dB 1 dB = 10 · lg
(P/P0)
1 dB = 20 · lg
(U/U0)

Logarithmic ratio (dimensionless unit)
Used with a factor of 10 for power, intensity, and so on. Used
with a factor of 20 for voltage, pressure, loudness of sound,
and so on

count Unit for counted items or phenomenons. The description of
the schema element using this unit should describe what kind
of item or phenomenon is counted.

revolution rev 1 rev = 360° Turn, plane angle

degree ° 180° = pi rad Plane angle

radian rad 1 rad = 1 m/m Plane angle

steradian sr 1 sr = 1 m²/m² Solid angle

bit bit Quantity of information

byte B 1 B = 8 bit Quantity of information

dataword word 1 word = N bit Quantity of information. The number of bits depends on the
computer architecture.

meter m SI base unit Length (The corresponding ISO SI unit is "metre.")

inch in 1 in = 0.0254 m Length

Common Information Model (CIM) Infrastructure DSP0004

166 DMTF Standard Version 2.6.0

PU Base Unit Symbol Calculation Quantity

rack unit U 1 U = 1.75 in Length (height unit used for computer components, as
defined in EIA-310)

foot ft 1 ft = 12 in Length

yard yd 1 yd = 3 ft Length

mile mi 1 mi = 1760 yd Length (U.S. land mile)

liter l 1000 l = 1 m³ Volume
(The corresponding ISO SI unit is "litre.")

fluid ounce fl.oz 33.8140227 fl.oz
= 1 l

Volume for liquids (U.S. fluid ounce)

liquid gallon gal 1 gal = 128 fl.oz Volume for liquids (U.S. liquid gallon)

mole mol SI base unit Amount of substance

kilogram kg SI base unit Mass

ounce oz 35.27396195 oz =
1 kg

Mass (U.S. ounce, avoirdupois ounce)

pound lb 1 lb = 16 oz Mass (U.S. pound, avoirdupois pound)

second s SI base unit Time (duration)

minute min 1 min = 60 s Time (duration)

hour h 1 h = 60 min Time (duration)

day d 1 d = 24 h Time (duration)

week week 1 week = 7 d Time (duration)

hertz Hz 1 Hz = 1 /s Frequency

gravity g 1 g = 9.80665
m/s²

Acceleration

degree celsius °C 1 °C = 1 K (diff) Thermodynamic temperature

degree fahrenheit °F 1 °F = 5/9 K (diff) Thermodynamic temperature

kelvin K SI base unit Thermodynamic temperature, color temperature

candela cd SI base unit Luminous intensity

lumen lm 1 lm = 1 cd·sr Luminous flux

nit nit 1 nit = 1 cd/m² Luminance

lux lx 1 lx = 1 lm/m² Illuminance

newton N 1 N = 1 kg·m/s² Force

pascal Pa 1 Pa = 1 N/m² Pressure

bar bar 1 bar = 100000
Pa

Pressure

decibel(A) dB(A) 1 dB(A) = 20 lg
(p/p0)

Loudness of sound, relative to reference sound pressure
level of p0 = 20 µPa in gases, using frequency weight curve
(A)

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 167

PU Base Unit Symbol Calculation Quantity

decibel(C) dB(C) 1 dB(C) = 20 · lg
(p/p0)

Loudness of sound, relative to reference sound pressure
level of p0 = 20 µPa in gases, using frequency weight curve
(C)

joule J 1 J = 1 N·m Energy, work, torque, quantity of heat

watt W 1 W = 1 J/s = 1
V · A

Power, radiant flux. In electric power technology, the real
power (also known as active power or effective power or true
power)

volt ampere VA 1 VA = 1 V · A In electric power technology, the apparent power

volt ampere
reactive

var 1 var = 1 V · A In electric power technology, the reactive power (also known
as imaginary power)

decibel(m) dBm 1 dBm = 10 · lg
(P/P0)

Power, relative to reference power of P0 = 1 mW

british thermal unit BTU 1 BTU = 1055.056
J

Energy, quantity of heat. The ISO definition of BTU is used
here, out of multiple definitions.

ampere A SI base unit Electric current, magnetomotive force

coulomb C 1 C = 1 A·s Electric charge

volt V 1 V = 1 W/A Electric tension, electric potential, electromotive force

farad F 1 F = 1 C/V Capacitance

ohm Ohm 1 Ohm = 1 V/A Electric resistance

siemens S 1 S = 1 /Ohm Electric conductance

weber Wb 1 Wb = 1 V·s Magnetic flux

tesla T 1 T = 1 Wb/m² Magnetic flux density, magnetic induction

henry H 1 H = 1 Wb/A Inductance

becquerel Bq 1 Bq = 1 /s Activity (of a radionuclide)

gray Gy 1 Gy = 1 J/kg Absorbed dose, specific energy imparted, kerma, absorbed
dose index

sievert Sv 1 Sv = 1 J/kg Dose equivalent, dose equivalent index

C.2 Value for Units Qualifier 5881

DEPRECATED 5882

The Units qualifier has been used both for programmatic access and for displaying a unit. Because it 5883
does not satisfy the full needs of either of these uses, the Units qualifier is deprecated. The PUnit qualifier 5884
should be used instead for programmatic access. 5885

DEPRECATED 5886

For displaying a unit, the CIM client should construct the string to be displayed from the PUnit qualifier 5887
using the conventions of the CIM client. 5888

The UNITS qualifier specifies the unit of measure in which the qualified property, method return value, or 5889
method parameter is expressed. For example, a Size property might have Units (Bytes). The complete 5890
set of DMTF-defined values for the Units qualifier is as follows: 5891

Common Information Model (CIM) Infrastructure DSP0004

168 DMTF Standard Version 2.6.0

• Bits, KiloBits, MegaBits, GigaBits 5892

• < Bits, KiloBits, MegaBits, GigaBits> per Second 5893

• Bytes, KiloBytes, MegaBytes, GigaBytes, Words, DoubleWords, QuadWords 5894

• Degrees C, Tenths of Degrees C, Hundredths of Degrees C, Degrees F, Tenths of Degrees F, 5895
Hundredths of Degrees F, Degrees K, Tenths of Degrees K, Hundredths of Degrees K, Color 5896
Temperature 5897

• Volts, MilliVolts, Tenths of MilliVolts, Amps, MilliAmps, Tenths of MilliAmps, Watts, 5898
MilliWattHours 5899

• Joules, Coulombs, Newtons 5900

• Lumen, Lux, Candelas 5901

• Pounds, Pounds per Square Inch 5902

• Cycles, Revolutions, Revolutions per Minute, Revolutions per Second 5903

• Minutes, Seconds, Tenths of Seconds, Hundredths of Seconds, MicroSeconds, MilliSeconds, 5904
NanoSeconds 5905

• Hours, Days, Weeks 5906

• Hertz, MegaHertz 5907

• Pixels, Pixels per Inch 5908

• Counts per Inch 5909

• Percent, Tenths of Percent, Hundredths of Percent, Thousandths 5910

• Meters, Centimeters, Millimeters, Cubic Meters, Cubic Centimeters, Cubic Millimeters 5911

• Inches, Feet, Cubic Inches, Cubic Feet, Ounces, Liters, Fluid Ounces 5912

• Radians, Steradians, Degrees 5913

• Gravities, Pounds, Foot-Pounds 5914

• Gauss, Gilberts, Henrys, MilliHenrys, Farads, MilliFarads, MicroFarads, PicoFarads 5915

• Ohms, Siemens 5916

• Moles, Becquerels, Parts per Million 5917

• Decibels, Tenths of Decibels 5918

• Grays, Sieverts 5919

• MilliWatts 5920

• DBm 5921

• <Bytes, KiloBytes, MegaBytes, GigaBytes> per Second 5922

• BTU per Hour 5923

• PCI clock cycles 5924

• <Numeric value> <Minutes, Seconds, Tenths of Seconds, Hundreths of Seconds, 5925
MicroSeconds, MilliSeconds, Nanoseconds> 5926

• Us 5927

• Amps at <Numeric Value> Volts 5928

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 169

• Clock Ticks 5929

• Packets, per Thousand Packets 5930

Common Information Model (CIM) Infrastructure DSP0004

170 DMTF Standard Version 2.6.0

ANNEX D 5931
(informative) 5932

 5933
UML Notation 5934

The CIM meta-schema notation is directly based on the notation used in Unified Modeling Language 5935
(UML). There are distinct symbols for all the major constructs in the schema except qualifiers (as opposed 5936
to properties, which are directly represented in the diagrams). 5937

In UML, a class is represented by a rectangle. The class name either stands alone in the rectangle or is in 5938
the uppermost segment of the rectangle. If present, the segment below the segment with the name 5939
contains the properties of the class. If present, a third region contains methods. 5940

A line decorated with a triangle indicates an inheritance relationship; the lower rectangle represents a 5941
subtype of the upper rectangle. The triangle points to the superclass. 5942

Other solid lines represent relationships. The cardinality of the references on either side of the 5943
relationship is indicated by a decoration on either end. The following character combinations are 5944
commonly used: 5945

• "1" indicates a single-valued, required reference 5946

• "0…1" indicates an optional single-valued reference 5947

• "*" indicates an optional many-valued reference (as does "0..*") 5948

• "1..*" indicates a required many-valued reference 5949

A line connected to a rectangle by a dotted line represents a subclass relationship between two 5950
associations. The diagramming notation and its interpretation are summarized in Table D-1. 5951

Table D-1 – Diagramming Notation and Interpretation Summary 5952

Meta Element Interpretation Diagramming Notation

Object
Class Name:

Key Value

Property Name
= Property Value

Primitive type Text to the right of the colon in the
center portion of the class icon

;Class

Method

Property

Class name

Subclass

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 171

Meta Element Interpretation Diagramming Notation

Association 1:1

1:Many

1:zero or 1

Aggregation

1
1

1
*

1
0..1

Association with
properties

A link-class that has the same
name as the association and uses
normal conventions for
representing properties and
methods

Association
Name

Property

Association with
subclass

A dashed line running from the
sub-association to the super class

Property Middle section of the class icon is
a list of the properties of the class

Method

Property

Class name

Reference One end of the association line
labeled with the name of the
reference

Reference
Name

Method Lower section of the class icon is
a list of the methods of the class

Method

Property

Class name

Overriding No direct equivalent

NOTE: Use of the same name does
not imply overriding.

Indication Message trace diagram in which
vertical bars represent objects and
horizontal lines represent
messages

Trigger State transition diagrams

Qualifier No direct equivalent

Common Information Model (CIM) Infrastructure DSP0004

172 DMTF Standard Version 2.6.0

ANNEX E 5953
 (informative) 5954

 5955
Guidelines 5956

The following are general guidelines for CIM modeling: 5957

• Method descriptions are recommended and must, at a minimum, indicate the method’s side 5958
effects (pre- and post-conditions). 5959

• Leading underscores in identifiers are to be discouraged and not used at all in the standard 5960
schemas. 5961

• It is generally recommended that class names not be reused as part of property or method 5962
names. Property and method names are already unique within their defining class. 5963

• To enable information sharing among different CIM implementations, the MaxLen qualifier 5964
should be used to specify the maximum length of string properties. 5965

• When extending a schema (i.e., CIM schema or extension schema) with new classes, existing 5966
classes should be considered as superclasses of such new classes as appropriate, in order to 5967
increase schema consistency. 5968

E.1 SQL Reserved Words 5969

Avoid using SQL reserved words in class and property names. This restriction particularly applies to 5970
property names because class names are prefixed by the schema name, making a clash with a reserved 5971
word unlikely. The current set of SQL reserved words is as follows: 5972

From sql1992.txt: 5973

AFTER ALIAS ASYNC BEFORE
BOOLEAN BREADTH COMPLETION CALL
CYCLE DATA DEPTH DICTIONARY
EACH ELSEIF EQUALS GENERAL
IF IGNORE LEAVE LESS
LIMIT LOOP MODIFY NEW
NONE OBJECT OFF OID
OLD OPERATION OPERATORS OTHERS
PARAMETERS PENDANT PREORDER PRIVATE
PROTECTED RECURSIVE REF REFERENCING
REPLACE RESIGNAL RETURN RETURNS
ROLE ROUTINE ROW SAVEPOINT
SEARCH SENSITIVE SEQUENCE SIGNAL
SIMILAR SQLEXCEPTION SQLWARNING STRUCTURE
TEST THERE TRIGGER TYPE
UNDER VARIABLE VIRTUAL VISIBLE
WAIT WHILE WITHOUT

From Annex E of sql1992.txt: 5974

ABSOLUTE ACTION ADD ALLOCATE
ALTER ARE ASSERTION AT
BETWEEN BIT BIT_LENGTH BOTH

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 173

CASCADE CASCADED CASE CAST
CATALOG CHAR_LENGTH CHARACTER_LENGTH COALESCE
COLLATE COLLATION COLUMN CONNECT
CONNECTION CONSTRAINT CONSTRAINTS CONVERT
CORRESPONDING CROSS CURRENT_DATE CURRENT_TIME
CURRENT_TIMESTAMP CURRENT_USER DATE DAY
DEALLOCATE DEFERRABLE DEFERRED DESCRIBE
DESCRIPTOR DIAGNOSTICS DISCONNECT DOMAIN
DROP ELSE END-EXEC EXCEPT
EXCEPTION EXECUTE EXTERNAL EXTRACT
FALSE FIRST FULL GET
GLOBAL HOUR IDENTITY IMMEDIATE
INITIALLY INNER INPUT INSENSITIVE
INTERSECT INTERVAL ISOLATION JOIN
LAST LEADING LEFT LEVEL
LOCAL LOWER MATCH MINUTE
MONTH NAMES NATIONAL NATURAL
NCHAR NEXT NO NULLIF
OCTET_LENGTH ONLY OUTER OUTPUT
OVERLAPS PAD PARTIAL POSITION
PREPARE PRESERVE PRIOR READ
RELATIVE RESTRICT REVOKE RIGHT
ROWS SCROLL SECOND SESSION
SESSION_USER SIZE SPACE SQLSTATE
SUBSTRING SYSTEM_USER TEMPORARY THEN
TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE
TRAILING TRANSACTION TRANSLATE TRANSLATION
TRIM TRUE UNKNOWN UPPER
USAGE USING VALUE VARCHAR
VARYING WHEN WRITE YEAR
ZONE

From Annex E of sql3part2.txt: 5975

ACTION ACTOR AFTER ALIAS
ASYNC ATTRIBUTES BEFORE BOOLEAN
BREADTH COMPLETION CURRENT_PATH CYCLE
DATA DEPTH DESTROY DICTIONARY
EACH ELEMENT ELSEIF EQUALS
FACTOR GENERAL HOLD IGNORE
INSTEAD LESS LIMIT LIST
MODIFY NEW NEW_TABLE NO
NONE OFF OID OLD
OLD_TABLE OPERATION OPERATOR OPERATORS
PARAMETERS PATH PENDANT POSTFIX
PREFIX PREORDER PRIVATE PROTECTED
RECURSIVE REFERENCING REPLACE ROLE
ROUTINE ROW SAVEPOINT SEARCH
SENSITIVE SEQUENCE SESSION SIMILAR
SPACE SQLEXCEPTION SQLWARNING START
STATE STRUCTURE SYMBOL TERM
TEST THERE TRIGGER TYPE
UNDER VARIABLE VIRTUAL VISIBLE

Common Information Model (CIM) Infrastructure DSP0004

174 DMTF Standard Version 2.6.0

WAIT WITHOUT

From Annex E of sql3part4.txt: 5976

CALL DO ELSEIF EXCEPTION
IF LEAVE LOOP OTHERS
RESIGNAL RETURN RETURNS SIGNAL
TUPLE WHILE

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 175

ANNEX F 5977
(normative) 5978

 5979
EmbeddedObject and EmbeddedInstance Qualifiers 5980

Use of the EmbeddedObject and EmbeddedInstance qualifiers is motivated by the need to include the 5981
data of a specific instance in an indication (event notification) or to capture the contents of an instance at 5982
a point in time (for example, to include the CIM_DiagnosticSetting properties that dictate a particular 5983
CIM_DiagnosticResult in the Result object). 5984

Therefore, the next major version of the CIM Specification is expected to include a separate data type for 5985
directly representing instances (or snapshots of instances). Until then, the EmbeddedObject and 5986
EmbeddedInstance qualifiers can be used to achieve an approximately equivalent effect. They permit a 5987
CIM object manager (or other entity) to simulate embedded instances or classes by encoding them as 5988
strings when they are presented externally. Embedded instances can have properties that again are 5989
defined to contain embedded objects. CIM clients that do not handle embedded objects may treat 5990
properties with this qualifier just like any other string-valued property. CIM clients that do want to realize 5991
the capability of embedded objects can extract the embedded object information by decoding the 5992
presented string value. 5993

To reduce the parsing burden, the encoding that represents the embedded object in the string value 5994
depends on the protocol or representation used for transmitting the containing instance. This dependency 5995
makes the string value appear to vary according to the circumstances in which it is observed. This is an 5996
acknowledged weakness of using a qualifier instead of a new data type. 5997

This document defines the encoding of embedded objects for the MOF representation and for the CIM-5998
XML protocol. When other protocols or representations are used to communicate with embedded object-5999
aware consumers of CIM data, they must include particulars on the encoding for the values of string-6000
typed elements qualified with EmbeddedObject or EmbeddedInstance. 6001

F.1 Encoding for MOF 6002

When the values of string-typed elements qualified with EmbeddedObject or EmbeddedInstance are 6003
rendered in MOF, the embedded object must be encoded into string form using the MOF syntax for the 6004
instanceDeclaration nonterminal in embedded instances or for the classDeclaration, 6005
assocDeclaration, or indicDeclaration ABNF rules, as appropriate in embedded classes (see 6006
 ANNEX A). 6007
EXAMPLES: 6008

instance of CIM_InstCreation { 6009
 EventTime = "20000208165854.457000-360"; 6010
 SourceInstance = 6011
 "instance of CIM_Fan {\n" 6012
 "DeviceID = \"Fan 1\";\n" 6013
 "Status = \"Degraded\";\n" 6014
 "};\n"; 6015
}; 6016
 6017
instance of CIM_ClassCreation { 6018
 EventTime = "20031120165854.457000-360"; 6019
 ClassDefinition = 6020
 "class CIM_Fan : CIM_CoolingDevice {\n" 6021

Common Information Model (CIM) Infrastructure DSP0004

176 DMTF Standard Version 2.6.0

 " boolean VariableSpeed;\n" 6022
 " [Units (\"Revolutions per Minute\")]\n" 6023
 " uint64 DesiredSpeed;\n" 6024
 "};\n" 6025
}; 6026

F.2 Encoding for CIM Protocols 6027

The rendering of values of string-typed elements qualified with EmbeddedObject or EmbeddedInstance in 6028
CIM protocols is defined in the specifications defining these protocols. 6029

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 177

ANNEX G 6030
(informative) 6031

 6032
Schema Errata 6033

Based on the concepts and constructs in this document, the CIM schema is expected to evolve for the 6034
following reasons: 6035

• To add new classes, associations, qualifiers, properties and/or methods. This task is addressed 6036
in 5.3. 6037

• To correct errors in the Final Release versions of the schema. This task fixes errata in the CIM 6038
schemas after their final release. 6039

• To deprecate and update the model by labeling classes, associations, qualifiers, and so on as 6040
"not recommended for future development" and replacing them with new constructs. This task is 6041
addressed by the Deprecated qualifier described in 5.5.3.11. 6042

Examples of errata to correct in CIM schemas are as follows: 6043

• Incorrectly or incompletely defined keys (an array defined as a key property, or incompletely 6044
specified propagated keys) 6045

• Invalid subclassing, such as subclassing an optional association from a weak relationship (that 6046
is, a mandatory association), subclassing a nonassociation class from an association, or 6047
subclassing an association but having different reference names that result in three or more 6048
references on an association 6049

• Class references reversed as defined by an association's roles (antecedent/dependent 6050
references reversed) 6051

• Use of SQL reserved words as property names 6052

• Violation of semantics, such as missing Min(1) on a Weak relationship, contradicting that a 6053
weak relationship is mandatory 6054

Errata are a serious matter because the schema should be correct, but the needs of existing 6055
implementations must be taken into account. Therefore, the DMTF has defined the following process (in 6056
addition to the normal release process) with respect to any schema errata: 6057

a) Any error should promptly be reported to the Technical Committee (technical@dmtf.org) for 6058
review. Suggestions for correcting the error should also be made, if possible. 6059

b) The Technical Committee documents its findings in an email message to the submitter within 21 6060
days. These findings report the Committee's decision about whether the submission is a valid 6061
erratum, the reasoning behind the decision, the recommended strategy to correct the error, and 6062
whether backward compatibility is possible. 6063

c) If the error is valid, an email message is sent (with the reply to the submitter) to all DMTF 6064
members (members@dmtf.org). The message highlights the error, the findings of the Technical 6065
Committee, and the strategy to correct the error. In addition, the committee indicates the 6066
affected versions of the schema (that is, only the latest or all schemas after a specific version). 6067

d) All members are invited to respond to the Technical Committee within 30 days regarding the 6068
impact of the correction strategy on their implementations. The effects should be explained as 6069
thoroughly as possible, as well as alternate strategies to correct the error. 6070

mailto:technical@dmtf.org
mailto:members@dmtf.org

Common Information Model (CIM) Infrastructure DSP0004

178 DMTF Standard Version 2.6.0

e) If one or more members are affected, then the Technical Committee evaluates all proposed 6071
alternate correction strategies. It chooses one of the following three options: 6072

– To stay with the correction strategy proposed in b) 6073

– To move to one of the proposed alternate strategies 6074

– To define a new correction strategy based on the evaluation of member impacts 6075

f) If an alternate strategy is proposed in Item e), the Technical Committee may decide to reenter 6076
the errata process, resuming with Item c) and send an email message to all DMTF members 6077
about the alternate correction strategy. However, if the Technical Committee believes that 6078
further comment will not raise any new issues, then the outcome of Item e) is declared to be 6079
final. 6080

g) If a final strategy is decided, this strategy is implemented through a Change Request to the 6081
affected schema(s). The Technical Committee writes and issues the Change Request. Affected 6082
models and MOF are updated, and their introductory comment section is flagged to indicate that 6083
a correction has been applied. 6084

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 179

ANNEX H 6085
(informative) 6086

 6087
Ambiguous Property and Method Names 6088

In 5.1.2.8 it is explicitly allowed for a subclass to define a property that may have the same name as a 6089
property defined by a superclass and for that new property not to override the superclass property. The 6090
subclass may override the superclass property by attaching an Override qualifier; this situation is well-6091
behaved and is not part of the problem under discussion. 6092

Similarly, a subclass may define a method with the same name as a method defined by a superclass 6093
without overriding the superclass method. This annex refers only to properties, but it is to be understood 6094
that the issues regarding methods are essentially the same. For any statement about properties, a similar 6095
statement about methods can be inferred. 6096

This same-name capability allows one group (the DMTF, in particular) to enhance or extend the 6097
superclass in a minor schema change without to coordinate with, or even to know about, the development 6098
of the subclass in another schema by another group. That is, a subclass defined in one version of the 6099
superclass should not become invalid if a subsequent version of the superclass introduces a new 6100
property with the same name as a property defined on the subclass. Any other use of the same-name 6101
capability is strongly discouraged, and additional constraints on allowable cases may well be added in 6102
future versions of CIM. 6103

It is natural for CIM clients to be written under the assumption that property names alone suffice to 6104
identify properties uniquely. However, such CIM clients risk failure if they refer to properties from a 6105
subclass whose superclass has been modified to include a new property with the same name as a 6106
previously-existing property defined by the subclass. 6107

For example, consider the following: 6108

 [Abstract] 6109
class CIM_Superclass 6110
{ 6111
}; 6112
 6113
class VENDOR_Subclass 6114
{ 6115
 string Foo; 6116
}; 6117

Assuming CIM-XML as the CIM protocol and assuming only one instance of VENDOR_Subclass, 6118
invoking the EnumerateInstances operation on the class "VENDOR_Subclass" without also asking for 6119
class origin information might produce the following result: 6120

<INSTANCE CLASSNAME="VENDOR_Subclass"> 6121
 <PROPERTY NAME="Foo" TYPE="string"> 6122
 <VALUE>Hello, my name is Foo</VALUE> 6123
 </PROPERTY> 6124
</INSTANCE> 6125

If the definition of CIM_Superclass changes to: 6126

 [Abstract] 6127

Common Information Model (CIM) Infrastructure DSP0004

180 DMTF Standard Version 2.6.0

class CIM_Superclass 6128
{ 6129
 string Foo = "You lose!"; 6130
}; 6131

then the EnumerateInstances operation might return the following: 6132

<INSTANCE> 6133
 <PROPERTY NAME="Foo" TYPE="string"> 6134
 <VALUE>You lose!</VALUE> 6135
 </PROPERTY> 6136
 <PROPERTY NAME="Foo" TYPE="string"> 6137
 <VALUE>Hello, my name is Foo</VALUE> 6138
 </PROPERTY> 6139
</INSTANCE> 6140

If the CIM client attempts to retrieve the 'Foo' property, the value it obtains (if it does not experience an 6141
error) depends on the implementation. 6142

Although a class may define a property with the same name as an inherited property, it may not define 6143
two (or more) properties with the same name. Therefore, the combination of defining class plus property 6144
name uniquely identifies a property. (Most CIM operations that return instances have a flag controlling 6145
whether to include the class origin for each property. For example, in DSP0200, see the clause on 6146
EnumerateInstances; in DSP0201, see the clause on ClassOrigin.) 6147

However, the use of class-plus-property-name for identifying properties makes a CIM client vulnerable to 6148
failure if a property is promoted to a superclass in a subsequent schema release. For example, consider 6149
the following: 6150

class CIM_Top 6151
{ 6152
}; 6153
 6154
class CIM_Middle : CIM_Top 6155
{ 6156
 uint32 Foo; 6157
}; 6158
 6159
class VENDOR_Bottom : CIM_Middle 6160
{ 6161
 string Foo; 6162
}; 6163

A CIM client that identifies the uint32 property as "the property named 'Foo' defined by CIM_Middle" no 6164
longer works if a subsequent release of the CIM schema changes the hierarchy as follows: 6165

class CIM_Top 6166
{ 6167
 uint32 Foo; 6168
}; 6169
 6170
class CIM_Middle : CIM_Top 6171
{ 6172
}; 6173

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 181

 6174
class VENDOR_Bottom : CIM_Middle 6175
{ 6176
 string Foo; 6177
}; 6178

Strictly speaking, there is no longer a "property named 'Foo' defined by CIM_Middle"; it is now defined by 6179
CIM_Top and merely inherited by CIM_Middle, just as it is inherited by VENDOR_Bottom. An instance of 6180
VENDOR_Bottom returned in CIM-XML from a CIM server might look like this: 6181

<INSTANCE CLASSNAME="VENDOR_Bottom"> 6182
 <PROPERTY NAME="Foo" TYPE="string" CLASSORIGIN="VENDOR_Bottom"> 6183
 <VALUE>Hello, my name is Foo!</VALUE> 6184
 </PROPERTY> 6185
 <PROPERTY NAME="Foo" TYPE="uint32" CLASSORIGIN="CIM_Top"> 6186
 <VALUE>47</VALUE> 6187
 </PROPERTY> 6188
</INSTANCE> 6189

A CIM client looking for a PROPERTY element with NAME="Foo" and CLASSORIGIN="CIM_Middle" fails 6190
with this XML fragment. 6191

Although CIM_Middle no longer defines a 'Foo' property directly in this example, we intuit that we should 6192
be able to point to the CIM_Middle class and locate the 'Foo' property that is defined in its nearest 6193
superclass. Generally, a CIM client must be prepared to perform this search, separately obtaining 6194
information, when necessary, about the (current) class hierarchy and implementing an algorithm to select 6195
the appropriate property information from the instance information returned from a CIM operation. 6196

Although it is technically allowed, schema writers should not introduce properties that cause name 6197
collisions within the schema, and they are strongly discouraged from introducing properties with names 6198
known to conflict with property names of any subclass or superclass in another schema. 6199

Common Information Model (CIM) Infrastructure DSP0004

182 DMTF Standard Version 2.6.0

ANNEX I 6200
(informative) 6201

 6202
OCL Considerations 6203

The Object Constraint Language (OCL) is a formal language to describe expressions on models. It is 6204
defined by the Open Management Group (OMG) in the Object Constraint Language specification, which 6205
describes OCL as follows: 6206

• OCL is a pure specification language; therefore, an OCL expression is guaranteed to be without side 6207
effect. When an OCL expression is evaluated, it simply returns a value. It cannot change anything in the 6208
model. This means that the state of the system will never change because of the evaluation of an OCL 6209
expression, even though an OCL expression can be used to specify a state change (e.g., in a post-6210
condition). 6211

• OCL is not a programming language; therefore, it is not possible to write program logic or flow control in 6212
OCL. You cannot invoke processes or activate non-query operations within OCL. Because OCL is a 6213
modeling language in the first place, OCL expressions are not by definition directly executable. 6214

• OCL is a typed language, so that each OCL expression has a type. To be well formed, an OCL 6215
expression must conform to the type conformance rules of the language. For example, you cannot 6216
compare an Integer with a String. Each Classifier defined within a UML model represents a distinct OCL 6217
type. In addition, OCL includes a set of supplementary predefined types. These are described in Chapter 6218
11 ("The OCL Standard Library"). 6219

• As a specification language, all implementation issues are out of scope and cannot be expressed in OCL. 6220
The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model 6221
cannot change during evaluation." 6222

For a particular CIM class, more than one CIM association referencing that class with one reference can 6223
define the same name for the opposite reference. OCL allows navigation from an instance of such a class 6224
to the instances at the other end of an association using the name of the opposite association end (that 6225
is, a CIM reference). However, in the case discussed, that name is not unique. For OCL statements to 6226
tolerate the future addition of associations that create such ambiguity, OCL navigation from an instance to 6227
any associated instances should first navigate to the association class and from there to the associated 6228
class, as described in the Object Constraint Language specification in its sections 7.5.4 "Navigation to 6229
Association Classes" and 7.5.5 "Navigation from Association Classes". OCL requires the first letter of the 6230
association class name to be lowercase when used for navigating to it. For example, CIM_Dependency 6231
becomes cIM_Dependency. 6232
EXAMPLE: 6233

 [ClassConstraint { 6234
 "inv i1: self.p1 = self.acme_A12.r.p2"}] 6235
 // Using class name ACME_A12 is required to disambiguate end name r 6236
class ACME_C1 { 6237
 string p1; 6238
}; 6239
 6240
 [ClassConstraint { 6241
 "inv i2: self.p2 = self.acme_A12.x.p1", // Using ACME_A12 is recommended 6242
 "inv i3: self.p2 = self.x.p1"}] // Works, but not recommended 6243
class ACME_C2 { 6244
 string p2; 6245

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 183

}; 6246
 6247
class ACME_C3 { }; 6248
 6249
 [Association] 6250
class ACME_A12 { 6251
 ACME_C1 REF x; 6252
 ACME_C2 REF r; // same name as ACME_A13::r 6253
}; 6254
 6255
 [Association] 6256
class ACME_A13 { 6257
 ACME_C1 REF y; 6258
 ACME_C3 REF r; // same name as ACME_A12::r 6259
}; 6260

Common Information Model (CIM) Infrastructure DSP0004

184 DMTF Standard Version 2.6.0

ANNEX J 6261
(informative) 6262

 6263
Change Log 6264

Version Date Description

1 1997-04-09 First Public Release

2.2 1999-06-14 Released as Final Standard

2.2.1000 2003-06-07 Released as Final Standard

2.3 2004-08-11 Released as Preliminary Standard

2.3 2005-10-04 Released as Final Standard

2.4.0a 2007-11-12 Released as Preliminary Standard
• ARCHCR00038.009 - Add Correlatable qualifier
• ARCHCR00039.011 - Datetime Arithmetic and Comparison
• ARCHCR00050.003 - Datetime Calendar 2
• ARCHCR00050.006 - Datetime Calendar 2
• ARCHCR00056.004 - Datetime Special Values
• ARCHCR00057.003 - OCL Qualifier Extension
• ARCHCR00067.001 - Clarify that qualifiers do not adorn qualifier types, or other

qualifiers
• ARCHCR00068.001 - Clarifications for overriding qualifiers
• ARCHCR00069.003 - Clarify qualifiers MinValue,MaxValue,MinLen,MaxLen
• ARCHCR00070.003 - Clarifications on KEY qualifier (including NULL)
• ARCHCR00071.005 - Add new DisplayDescription qualifier
• ARCHCR00072.014 - Deprecate units and add programmatic units
• ARCHCR00073.000 - real32+64 are IEEE-754
• ARCHCR00074.004 - Resolve inconsistency in scopes of REQUIRED qualifier
• ARCHCR00075.001 - Add method scope to REQUIRED qualifier
• ARCHCR00076.002 - Clarify format of OVERRIDE qualifier including NULL
• ARCHCR00077.000 - Add default rule for UmlPackagePath qualifier
• ARCHCR00078.000 - Minor cleanup re qualifier duplication
• ARCHCR00079.000 - Minor cleanup in section 2.5.1
• ARCHCR00080.000 - Minor cleanup in section 4.7
• ARCHCR00081.009 - Various clarifications on arrays
• ARCHCR00082.003 - Clarification of static concept
• ARCHCR00083.000 - KEY properties cannot be embedded objects
• ARCHCR00085.000 - Clarify NULL for Min and Max qualifiers
• ARCHCR00090.003 - Clarify EXPERIMENTAL qualifier
• ARCHCR00091.007 - Programmatic units for counted phenomenons
• ARCHCR00092.001 - Mandate schema name to be first segment of

UMLPackagePath
• ARCHCR00093.004 - Several clarifications for Deprecated qualifier
• ARCHCR00094.004 - Clarifications for syntax of MappingString qualifier
• ARCHCR00097.004 - Clarify the target of the Override qualifier
• ARCHCR00098.005 - Clarify OCL related qualifiers
• ARCHCR00099.004 - Clarify EmbeddedInstance and EmbeddedObject qualifiers
• ARCHCR00101.004 - Clarify any datatype may be NULL and clarify NULL-ness

of references in associations
• ARCHCR00106.001 - Fix KEY qualifier definition

2.5.0a 2008-04-22 Released as Preliminary Standard
• various formal changes to follow ISO Guidelines

DSP0004 Common Information Model (CIM) Infrastructure

Version 2.6.0 DMTF Standard 185

Version Date Description

2.5.0 2009-03-04 Released as DMTF Standard, with the following changes:
• ARCHCR00129.001 - Reduce programmatic units for counted items to just one
• ARCHCR00130.001 - Fix name of programmatic unit for rack unit

2.6.0a 2009-11-04 Released as a Work in Progress, with the following changes:
• ARCHCR00103.007 - Prohibit some DisableOverride qualifiers on overriding

elements
• ARCHCR00107.004 - BNF defined format for datetime values
• ARCHCR00109.006 - Clarify usage of programmatic units by datatype
• ARCHCR00110.009 - Glossary clarifications and additions
• ARCHCR00112.005 - Clarify OctetString qualifier
• ARCHCR00116.010 - Renovation of object naming and initializers
• ARCHCR00117.004 - Comparison of values
• ARCHCR00118.003 - Clarify schema and qualifier type modifications
• ARCHCR00119.001 - Add XML strings via the XMLNamespaceName qualifier
• ARCHCR00120.002 - Qualifier type declaration for XMLNamespaceName
• ARCHCR00121.000 - Clarify Propagated and Weak qualifiers
• ARCHCR00122.001 - Move normative text out of informative Guidelines annex
• ARCHCR00123.002 - Renovate CIM Meta Schema
• ARCHCR00126.003 - Clarify qualifier concept including flavors
• ARCHCR00128.002 - Deprecate the Translatable qualifier flavor
• ARCHCR00132.000 - Add programmatic units VA and VAR
• ARCHCR00133.002 - Clarifications for property default value
• ARCHCR00134.002 - Fix compatibility statement for Required qualifier
• ARCHCR00135.000 - Fix several flaws in ValueMap description
• ARCHCR00136.002 - Clarify extensibility of string based ValueMap
• ARCHCR00137.000 - Deprecate implicit qualifiers and element level flavors
• ARCHCR00138.002 - Deprecate covered elements in the same schema
• ARCHCR00139.000 - Define qualifier flavors and other qualifier clarifications
• ARCHCR00140.001 - Add Value class to meta schema + other fixes
• ARCHCR00141.003 - Clarify Unicode support and deprecate the char16 type

2.6.0 2010-03-17 Released as DMTF Standard, with the following changes:
• Made the IsPUnit qualifier final by removing its "experimental" status.
• Added or changed terms: CIM server, CIM client, CIM operation, CIM protocol,

CIM listener, implicit qualifier, references to document related terms in ISO
guidelines.

• Corrected errors (relative to the qualifiers.mof and qualifiers_optional.mof files in
the CIM Schema) of data type, scope, flavor and/or default value of the following
qualifiers: Indication, ArrayType, Counter, Description, DN, EmbeddedInstance,
IsPUnit, Key, MaxValue, Revision, Expensive, UnknownValues,
UnsupportedValues.

• Corrected that the ABNF rules defining the General Mapping String Format for the
MappingStrings qualifier are required to be assembled without intervening
whitespace. This was (incorrectly) only a recommendation before.

• Corrected the specification of parameter names in ModelCorrespondence
qualifier.

• Fixed incorrect "64-bit" in description of length in OctetString qualifier to become
"32-bit".

• Clarified the implications of the requirements on the UCS/Unicode character
repertoire for CIM clients that still use UCS-2.

• Extended scope of Annex F (Embedded Objects) to cover all CIM protocols, and
removed information that belongs into CIM protocol specifications.

• Moved some CIM protocol related references from Normative References to
Bibliography.

Common Information Model (CIM) Infrastructure DSP0004

186 DMTF Standard Version 2.6.0

Bibliography 6265

Grady Booch and James Rumbaugh, Unified Method for Object-Oriented Development Document Set, 6266
Rational Software Corporation, 1996, http://www.rational.com/uml 6267

James O. Coplein, Douglas C. Schmidt (eds.), Pattern Languages of Program Design, Addison-Wesley, 6268
Reading Mass., 1995 6269

Georges Gardarin and Patrick Valduriez, Relational Databases and Knowledge Bases, Addison Wesley, 6270
1989 6271

Gerald M. Weinberg, An Introduction to General Systems Thinking, 1975 ed. Wiley-Interscience, 2001 ed. 6272
Dorset House 6273

DMTF DSP0200, CIM Operations over HTTP, Version 1.3 6274
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf 6275

DMTF DSP0201, Specification for the Representation of CIM in XML, Version 2.3 6276
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf 6277

ISO/IEC 19757-2:2008, Information technology -- Document Schema Definition Language (DSDL) -- Part 6278
2: Regular-grammar-based validation -- RELAX NG, 6279
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52348 6280

IETF, RFC2068, Hypertext Transfer Protocol – HTTP/1.1, http://tools.ietf.org/html/rfc2068 6281

IETF, RFC1155, Structure and Identification of Management Information for TCP/IP-based Internets, 6282
http://tools.ietf.org/html/rfc1155 6283

IETF, RFC2253, Lightweight Directory Access Protocol (v3): UTF-8 String Representation Of 6284
Distinguished Names, http://tools.ietf.org/html/rfc2253 6285

OMG, Unified Modeling Language: Infrastructure, Version 2.1.1 6286
http://www.omg.org/cgi-bin/doc?formal/07-02-06 6287

The Unicode Consortium: The Unicode Standard, http://www.unicode.org 6288

W3C, Character Model for the World Wide Web 1.0: Normalization, Working Draft, 27 October 2005, 6289
http://www.w3.org/TR/charmod-norm/ 6290

W3C, XML Schema Part 0: Primer Second Edition, W3C Recommendation, 28 October 2004, 6291
http://www.w3.org/TR/xmlschema-0/ 6292

http://www.rational.com/uml
http://www.dmtf.org/standards/published_documents/DSP0200_1.3.pdf
http://www.dmtf.org/standards/published_documents/DSP0201_2.3.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52348
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc1155
http://tools.ietf.org/html/rfc2253
http://www.omg.org/cgi-bin/doc?formal/07-02-06
http://www.unicode.org/
http://www.w3.org/TR/charmod-norm/
http://www.w3.org/TR/xmlschema-0/

	Trademarks
	Foreword
	Acknowledgments

	Introduction
	Document Conventions

	Typographical Conventions
	ABNF Usage Conventions
	Deprecated Material
	Experimental Material
	CIM Management Schema
	Core Model
	Common Model
	Extension Schema
	CIM Implementations
	CIM Implementation Conformance

	Scope
	Normative References
	Terms and Definitions
	Symbols and Abbreviated Terms
	Meta Schema
	Definition of the Meta Schema
	Formal Syntax used in Descriptions
	CIM Meta-Elements
	NamedElement
	TypedElement
	Type
	PrimitiveType
	ReferenceType
	Schema
	Class
	Property
	Method
	Parameter
	Trigger
	Indication
	Association
	Reference
	Qualifier Type
	Qualifier
	Flavor
	Instance
	InstanceProperty
	Value

	Data Types
	UCS and Unicode
	String Type
	Char16 Type
	Datetime Type
	Indicating Additional Type Semantics with Qualifiers
	Comparison of Values

	Supported Schema Modifications
	Schema Versions

	Class Names
	Qualifiers
	Qualifier Concept
	Qualifier Value
	Qualifier Type
	Qualifier Scope
	Qualifier Flavor
	Effective Qualifier Values
	Localized Qualifiers

	Meta Qualifiers
	Association
	Indication

	Standard Qualifiers
	Abstract
	Aggregate
	Aggregation
	ArrayType
	Bitmap
	BitValues
	ClassConstraint
	Composition
	Correlatable
	Counter
	Deprecated
	Description
	DisplayName
	DN
	EmbeddedInstance
	EmbeddedObject
	Exception
	Experimental
	Gauge
	In
	IsPUnit
	Key
	MappingStrings
	Max
	MaxLen
	MaxValue
	MethodConstraint
	Min
	MinLen
	MinValue
	ModelCorrespondence
	NonLocal (removed)
	NonLocalType (removed)
	NullValue
	OctetString
	Out
	Override
	Propagated
	PropertyConstraint
	PUnit
	Read
	Required
	Revision (deprecated)
	Schema (deprecated)
	Source (removed)
	SourceType (removed)
	Static
	Terminal
	UMLPackagePath
	Units (deprecated)
	ValueMap
	Values
	Version
	Weak
	Write
	XMLNamespaceName

	Optional Qualifiers
	Alias
	Delete
	DisplayDescription
	Expensive
	IfDeleted
	Invisible
	Large
	PropertyUsage
	Provider
	Syntax
	SyntaxType
	TriggerType
	UnknownValues
	UnsupportedValues

	User-defined Qualifiers
	Mapping Entities of Other Information Models to CIM
	SNMP-Related Mapping String Formats
	General Mapping String Format
	MIF-Related Mapping String Format

	Managed Object Format
	MOF Usage
	Class Declarations
	Instance Declarations

	MOF Components
	Keywords
	Comments
	Validation Context
	Naming of Schema Elements
	Class Declarations
	Declaring a Class
	Subclasses
	Default Property Values
	Key Properties
	Static Properties

	Association Declarations
	Declaring an Association
	Subassociations
	Key References and Properties in Associations
	Weak Associations and Propagated Keys
	Object References

	Qualifiers
	Qualifier Type
	Qualifier Value

	Instance Declarations
	Instance Aliasing
	Arrays

	Method Declarations
	Static Methods

	Compiler Directives
	Value Constants
	String Constants
	Character Constants
	Integer Constants
	Floating-Point Constants
	Object Reference Constants
	NULL

	Naming
	CIM Namespaces
	Naming CIM Objects
	Object Paths
	Object Path for Namespace Objects
	Object Path for Qualifier Type Objects
	Object Path for Class Objects
	Object Path for Class Objects
	Matching CIM Names

	Identity of CIM Objects
	Requirements on Specifications Using Object Paths
	Object Paths Used in CIM MOF
	Mapping CIM Naming and Native Naming
	Native Name Contained in Opaque CIM Key
	Native Storage of CIM Name
	Translation Table
	No Mapping

	Mapping Existing Models into CIM
	Technique Mapping
	Recast Mapping
	Domain Mapping
	Mapping Scratch Pads

	Repository Perspective
	DMTF MIF Mapping Strategies
	Recording Mapping Decisions
	(normative)��MOF Syntax Grammar Description
	(informative)��CIM Meta Schema
	(normative)��Units
	Programmatic Units
	Value for Units Qualifier
	(informative)��UML Notation
	(informative)��Guidelines
	SQL Reserved Words

	(normative)��EmbeddedObject and EmbeddedInstance Qualifiers
	Encoding for MOF
	Encoding for CIM Protocols

	(informative)��Schema Errata
	(informative)��Ambiguous Property and Method Names
	(informative)��OCL Considerations
	(informative)��Change Log

	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00530065007400740069006e0067007300200066006f007200200050004400460020006300720065006100740069006f006e002000660072006f006d00200057006f0072006400200064006f00630075006d0065006e00740073002000280069006e0063006c007500640069006e006700200065006d00620065006400640065006400200056006900730069006f0020006f007200200050006f0077006500720050006f0069006e0074002000660069006700750072006500730029002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

